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Abstract Let e ⊂ R be a finite union of disjoint closed intervals. In the study of or-
thogonal polynomials on the real line with measures whose essential support is e,
a fundamental role is played by the isospectral torus. In this paper, we use a cov-
ering map formalism to define and study this isospectral torus. Our goal is to make
a coherent presentation of properties and bounds for this special class as a tool for
ourselves and others to study perturbations. One important result is the expression of
Jost functions for the torus in terms of theta functions.
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1 Introduction

Let e ⊂ R be a union of � + 1 disjoint closed intervals

e = e1 ∪ e2 ∪ · · · ∪ e�+1, (1.1)

ej = [αj ,βj ], (1.2)

α1 < β1 < α2 < · · · < α�+1 < β�+1, (1.3)

where � counts the number of gaps.
For later purposes, we will need to exploit potential theoretic objects associated

to e. The notation cap(e) will be its logarithmic capacity, dρe the equilibrium measure
(normalized by ρe(R) = 1)

dρe(x) = ρe(x) dx, (1.4)

and ρe(ej ) the harmonic measures. For reasons that become clear soon, we say e is
periodic if all harmonic measures, ρe(ej ), j = 1, . . . , � + 1, are rational. See [35, 41,
44, 55, 62, 69, 74] for discussions of potential theory.

We will be interested in one- and two-sided Jacobi matrices: one-sided with para-
meters labeled {an, bn}∞n=1,

J =

⎛
⎜⎜⎜⎝

b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ , (1.5)

and two-sided with {an, bn}∞n=−∞ extended to the top and left in the obvious way.
And, of course, we want to consider the orthogonal polynomials on the real line
(OPRL) [28, 66, 71] defined by

p−1(x) = 0, p0(x) = 1,

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x).
(1.6)

If dμ is the spectral measure for J and vector (1,0,0, . . . )t , then the pn’s are ortho-
normal ∫

pn(x)pm(x)dμ(x) = δnm. (1.7)

We will also want to consider monic OPs, Pn, the multiple of pn with leading coeffi-
cient 1,

pn(x) = (a1 · · ·an)
−1Pn(x), (1.8)

xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x). (1.9)

We want to analyze the case where

σess(J ) ≡ σess(dμ) = e. (1.10)
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Here σess(J ) is the essential spectrum of J , also known as the derived set of
supp(dμ). We will use σ(J ) (or σ(dμ)) for the spectrum of J and Σac(dμ) = {x |
dμ
dx

�= 0} for the essential support of the a.c. part of dμ. In this paper, we will focus on
the isospectral torus, in [16] on the Szegő class, and in [17] on results that go beyond
the Szegő class. Some of our results were announced in [15].

The goal is to extend what is known about the case e = [−1,1]. This can be viewed
as a problem in approximation theory where polynomial asymptotics is critical or as
a problem in spectral theory where Jacobi parameter asymptotics is critical. As usual,
there are three main levels from the point of view of polynomial asymptotics:

(a) Root asymptotics. Asymptotics of |Pn(x)|1/n. For [−1,1], the theory is due to
Erdös–Turán [23] and Ullman [75–77]. For general sets, including finite gap sets,
the theory is due to Stahl–Totik [69] (see Simon [62] for a review). One has for
x /∈ σ(dμ) and dμ regular (i.e., σess(dμ) = e and lim(a1 · · ·an)

1/n = cap(e)) that

∣∣Pn(x)
∣∣1/n → exp

(∫
log |x − y|dρe(y)

)
. (1.11)

(b) Ratio asymptotics. Traditionally, this involves the ratio Pn+1(x)/Pn(x) having a
limit. Nevai [48] showed that if an → a, bn → b (a �= 0) so that σess(dμ) = [b −
2a, b + 2a], then the limit exists for x /∈ σ(dμ). Simon [59] proved a converse:
if the limit exists at a single point in C+ = {z | Im z > 0}, then for some a, b,
we have that an → a, bn → b. Thus, the proper analog for σess(dμ) = e will not
be existence of a limit but something more subtle. This is an interesting open
question which we will not address.

(c) Szegő asymptotics. This says that for z /∈ σ(dμ), Pn(z)/D(z)E(z)n → 1 for an
explicit function E ((z+√

z2 − 1) for e = [−1,1]) and a function D which is μ-
dependent. The proper analog for general finite gap sets was obtained by Widom
[82] (see also Aptekarev [3]) and by Peherstorfer–Yuditskii [51] using variational
methods. The ratio is only asymptotically (almost) periodic. One of our main
goals in this series is to provide a new nonvariational approach to this result. In
addition, following Damanik–Simon [19] for [−1,1], we want to consider cases
where the Szegő condition fails.

From the spectral theory point of view, the analogs of an → 1
2 , bn → 0 (also

known as the Nevai class) concern the isospectral torus, an object we will discuss ex-
tensively in this paper. For now, we note that if e is periodic, the J ’s in the isospectral
torus are all periodic Jacobi matrices with σess(J ) = e. In the general case, it is an
�-dimensional torus of almost periodic J ’s with σess(J ) = e. It can be singled out via
minimal Herglotz functions [66] or reflectionless potentials [56]; see Sect. 6 below.

The key realization is that the Nevai class needs to be replaced by approach to an
isospectral torus. This was first noted by Simon [60, 61] as conjectures in the context
of the orthogonal polynomials on the unit circle (OPUC) case. In turn, Simon was
motivated by work of López and collaborators [6, 9] who studied the case of a single
gap for OPUC.

From a spectral point of view, the analogs of the asymptotics results are:

(a) Regularity implies more restrictions on the Jacobi parameters than
(a1 · · ·an)

1/n → cap(e). For example, for e = [−1,1], it is known that 1
n

∑n
j=1(aj −
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1
2 )2 + b2

j → 0 and, for e periodic, a similar Cesàro convergence result for dis-
tances to the isospectral torus is proven in [65]. The analog for general finite gap
sets remains an interesting open question.

(b) The key result here in the case e = [−1,1] is the theorem of Denisov–Rakhmanov
[21] stating that if Σac(dμ) = σess(dμ) = [−1,1], then an → 1

2 , bn → 0. Si-
mon [61] conjectured that for periodic e, the proper result is that if Σac(dμ) =
σess(dμ) = e, then all right limits lie in the isospectral torus. For periodic e, this
was proven by Damanik–Killip–Simon [20] who conjectured the result for gen-
eral e. It was then proven for general finite gap sets by Remling [56]. Remling’s
result plays a key role in our work in paper II [16]. We note that in the opposite
direction, Last–Simon [42] have shown that if all right limits lie in the isospectral
torus, then σess(dμ) = e.

(c) Here there are two main results. When σ(dμ) = e (no bound states), Widom
proved that a Szegő condition implies

lim inf
a1 · · ·an

cap(e)n
> 0, (1.12)

lim sup
a1 · · ·an

cap(e)n
< ∞. (1.13)

The Szegő condition in this situation is

∫
e

dist(x,R \ e)−1/2 log

(
dμ

dx

)
dx > −∞. (1.14)

Widom allowed no eigenvalues outside e. Peherstorfer–Yuditskii [51] had eigen-
values, but only in a later note [52] did they have the natural (from their paper [50])
condition ∑

j

dist(xj , e)
1/2 < ∞, (1.15)

where xj are the point masses of dμ (or eigenvalues of J ) outside e. Thus,
Peherstorfer–Yuditskii [52] showed

(1.14) + (1.15) ⇒ (1.12) + (1.13). (1.16)

One of our main results in paper II [16] is to show

(1.12) + (1.15) ⇒ (1.14) + (1.13). (1.17)

Peherstorfer remarked to us that, while this result is new, it can also be derived from
the results of [51].

The key to our analysis is a machinery developed by Sodin–Yuditskii [67] and
exploited by Peherstorfer–Yuditskii [51, 52]. To explain it, we note that the key to
recent sum rule discussions (summarized in [66]) is to take the m-function given by

m(z) =
∫

dμ(x)

x − z
(1.18)
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and in the case e = [−2,2], move it to D = {z | |z| < 1} via

M(z) = −m
(
z + z−1). (1.19)

The map

x(z) = z + z−1 (1.20)

is the unique analytic bijection of D to C ∪ {∞} \ [−2,2] with

x(0) = ∞, lim
z→0
z �=0

zx(z) > 0. (1.21)

The minus sign in (1.19) comes from the fact that x maps D ∩ C+ to −C+ (where
C+ = {z | Im z > 0}).

In our case, there cannot be an analytic bijection of D to C ∪ {∞} \ e, since C ∪
{∞} \ e is not simply connected. However, because the holomorphic universal cover
of C ∪ {∞} \ e is D, there is an analytic map x : D → C ∪ {∞} \ e which is locally
one-to-one and obeys (1.21). Moreover, there is a group 	 of Möbius transformations
of D to D so that

x(z) = x(w) ⇔ ∃γ ∈ 	 so that z = γ (w). (1.22)

This group is isomorphic to π1(C ∪ {∞} \ e) = F�, the free non-Abelian group on �

generators. We mention that x is uniquely determined if (1.21)–(1.22) hold and x is
locally one-to-one.

Our goal in this paper is to discuss the isospectral torus in terms of this formalism.
It turns out that basic objects for the isospectral torus, like Bloch waves and Green’s
function behavior, are not discussed in detail anywhere. We will remedy that here.
While these results will not be surprising to experts, they are exceedingly useful both
in our further works [16, 17] and in [11, 27, 36, 64].

We should expand on the point we already remarked upon that there are two dis-
tinct ways of describing the isospectral torus: as a set of minimal Herglotz functions
or as the family of reflectionless Jacobi matrices with spectrum e. The view as mini-
mal Herglotz functions goes back to the earliest periodic KdV work [22, 45] (see also
[25, 40, 79]), while the reflectionless definition goes back at least to Sodin–Yuditskii
[67] (see also [56]).

There is an important distinction: reflectionless objects are natural whole-line
(doubly infinite) Jacobi matrices, while minimal Herglotz functions are associated
to half-line objects. Of course, the passage from whole-line to half-line objects is
by restriction—but the converse is not so simple. From our point of view, the key
is that the J ’s associated to minimal Herglotz functions are quasiperiodic, and such
functions are determined by their values on a half-line (because a quasiperiodic func-
tion vanishing on a half-line is identically zero). Alternatively, if m(z) is a minimal
Herglotz function, the demand that

m0(z) = M
(
a0, b0,m(z)

)
, (1.23)
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where

M
(
a, b,f (z)

)= 1

−z + b − a2f (z)
, (1.24)

be a minimal Herglotz function determines a0 and b0, and so inductively, minimality
allows a unique continuation from the half-line.

In Sect. 2, we describe the map x in (1.21)–(1.22) and its natural extension to a
covering (albeit not universal covering) map of the two-sheeted Riemann surface, S ,
that the m-function for elements of the isospectral torus lives on. In Sect. 3, we de-
scribe a critical result of Beardon [8] on the Poincaré index of 	. Section 4 reviews
the facts about character automorphic Blaschke products and their connection to po-
tential theory. We will also present estimates on these products needed in later papers
[16, 17]. In Sect. 5, we use this machinery to prove Abel’s theorem. In Sect. 6, we
describe the isospectral torus as the family of minimal Herglotz functions on S . Sec-
tions 7 and 8 will describe the Jost functions of elements of the isospectral torus and
will prove that the natural map from the isospectral torus to the group of characters
of 	, given by the character of the Jost function, is an isomorphism of tori. We will
also relate Jost functions to theta functions, one of the more significant results of the
present paper. Section 9 will discuss Jost solutions and the associated Bloch waves.
Finally, Sect. 10 will apply these solutions to the study of Green’s function. Some of
the material in Sects. 2, 4, and 6 is in suitable texts but included here because we wish
to make this paper more accessible to approximation theorists who may be unfamiliar
with it.

We also mention the enormous debt this paper owes to the seminal work of Sodin–
Yuditskii [67] and Peherstorfer–Yuditskii [51]. About the only real advantage of our
presentation in this first paper over ideas implicit in [51, 67] is that we are more
explicit and our Jost functions, unlike the close relatives in [51, 67], are strictly char-
acter automorphic. We emphasize that [51, 67] had as their focus the theory of certain
infinite gap sets for which e is typically a Cantor set of positive Lebesgue measure.
But they include finite gap sets and provide useful tools in that special case. Our work
makes use of some results special to this finite gap situation.

We note that while we discuss Jost functions and solutions here for the isospectral
torus, in [16, 17] we will present them for any J in the Szegő class. For us, they are
the key to understanding Szegő asymptotics in this finite gap situation.

2 The Covering Map and the Fuchsian Group

In this section, we describe the basic objects and setup that we will use. We emphasize
that these constructs are not new here, and more than anything else, this section sets
up notation and gives a pedagogical introduction. The Riemann surface, S , was intro-
duced for finite gap KdV in [22, 45] and for finite gap Jacobi matrices in [25, 40, 79].
The Fuchsian group formalism is from [67].

Let S+ be the set C ∪ {∞} \ e viewed as a Riemann surface. First of all, we want
to view this as one sheet of the Riemann surface of the function

w = (R(z)
)1/2

, (2.1)



Constr Approx (2010) 32: 1–65 7

where

R(z) =
�+1∏
j=1

(z − αj )(z − βj ). (2.2)

More explicitly, we consider pairs (w, z) in C
2 obeying

w2 − R(z) ≡ G(w,z) = 0. (2.3)

Since ∂G
∂z

�= 0 at those 2� + 2 points where ∂G
∂w

= 0, this set is a one-dimensional
complex manifold, also known as a Riemann surface.

With two points at infinity added, this set becomes a compact surface S . One can
formally define S by looking in C

3 \ {0} at triples, (w, z,u), with

w2u2� =
�+1∏
j=1

(z − αju)(z − βju) (2.4)

and regarding (w, z,u) as equivalent to (w′, z′, u′) if there is λ ∈ C\{0}, so w = λw′,
z = λz′, u = λu′. Rather than this formal projective space view, we will think of
two points, ∞± ∈ S , obtained by using ζ = 1/z coordinates on S± and adding the
missing point ζ = 0.

There is a natural map π : S → C ∪ {∞} given by (w, z) → z. It sets up S as a
branched cover of C ∪ {∞}. Here π is two-to-one on all points in C ∪ {∞} except
{αj ,βj }�+1

j=1—these latter points are the branch points. There is a second natural map
τ : S → S that in (w, z) coordinates takes w → −w. Let S− denote the image of S+
under τ . τ(∞+) = ∞−. S \ (S+ ∪ S−) is thus π−1(e). Each π−1(ej ) is topologically
a circle.

There is a close connection between S and the potential theory associated to e. In
terms of the equilibrium measure, dρe, consider its Borel transform,

Me(z) =
∫

dρe(x)

x − z
. (2.5)

It is a basic fact (due to Craig [18]; see also [62, 66]) that for suitable points, xj ∈
(βj ,αj+1), we have

Me(z) = −∏�
j=1(z − xj )

(
∏�+1

j=1(z − αj )(z − βj ))1/2
, (2.6)

so Me has a natural analytic continuation from C ∪ {∞} \ e to S .
Topologically, S is the sphere with � handles attached—the canonical surface of

genus �. Its first homology group (see [4, 33, 80] for basic topological notions we use
here) is Z

2�. One way of looking at the generators is picking curves that loop around
each π−1(ej ) but one (the sum of all � + 1 is homologous to zero) and also curves
that loop around each

π−1([βj ,αj+1]
)≡ Gj j = 1, . . . , �. (2.7)
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For a while, we put S aside and focus on S+. Note that S+ is not simply connected.
Its fundamental group is the free non-Abelian group on � generators. We will pick ∞
as the base point. One way of picking generators is to pick γ̃1, . . . , γ̃� where γ̃j is the
curve that starts at ∞, traverses in C− to 1

2 (βj + αj+1) (in the j -th gap), and returns
to ∞ in C+ (see the lower half of Fig. 2).

The universal cover of S+ inherits the local complex structure of S+ and so is a
Riemann surface. The deck transformations preserve this complex structure, so there
is a discrete group, 	, of complex automorphisms of the universal cover where each
γ ∈ 	 has no fixed points.

It is a fundamental result in the theory of Riemann surfaces (the uniformization
theorem; see [24, 31, 47]) that the only simply connected Riemann surfaces are the
Riemann sphere, the complex plane, and the unit disk, D. The sphere has no fixed
point free complex automorphism and the only discrete groups of automorphisms on
C are one- and two-dimensional lattices, so the only Riemann surfaces with cover C

are the tori and the punctured disk. Since S+ is neither of these, its universal cover
is D.

Thus, there exists a map x : D → S+, which is locally one-to-one, and a group,
	, of Möbius transformations on D so that (1.22) holds. By requiring (1.21) (which,
by the action of maps on D, we can always do), we uniquely fix x. There is a lovely
proof of the existence of x due to Radó [54] that follows the standard proof of the
Riemann mapping theorem [1]; see [66, Sect. 9.5].

	 is a discrete group of Möbius transformations leaving D setwise fixed, also
known as a Fuchsian group. For background on such groups, see [38] or [66, Chap. 9].

S+ is invariant under complex conjugation, as is D, so x(z̄) is also a covering map
of D over S+. But it obeys (1.21), so by uniqueness,

x(z̄) = x(z). (2.8)

We define the fundamental region, F int ⊂ D, as follows: x−1(C∪{∞}\[α1, β�+1])
consists of connected components on which x is a bijection (this is because C∪{∞}\
[α1, β�+1] is simply connected, and so contains no closed curve nonhomotopic to the
trivial curve in S+). We let F int be the component containing 0 ∈ x−1({∞}); we will
shortly enlarge F int to a fundamental set, F .

In F int, consider x−1(R∪ {∞}\ [α1, β�+1]). By (2.8), the set is a subset of D∩R.
But as y → α1 or β�+1, x−1(y) must approach the boundary of D. It follows that
x−1(R ∪ {∞} \ [α1, β�+1]) = (−1,1) ⊂ D. The other inverse images of this set are,
by (1.22), images of (−1,1) under Möbius transformations, so arcs of orthocircles,
that is, pieces of circles orthogonal to ∂D.

In place of (1.21), we could have required x(0) = 1
2 (βj + αj+1) together with

x′(0) > 0 and seen that for this x, one has (−1,1) in the inverse image of the gap
(βj ,αj+1). Since the two x’s are related by a Möbius transformation, we conclude
that under our x (normalized by (1.21)) the inverse images of gaps are also arcs of
orthocircles. The boundary of F int in D (not D) clearly has 2� pieces corresponding
to the tops and bottoms of the � gaps. Thus, F int is D with 2� orthocircles (and
their interior) removed—� in each half-plane—these are conjugate to one another.
We label the boundary pieces in the upper half-disk C+

1 , . . . ,C+
� . Figure 1 shows a

typical F int for � = 2 with the inverse image of C− ∩ S+ shaded.
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Fig. 1 The fundamental region

Fig. 2 Fuchsian group
generators

We now define a fundamental set, F , by adding the arcs C+
1 , . . . ,C+

� to F int. With
this definition, every point in D can be uniquely written as γ (w) for some w ∈ F and
some γ ∈ 	. The fundamental region F int is indeed the interior of F . As a subset
of D, F has C−

1 , . . . ,C−
� added. Here C−

j denotes the complex conjugate of C+
j .

Sometimes we want to consider the closure of F in D, that is, also add the 2� arcs in
∂D at the ends.

To describe the Fuchsian group, 	, we begin with the � generators: the deck trans-
formations that go into the generators, γ̃1, . . . , γ̃�, of the homotopy group, π1(S+).
Figure 2 shows the lift of the curve associated to γ̃2 in our example. The bottom half
of the curve in S+ under x−1 goes from 0 to a point on C+

2 . Since that half of γ̃2 lies
in C−, this piece of curve lies in C+ ∩ F . The second half must be the inversion in
the curve C+

2 of the first half, and so it is as shown.
A little thought shows that the Möbius map that corresponds to γ̃2, which we will

call γ2, is what one gets by composing complex conjugation with inversion in C+
2 .

Inversion in the circle |z − z0| = r is the map

z → z0 + r2

z̄ − z̄0
. (2.9)
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Thus,

γj = r+
j c,

where c(z) = z̄ and r+
j is inversion in C+

j .

	 is the free non-Abelian group generated by {γj }�j=1. Every element of 	 can be

uniquely written as αw(γ ) · · ·α2α1, where each αj is either a γj or a γ −1
j and no αj

is an α−1
j−1. The word length of γ is w(γ ). It will be convenient to define

	k = {γ | w(γ ) = k
}
. (2.10)

We have #	k = 2�(2� − 1)k−1, since α1 has 2� choices (γ1, . . . , γ�, γ −1
1 , . . . , γ −1

� )
and each other αj has 2� − 1 choices. By definition, 	0 = {1}.

Alternatively, one can write for γ ∈ 	2m,

γ = s1 · · · s2m, (2.11)

with each sk an r±
j (r−

j is inversion in C−
j ), and for γ ∈ 	2m+1,

γ = s1 · · · s2m+1c. (2.12)

We point out that F is the Dirichlet fundamental region for 	, that is,

F = {z | ∣∣γ (z)
∣∣≥ |z| for all γ ∈ 	

}
. (2.13)

Moreover, C+
j is the perpendicular bisector in the hyperbolic metric of 0 and γj (0)

(see, e.g., [66, Sect. 9.3]).
Since γ ∈ 	 has no fixed points in D, it cannot be elliptic, and it is not hard to see

[66] that it is, in fact, hyperbolic.
The fact that F is a fundamental set implies that

D =
⋃
γ∈	

γ (F ). (2.14)

We will let

Dk =
⋃

w(γ )≤k

γ (F ), (2.15)

and

Rk = D \ Dk, (2.16)

and finally define ∂Rk ⊂ ∂D as

∂Rk = Rk ∩ ∂D, (2.17)

where the closure is taken in D. Thus, Dk is connected, while Rk consists of
2�(2� − 1)k disks (intersected with D) with only some boundaries included and ∂Rk
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Fig. 3 Iterated generators

is 2�(2� − 1)k connected arcs in ∂D. Figure 3 shows the arcs C±
j and their images

under 	1 and 	2.
In Fig. 3, the union of the large partial disks is R0, the union of the medium partial

disks is R1, and the union of the tiny partial disks is R2.
Notice the geometry is such that

z ∈ Rk ⇒ z

|z| ∈ ∂Rk, (2.18)

which we will need in Sect. 7 and [16].
We denote by L the set of limit points of 	. It is a subset of ∂D and can be defined

via several equivalent definitions:

(i) L =⋂k Rk ,
(ii) L = {z ∈ ∂D | γ (z) = z for some γ �= 1; γ ∈ 	},

(iii) L = {γ (0) | γ ∈ 	} ∩ ∂D.

In (ii), each γ ∈ 	 is hyperbolic, so it has two fixed points on ∂D, each of which
is either limn→∞ γ n(0) or limn→∞ γ −n(0). This is the key to proving that (ii) and
(iii) are equivalent and that (iii) is the same if γ (0) is replaced by γ (z0) for any fixed
z0 ∈ D. The key to understanding (i) is that, by definition, Dk contains only finitely
many γ (0), all of which are a finite distance from ∂D. As we will explain in the
next section, L is of one-dimensional Lebesgue measure zero, indeed, of Hausdorff
dimension strictly smaller than one.

Now, we return to S+ and the two-sheeted Riemann surface S . The basic fact here
is that the map x : D → S+ has an analytic continuation both to a map of C∪{∞}\ L
to C ∪ {∞} and to a map

x� : C ∪ {∞} \ L → S. (2.19)

By construction, x(z) approaches R as z → ∂D with z ∈ F . So, by the strong form
of the reflection principle, x is continuous and real-valued up to ∂D ∩ F and can be
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meromorphically continued to (∂D ∩ F ) ∪ F −1. Utilizing (1.22), we can thus extend
x to a map of C ∪ {∞} \ L onto C ∪ {∞}. Outside D, x is defined by

x(1/z) = x(z). (2.20)

At points, z0, where x(z0) is real and x(z) − x(z0) has a zero of order k, there are
2k curves (asymptotically rays) coming out of z0 on which x(z) is real. On C+ ∩ F ,
x has negative imaginary part and so, by reflection, at points, z0, in C+ ∩ ∂D ∩ F —
except for the endpoints, there are two rays near z0 where x is real. It follows that on
the set

{
z ∈ C ∪ {∞} \ L | x(z) /∈ {αj ,βj }�+1

j=1

}
, (2.21)

x′ is nonzero. At points, z0, where x(z0) ∈ {αj ,βj }�+1
j=1, images of R or a C+

j under
an element γ ∈ 	 intersect ∂D orthogonally, so four rays on which x is real come out
of z0. Hence, x(z) − x(z0) has a double zero, that is, x′(z0) = 0 and x′′(z0) �= 0, and
the extended map x is therefore not a local bijection at such points z0. The same is
true for the canonical projection π : S → C∪{∞}, so if we think of x : D → S+ ⊂ S
(rather than into a subset of C∪{∞}), we can extend it to a map x� : C∪{∞}\ L → S
via

x�(1/z) = τ
(
x(z)

)
. (2.22)

Then the maps x and x� are related via

x = π ◦ x�. (2.23)

The elements of 	 are rational functions and so maps of C ∪ {∞} to itself. It is
easy to see that each γ maps L to L (for if γn(0) → z0, then γ ◦ γn(0) → γ (z0)) and
so C ∪ {∞} \ L to itself. Of course, we have

x
(
γ (z)

)= x(z), (2.24)

since γ is analytic and this holds on D. The map x� has a similar relation. Indeed,
since (2.22) holds, we have (1.22) for x� on all of S . By the unfolding discussed
above, x� is a local bijection on all of C ∪ {∞} \ L, that is, a covering map, albeit not
the universal cover.

A major role will be played by automorphic and character automorphic functions.
These are functions, f , defined on D (usually analytic but occasionally meromorphic
and occasionally only harmonic) or on C ∪ {∞} \ L (always meromorphic) which
obey

f
(
γ (z)

)= c(γ )f (z) (2.25)

for all γ and z. Here c �= 0 and must obey

c(γ γ ′) = c(γ )c(γ ′). (2.26)

If c ≡ 1, f is called automorphic. If |c| = 1 so that c is a unitary group character, we
call f character automorphic. A character is determined by {c(γj )}�j=1 which can
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be chosen independently so the set of all characters is an �-dimensional torus, 	∗.
This set has a group structure if cc̃(γ ) = c(γ )c̃(γ ) is the product and c(γ ) = 1 the
identity. Moreover, c−1(γ ) = c(γ ).

Notice that x is automorphic on D and x� is automorphic on C ∪ {∞} \ L if we
extend the notion to include S -valued functions. Moreover, f is automorphic and
analytic (respectively meromorphic) on D if and only if there is a function, F , on S+
which is analytic (respectively meromorphic) with

F
(
x(z)

)= f (z). (2.27)

Similarly, (2.27) with x replaced by x� sets up a one-to-one correspondence be-
tween meromorphic functions on S and meromorphic automorphic functions on
C ∪ {∞} \ L.

In particular, we have that the analog of (1.19),

M(z) = −m
(
x(z)

)
, (2.28)

is an automorphic function with ImM(z) > 0 for z ∈ F int ∩ C+.
We will require the following result:

Theorem 2.1 Fix � and let Q� ⊂ R
2�+2 be the set of (α1, β1, . . . , α�+1, β�+1) for

which (1.3) holds. Given q ∈ Q�, let xq be the covering map and γj ;q the Fuchsian
group generators. Then xq and γj ;q are continuous in q on Q�.

This is a special case of a theorem of Hejhal [34] who noted that one can also
base a proof on ideas from Ahlfors–Bers [2]. We have found a proof for the case at
hand and given it in [66, Sect. 9.8]. We note that the Blaschke product, B(z), that we
discuss in Sect. 4 below is also continuous in q .

We will also need the following well-known fact about functions on S (see [24,
31] or [66, Theorem 5.12.5]):

Theorem 2.2 Let F be a nonconstant meromorphic function on S . Then F has a
degree, d , so that for all a, {w | F(w) = a} has d points, counting multiplicity (i.e.,
d is the sum of the orders of zeros of F(w) − a in local coordinates). If F ◦ τ �≡ F ,
then the degree of F is at least � + 1.

Remark In particular, if F is analytic on S , it must be constant.

3 Beardon’s Theorem

From our point of view, a theorem of Beardon [8] plays a critical role. To state the
theorem, we need some notions. Fix s > 0 and a Fuchsian group, 	. The Poincaré
series is given by

∑
γ∈	

∣∣γ ′(0)
∣∣s . (3.1)
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We are interested in when this series is convergent. It is a basic fact (see [38, 66]) that
if the series in (3.1) converges, then uniformly for z in compacts of D, the series

∑
γ∈	

∣∣γ ′(z)
∣∣s (3.2)

converges, as does uniformly on compacts of D the series

∑
γ∈	

(
1 − ∣∣γ (z)

∣∣)s . (3.3)

Indeed, convergence of (3.2) for one z implies convergence uniformly on compacts.
What is also true (see, e.g., [66, Sect. 9.4]) is that if K ⊂ D \ L is compact, then there
is C > 0 so that for all z ∈ K and all γ ∈ 	,

∣∣γ ′(z)
∣∣≤ C

∣∣γ ′(0)
∣∣, (3.4)

so convergence of (3.1) implies convergence of (3.2) uniformly for z ∈ K . In partic-
ular, since D \ L is connected, we see that the series

∑
γ∈	

∣∣γ (z) − γ (w)
∣∣s (3.5)

converges uniformly for z,w in compacts K ⊂ D \ L.
Poincaré [53] proved that for any Fuchsian group, (3.1) converges if s = 2, and

Burnside [13, 14] proved that if the set of limit points is not all of ∂D, then (3.1)
converges if s = 1. Beardon proved:

Theorem 3.1 (Beardon [8]) If 	 is a finitely generated Fuchsian group whose limit
points are not all of ∂D, then there is some s < 1 so that (3.1) converges.

As Beardon noted, this is equivalent to the set of limit points having Hausdorff
dimension less than 1. Indeed, it is known (in work later than Beardon, see [49, 70]
and also [10, Chap. 14]) that the infimum over s for which (3.1) converges is the
Hausdorff dimension of L. We note that Beardon’s proof is very involved, in part
because of the need to consider issues such as elliptic and parabolic elements that are
irrelevant to our setup. The result for our case is proven using some simple geometry
in Simon [66].

There is an important consequence of Beardon’s theorem that we need. Let

R̃ = ∂D \ ∂R0, (3.6)

that is, F ∩ ∂D. This set consists of 2� arcs. For each γ ∈ 	, γ (R̃) is also 2� arcs, so

∂Rk = L ∪
[ ⋃

w(γ )>k

γ (R̃)

]
. (3.7)
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It is not hard to see that on R̃ and its images, each γ ±
j , but one, decreases sizes by

a fixed amount so that (| · | is total arc length)
∣∣γ (R̃)

∣∣≤ Ce−Dw(γ ) (3.8)

for some fixed constants C, D > 0 (proven in [66, Sect. 9.6]).
By (3.4), for some constant Q,

∣∣γ (R̃)
∣∣≤ Q

∣∣γ ′(0)
∣∣. (3.9)

Hence
∣∣γ (R̃)

∣∣≤ ∣∣Ce−Dw(γ )
∣∣1−s∣∣Q∣∣γ ′(0)

∣∣∣∣s . (3.10)

So, by Beardon’s theorem for some s < 1,

|∂Rk| ≤ C1−sQse−D(1−s)k
∑
γ∈	

∣∣γ ′(0)
∣∣s (3.11)

and thus:

Theorem 3.2 For some constants C0,D0 > 0, we have

|∂Rk| ≤ C0e
−D0k. (3.12)

4 Blaschke Products and (Potential Theorist’s) Green’s Function

The initial elements of this section are classical; see, for example, Tsuji [74]. Given
w ∈ D, we define b(z,w) by

b(z,w) =
{ |w|

w
w−z
1−w̄z

w �= 0,

z w = 0,
(4.1)

which is meromorphic in z on C∪{∞}, analytic in z on D, and is the unique bijective
map of D → D with

b(w,w) = 0 (4.2)

and

b(0,w) > 0 (w �= 0); b′(0,w) > 0 (w = 0). (4.3)

Note that b is continuous in z on D and
∣∣b(eiθ ,w

)∣∣= 1. (4.4)

The following is standard (see Rudin [57]):

Lemma 4.1 Let (wj )
∞
j=1 be a sequence of points in D.
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(a) If
∞∑

j=1

(
1 − |wj |

)= ∞, (4.5)

then as N → ∞,

N∏
j=1

b(z,wj ) → 0 (4.6)

uniformly on compact subsets of D.
(b) If

∞∑
j=1

(
1 − |wj |

)
< ∞, (4.7)

then as N → ∞,

N∏
j=1

b(z,wj ) → B
(
z, (wj )

)
(4.8)

uniformly on compact subsets of D, where B is analytic in D and obeys

B
(
z, (wj )

)= 0 ⇔ z ∈ (wj ). (4.9)

Moreover, for Lebesgue a.e. θ ,

lim
r↑1

B
(
reiθ , (wj )

)≡ B
(
eiθ , (wj )

)
(4.10)

exists obeying
∣∣B(eiθ , (wj )

)∣∣= 1. (4.11)

Remarks 1. The refined form of (4.9) says that the order of the zero at some wj is
the number of times it occurs in (wj ).

2. The proof shows that when (4.7) holds, uniformly for |z| ≤ ρ < 1, we have

∞∑
j=1

∣∣1 − b(z,wj )
∣∣< ∞. (4.12)

3. The proof of (4.12) follows from the simple inequality

∣∣1 − b(z,w)
∣∣≤ 1 + |z|

|1 − w̄z|
(
1 − |w|), (4.13)

which also proves that the product converges on C \ [D ∪ (1/w̄j )] and on any set
K ⊂ ∂D with

inf
eiθ∈K,wj

∣∣eiθ − wj

∣∣> 0. (4.14)
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In particular, if there is any set K ⊂ ∂D for which (4.14) holds, we can find such an
open set and so get a product analytic across K . This product is meromorphic, with
poles at the points 1/w̄j .

We also need the following:

Lemma 4.2 Suppose γ is an analytic bijection of D to D. For any z,w ∈ D, we have

(i)
∣∣b(z,w)

∣∣= ∣∣b(w, z)
∣∣, (4.15)

(ii)
∣∣b(γ (z), γ (w)

)∣∣= ∣∣b(z,w)
∣∣. (4.16)

Proof (i) is immediate. For (4.16), fix w and let

h(z) = b(γ (z), γ (w))

b(z,w)
. (4.17)

It is easy to see that h has a removable singularity at z = w, and so it is analytic
in D and continuous on D. By (4.4), |h(eiθ )| = 1, so, by the maximum principle,
|h(z)| ≤ 1 on D. But 1/h has the same properties as h, so |1/h(z)| ≤ 1, which implies
that |h(z)| = 1, that is, (4.16) holds. �

The following is true for any Fuchsian group whose limit points are not dense in
∂D—but we only care here about the 	’s associated to finite gap sets:

Theorem 4.3 Let 	 be the Fuchsian group of a finite gap set. For any w ∈ D, the
product

∏
γ∈	

b
(
z, γ (w)

)≡ B(z,w) (4.18)

converges for all z ∈ C ∪ {∞} \ [L ∪ {γ (w)
−1}γ∈	] and defines a function ana-

lytic there and meromorphic in C ∪ {∞} \ L. B has simple poles at the points

{γ (w)
−1}γ∈	 , simple zeros at {γ (w)}γ∈	 , and no other zeros or poles. Moreover,

(i) For z,w ∈ D,
∣∣B(z,w)

∣∣= ∣∣B(w,z)
∣∣. (4.19)

(ii) Each B( · ,w) is character automorphic, that is, for every w ∈ D there is a char-
acter, cw , on 	 so that

B
(
γ (z),w

)= cw(γ )B(z,w). (4.20)

(iii) If

B(z) ≡ B(z,0), (4.21)

then for z ∈ C ∪ {∞} \ [L ∪ {γ (0)
−1}γ∈	],

∣∣B(z)
∣∣=

∏
γ∈	

∣∣γ (z)
∣∣. (4.22)
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(iv) For eiθ ∈ ∂D \ L (with ′ = ∂/∂θ ),

∣∣B ′(eiθ
)∣∣=

∑
γ∈	

∣∣γ ′(eiθ
)∣∣. (4.23)

Remarks 1. We will see below (Theorem 4.4) that c0(γ ) is not the identity.

2. When z ∈ {γ (0)
−1}γ∈	 , both sides of (4.22) are infinite.

Proof By Theorem 3.1 (or Burnside’s theorem), for any w ∈ D,

∑
γ∈	

∣∣1 − γ (w)
∣∣< ∞. (4.24)

So, by Lemma 4.1 and (4.13), the product converges where claimed and has the
claimed analytic/zero/pole properties.

(i) is immediate from (4.15)–(4.16). By the proof of (4.16), there exists η(w,γ ) ∈
∂D so that

b
(
γ (z), γ (w)

)= η(w,γ )b(z,w). (4.25)

Thus, for any finite subset, G ⊂ 	,

∏
γ ′∈G

b
(
γ (z), γ ′(w)

)=
∏

γ ′∈G

b
(
γ (z), γ

(
γ −1γ ′(w)

))

=
∏

γ ′∈G

η
(
γ −1γ ′(w), γ

) ∏

γ ′′∈γ −1(G)

b
(
z, γ ′′(w)

)
. (4.26)

If Gn ⊂ Gn+1 with
⋃

n Gn = 	 and γ is fixed, γ −1(Gn) ⊂ γ −1(Gn+1) and⋃
n γ −1(Gn) = 	, so the left side of (4.26) and the last factor on the right con-

verge to B(γ (z),w) and B(z,w), respectively. Thus, the product of η’s converges
to some cw(γ ) ∈ ∂D, that is, (4.20) holds. From (4.20), it is easy to see that
cw(γ γ ′) = cw(γ )cw(γ ′). That proves (ii).

To get (4.22), suppose first z ∈ D. Then by (4.19),

∣∣B(z)
∣∣= ∣∣B(z,0)

∣∣= ∣∣B(0, z)
∣∣=
∣∣∣∣
∏
γ∈	

γ (z)

∣∣∣∣,

proving (4.22) for z ∈ D.
Since for z ∈ D,

B(1/z̄) = B(z)−1, γ (1/z̄) = γ (z)−1 (4.27)

(on account of |B(eiθ )| = |γ (eiθ )| = 1 and the reflection principle), we get (4.22) on

C ∪ {∞} \ [D ∪ {γ (0)
−1}γ∈	]. Finally, on ∂D \ L, both sides of (4.22) are 1. This

completes (iii).
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To prove (iv), we note that if g is an analytic function on D with |g(z)| < 1 on D

and I ⊂ ∂D is an open interval so that g has an analytic continuation across I with
|g(eiθ )| = 1 on I , then

∂

∂θ

∣∣g(eiθ
)∣∣= 0, (4.28)

so, by Cauchy–Riemann equations,

∂

∂r
arg
(
g
(
reiθ

))∣∣∣∣
r=1

= 0 (4.29)

and

∂

∂θ
arg
(
g
(
eiθ
))= ∂

∂r

∣∣g(reiθ
)∣∣
∣∣∣∣
r=1

> 0. (4.30)

Hence, with ′ = ∂
∂θ

,

∣∣g′(eiθ
)∣∣= ∂

∂r

∣∣g(reiθ
)∣∣
∣∣∣∣
r=1

=
∣∣∣∣
dg

dz

(
eiθ
)∣∣∣∣ (4.31)

and

g′(eiθ
)= i

∣∣g′(eiθ
)∣∣g(eiθ

)
. (4.32)

In (4.30), we have strict positivity by the same argument that shows boundary
values of Herglotz functions are strictly monotone.

Let G be a finite subset of 	 and

BG(z) =
∏
γ∈G

b
(
z, γ (0)

)
. (4.33)

Then

∂

∂r

∣∣BG(z)
∣∣
∣∣∣∣
z=eiθ

=
∑
γ∈G

∂

∂r

∣∣b(z, γ (0)
)∣∣
∣∣∣∣
z=eiθ

(4.34)

by Leibnitz’s rule and |b(eiθ , γ (0))| = 1. If z0 ∈ ∂D \ L, BG(z) → B(z) for z in a
neighborhood of z0, so derivatives converge. Since ∂

∂r
|BG(z)| = | d

dz
BG(z)|, the ∂

∂r

derivatives converge. The terms in the sum are positive, so the sum over all of 	 is
absolutely convergent, and (4.34) extends to the limit. By (4.30)–(4.31) and the fact
that |b(z, γ (0))| = |γ (z)|, we get (4.23). �

We emphasize for later use that (4.30)–(4.31) imply

∂

∂θ
arg
(
γ
(
eiθ
))= ∣∣γ ′(eiθ

)∣∣> 0. (4.35)

Recall that the (real-valued) potential theoretic Green’s function, Ge, is uniquely
determined by requiring Ge(z)− log|z| to be harmonic on C∪{∞}\ e, and for quasi-
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every x ∈ e,

lim
z→x
z/∈e

Ge(z) = 0. (4.36)

In fact, when e has the form (1.1)–(1.3), Ge can be chosen globally continuous on C

with

Ge � e = 0. (4.37)

Moreover, near infinity,

Ge(z) = log |z| − log
(
cap(e)

)+ O
(
z−1) (4.38)

and, by the reflection principle, Ge(z) is real analytic in x and |y| near any z0 ∈ eint.
For x ∈ eint, we have

ρe(x) = lim
ε↓0

1

π

∂Ge

∂y
(x + iε), (4.39)

which we will write as
1

π

∂

∂n
Ge(x + i0), (4.40)

the normal derivative in the positive direction.

Theorem 4.4 Let 	 be the Fuchsian group of a finite gap set, e. Then for all z ∈
D \ {0},

∣∣B(z)
∣∣= e−Ge(x(z)). (4.41)

Moreover,

(i) If x∞ is given by

x(z) = x∞
z

+ O(1) (4.42)

near z = 0, then, also near z = 0,

B(z) = cap(e)

x∞
z + O

(
z2). (4.43)

(ii) The character, c0, of B(z) is given by

c0(γj ) = exp
(
2πiρe

([α1, βj ]
))

. (4.44)

(iii) At any x0 ∈ {αj ,βj }�+1
j=1, Ge has a square root zero in the sense that

lim
x↑αj

Ge(x)(αj − x)−1/2 = aj , (4.45)

lim
x↓βj

Ge(x)(x − βj )
−1/2 = bj (4.46)

for nonzero aj , bj .
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Proof By (4.20), |B(z)| is automorphic, so there exists a function h on C ∪ {∞} \ e

such that
∣∣B(z)

∣∣= h
(
x(z)

)
. (4.47)

Since x is analytic and xB is nonvanishing and analytic in a neighborhood of F ,
log(h(x)) + log |x| is harmonic on C ∪ {∞} \ e. By |B(z)| = 1 on F ∩ ∂D,
log(h(x)) → 0 as x → e. Thus, − log(h(x)) is Ge(x), proving (4.41).

Equation (4.43) is immediate from (4.42) and (4.38). The limit (4.45) and (4.46)
follow from (4.41), B ′(z) �= 0 on F ∩ ∂D, and the fact that on x−1({αj ,βj }�+1

j=1), we
have x′(z) = 0, x′′(z) �= 0. That leaves (4.44).

Consider the generator, γ�, whose action takes 0 into the endpoint of the curve in
the top of Fig. 2. Since

B
(
γ�(0)

)= c0(γ�)B(0), (4.48)

we see that

arg
(
c0(γ�)

)=
∮ γ�(0)

0

d

dz
arg
(
B(z)

)
dz. (4.49)

Ge(z) is harmonic on C\e so that, locally, it is the real part of an analytic function,
G̃e(z), but that function has a multivalued imaginary part. Thus, e−G̃e(z) ≡ E(z) has
a multivalued argument. Clearly,

B(z) = E
(
x(z)

)
(4.50)

and the change of argument in (4.49) is given by the change of argument of E(z)

over the curve in the bottom of Fig. 2. This is given by a sum of change of argument
around curves surrounding each band, since in the gaps and in (−∞, α1), there is
cancellation between top and bottom.

By a Cauchy–Riemann equation,

∂

∂x
arg
(
E(z)

)= − ∂

∂y
log
∣∣E(z)

∣∣= ∂Ge

∂n
.

The normal derivatives on top and bottom of a band have opposite sign, so given the
opposite directions,

arg
(
c0(γ�)

)=
�∑

j=1

∫ βj

αj

2
∂Ge(x + i0)

∂n
dx (4.51)

= 2π

�∑
j=1

∫ βj

αj

ρe(x) dx = 2πρe

([α1, β�]
)
, (4.52)

which is (4.44) for j = �. Equality (4.52) follows from (4.39). The argument for
general j = 1, . . . , � − 1 is similar. �
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Corollary 4.5 B(z)p is automorphic if and only if

ρe

([αj ,βj ]
)= qj

p
(4.53)

for integers qj .

Remark We will eventually see (Corollary 6.4) that this relates periodic e to periodic
Jacobi matrices.

Proof B(z)p is automorphic if and only if c0(γj )
p = 1 for j = 1,2, . . . , � and this,

given (4.44), is equivalent to (4.53). �

Corollary 4.6 Let e be a finite gap set and dρe its equilibrium measure. Then
∫

∂D

f
(
x
(
eiθ
)) dθ

2π
=
∫

e

f (x)dρe(x) (4.54)

for all continuous f on e and, if integrals are allowed to be infinite, for any positive
measurable f on e. In particular, f ∈ Lp(e, dρe) if and only if f ◦ x ∈ Lp(∂D, dθ

2π
),

so the Szegő conditions
∫

∂D

log
(
f
(
x
(
eiθ
))) dθ

2π
> −∞ (4.55)

and ∫
e

log
(
f (x)

)
dρe(x) > −∞ (4.56)

are equivalent for f ∈ L1(e, dρe).

Proof It suffices to prove (4.54) for continuous functions, f , and then use standard
approximation arguments. Recall that R̃ is given by (3.6) and consists of 2� arcs.
Except for endpoints, it is a fundamental domain for the action of 	 on ∂D, so

∫
∂D

f
(
x
(
eiθ
)) dθ

2π
=
∑
γ∈	

∫
γ (R̃)

f
(
x
(
eiθ
)) dθ

2π
(4.57)

=
∑
γ∈	

∫
R̃

f
(
x
(
eiθ
))∣∣γ ′(eiθ

)∣∣ dθ

2π
(4.58)

by a change of variables and the invariance of x under 	, that is, x ◦ γ = x. Thus, by
(4.23),

∫
∂D

f
(
x
(
eiθ
)) dθ

2π
=
∫

R̃
f
(
x
(
eiθ
))∣∣B ′(eiθ

)∣∣ dθ

2π
(4.59)

=
∫

R̃
f
(
x
(
eiθ
))∣∣∣∣

∂

∂n
e−Ge(x(eiθ ))

∣∣∣∣
dx(eiθ )

dθ

dθ

2π
, (4.60)
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where we use (4.41), |B ′(eiθ )| = d
dr

|B(reiθ )||r=1, and the chain rule to go from dθ to

dx derivatives. x on R̃ is a two-fold cover of e, so using ∂
∂n

e−Ge(x) = − ∂
∂n

Ge (since
Ge is 0 on e) and (4.39)–(4.40), we get

∫
∂D

f
(
x
(
eiθ
)) dθ

2π
= 2

∫
e

πρe(x)f (x)
dx

2π
=
∫

e

f (x)dρe(x). (4.61)

�

That concludes what we need about Blaschke products in this paper, but we put in
some results on products of Blaschke products which will be critical in later papers
in this series.

Theorem 4.7 Let (wk)
∞
k=1 be a sequence in F . Then

∞∑
k=1

(
1 − |wk|

)
< ∞ ⇔

∞∑
k=1

(
1 − ∣∣B(wk)

∣∣)< ∞. (4.62)

Moreover,

(i) If
∑∞

k=1(1 − |wk|) = ∞, then
∏N

k=1 B(z,wk) converges to 0 uniformly on com-
pact subsets of D.

(ii) If
∞∑

k=1

(
1 − |wk|

)
< ∞, (4.63)

then for all z ∈ D,
∞∑

k=1

∣∣1 − B(z,wk)
∣∣< ∞ (4.64)

uniformly on compact subsets of D, so
∏N

k=1 B(z,wk) converges to an analytic
limit vanishing if and only if z ∈ {γ (wk)}γ∈	,k=1,....

Remarks 1. If {γk} is a countable set of distinct elements in 	 and wk = γk(0),
then

∑∞
k=1(1 − |wk|) < ∞ (by Burnside or Beardon), but |B(z, γk(0))| = |B(z)| and∏N

k=1 B(z,wk) converges to 0 uniformly on compact subsets of D. Thus, the condi-
tion wk ∈ F cannot be replaced by wk ∈ D in (ii).

2. As in the case of Theorem 4.3, we can prove convergence on open subsets of

C ∪ {∞} \ [L ∪ {γ (wk)
−1}γ∈	,k=1,...] with poles at {γ (wk)

−1}γ∈	,k=1,....

Proof B is analytic in a neighborhood of F ∩ D, as noted in (4.30), |B ′(eiθ )| �= 0,
and, of course, |B(eiθ )| = 1. Thus, for nonzero constants, c, d , and for all w ∈ F ,

c
(
1 − ∣∣B(w)

∣∣)≤ 1 − |w| ≤ d
(
1 − ∣∣B(w)

∣∣), (4.65)

from which (4.62) is immediate. (Notice that (4.65) only holds on F , not on D, and
is where the condition wk ∈ F is used.)
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To prove (i), we need only note that
∣∣B(z,wk)

∣∣≤ ∣∣b(z,wk)
∣∣ (4.66)

and use Lemma 4.1(a).
To prove (ii), we note that

∏∞
k=1 B(z,wk) is a product of Blaschke products, so to

prove (4.64), it suffices to prove that

∑
γ∈	,k

(
1 − ∣∣γ (wk)

∣∣)< ∞. (4.67)

Since
∑

γ∈	(1 − |γ (0)|) < ∞, and zero occurs at most finitely often in the sequence
(wk)

∞
k=1 if (4.63) holds, we can suppose that no wk is zero, in which case, since

wk ∈ F implies (by (2.13))

|wk| = inf
γ∈	

∣∣γ (wk)
∣∣, (4.68)

we have

inf
γ∈	,k

∣∣γ (wk)
∣∣> 0. (4.69)

This implies that (4.67) is equivalent to

∏
γ∈	,k

∣∣γ (wk)
∣∣> 0, (4.70)

which, by (4.22), is equivalent to

∏
k

∣∣B(wk)
∣∣> 0. (4.71)

Now, (4.71) is implied by

∑
k

(
1 − ∣∣B(wk)

∣∣)< ∞. (4.72)

As we have seen, (4.63) implies (4.72), and thus (4.67). �

We are especially interested in the case where wk is determined by wk ∈ F and
x(wk) real (so wk ∈ [⋃�

j=1 C+
� ] ∪ (−1,1)). In that case:

Proposition 4.8 Let (xk)
∞
k=1 be a sequence in R \ e, and let wk ∈ F be uniquely

determined by

x(wk) = xk. (4.73)

Then the following are equivalent:

(i)
∞∑

k=1

(
1 − |wk|

)
< ∞, (4.74)
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(ii)
∞∑

k=1

Ge(xk) < ∞, (4.75)

(iii)
∞∑

k=1

dist(xk, e)
1/2 < ∞. (4.76)

Proof By (4.45)–(4.46), we have (ii) ⇔ (iii). By (4.62), we have that (i) is equivalent
to

∞∑
k=1

(
1 − ∣∣B(wk)

∣∣)< ∞, (4.77)

which, by (4.41) and (4.73), is equivalent to

∞∑
k=1

∣∣1 − e−Ge(xk)
∣∣< ∞. (4.78)

In turn, (4.78) is easily seen to be equivalent to (4.75). �

Finally, we need to discuss alternating Blaschke products. We will discuss a case
with points approaching the top of a gap (or α1). A similar result holds for approach
to a βj .

Theorem 4.9 Suppose (ζk)
∞
k=1, (ρk)

∞
k=1 obey, for some j ,

βj−1 < ζ1 < ρ1 < ζ2 < ρ2 < · · · < αj (4.79)

(where β0 ≡ −∞) and

lim
k→∞ ζk = αj . (4.80)

Let {zk} ∪ {pk} ⊂ F and aj ∈ F be given by

x(zk) = ζk, x(pk) = ρk, x(aj ) = αj .

Then as N → ∞,

N∏
k=1

B(z, zk)

B(z,pk)
→ B∞(z) (4.81)

uniformly in z on compact subsets of

C ∪ {∞} \ [L ∪ {γ (pk), γ
(
z−1
k

)}
γ∈	,k=1,...

∪ {γ (aj )
}
γ∈	

]
(4.82)

to a function which is analytic on the set in (4.82) with simple poles at points
in {γ (pk), γ (z−1

k )}γ∈	,k=1,... and with simple zeros only at the points {γ (p−1
k ),

γ (zk)}γ∈	,k=1,....
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Moreover,

z ∈ ∂D \ [L ∪ {γ (aj )
}
γ∈	

] ⇒ ∣∣B∞(z)
∣∣= 1 (4.83)

and for some constant C (e-dependent),

z ∈ F ⇒ ∣∣arg
(
B∞(z)

)∣∣≤ C (4.84)

if arg(B∞) is determined by requiring one value of arg(B∞(0)) to be zero.
In addition, if we remove the arc of C+

j−1 (or segment of [−1,0) if j = 1) that
runs from z1 to aj and all its images under γ ∈ 	, we get a region, B, free of zeros
and poles of B∞, on which

z ∈ B \ Rn ⇒ ∣∣arg
(
B∞(z)

)∣∣≤ (2n + 1)C. (4.85)

Remarks 1. If zk ∈ C+
j for some j , then γ −1

j (zk) = z̄k , so {γ (z−1
k )}γ∈	 =

{γ (z̄−1
k )}γ∈	 , which is why we do not need to put complex conjugates in (4.82).

2. The analog of this result for e = [−2,2] is from Simon [58].

Sketch (See [66] for details.) One first shows that if ζ,ω run through a compact
set, Q, in a single C+

j (including the endpoints) or [−1,0) or (0,1] and z through a

compact subset, K , of C \ L ∪ [{γ (Q)}γ∈	 ∪ {γ (Q−1)}γ∈	], then there is C < ∞ so
that for all γ ∈ 	, ζ,ω ∈ Q and z ∈ K ,

∣∣b(z, γ (ζ )
)− b

(
z, γ (ω)

)∣∣≤ C
∣∣γ (ζ ) − γ (ω)

∣∣. (4.86)

This comes from looking at the three parts of

b(z,w) = |w|
w

w − z

1 − w̄z
. (4.87)

From this and telescoping, one gets

∣∣B(z, ζ ) − B(z,ω)
∣∣≤ C

∑
γ∈	

∣∣γ (ζ ) − γ (ω)
∣∣≤ C1|ζ − ω|. (4.88)

Since

inf
z∈K
w∈Q

∣∣B(z,w)
∣∣> 0, (4.89)

(4.88) implies that
∣∣∣∣1 − B(z, ζ )

B(z,ω)

∣∣∣∣≤ C2|ζ − ω|, (4.90)

which leads to the convergence of (4.81) if we note that

∞∑
k=1

|zk − pk| < ∞, (4.91)
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since the sum is bounded by the arclength of C+
j (or by 1 if αj = α1). This easily

leads to all the statements except those about arg(B∞).
For any smooth function, f , on a circle C = {z | z = z0 + reiθ }, define

VarC(f ) =
∫ 2π

0

∣∣∣∣
d

dθ
f (z)

∣∣∣∣dθ. (4.92)

For w outside C, let

fw(z) = arg(w − z). (4.93)

Then this arg is increasing on one arc between the tangents to C from w and decreas-
ing on the other, so

VarC(fw) = 2 × angle between tangents. (4.94)

This shows that

VarC(fw) ≤ 2π (4.95)

and

VarC(fw) ≤ 4 radius(C)

dist(w,C)
. (4.96)

Since arg(B(z,w)) is built out of such arg(z − γ (w)) and arg(z − γ (w)
−1

), and
the radii of the circles containing γ (C+

j ) decrease so fast that, by Beardon’s theorem,

∑
γ∈	

radius
(
γ
(
C+

j

))
< ∞, (4.97)

we find, uniformly for z ∈ F , that

VarC+
j

(
arg
(
B(z, · )))≤ C0 (4.98)

for some finite constant C0.
Consider arg(B∞(z; {zk}, {pk})) as pk is changed from zk to its final value. At

pk ≡ zk , this arg is 0 and the total change is bounded by the variation of arg(B(z,w))

as w varies over C+
j−1. We conclude that on F ,

∣∣arg
(
B∞(z)

)∣∣≤ C0, (4.99)

proving (4.84). Since B∞ is character automorphic, the variation of arg(B∞(z)) over
any γ (F ) is at most 2C0, from which (4.85) is immediate.

5 Theta Functions and Abel’s Theorem

Given a general compact Riemann surface, S , of genus �, one can construct a natural
map, A, called the Abel map from S to a 2�-dimensional real torus, called the Jacobi
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variety, realized as C
�/L where L is a 2�-dimensional lattice. Once a base point in S

is fixed, the group structure comes into play. The theory of meromorphic functions—
essentially, which finite subsets of S can occur as zeros and poles—is described using
A via a result called Abel’s theorem.

As we will see in the next section, certain m-functions of Jacobi matrices with
σess(J ) = e define meromorphic functions on the Riemann surface, S , constructed in
Sect. 2. Their zeros and poles lie only at ∞+, ∞−, or in the sets Gj of (2.7). A takes⋃

j Gj into an �-dimensional torus inside the 2�-dimensional Jacobi variety (the real
part of the Jacobi variety), which is also a subgroup with a suitable choice of base
point. The traditional construction of the isospectral torus [22, 25, 40, 45, 79] uses
this general theory of the Abel map and Abel’s theorem.

Here, following Sodin–Yuditskii [67], we restrict ourselves to meromorphic func-
tions with poles and zeros only at ∞+, ∞−, and in

⋃
j Gj . In that case everything

can be made explicit in a way that the real part of the Jacobi variety becomes just the
�-dimensional torus, 	∗, of characters for the Fuchsian group, 	. The key is the defi-
nition of some natural functions on C ∪ {∞} \ L parametrized by points in

⋃�
j=1 C̃+

j

(defined below). Our construction is motivated by the one in [67] but is more explicit.
We will need to use a fundamental set of the action of 	 on C ∪ {∞} \ L,

F̃ = (F ∪ F −1) \
�⋃

j=1

C̃−
j , (5.1)

where closure is taken in C, and C̃±
j are the complete orthocircles (obtained by adding

the two missing points on ∂D to C±
j ∪ (C∓

j )−1, respectively); see Fig. 4. F̃ int will

denote its interior; this is a fundamental region. F̃ is then F̃ int with
⋃�

j=1 C̃+
j added.

Fig. 4 Complete orthocircles
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x� maps C̃+
j onto Gj bijectively. We will use ζ1, . . . , ζ� for the unique points on

C̃+
1 , . . . , C̃+

� that map to β1, . . . , β�, that is,

ζj ∈ C̃+
j ∩ ∂D, x�(ζj ) = βj . (5.2)

We need the following lemma:

Lemma 5.1 Let f be a character automorphic meromorphic function on C∪{∞}\ L.
Suppose

(i) f has no zeros or poles in F̃ int (so in F̃ , the only zeros and poles are on⋃�
j=1 C̃+

j ).
(ii) Every zero or pole of f has even order.

(iii) If Dj is a counterclockwise contour that is just outside C̃+
j (say, a circle with

the same center but a slightly larger radius), then

1

2πi

∮
Dj

f ′(z)
f (z)

dz = 0. (5.3)

(iv)

f (0) > 0. (5.4)

Then there is a (unique) character automorphic function, g, which we will denote
as

√
f , with

g(0) > 0 (5.5)

and so that for all z ∈ C ∪ {∞} \ L,

g(z)2 = f (z). (5.6)

Proof By (5.3), we can define a single-valued function h(z) on F̃ int by

h(z) = log
(
f (0)

)+
∮ z

0

f ′(w)

f (w)
dw (5.7)

with any contour in F̃ int used. Then

g(z) = exp

(
1

2
h(z)

)
(5.8)

obeys (5.5)–(5.6) and is defined and analytic on F̃ int.
Since all poles and zeros on C̃+

j are of even order, g(z) can be meromorphically

continued to a neighborhood, N , of the closure of F̃ . Then for each j , Sj ≡ {z ∈
F̃ int | γj (z) ∈ N} is open and nonempty, and by decreasing N , one can suppose each
Sj is connected.

If z ∈ Sj , we have g(γj (z))
2 = cf (γj )g(z)2. Hence, by continuity and connected-

ness, there is a single square root, cg(γj ), so that

z ∈ Sj ⇒ g
(
γj (z)

)= cg(γj )g(z). (5.9)
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We can use this to extend g to
⋃

j γj (F̃ ) and also to
⋃

j γ −1
j (F̃ ), and so (5.9) holds

for all z with z and γj (z) in the domain of current definition. In this way, one gets a
character automorphic continuation of g to C ∪ {∞} \ L. �

Lemma 5.2 Let ζ ∈ C̃+
j for some j . Then

f (z) = x(z) − x(ζ )

x(z) − x(ζj )
η(z)η(0)−1, (5.10)

where

η(z) =

⎧⎪⎨
⎪⎩

B(z, ζ ) if ζ ∈ D,

1 if ζ ∈ ∂D,

B(z, ζ̄−1)−1 if ζ ∈ C \ D

(5.11)

obeys properties (i)–(iv) of Lemma 5.1. If ζ �= ζj , f has double zeros at {γ (ζ )}γ∈	 ,
double poles at {γ (ζj )}γ∈	 , and is otherwise finite and nonvanishing.

Remarks 1. If ζ = ζj , f ≡ 1.
2. When z ∈ {γ (0)}γ∈	 , x(z) = ∞, and the first factor in (5.10) is interpreted as 1.

Thus, because of η(0)−1, we have f (0) = 1.

Proof (i) and (iv) are obvious. Moreover, if ζ �= ζj then f (z)/η(z) has double poles at
{γ (ζj )}γ∈	 (since x′(z) = 0, x′′(z) �= 0 at such points), double zeros at {γ (ζ )}γ∈	 if ζ

is the other point on C̃+
j in ∂D (i.e., if x�(ζ ) = αj+1), and simple zeros at {γ (ζ )}γ∈	 ∪

{γ (ζ̄−1)}γ∈	 if ζ /∈ ∂D (since x′(z) �= 0 at such points and x(ζ ) is real). Thus, there
are precisely the claimed zeros/poles for f since η cancels the zeros at {γ (ζ̄−1)}γ∈	

and doubles the zeros at {γ (ζ )}γ∈	 . This proves (ii).
To prove (iii), we need only check (5.3) if f is replaced by η or by f/η. The

function f/η is real on ∂D, so if q is the composition of this function and a conformal
map of C taking R to ∂D, q is real on the set of points in its domain which lie on R.
So

1

2πi

∮
D̃

q(z) dz = 0 (5.12)

for any conjugate symmetric curve, and so by contour deformation, for Dj and
(f/η)′/(f/η).

For η, we note that if f in (5.3) is replaced by a finite product
∏

γ∈G b(z, γ (ζ )),
the integral is zero, since the finite product is meromorphic inside Dj with an equal
number of (simple) zeros and (simple) poles. By taking limits, (5.3) holds for B(z, ζ ),
and by (1/g)′/(1/g) = −g′/g for B(z, ζ̄−1)−1. Thus, (5.3) holds for f . �

Definition Let y ∈ Gj for some j and let ζ be the unique point in C̃+
j with

x�(ζ ) = y. (5.13)
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We define Θ( · ;y) to be the character automorphic function

Θ(z;y) =
[

x(z) − x(ζ )

x(z) − x(ζj )
η(z)η(0)−1

]1/2

(5.14)

and denote by A(y) ∈ 	∗ its character. Moreover, we define A(∞) to be the character
of B(z).

By the lemma, Θ( · ;y) is indeed a character automorphic function on C ∪ {∞} \ L
with simple zeros at {γ (ζ )}γ∈	 and simple poles at {γ (ζj )}γ∈	 (and otherwise non-
vanishing and finite). By definition,

Θ(0;y) = 1. (5.15)

We also define

Ã : G → 	∗ (5.16)

by

Ã(y1, . . . , y�) = A(y1) · · ·A(y�) (5.17)

using the product in 	∗. Here

G = G1 × · · · × G�. (5.18)

Theorem 5.3 The map Ã of (5.16)–(5.17) is a real analytic homeomorphism of �-
dimensional tori.

Remark By real analytic functions, we do not mean real-valued but functions of real
parameters which are given locally by convergent series of those parameters—they
are, of course, C∞.

Proof By construction, Θ(z;y), as a map of D ×⋃�
j=1 Gj to C, is jointly real ana-

lytic. Since

A(y)(γ ) = Θ(γ (0);y)

Θ(0;y)
= Θ

(
γ (0);y), (5.19)

A and so Ã are real analytic maps.
Suppose �y = (y1, . . . , y�) and �w = (w1, . . . ,w�) lie in G and Ã(�y) = Ã(�w). Then

f (z) =
�∏

j=1

Θ(z;yj )

Θ(z;wj )
(5.20)

is automorphic since the characters cancel. Hence, there is a unique meromorphic
function F on S so that

f (z) = F
(
x�(z)

)
. (5.21)
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Let m be the number of j ’s with yj �= wj . The function F has exactly m poles
and m zeros, all simple (the poles/zeros where yj = wj cancel) and so has degree
m ≤ �. If m �= 0, F ◦ τ �≡ F since there is a gap with a single simple zero (and if
F ◦ τ = F , F has either two zeros or a double zero at a branch point). Thus, if m �= 0,
we get a contradiction to Theorem 2.2. It follows that m = 0, that is, �y = �w and Ã is
one-to-one.

Any smooth one-to-one map between two smooth, orientable compact manifolds
of the same dimension has degree ±1, and so is also surjective (see [26, 32, 39, 43,
46, 68] for expositions of degree theory). �

We saw above that Theorem 2.2 is the key to the proof of Theorem 5.3. It is also
very powerful in connection with Theorem 5.3 as the following theorems show:

Theorem 5.4 Let f be a character automorphic function on C ∪ {∞} \ L with no
zeros or poles. Then f is constant.

Proof Let cf ∈ 	∗ be the character of f . By Theorem 5.3, find �y ∈ G with
Ã(�y) = cf . Let

h(z) = f (z)∏�
j=1 Θ(z;yj )

. (5.22)

Then h is automorphic, so there is H meromorphic on S with

h(z) = H
(
x�(z)

)
. (5.23)

H has degree m where m = #{j | yj �= βj }. By Theorem 2.2, m = 0, that is, �y =
(β1, . . . , β�) so Ã(�y) = 1 and f is automorphic. But then

f (z) = F
(
x�(z)

)
(5.24)

with F analytic on S , and therefore f is constant. �

Corollary 5.5 Let ζ ∈ C̃+
j , and suppose h is a character automorphic meromorphic

function with zeros only at {γ (ζ )}γ∈	 and poles only at {γ (ζj )}γ∈	 , all simple. If
h(0) = 1, then

h(z) = Θ
(
z;x�(ζ )

)
. (5.25)

Moreover,

Θ(z̄;y) = Θ(z;y) (5.26)

and, in particular, Θ( · ;y) is real and strictly positive on R.

Remark Thus, Θ and so A are unique.
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Proof Apply Theorem 5.4 to h(z)/Θ(z;x�(ζ )). This gives (5.25). To get (5.26), use
(2.8) and the fact that for ζ ∈ C̃+

j

B(z, ζ ) =
∏
γ∈	

b
(
z, γ (ζ )

)=
∏
γ∈	

b
(
z, γ (ζ )

)=
∏
γ∈	

b
(
z, γ (ζ )

)= B(z, ζ ).
�

Definition By a divisor, we mean a finite subset � ⊂⋃�
j=1 Gj and the assignment

of a nonzero integer nx to each x ∈ � plus an assignment of an integer n+ to ∞+
and

n− = −n+ (5.27)

to ∞−. We write the divisor formally as

n+δ∞+ + n−δ∞− +
∑
x∈�

nxδx. (5.28)

Definition By a special meromorphic function, we mean a meromorphic function on
S so that

(i) All zeros and poles lie in [⋃�
j=1 Gj ] ∪ {∞±}.

(ii) If n± are the orders of the zeros and poles at ∞± (n± > 0 means a zero of order
n±, n± < 0 means a pole of order −n±), then (5.27) holds.

Definition The divisor, δ(F ), of a special meromorphic function F is given by
(5.28), where � is the set of zeros and poles of F , and nx is the order of the zero/pole
at x.

Notice that we have chosen a base point ζj that depends on which Gj the point y

lies in. For our later applications, where for each j ,

∑
x∈Gj

nx = 0, (5.29)

that is very convenient. But when (5.29) does not hold, we will need a factor to move
the base point to a fixed point, say ζ1. So we define

Ψj (z) =
√

x(z) − x(ζj )

x(z) − x(ζ1)
, (5.30)

where we can take special roots by Lemma 5.1, verifying (5.3) as we did for (x(z) −
x(ζ ))/(x(z) − x(ζj )).

We also need to define Aj to be the character of the character automorphic func-
tion Ψj . For x ∈ Gj , we let

A
�(x) = AjA(x). (5.31)
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Theorem 5.6 (Abel’s theorem for special meromorphic functions) A divisor is the
divisor of a special meromorphic function F if and only if

(a)
∑
x∈�

nx = 0, (5.32)

(b) A(∞)n+
∏
x∈�

A
�(x)nx = 1, (5.33)

the identity element of 	∗.

Remarks 1. The proof provides an explicit formula for F , namely,

F
(
x�(z)

)= B(z)n+
�∏

j=1

∏
x∈�∩Gj

Θ(z;x)nx Ψj (z)
nx . (5.34)

2. Notice that if (5.29) holds, we can drop the Ψj factors from (5.34) and change
A� to A in (5.33).

Proof (5.32) is an expression of the constancy of degree, that is, that the number of
zeros of F is equal, counting multiplicities, to the number of poles. So really we need
to prove, assuming (5.32), that a divisor is a δ(F ) if and only if (5.33) holds.

If the divisor obeys (5.33), then the right side of (5.34) is automorphic, so (5.34)
holds for some meromorphic F with the proper zeros and poles. Hence, the divisor
is a δ(F ). Because of the Ψj factors, the poles of Θ(z;x) at ζj are all moved to ζ1,
and the poles at ζ1 cancel each other by (5.32).

On the other hand, if F is a special meromorphic function and δ(F ) is its divisor,
then letting f (z) be the right side of (5.34),

F(x�(z))

f (z)
≡ h(z) (5.35)

is character automorphic with no zeros and poles (again, the poles and zeros at ζj

cancel because of the Ψj ’s and at ζ1 by (5.32)). By Theorem 5.4, h is constant, so
automorphic. Thus, since F(x�(z)) is automorphic, so is f , which implies (5.33). �

6 The Isospectral Torus

Once one has the Abel map and Abel’s theorem, the construction of the isospectral
torus along the lines pioneered for KdV [22, 45] is straightforward (see [66, Chap. 5]
for an exposition of the original papers [25, 40, 79]) but in the covering map guise
has a more explicit feel. For additional discussions of the isospectral torus, see [7, 12,
29, 30, 72].

Definition A minimal Herglotz function for e is a meromorphic function m on S with
degree precisely � + 1 and which obeys
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(i)

z ∈ S+ ∩ C+ ⇒ Imm(z) > 0, (6.1)

(ii) near ∞+,

m(z) = −1

z
+ O

(
z−2), (6.2)

(iii) m(z) has a pole at ∞−.

In the usual way (see [66]), m � S+ ∩ C+ determines a probability measure, dμ,
with

m(z) =
∫

dμ(x)

x − z
(6.3)

for z ∈ S+ \R. Moreover, the continuity properties of m as one approaches e (and the
fact that we will see that all poles of m are simple) imply that

dμ(x) = w(x)dx + dμs(x), (6.4)

where w is real analytic on eint and nonvanishing there, and dμs is a pure point
measure with pure points only in the open gaps

⋃�
j=1(βj ,αj+1) and at most one

pure point per gap.
Condition (iii) may seem ad hoc. We mention now that one can show ([66,

Example 5.13.4]) that if (iii) is dropped, the once-stripped m-function, m1, (i.e.,
m(z) = M(a1, b1,m1(z)) in terms of (1.24)) obeys condition (iii). Thus, the extra
possibilities allowed if (iii) is dropped result from taking the Jacobi matrix of a min-
imal Herglotz function as we have defined it and extending by one row and column,
with the “wrong” values of a0 or b0.

The main elements of the theory are:

(i) The minimal Herglotz functions are in one-to-one correspondence with G, and
so form an �-dimensional torus, Te.

(ii) The correspondence is that the coordinates of (y1, . . . , y�) ∈ G are the positions
of � of the poles of m—the last pole is at ∞−. The zeros are then determined
via the Abel map.

(iii) The Abel map “linearizes” coefficient stripping (i.e., the map (1.24)) since the
zeros of m are the poles of the once-stripped m-function, m1. Explicitly,

Ã : G → 	∗, (6.5)

and coefficient stripping corresponds to multiplying by the inverse of the char-
acter of B .

(iv) The linearization shows that the corresponding Jacobi parameters, {an, bn}∞n=1,
are almost periodic sequences with almost periods given by the harmonic mea-
sures {ρe([α1, βj ])}�j=1. In particular, one has periodicity if and only if these
numbers are all rational.

(v) The construction provides explicit formulae for m and, thus, a1, b1 (and so, via
the Abel map, an, bn) in terms of theta functions and the logarithmic capacity
of e.
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(vi) Uniformly on Te, there are bounds on the weight w in (6.4) of the form

C

√∣∣R(x)
∣∣≤ w(x) ≤ D

√∣∣R(x)
∣∣−1

, (6.6)

where 0 < C,D < ∞.

We begin by recalling what one can get without using the covering or Abel maps.

Theorem 6.1 (i) Every minimal Herglotz function has exactly one simple pole in
each gap Gj , one at ∞−, and no others.

(ii) For every choice (y1, . . . , y�) ∈ G, there is exactly one minimal Herglotz func-
tion with poles exactly at y1, . . . , y� (and ∞−).

(iii) For every minimal Herglotz function, the once-stripped Herglotz function is
also a minimal Herglotz function.

(iv) Every minimal Herglotz function has one zero in each gap Gj , one at ∞+,
and no others.

Remark Of course, (i) and (ii) set up a one-to-one correspondence between Te, the
set of minimal Herglotz functions, and G. We will often refer to G as the isospectral
torus.

Sketch (See [66, Chap. 5] for details.) (i) Every minimal degree meromorphic func-
tion, m, on S with m ◦ τ �≡ m has the form

m(z) = p(z) + √
R(z)

a(z)
, (6.7)

where R(z) is given by (2.2), and p,a have degree at most � + 1. Since m has a zero
at ∞+, p(z) must cancel the leading O(z�+1) term in

√
R(z) at ∞+, so

deg(p) = � + 1. (6.8)

Because this cancellation takes place at ∞+, it does not at ∞− (since
√

R flips
sign but p does not). For m to have a simple pole at ∞−, we must have

deg(a) = �. (6.9)

m is real on each [βj ,αj+1], so, by analyticity, on the entire gap Gj . Thus, m(z)

is real on R \ e on both sheets. Since
√

R(z) is real on R \ e, we conclude first that a

is real and then that p is real. In particular, on S + ∩ e,

Imm(x + i0) = Im
√

R(x)

a(x)
. (6.10)

Since R has two zeros between bands, Im
√

R(x) changes sign between successive
bands. As Imm(x + i0) ≥ 0, a must change signs between bands, that is, have an odd
number of zeros in each gap. Since, by (6.9), a has only � zeros and there are � gaps,
a has one zero per gap.
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If a has a zero at x0 ∈ (βj ,αj+1), then

(
p + √

R
)− (p − √

R
)= 2

√
R �= 0 (6.11)

at x0, so on one sheet or the other, m must have a pole. If a has a zero at
x0 ∈ {βj ,αj+1}, the numerator is at best O((x − x0)

1/2), and the denominator is
O((x − x0)). So again, m has a pole at x0.

Thus, m has at least one pole per gap. So, since deg(m) = � + 1 and m has a pole
at ∞−, m has exactly one simple pole in each gap.

(ii) Write yj = (π(yj ), σj ) if π(yj ) ∈ (βj ,αj+1) with σj = 1 (respectively −1) if
yj ∈ S+ (respectively S−). Since a has to vanish at π(yj ) to get a pole at yj , we see
that m has a pole at yj and not at τ(yj ) if and only if a(π(yj )) = 0 and

p
(
π(yj )

)= σj

√
R(yj ). (6.12)

If π(yj ) ∈ {βj ,αj+1}, then to avoid a double pole, p(π(yj )) = 0, that is, (6.12)
still holds (since

√
R(yj ) = 0, it does not matter that σj is undefined).

At ∞+, a(z) is O(z�). Thus, for m(z) to vanish at ∞+, we must have

p(z) +√R(z) = O
(
z�−1) (6.13)

near ∞+. Since
√

R(z) = O(z�+1), (6.13) determines the top two coefficients (with
the top one nonzero) and then, by standard polynomial interpolation, the � conditions
(6.12) determine the remaining � coefficients of p.

We have thus proven that given �y = (y1, . . . , y�) ∈ G, there is a meromorphic
function of degree precisely �+1 with poles at y1, . . . , y� and ∞−, and a zero at ∞+.
Moreover, it is unique up to a single overall constant—for the above determines p and

a(z) = −c

�∏
j=1

(
z − π(yj )

)
(6.14)

for some constant c > 0.
The fact that a changes sign in each gap shows that the sign of c in (6.14) can be

picked so that

Imm(x + i0) > 0 (6.15)

on all bands in S+. Keeping track of the argument of
√

R(z) as one crosses a branch
point shows that with this choice at each yj ∈ S+ such that π(yj ) ∈ (βj ,αj+1) and
σj > 0,

m(z) = cj

π(yj ) − z
+ O(1) (6.16)

with cj > 0. Thus, any limit point in the values of Imm(z) as z approaches R is non-
negative. Since Imm(z) → 0 at ∞+, the maximum principle applied to the harmonic
function Imm(z) on S+ ∩ C+ shows that (6.1) holds.

Any function obeying (6.1) with real boundary values on R \ e has (6.2) holding
up to a positive constant. We can thus adjust c in (6.14) so that (6.2) holds. We have
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thus proven that there exists precisely one meromorphic Herglotz function with poles
at y1, . . . , y�.

(iii) m and the once-stripped function, m1, are related by

m(z) = 1

−z + b1 − a2
1m1(z)

, (6.17)

where (a1, b1) are (and can be) chosen so that (6.2) holds for m1. It is always true, of
course, that m1 obeys (6.1) and (6.2).

Equation (6.17) sets up a one-to-one correspondence between poles of m1 in
S \ {∞±} and zeros of m there. Since m has degree � + 1, it has � + 1 zeros and
only a simple zero at ∞+ by (6.2). Thus, m has precisely � zeros in S \ {∞±}.
Therefore, m1 has exactly � poles on S \ {∞±} and, obviously, no pole at ∞+. Since
m(z) has a pole at ∞−, (6.17) shows that near ∞−,

a2
1m1(z) = −z + b1 + O

(
z−1), (6.18)

that is, m1 has a simple pole at ∞−. Thus, m1 has degree exactly � + 1 and we have
proven condition (iii) in the definition of a minimal Herglotz function.

(iv) Since m1 has a pole on each Gj , by (6.17), m has a zero on each Gj . There is
a zero at ∞+, and this accounts for all � + 1. �

The above construction also lets us prove (6.6):

Theorem 6.2 (i) There are constants, A,B , so that uniformly in �y ∈ G, we have
(with c the constant in (6.14))

Ac−1
√∣∣R(x)

∣∣≤ w�y(x) ≤ Bc−1
√∣∣R(x)

∣∣−1
, (6.19)

and the residues cj of (6.16) obey

0 ≤ cj ≤ Bc−1. (6.20)

(ii) Uniformly in �y ∈ G, the constant c in (6.14) is bounded and bounded away
from zero. Moreover, uniformly in x ∈ e and �y ∈ G, (6.6) holds.

Proof (i) Since a has the form (6.14), we have

sup
x∈e

∣∣a(x)
∣∣≤ c(β�+1 − α1)

�, (6.21)

which, given (6.10) and the relation

w�y(x) = 1

π
Imm(x + i0), (6.22)

implies the first inequality in (6.19).
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Next, note that if we fix x ∈ e, the distance to the nearest zero of a is at least
dist(x,R \ e) and the distance to all the other zeros of a at least 1

2 minj |βj − αj |.
Thus, for x ∈ e,

∣∣a(x)
∣∣≥ c

(
1

2
min

j
|βj − αj |

)�−1

dist(x,R \ e). (6.23)

On the other hand, for x ∈ e,
∣∣R(x)

∣∣≤ (β�+1 − α1)
2�+1dist(x,R \ e) (6.24)

and

∣∣R(x)
∣∣≥
(

1

2
min

j
|βj − αj |

)2�+1

dist(x,R \ e). (6.25)

We get the second inequality in (6.19) from (6.23)–(6.25), (6.10), and (6.22).
By (6.10), the residue cj in (6.16) is given by

cj = 2c−1
√∣∣R(yj )

∣∣∏
k �=j

|yk − yj |−1 (6.26)

≤ 2c−1(β�+1 − α1)
�+1
(

min
j

|βj − αj |
)−�

. (6.27)

(ii) By (6.19) and (6.20),

Ac−1
∫

e

√∣∣R(x)
∣∣dx ≤

∫
e

w�y(x) dx +
∑
j

cj

≤ Bc−1
[
� +

∫
e

√∣∣R(x)
∣∣−1

dx

]
. (6.28)

The total weight of the measure is 1, so we get the claimed upper and lower bounds
on c. Given those, (6.19) yields (6.6). �

Given �y ∈ G, we denote by m�y the associated minimal Herglotz function. The
once-stripped m-function is also a minimal Herglotz function and thus corresponds
to some �w ∈ G. We define a map U : G → G by

U(�y) = �w, (6.29)

so that mU(�y) is the once-stripped m-function.
Now we can combine Theorem 6.1 with the Abel map:

Theorem 6.3 Suppose �y = (y1, . . . , y�) ∈ G and let U be defined by (6.29).

(i) With Ã defined in (5.16)–(5.17), we have

Ã
(
U(�y)

)= Ã(�y)A(∞)−1. (6.30)
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(ii) Let

M�y(z) = −m�y
(
x(z)

)
. (6.31)

Then we have that

M�y(z) = B(z)

cap(e)

�∏
j=1

Θ(z;U(�y)j )

Θ(z;yj )
. (6.32)

Remark Since

m(z) = −1

z
− b1

z2
− a2

1 + b2
1

z3
+ O

(
z−4),

(6.32) implies an explicit formula for b1 and a1 in terms of theta functions.

Proof M�y(z) is a meromorphic function with divisor

δ∞+ − δ∞− +
�∑

j=1

(δU(�y)j − δyj
), (6.33)

so (6.30) is just (5.33).
By (5.34) (note that (5.29) holds so there are no Ψj factors), we have (6.32) with

cap(e) replaced by a constant.
Since

m�y
(
x(z)

)= − 1

x(z)
+ O

(
z2)= − z

x∞
+ O

(
z2) (6.34)

and (4.43) holds, the constant is cap(e). �

Corollary 6.4 Under the map Ã from G to 	∗, {Un(�y)}∞n=0 is mapped to the “equally

spaced” orbit {Ã(�y)A(∞)−n}∞n=0 in 	∗. In particular,

n → mUn(�y), n → {an, bn} (6.35)

are almost periodic sequences (indeed, real analytic quasiperiodic sequences) with
almost periods {ρe([α1, βj ])}�j=1. These sequences are periodic with period p for
one point in Te if and only if they are for all points, and that holds if and only if
(4.53) holds.

Remark By a quasiperiodic sequence, Xn, we mean a sequence given by

Xn = x
(
einω1, . . . , einωk

)
, (6.36)

where x is a continuous function on the k-torus (∂D)k . It is called real analytic if x

is real analytic. (ω1, . . . ,ωk) are called the almost periods.
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Proof (6.30) immediately implies that

Ã
(
Un(�y)

)= Ã(�y)A(∞)−n, (6.37)

so the orbit is as claimed.
Realize 	∗ as (∂D)� by

c ∼ (c(γ1), . . . , c(γ�)
)
. (6.38)

Then, by (4.44),

Ã
(
Un(�y)

)
j

= Ã(�y)j e
−2πiρe([α1,βj ])n, (6.39)

which, given that Ã is real analytic and Θ(z;y) (and so, m,a1, b1) are real analytic
in the y’s, proves that the sequences (6.35) are almost periodic, indeed, real analytic
quasiperiodic.

For the final statement, note that, by (6.37), periodicity for one or for all Ã(�y) is
equivalent to A(∞)p = 1. Now use Corollary 4.5. �

7 Raw Jost Functions and the Jost Isomorphism

Recall that if dμ is a measure on R of the form (6.4) so that off [−2,2], dμ only has
pure points, {xj }Nj=1, (N finite or infinite) with

N∑
j=1

(|xj | − 2
)1/2

< ∞ (7.1)

and so that w obeys a Szegő condition,

∫ 2

−2

(
4 − x2)−1/2

log
(
w(x)

)
> −∞, (7.2)

one defines (see [19, 37, 51, 61]) the Jost function, u(z), on D by

u(z) = zB∞(z) exp

(∫
z + eiθ

z − eiθ
log

[
sin θ

ImM(eiθ )

]
dθ

4π

)
. (7.3)

Here M(eiθ ) is the boundary value of

M(z) = −m
(
z + z−1) (7.4)

(expressible in terms of w via ImM(eiθ ) = πw(2 cos θ)), and B∞ is the Blaschke
product of b(z, ζj ) with ζj ∈ D, ζj + ζ−1

j = xj (by (7.1) and Lemma 4.1, this is a
convergent Blaschke product). In this section and the next, we will begin to discuss
the analog for elements of the isospectral torus, but in a way that connects to defini-
tions that work in much greater generality and will be the key to later papers in this
series.
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Surprisingly, our initial definition will be equal, up to a constant, to an object that
is based on the theta function formulae of the last section, and we will find there
is a representation of the form (7.3). We regard this as one of the more interesting
discoveries in the present paper.

Because there is only one natural choice for the reference measure on [−2,2], it
is somewhat obscured that (7.3) involves not only dμ but a reference measure which
in (7.3) is

dμ0(x) = 1

2π

√
4 − x2χ[−2,2](x) dx, (7.5)

the measure of the free Jacobi matrix with an ≡ 1, bn ≡ 0. After a change of variables
via x = 2 cos θ and scaling,

√
4 − x2 turns into sin θ , which is where that factor in

(7.3) comes from.
When one shifts to multiple gap situations, there is also a reference measure

needed. Our eventual choice will be to use a particular point on the isospectral torus—
and the next section will explain change of reference measure. In this section, the
reference measure will be a different measure on the isospectral torus, so we will call
the resulting object the “raw” Jost function.

As a bonus, we will also see that for any point on the isospectral torus,

n → a1 · · ·an

cap(e)n
(7.6)

is an almost periodic sequence.
Let �y0 = (β1, β2, . . . , β�) be the point in G which serves as the base point for our

Θ’s. Given �y = (y1, . . . , y�) ∈ G, we let ξj be the unique point on C̃+
j such that

x�(ξj ) = yj , j = 1, . . . , �. (7.7)

Moreover, we denote by w�y(x) the weight of the measure dμ�y associated to the m-
function, m�y , in the isospectral torus.

For each �y ∈ G, we define a function on D, the raw Jost function, by

R(z; �y) =
∏

{j | |ξj |<1}
B(z, ξj ) exp

(
1

4π

∫
eiθ + z

eiθ − z
log

[
w�y0(x(eiθ ))

w�y(x(eiθ ))

]
dθ

)
. (7.8)

Here we use the estimate (6.6) to be sure that
∫

log
(
w�y
(
x
(
eiθ
))) dθ

2π
> −∞ (7.9)

for all �y ∈ G.
We will call the exp( · · · ) factor in (7.8), the Szegő part, and the first factor, the

Blaschke part. It is easy to see that each is continuous in �y, so R(z; �y) is also contin-
uous in �y. The Blaschke factor is only piecewise C1 and not C1 because whenever
ξj moves from inside D to outside, a factor disappears. We have B(0, ξj ) = |ξj | and

ξj →
{

|ξj | if |ξj | ≤ 1,

1 if |ξj | ≥ 1
(7.10)
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has a discontinuous derivative as |ξj | passes from below 1 to above. Nevertheless, we
will see below that for many cases (where the harmonic measures {ρe([α1, βj ])}�j=1
obey a Diophantine condition), �y �→ R(z; �y) is real analytic. It is an interesting open
question whether this is always true!

We need one more piece of notation. Each �y ∈ G determines a unique m�y and,
thereby, a unique two-sided Jacobi matrix, J̃�y . Its Jacobi parameters will be denoted
{an(�y), bn(�y)}∞n=−∞. Here is the main theorem of this section:

Theorem 7.1 There exists a continuous, everywhere strictly positive function, ϕ, on
G so that

R(z; �y) = ϕ(�y)

�∏
j=1

Θ(z;yj ). (7.11)

Moreover, ϕ obeys

ϕ(�y0) = 1, (7.12)

a1(�y)

cap(e)
= ϕ(U(�y))

ϕ(�y)
. (7.13)

Remarks 1. In (7.13), U is the map from (6.29).
2. If the harmonic measures {ρe([α1, βj ])}�j=1 are rationally independent, the orbit

{Un(�y0)}∞n=0 is dense in G and (7.12)–(7.13) determine ϕ uniquely. In general, ϕ is
continuous in {αj ,βj }�j=1, so this, in principle, determines it uniquely.

3. It is useful to define, for �y = (y1, . . . , y�) ∈ G,

Θ̃(z; �y) =
�∏

j=1

Θ(z;yj ). (7.14)

We want to note some interesting corollaries before we turn to the proof:

Corollary 7.2 For each �y ∈ G, R(z; �y) has a meromorphic continuation to C ∪
{∞} \ L with poles, all simple, only at {γ (ζj )}γ∈	,j=1,...,�, and zeros, all simple, at
{γ (ξj )}γ∈	,j=1,...,�, where ζj and ξj are given by (5.2) and (7.7), respectively.

Remark Thus, the Szegő part cancels the poles of B(z, ξj ) at {γ (ξ̄−1
j )}γ∈	 for j with

|ξj | < 1.

Proof Obvious from (7.11). �

Define the raw Jost isomorphism from G to 	∗ by

Jr (�y) = Ã(�y). (7.15)

By Theorem 5.3, it is a real analytic homeomorphism. The following corollary of
Theorem 7.1 is so important, we call it a theorem.
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Theorem 7.3 For each �y ∈ G, R( · ; �y) is a character automorphic function and its
character is Jr (�y). The map Jr is a real analytic bijection between the isospectral
torus G and 	∗.

Remark The Blaschke part of R is character automorphic, and we will show directly
in Lemma 8.1 that the Szegő part is, too. What is difficult without (7.11) is that the
map from �y to the character of R( · ; �y) is a bijection. That this map is a bijection will
be critical in our proof of Szegő asymptotics in [16].

Proof Immediate from (7.11) and the definition of Ã. �

Corollary 7.4 For each �y ∈ G, the sequence

n → a1(�y) · · ·an(�y)

cap(e)n
(7.16)

is bounded and almost periodic, and also bounded away from 0. The upper and lower
bounds are bounded uniformly in �y.

Remark That (a1 · · ·an)
1/n → cap(e) is a general fact about regular measures, and

each dμ�y is regular by a theorem of Widom [81] and Van Assche [78] (see [62, 69]).
This more subtle result is a special case of a theorem of Widom [82] (see also [3]).

Proof By (7.13),

a1(�y) · · ·an(�y)

cap(e)n
= ϕ(Un(�y))

ϕ(�y)
(7.17)

is given by the values of a continuous function (namely, ϕ ◦ Ã−1) on 	∗ along the
orbit Ã(�y)A(∞)−n. This function is bounded and bounded away from 0. �

One key to the proof of Theorem 7.1 is a nonlocal step-by-step sum rule. Such sum
rules began with Killip–Simon [37] for [−2,2], formalized by Simon [58], and one
version was found for periodic Jacobi matrices by Damanik–Killip–Simon [20]. The
extension of the sum rules to the covering map context, which relies on Beardon’s
theorem, is a major theme in this paper and especially in the second paper [16] in this
series. Here is the version for the isospectral torus:

Theorem 7.5 Let m�y be the m-function for a point �y ∈ G. Define for z ∈ D,

M�y(z) = −m�y
(
x(z)

)
. (7.18)

Then for all z ∈ D,

a1(�y)M�y(z) = B(z)
R(z;U(�y))

R(z; �y)
. (7.19)
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Proof Let B(�y)(z) be the Blaschke part of R, that is, the Blaschke product in (7.8).
Define

B
(�y)∞ (z) = B(z)

B(U(�y))(z)

B(�y)(z)
. (7.20)

Then B
(�y)∞ (z) has zeros and poles precisely at all the zeros and poles of M�y(z) in-

side D, so

h(z) = a1(�y)M�y(z)
B

(�y)∞ (z)
(7.21)

is analytic and nonvanishing in D.
The same argument that led to (4.84) shows that

z ∈ F ⇒ ∣∣arg
(
B

(�y)∞ (z)
)∣∣≤ C (7.22)

for some constant C. Moreover,

z ∈ F ⇒ ∣∣arg
(
M�y(z)

)∣∣≤ π, (7.23)

so

z ∈ F ⇒ ∣∣arg
(
h(z)

)∣∣≤ C1 (7.24)

and, in particular, arg(h) varies by at most 2C1 over F .
B

(�y)∞ is character automorphic and M�y is automorphic, so h(z) is character auto-
morphic. Thus, arg(h(z)) varies by at most 2C1 over any γ (F ), which means that

z ∈ Dk ⇒ ∣∣arg
(
h(z)

)∣∣≤ (2k + 1)C1. (7.25)

Thus, by (2.18), for any r ,

{
θ | ∣∣Im log

(
h
(
reiθ

))∣∣≥ (2k + 1)C1
}⊂ ∂Rk. (7.26)

So, by Beardon’s theorem in the form (3.12), for any p < ∞,

sup
r

∫ ∣∣Im log
(
h
(
reiθ

))∣∣p dθ

2π
< ∞. (7.27)

By M. Riesz’s theorem (see Rudin [57]),

log(h) ∈
⋂

p<∞
Hp(D), (7.28)

so by the standard representation for Hp functions, p ≥ 1 (see, e.g., [57]), we get

a1(�y)M�y(z) = B
(�y)∞ (z) exp

(
1

2π

∫
eiθ + z

eiθ − z
log
(
a1(�y)

∣∣M�y
(
eiθ
)∣∣)dθ

)
, (7.29)



46 Constr Approx (2010) 32: 1–65

where we used that for a.e. θ , |B(�y)∞ (eiθ )| = 1, so

log
∣∣h(eiθ

)∣∣= log
(
a1(�y)

∣∣M�y
(
eiθ
)∣∣). (7.30)

Taking boundary values in

M�y(z)−1 = x(z) − b1(�y) − a1(�y)2MU(�y)(z), (7.31)

we see that

ImM�y(eiθ )

|M�y(eiθ )|2 = a1(�y)2 ImMU(�y)

(
eiθ
)

(7.32)

or

log
(
a1(�y)

∣∣M�y
(
eiθ
)∣∣)= 1

2
log

[
ImM�y(eiθ )

ImMU(�y)(e
iθ )

]

= 1

2
log

[
ImM�y(eiθ )

ImM�y0(e
iθ )

]
− 1

2
log

[
ImMU(�y)(e

iθ )

ImM�y0(e
iθ )

]
. (7.33)

Since ImM�y(eiθ ) = πw�y(x(eiθ )), (7.29) plus (7.33) and the definition (7.8) imply
(7.19). �

Corollary 7.6 For any �y ∈ G, we have

R(z;U(�y))

Θ̃(z;U(�y))
= a1(�y)

cap(e)

R(z; �y)

Θ̃(z; �y)
. (7.34)

Proof Immediate from (6.32) and (7.19). �

Proof of Theorem 7.1 For �y0, we have

Θ̃(z; �y0) = R(z; �y0) = 1. (7.35)

Thus, by (7.34), we have (7.11) for �y = Un(�y0) with

ϕ
(
Un(�y0)

)= a1(�y0) · · ·an(�y0)

cap(e)n
,

since

a1
(
Un(�y0)

)= an+1(�y0). (7.36)

Thus, (7.13) also holds for �y = Un(�y0).
Suppose now {αj ,βj }�+1

j=1 are such that {ρe([α1, βj ])}�j=1 are rationally indepen-
dent. Then S0 ≡ {Un(�y0)} is dense in the isospectral torus. Define

ϕ(�y) ≡ R(z = 0; �y)

Θ̃(z = 0; �y)
. (7.37)
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Since R is continuous in �y, so is ϕ. As (7.11) holds on the dense set S0 and both
sides are continuous, (7.11) holds for all �y ∈ G. Similarly, both sides of (7.13) are
continuous and as (7.13) holds on S0, it holds in general.

To handle general {αj ,βj }�+1
j=1, we just repeat the continuity argument “at a higher

level.” Fix α1, . . . , α�+1 and β�+1 and vary (β1, . . . , β�). By a theorem of Totik [73],
the map (β1, . . . , β�) → {ρe([αj ,βj ])}�j=1 is a C∞ local bijection, so the set of β’s

with rationally independent {ρe([αj ,βj ])}�j=1 is dense. By conveniently labeling G

(say, measure angles in C̃+
j about its center starting at the point closest to 0) in a

way that is independent of {αj ,βj }�+1
j=1, all objects, that is, R(z; �y) and Θ̃(z; �y), are

continuous in (β1, . . . , β�) according to Theorem 2.1. Therefore, by repeating the
above argument, we get (7.11) and (7.13) by continuity. �

Finally, we want to note that sometimes ϕ and so R are real analytic in �y. We say
that e obeys a Diophantine condition if there are a constant, C, and an integer, k, so
that for (n1, . . . , n�) �= (0, . . . ,0) in Z

�,

∣∣∣∣∣
�∑

j=1

njρe

([α1, βj ]
)
∣∣∣∣∣≥ C

(
1 + |n|)−k

. (7.38)

As is well known, given Totik’s theorem quoted above, Lebesgue a.e. {αj ,βj }�+1
j=1

lead to a Diophantine e.

Theorem 7.7 If e is Diophantine, the function ϕ of (7.11) is real analytic in �y and
thus, R(z; �y) is real analytic in �y.

Proof Θ is real analytic in y, so by (7.11), the statement about ϕ implies that for R.
Let

L(�y) = log

(
a1(�y)

cap(e)

)
. (7.39)

Then

S(�y) ≡ log
(
ϕ(�y)

)
(7.40)

obeys

S
(
U(�y)

)− S(�y) = L(�y). (7.41)

Since L is real analytic on the torus, its Fourier coefficients, l(n1,...,n�), obey

|l(n1,...,n�)| ≤ Ce−D|n| (7.42)

for some C,D > 0. By (7.41), the Fourier coefficients s(n1,...,n�) for S obey

(
ein·ω − 1

)
s(n1,...,n�) = l(n1,...,n�), (7.43)
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where

n · ω =
�∑

j=1

njρe

([α1, βj ]
)
. (7.44)

Equation (7.43) implies �0 = 0, and (7.42)–(7.43) together with (7.38) imply that for
any ε > 0,

|s(n1,...,n�)| ≤ Cεe
−(D−ε)|n|. (7.45)

This implies that S(�y) and so ϕ(�y) = eS(�y) are real analytic. �

8 Change of Reference Measure in Jost Functions

As is well known, OPRL obey a difference equation, (1.6). We will also be interested
in other solutions. Since we have labeled the Jacobi parameters starting at n = 1, it
will be useful to label solutions that way too, that is, to look for solutions of

anun+1 + (bn − z)un + an−1un−1 = 0 (8.1)

for n = 1,2, . . . where a0 is often picked to be 1, but in the isospectral torus will be
the natural two-sided almost periodic a0. Note that

un = pn−1(z), (8.2)

n = 1,2, . . . is a solution of (8.1) with p−1 = 0 (so a0 is unimportant).
For any bounded Jacobi matrix, J , and z ∈ C+, there is a unique solution of (8.1)

which is �2 at infinity, unique up to an overall constant (see, e.g., [66]). One natural
choice is the Weyl solution,

wn(z) = 〈δn, (z − J )−1δ1
〉
. (8.3)

It obeys (8.1) for n = 2,3, . . . . At n = 1, one has

a1w2 + (b1 − z)w1 = −1 (8.4)

(since (J − z)(J − z)−1δ1 = δ1), and so (8.1) holds at n = 1 if we define

w0 = a−1
0 . (8.5)

One defect of this solution is that, of course, wn(z) has a pole at each discrete
eigenvalue of J . To get around this, Jost had the idea (for continuum Schrödinger
operators) of multiplying wn(z) by a z-dependent constant u0(z) with a zero at the
eigenvalues. Then u0(z)wn(z) can have a removable singularity at such z’s. Our raw
Jost functions have zeros at the ξj ’s, so when we look at solutions in the next two
sections, the poles in the Weyl solutions will be canceled by these zeros. But we
are going to want to continue these solutions up to the bands also, and our raw Jost
functions have poles at the ζj ’s. These poles are not intrinsic to the y’s, but come
from the w�y0 term in (7.8). We thus want to consider modifying that.
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Definition By the Szegő class for e, we mean the set of measures dμ of the form
(6.4) where w is supported on e and obeys the Szegő condition (4.56) (with f = w),
and so that outside e, dμs only has countably many pure points {xj }Nj=1 obeying a
Blaschke condition of the form (4.76).

We are now prepared to define the Jost functions with reference measure dμ1.

Definition Suppose dμ,dμ1 are two measures in the Szegő class for e. The Jost
function, J(z;μ,μ1), with reference measure dμ1, is the meromorphic function on
D defined by

J(z;μ,μ1) =
∏N

j=1 B(z, zj )∏N1
j=1 B(z, z

(1)
j )

exp

(
1

4π

∫
eiθ + z

eiθ − z
log

[
w1(x(eiθ ))

w(x(eiθ ))

]
dθ

)
, (8.6)

where {zj }Nj=1 are the points in F with x(zj ) = xj (and similarly for z
(1)
j and x

(1)
j ).

Notice that, by Proposition 4.8 and condition (4.76), the Blaschke products con-
verge. By Corollary 4.6 and (4.56), the integral in (8.6) converges. Notice that if dμ1

has pure points in the gaps, then J has poles in D. For this reason, we will normally
consider only dμ1’s with no such pure points, but since we want to consider the entire
isospectral torus later in this section, we allow for the possibility.

We are heading towards proving that J is character automorphic. The key is:

Lemma 8.1 Suppose f is a real-valued function on ∂D so that

∫ ∣∣f (eiθ
)∣∣ dθ

2π
< ∞ (8.7)

and for all γ ∈ 	,

f
(
γ
(
eiθ
))= f

(
eiθ
)
. (8.8)

Define for z ∈ D,

Sf (z) = exp

(∫
eiθ + z

eiθ − z
f
(
eiθ
) dθ

2π

)
. (8.9)

Then Sf is character automorphic.

Remark If

f
(
eiθ
)= log

[
w�y0(x(eiθ ))

w�y(x(eiθ ))

]
, (8.10)

where �y has no points in D (e.g., none of the ξj ’s belongs to D), then Sf is a raw
Jost function which, if �y �= �y0, is not automorphic but only character automorphic
(by Theorem 7.3). Thus, Sf may have a nontrivial character.
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Proof Suppose first there is a > 0 so that

−a ≤ f
(
eiθ
)≤ a (8.11)

for all θ . Then, since
∫

Re

(
eiθ + z

eiθ − z

)
dθ

2π
= 1 (8.12)

with positive integrand, we have

e−a ≤ ∣∣Sf (z)
∣∣≤ ea. (8.13)

In particular, if γ ∈ 	, then

h(z) ≡ Sf (γ (z))

Sf (z)
(8.14)

is analytic and

e−2a ≤ ∣∣h(z)
∣∣≤ e2a, (8.15)

so one can define log(h) on D and it belongs to H∞(D).
By (8.9), for Lebesgue a.e. θ ,

lim
r↑1

∣∣Sf

(
reiθ

)∣∣= ef (eiθ ). (8.16)

Since γ maps D to D and boundary values are nontangential limits, for Lebesgue
a.e. θ ,

lim
r↑1

∣∣Sf

(
γ
(
reiθ

))∣∣= ef (γ (eiθ )) = ef (eiθ ) (8.17)

by the hypothesis (8.8).
It follows that for a.e. θ ,

lim
r↑1

Re
(
log
(
h
(
reiθ

)))= lim
r↑1

log
∣∣h(reiθ

)∣∣= 0. (8.18)

Since log|h| is a bounded harmonic function, Re(log(h(z))) = 0, so log(h(z)) = iψγ

for some real ψγ , that is,

Sf

(
γ
(
eiθ
))= eiψγ Sf

(
eiθ
)
. (8.19)

As usual, this implies that γ → eiψγ is a character, and so Sf is character automor-
phic.

If f does not obey (8.11), it is easy to write it as an L1 limit of functions that
do. Thus, Sf is a uniform (on compact subsets of D) limit of character automorphic
functions. By the compactness of 	∗, it is easy to see that any such limit is character
automorphic. �

Theorem 8.2 For any dμ,dμ1 in the Szegő class, J(z;μ,μ1) is a character auto-
morphic function.
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Remark For dμ,dμ1 both in the isospectral torus, this follows from Theorem 7.3
and Theorem 8.3 below.

Proof Immediate from (8.6), (4.20), and Lemma 8.1. �

Theorem 8.3 (Change of reference measure in J) Let dμ,dμ1, dμ2 be three mea-
sures in the Szegő class. Then for all z ∈ D,

J(z;μ,μ1) = J(z;μ,μ2)

J(z;μ1,μ2)
. (8.20)

In particular, for �y,�y1 ∈ G, we have

J(z;μ�y,μ�y1) = R(z; �y)

R(z; �y1)
. (8.21)

Remark By “all z ∈ D,” we either mean except for the discrete set of poles and zeros
or else in the sense of meromorphic functions.

Proof In (8.6), the Blaschke products and the log[w1], log[w] factors can be sepa-
rated out and canceled and recombined. �

Corollary 8.4 For any Szegő class measure, dμ1, the character Jμ1(�y) of
J(z;μ�y,μ1) defines a real analytic bijection of G onto 	∗.

Proof By (8.20),

Jμ1(�y) = Jr (�y)Jμ1(�y0). (8.22)

Since �y �→ Jr (�y) is a bijection between G and 	∗ (by Theorem 7.3) and χ �→
χ Jμ1(�y0) is a bijection of 	∗, �y �→ Jμ1(�y) is a bijection. �

Corollary 8.5 For any �y,�y1 ∈ G,

J(z;μ�y,μ�y1) = ϕ(�y)ϕ(�y1)
−1 Θ̃(z; �y)

Θ̃(z; �y1)
, (8.23)

where ϕ is the function of Theorem 7.1, and Θ̃ is given by (7.14).

Proof Immediate from (7.11) and (8.21). �

Since we want to make the poles of J as far from S+ as possible, we define �w to
be the point on G whose coordinates (w1, . . . ,w�) have points ζ̃1, . . . , ζ̃� in C̃+

j with

x�(ζ̃j ) = wj and
∣∣ζ̃j

∣∣= max
ζ∈C̃+

j

|ζ |. (8.24)
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Definition Let dν be the measure in Te associated to �w. For any dμ in the Szegő
class, we define the Jost function, u(z;μ), by

u(z;μ) = J(z;μ,ν). (8.25)

For �y ∈ G, we use u(z; �y) for u(z;μ�y).

u(z;μ) will play a major role in the later papers of this series. u(z; �y) will concern
us in the rest of this paper. We begin by noting:

Theorem 8.6 There is a neighborhood, N, of F (closure and neighborhood in C) so
that each u( · ; �y) is analytic in N , and u is uniformly bounded on N and in �y ∈ G.

Proof Obvious from (8.23), which says that

u(z; �y) = ϕ(�y)ϕ(�w)−1 Θ̃(z; �y)

Θ̃(z; �w)
, (8.26)

and the fact that the ratio of Θ̃’s has poles only at {γ (ζ̃j )}γ∈	,j=1,...,�. �

Proposition 8.7 For z ∈ R, u(z; �y) > 0.

Proof Follows from (8.26) and the facts that ϕ is positive and that Θ is positive
on R. �

9 Jost Solutions

One big benefit of the covering map formalism is that it provides explicit information
about solutions of (8.1) for J in the isospectral torus and, thereby, of ground states,
spectral theorist’s Green’s function, etc. We begin by moving the Weyl solutions,
(8.3), to D:

Definition For z ∈ D, the Weyl solution is defined by

Wn(z) = 〈δn,
(
x(z) − J

)−1
δ1
〉
. (9.1)

For the case e = [−2,2], this function is studied in Sect. 13.9 of [61]. The proof of
Proposition 13.9.3 of [61] is purely algebraic and immediately extends to our context:

Theorem 9.1 Suppose J is the Jacobi matrix of any OPRL with σess(J ) = e and
define M by

M(z) = −m
(
x(z)

)
(9.2)

for z ∈ D. Let J (n) be the n-times stripped Jacobi matrix, that is,

a
(n)
j = an+j , b

(n)
j = bn+j , (9.3)
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and denote by M(n) its m-function on D. Then

Wn(z) = M(z)
(
a1M

(1)(z)
) · · · (an−1M

(n−1)(z)
)
. (9.4)

Definition Suppose dμ lies in the Szegő class. Then the Jost solution is defined for
z ∈ D by

un(z) = u(z;μ)Wn(z). (9.5)

We focus here on the case dμ = dμ�y for �y ∈ G, in which case we use the notation
un(z; �y).

Theorem 9.2 For n ≥ 1, we have

un(z; �y) = a−1
n B(z)nu

(
z;Un(�y)

)
. (9.6)

If (9.6) is used to define un for all n ∈ Z, then:

(i) un solves (8.1) with z replaced by x(z).
(ii) There is a neighborhood, N , of F so that un(z; �y) has an analytic continuation

to N and is real analytic in �y.
(iii) B(z)−nun(z; �y) is almost periodic in n. Indeed, uniformly for z ∈ N and �y ∈ G,

it is real analytic quasiperiodic.

Proof By (7.19),

aj+1M
(j)(z) = B(z)

u(z;Uj+1(�y))

u(z;Uj (�y))
. (9.7)

Thus, by (9.4),

anWn(z) =
n−1∏
j=0

aj+1M
(j)(z) = B(z)n

u(z;Un(�y))

u(z; �y)
, (9.8)

which is (9.6).
By (9.6), we have

an+j un+j (z; �y) = anB(z)jun

(
z;Uj (�y)

)
(9.9)

for all n, j ∈ Z. Since Wn solves (8.1) with z replaced by x(z) for n ≥ 1, un does also,
and then by (9.9), un is a solution for all n ∈ Z. (ii) is immediate from Theorem 8.6.
(iii) is then immediate from (9.6) and the fact that under Ã, U is transformed to
multiplication (by A(∞)−1) on 	∗. �

For x ∈ e, define u+
n by picking z(x) ∈ F with Im z ≥ 0, so that x(z(x)) = x, and

by letting

u+
n (x; �y) = un

(
z(x); �y), (9.10)

where we take boundary values of un on the right-hand side. We also let

u−
n (x; �y) = u+

n (x; �y) = un

(
z(x); �y). (9.11)
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Theorem 9.3 Define the Wronskian, Wr(f, g), of two solutions of (8.1) by

Wr(f, g) = an(fn+1gn − fngn+1) (9.12)

(which is n-independent). Then, if x = x(z(x)) and

Im z > 0, x ∈ e
int, (9.13)

we have

Wr
(
u+· (x; �y),u−· (x; �y)

)= 2πi
∣∣u(z(x); �y)∣∣2w�y(x), (9.14)

where w�y is the weight in the spectral measure, dμ�y .

Proof Since W0 = a−1
0 ,

Wr(W̄ ,W) = a0
(
W̄1a

−1
0 − W1a

−1
0

)= −2i ImW1. (9.15)

Taking into account that

1

π
Imm(x0 + i0) = w(x0) (9.16)

and

Wr(c̄f̄ , cf ) = |c|2Wr(f̄ , f ), (9.17)

we get (9.14). �

Recall ([66, Chap. 3]) that the transfer matrix, Tn(z), for a Jacobi matrix updates
solutions of (8.1) via

(
un+1
anun

)
= Tn(z)

(
u1

a0u0

)
(9.18)

and is given by

Tn(z) =
(

pn(z) −qn(z)

anpn−1(z) −anqn−1(z)

)
, (9.19)

where qn are the second kind polynomials. As usual, if we want to indicate the un-
derlying point in the isospectral torus, we write Tn(z; �y).

Theorem 9.4 There is a constant C so that uniformly for �y ∈ G and x ∈ eint,
∥∥Tn(x; �y)

∥∥≤ C dist(x,R \ e)−1/2. (9.20)

Remark This result is used in Proposition 7.2 of [11].

Proof Let Un(x; �y) be the matrix

Un(x; �y) =
(

u+
n+1(x; �y) u−

n+1(x; �y)

anu
+
n (x; �y) anu

−
n (x; �y)

)
. (9.21)
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Then

Tn(x; �y)U0(x; �y) = Un(x; �y), (9.22)

so

Tn(x; �y) = Un(x; �y)U0(x; �y)−1, (9.23)

and, since 2 × 2 matrices obey ‖C−1‖ = |det(C)|−1‖C‖,
∥∥Tn(x; �y)

∥∥≤ ∣∣det
(
U0(x; �y)

)∣∣−1∥∥U0(x; �y)
∥∥∥∥Un(x; �y)

∥∥. (9.24)

As un is uniformly bounded in n, �y, and x ∈ e, and det(U0) is the Wronskian, by
(9.14),

∥∥Tn(x; �y)
∥∥≤ Cw�y(x)−1,

which yields (9.20), given (6.6) and (6.25). �

Corollary 9.5 Uniformly in n, x ∈ eint, and �y ∈ G,

C1dist(x,R \ e) ≤ ∣∣pn(x)
∣∣2 + ∣∣pn−1(x)

∣∣2 ≤ C2dist(x,R \ e)−1

for suitable constants C1 and C2.

Proof Immediate from (9.19), det(Tn) = 1 (so ‖T −1
n ‖ = ‖Tn‖), and (9.20), recalling

that the an’s are bounded and bounded away from 0. �

Next we look at band edges where ‖Tn‖ can diverge. We begin with a critical fact
about the outer edges:

Theorem 9.6 There are positive, finite constants C1 and C2, so that uniformly in n

and �y,

C1 ≤ u+
n (β�+1; �y) ≤ C2, (9.25)

C1 ≤ (−1)nu+
n (α1; �y) ≤ C2. (9.26)

Remark (9.25) says, in the language of [27], that each whole-line J̃�y has a regular
ground state (see [27, Example 1.5]). It implies critical Lieb–Thirring bounds for per-
turbations of J̃�y in (β�+1,∞). Inequalities (9.26) imply similar bounds for (−∞, α1).

Proof B(z)/z is positive at z = 0 and real and nonvanishing on (−1,1), so B(x) > 0
on (0,1] and B(x) < 0 on [−1,0). Since |B(±1)| = 1, we conclude that

B(±1) = ±1. (9.27)

Since u(x; �y) is bounded, strictly positive, and continuous in x and �y for x ∈ [−1,1]
and �y ∈ G, (9.6) implies (9.25)–(9.26). �

u+
n (x) is real at x ∈ {αj ,βj }�+1

j=1, so u−
n = u+

n and the Jost solutions are not linearly
independent. The following gives a second solution which grows linearly in n.
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Theorem 9.7 Uniformly in �y ∈ G and z ∈ ∂F ∩ D,

(i) ∣∣∣∣
∂u+

n (x(z); �y)

∂z

∣∣∣∣≤ C
(|n| + 1

)
, (9.28)

(ii)
lim inf
n→∞

∣∣∣∣
1

n

∂u+
n (x(z); �y)

∂z

∣∣∣∣> 0, (9.29)

(iii) At x(z) ∈ {αj ,βj }�+1
j=1,

vn(�y) = ∂u+
n

∂z

(
x(z); �y) (9.30)

is a solution of (8.1) with z replaced by x(z), linearly independent of
u+

n (x(z); �y).

Proof (i), (ii) By (9.6),

∂u+
n (x(z); �y)

∂z
= a−1

n nBn−1(z)B ′(z)u
(
z;Un(�y)

)

+ a−1
n Bn(z)

∂

∂z
u
(
z;Un(�y)

)
. (9.31)

Since u(z;Un(�y)) and ∂
∂z

(u(z;Un(�y)) are uniformly bounded in �y and n, and
B ′(eiθ ) > 0 for all θ , (9.28)–(9.29) are immediate.

(iii) u+
n (x(z)) obeys (8.1) with z replaced by x(z). Since x′(z) = 0 at points with

x(z) ∈ {αj ,βj }�+1
j=1, we see that vn also solves (8.1). Since u+

n is bounded and vn is
not, they are linearly independent. �

Corollary 9.8 For z ∈ e, (8.1) has no solution which belongs to �2 at +∞ or at −∞.

Remark This result is used in [11].

Proof If z ∈ eint, this follows from the fact that ‖Tn(z)
−1‖ is bounded, and for z ∈ ∂e,

it follows from Theorem 9.7. �

Corollary 9.9 If x ∈ {αj ,βj }�+1
j=1, then

∥∥Tn(x)
∥∥≤ C

(
1 + |n|). (9.32)

Proof Let

Ũn(x) =
(

u+
n+1(x) vn+1(x)

anu
+
n (x) anvn(x)

)
. (9.33)

As in (9.23),

Tn(x) = Ũn(x)Ũ0(x)−1. (9.34)

Since u+, v are independent, Ũ0 is invertible and, clearly, ‖Ũn‖ ≤ C(1 + |n|). �
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The bound (9.20) diverges as x approaches a point in {αj ,βj }�+1
j=1. Since ‖Tn‖

is not bounded at these points, this must be so. However, we are heading towards a
uniform (on e) O(n) bound. As a starting point, we need to know more about the
right side of (9.14) than the crude bound from (6.6).

Proposition 9.10 For any �y ∈ G and fixed x0 ∈ {αj ,βj }�+1
j=1,

lim
x→x0
x∈eint

|x − x0|−1/2
∣∣u(z(x); �y)∣∣2w�y(x) (9.35)

exists, is finite and nonvanishing, and is continuous in �y. In (9.35), z(x) is the point
obeying (9.13) with z ∈ F ∩ C+ and x = x(z(x)).

Remark This result is subtle because |u(z(x); �y)|2 can vanish at x0. In that case,
w�y(x) has O(

√|x − x0|−1
) asymptotics rather than O(

√
x − x0) asymptotics.

Proof By the explicit formula for w�y ((6.10) and (6.22)), each factor in w�y(x)|x −
x0|−1/2 is continuous in x and �y except for the |x − π(yj )|−1 factor with the π(yj )

closest to x0. There is a canceling factor in |u(z(x); �y)|2, so the limit exists and is
continuous in �y. �

Theorem 9.11 There is a constant C so that uniformly in x ∈ e and �y ∈ G,
∥∥Tn(x; �y)

∥∥≤ C
(|n| + 1

)
. (9.36)

Proof For each x0 ∈ {αj ,βj }�+1
j=1, we prove (9.36) in the half-band starting at x0.

Form a matrix Ũn like (9.21) but with u− replaced by ṽ = (u− − u+)/|x − x0|1/2.
As we have seen, ṽ has a limit as x approaches x0 from eint. By the Wronskian
calculation, det(Un) (which is n-independent) is bounded as x approaches x0.

Finally, writing (u− − u+) as the integral of a derivative and using (9.28), we get

|Ũn| ≤ C
(|n| + 1

)
, (9.37)

so

‖Ũn‖ ≤ C
(|n| + 1

)
, (9.38)

which implies (9.36). �

Finally, we want to note that (9.6) implies a result about the Jost solutions used
in [64].

Theorem 9.12 For any compact interval I ⊂ eint, we can write

u+
n (x) = einθ(x)fn(x), (9.39)

where θ ′(x) = πρe(x) and fn is real analytic in x with derivatives uniformly bounded
in n.
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Proof Let z(x) ∈ F ∩ C+ with x(z(x)) = x, and write

B
(
z(x)

)= eiθ(x).

By (9.6), u+
n has the form (9.39), and we see that fn has the required properties. By

the calculation that led to (4.61), we get the expression for θ ′. �

In [64], this was used to prove that for any dμ�y , with �y ∈ G,

1

n
Kn(x, x) → ρe(x)

w�y(x)
(9.40)

uniformly on I , where Kn is the CD kernel (see [63] for definition and background
on the classical work of Máté–Nevai–Totik and Totik on limits like (9.40)). Using the
calculations in [5] and identifying u+

n as a multiple of the Deift–Simon eigenfunctions
of [5], one sees that (9.40) implies that:

Proposition 9.13 Uniformly on compact subsets of eint × G,

1

n

n−1∑
k=0

Re
[
u+

k (x; �y)2]→ 0 as n → ∞. (9.41)

Remark That is, (Reu+
n )2 and (Imu+

n )2 have the same average.

10 Bounds on (Spectral Theorist’s) Green’s Function

For �y ∈ G, let J�y be the associated Jacobi matrix and J̃�y the associated full-line Jacobi
matrix. The (spectral theorist’s) Green’s functions are defined by

Gnm(z) = 〈δn, (J�y − z)−1δm

〉
, n,m = 1,2, . . . , (10.1)

G̃nm(z) = 〈δn, (J̃�y − z)−1δm

〉
, n,m ∈ Z. (10.2)

We will use Gnm(z; �y) when we need �y to be explicit. It is unfortunate that “Green’s
function” is used both for these objects and for Ge(z), the potential theorist’s Green’s
function, but both names are ubiquitous. Ge will appear below in our discussions
of Gnm.

The analogs of Gnm and G̃nm for −d2/dx2 on L2(0,∞) or L2(−∞,∞) are given
by

G̃(x, y;E) = e−κ|x−y|

2κ
, (10.3)

G(x,y;E) = e−κx> sinh(κx<)

κ
, (10.4)
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where E = −κ2, x> = max(x, y), x< = min(x, y). The bounds

∣∣G̃(x, y;E)
∣∣≤ (2κ)−1, (10.5)

∣∣G(x,y;E)
∣∣≤ x< (10.6)

play important roles in the analysis of bound states of Schrödinger operators with
short-range potentials. Here we find analogs of these bounds for Jacobi matrices in
the isospectral torus for z in R \ e. These bounds were used in [36] to obtain bounds
on perturbations of J�y and J̃�y .

We need to begin by defining u±
n (x; �y) for x ∈ R \ e. Define z(x) to be the unique

point in [⋃�
j=1 C+

j ] ∪ (−1,1) with

x
(
z(x)

)= x. (10.7)

Then we define

u+
n (x; �y) = a−1

n B
(
z(x)

)n
u
(
z(x);Un(�y)

)
, (10.8)

u−
n (x; �y) = a−1

n B
(
z(x)

)−n
u
(
1/z(x);Un(�y)

)
. (10.9)

u+
n is the analytic continuation of u+

n as defined for x ∈ e in the last section if we
keep x ∈ C+. So is u−

n , since u−
n is defined on the lower lip of the cuts, so continuing

in C+ brings us to the second sheet and 1/z(x). The −n in u−
n comes from

B
(
1/z(x)

)= B
(
z(x)

)−1
. (10.10)

Since
∣∣B(z(x)

)∣∣= e−Ge(x), (10.11)

u±
n decays exponentially as n → ±∞ and grows exponentially as n → ∓∞. It fol-

lows that u±
n must have constant phase (and perhaps we should redefine them to be

real). Indeed, the phase is constant on each gap and u+ and u− have opposite phases.

Theorem 10.1 For x ∈ R \ e and n ≤ m, we have

G̃nm(x) = u−
n (x)u+

m(x)

Wr(x)
, (10.12)

where

Wr(x) = an

(
u+

n+1(x)u−
n (x) − u−

n+1(x)u+
n (x)

)
. (10.13)

Uniformly in x ∈ R \ e and �y ∈ G, we have

∣∣G̃nm(x)
∣∣≤ Ce−Ge(x)|n−m|dist(x, e)−1/2. (10.14)
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Proof (10.12)–(10.13) is a standard formula for G̃ in terms of any solutions decaying
at ±∞. As x runs through R \ e, z(x) runs through [⋃�

j=1 C+
j ] ∪ (−1,1) \ {0}, and

u(z(x); �y) is uniformly bounded there. So, by (10.11), we get (10.14) from
∣∣Wr(x)

∣∣≥ C dist(x, e)1/2. (10.15)

This is trivial, except near the points |x| = ∞ and x ∈ {αj ,βj }�+1
j=1, since Wr(x) is

nonvanishing and continuous away from those points.
Since u is regular at z = 0 and z = ∞, the dominant term in (10.8)–(10.9) is the

B(z) term. In

Wr(x) = a0
(
u+

1 u−
0 − u−

1 u+
0

)
,

the dominant term is B(z)−1 in u−
1 , so

∣∣Wr(x)
∣∣∼ C

∣∣z(x)
∣∣−1 ∼ C|x| ≥ C|x|1/2, (10.16)

and (10.15) holds near |x| = ∞.
Near points x0 ∈ {αj ,βj }�+1

j=1, we are looking at the Wronskian of two solutions
u+ and u− which approach each other. Thus, we get a Wronskian which goes to zero
as (z(x) − z(x0)) times the Wronskian of u+ and du−/dz. We have already seen in
the last section that these are two linearly independent solutions, so their Wronskian
is nonzero and thus, near x0 ∈ {αj ,βj }�+1

j=1, for some C > 0,

Wr(x) ≥ C
∣∣z(x) − z(x0)

∣∣= C · O(|x − x0|1/2), (10.17)

proving (10.15). �

As x approaches a point x0 ∈ {αj ,βj }�+1
j=1 from R \ e, typically (i.e., except for

special values of �y, n, and m), G̃nm(x) → ∞. For Gnm(x), this is normally not true,
which is why one expects bounds in this case that are not divergent at x0. However,
there are special values of �y for which this is not the case. One sees this for n = m = 1,
since

G11(z) = m(z), (10.18)

the m-function of (6.3). m is meromorphic on S , so it normally has a finite value at
x0 but might have a pole there.

Definition Fix �y ∈ G. A point x0 ∈ {αj ,βj }�+1
j=1 is said to be a resonance if and

only if it is a pole of m�y(z) (in the sense of poles on S which means (x − x0)
−1/2

divergence since x0 is a branch point). Otherwise, we say x0 is nonresonant.

It is easy to see that resonances are equivalent to u+
0 (x0) = 0.

Theorem 10.2 Fix �y ∈ G. For n,m ≥ 1 and x ∈ R \ e, we have

Gnm(x) = G̃nm(x) − G̃0n(x)G̃0m(x)G̃00(x)−1. (10.19)
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Suppose x0 is nonresonant for �y. Let I be the open interval with one end at x0 and
the other determined by I ∩ e = ∅ and:

(i) If x0 ∈ {α1, β�+1}, then |I | = 1.
(ii) If x0 is an edge of an internal gap and J�y has no eigenvalue in that gap, then

the other end of I is the middle of the gap.
(iii) If x0 is an edge of an internal gap and J�y has an eigenvalue in the gap, then the

other end of I is halfway between x0 and that eigenvalue.

Then for all n,m ≥ 1 and x ∈ I , we have
∣∣Gnm(x)

∣∣≤ C min(n,m), (10.20)
∣∣Gnm(x)

∣∣≤ C|x − x0|−1/2 (10.21)

for some constant C.

Proof Since, for x ∈ R \ e fixed,

u+
0 u−

n − u−
0 u+

n ≡ qn (10.22)

vanishes at n = 0, qn(x) = C(x)pn−1(x) for some constant (depending on x). Thus,
by the standard formula for Gnm,

Gnm = pn−1u
+
m

Wr(u+,p·−1)
, 1 ≤ n ≤ m, (10.23)

we get

Gnm(x) = qn(x)u+
m(x)W̃r(x)−1, (10.24)

where W̃r is the Wronskian of u+ and q .
By (10.22),

W̃r(x) = u+
0 (x)Wr(x), (10.25)

so (10.24) becomes

Gnm(x) = u+
0 (x)u−

n (x)u+
m(x) − u−

0 (x)u+
n (x)u+

m(x)

u+
0 (x)Wr(x)

. (10.26)

The first term in (10.26) is, by (10.12), G̃nm(x). If we note that (also by (10.12))

G̃0n(x)G̃0m(x)G̃00(x)−1 = u−
0 (x)u+

n (x)u+
m(x)

u+
0 (x)Wr(x)

, (10.27)

we see that the second term in (10.26) is the second term in (10.19), so we have
proven (10.19).

As we noted above, x0 nonresonant implies that u+
0 (x0) �= 0. Thus, (10.26) shows

that

sup
n,m≥1
x∈I

∣∣Gnm(x)
∣∣≤ CWr(x)−1, (10.28)
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which, by (10.15), proves (10.21).
We claim first that (10.20) is implied by

∣∣qn(x)B
(
z(x)

)n∣∣≤ Cn|x − x0|1/2. (10.29)

For, by (10.24) and (10.15),

∣∣Gnm(x)
∣∣≤ C

∣∣u+
m(x)B

(
z(x)

)−m∣∣∣∣B(z(x)
)∣∣m−n∣∣qn(x)B

(
z(x)

)n∣∣|x − x0|−1/2,

(10.30)
so (10.29) together with |B(z(x))| ≤ 1 and the fact that |u+

m(x)B(z(x))−m| is bounded
implies (10.20).

Next, note that because of definitions (10.8)–(10.9) and the constancy of the phase
of u±

n , we see that for all n,

qn(x0) = 0. (10.31)

Define

hn(z) = qn

(
x(z)

)
B(z)n. (10.32)

By (10.31) and |z(x) − z(x0)| = O(|x − x0|1/2), (10.29) follows from

sup
z∈z(I )

∣∣∣∣
dhn(z)

dz

∣∣∣∣≤ Cn. (10.33)

hn is built out of u’s, which have bounded derivatives, and B(z)n, which has a deriv-
ative bounded by Cn, so (10.33) holds. �
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