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BULK UNIVERSALITY AND CLOCK SPACING OF ZEROS FOR ERGODIC
JACOBI MATRICES WITH ABSOLUTELY CONTINUOUS SPECTRUM

ARTUR AVILA, YORAM LAST AND BARRY SIMON

By combining ideas of Lubinsky with some soft analysis, we prove that universality and clock behavior
of zeros for orthogonal polynomials on the real line in the absolutely continuous spectral region is im-
plied by convergence of 1

n
Kn.x; x/ for the diagonal CD kernel and boundedness of the analog associated

to second kind polynomials. We then show that these hypotheses are always valid for ergodic Jacobi
matrices with absolutely continuous spectrum and prove that the limit of 1

n
Kn.x; x/ is �1.x/=w.x/,

where �1 is the density of zeros and w is the absolutely continuous weight of the spectral measure.

1. Introduction

Given a finite measure, d�, of compact and not finite support on R, one defines the orthonormal polyno-
mials pn.x/ (or pn.x; d�/ if the �-dependence is important) by applying Gram–Schmidt to 1; x; x2; : : : .
Thus, pn is a polynomial of degree exactly n with leading positive coefficient so thatZ

pn.x/pm.x/ d�.x/D ınm: (1-1)

For background on these orthogonal polynomials on the real line (OPRL), see [Szegő 1939; Freud 1971;
Simon 2010].

Associated to � is a family of Jacobi parameters fan; bng1nD1, an > 0, bn real, determined by the
recursion relation (p�1.x/� 0):

xpn.x/D anC1pnC1.x/C bnC1pn.x/C anpn�1.x/: (1-2)

The fpn.x/g1nD0 are an orthonormal basis of L2.R; d�/ (since supp d� is compact) and (1-2) says that
multiplication by x is given in this basis by the tridiagonal Jacobi matrix

J D

0BBB@
b1 a1 0 � � �

a1 b2 a2 � � �

0 a2 b3 � � �
:::

:::
:::
: : :

1CCCA : (1-3)
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If we restrict (as we normally will) to � normalized by �.R/ D 1, then � can be recovered from
J as the spectral measure for the vector .1; 0; 0; : : : /t . Favard’s theorem says there is a one-to-one
correspondence between sets of bounded Jacobi parameters, that is,

sup
n
janj D ˛C <1; sup

n
jbnj D ˇ <1; (1-4)

and probability measures with compact and not finite support under this �! J ! � correspondence.
We will use this to justify spectral theory notation for things like supp d� which we will denote �.d�/

since it is the spectrum of J , �.J /. We will use �ess.d�/ for the essential spectrum, and if

d�.x/D w.x/ dxC d�s.x/; (1-5)

where d�s is Lebesgue singular, then we define

†ac.d�/D fx j w.x/ > 0g; (1-6)

determined up to sets of Lebesgue measure 0, so †ac ¤∅ means d� has a nonvanishing a.c. part.
We will also suppose

inf
n
an D ˛� > 0; (1-7)

which is no loss since it is known [Dombrowski 1978] that if the inf is 0, then †ac D ∅, and we will
only be interested in cases where †ac ¤∅.

One of our concerns in this paper is the zeros of pn.x; d�/. These are not only of intrinsic interest;
they enter in Gaussian quadrature and also as the eigenvalues of JnIF , the upper left n� n corner of J ,
and so are relevant to statistics of eigenvalues in large boxes, a subject on which there is an enormous
amount of discussion in both the mathematics and the physics literature.

These zeros are all simple and real. The measure d�n is the normalized counting measure for the zeros:

�n.S/D
1

n
# of zeros of pn in S: (1-8)

In many cases, d�n converges to a weak limit d�1 called the density of zeros or density of states (DOS).
If this weak limit exists, we say that the DOS exists. It often happens that d�1 is d�e, the equilibrium
measure for eD �ess.d�/. This is true, for example, if �e is equivalent to dx � e and †ac D e, a theorem
of Widom [1967] and Van Assche [1986] (see also [Stahl and Totik 1992; Simon 2007]). If d�1 has an
a.c. part, we use �1.x/ for d�1=dx and we use �e.x/ for d�e=dx. More properly, d�1 is the density
of states measure (so

R x
�1

d�1 is the integrated density of states) and �1.x/ the density of states.
We are especially interested in the fine structure of the zeros near some point x0 2 �.d�/. We define

x
.n/
j .x0/ by

x
.n/
�2 .x0/ < x

.n/
�1 .x0/ < x0 � x

.n/
0 .x0/ < x

.n/
1 .x0/ < � � � ; (1-9)

requiring these to be all of the zeros near x0. It is known that if x0 is not isolated from �.d�/ on either
side, that is, if for all ı > 0,

.x0� ı; x0/\ �.d�/¤∅¤ .x0; x0C ı/\ �.d�/; (1-10)

then for each fixed j ,
lim
n!1

x
.n/
j .x0/D x0: (1-11)
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We are interested in clock behavior, named after the spacing of numerals on a clock — meaning equal
spacing of the zeros nearby to x0:

Definition. We say that there is quasiclock behavior at x0 2 �.d�/ if and only if for each fixed j 2 Z,

lim
n!1

x
.n/
jC1.x0/� x

.n/
j .x0/

x
.n/
1 .x0/� x

.n/
0 .x0/

D 1: (1-12)

We say there is strong clock behavior at x0 if and only if the DOS exists and for each fixed j 2 Z,

lim
n!1

n.x
.n/
jC1.x0/� xj .x0//D

1

�1.x0/
: (1-13)

Obviously, strong clock behavior implies quasiclock behavior. Thus far, the only cases where it is
proven there is quasiclock behavior, one has strong clock behavior but, as we will explain in Section
7, we think there are examples where one has quasiclock behavior at x0 but not strong clock behavior.
Before this paper, all examples known with strong clock behavior have �1D �e, but we will find several
examples where there is strong clock behavior with �1 ¤ �e in Section 7. In that section, we will say
more about:

Conjecture. For any �, quasiclock behavior holds at a.e.x0 2†ac.d�/.

In this paper, one of our main goals is to prove this result for ergodic Jacobi matrices. A major role
will be played by the Christoffel–Darboux (CD) kernel, defined for x; y 2 C by

Kn.x; y/D

nX
jD0

pj .x/ pj .y/; (1-14)

the integral kernel for the orthogonal projection onto polynomials of degree at most n in L2.R; d�/; see
Simon [2008a] for a review of some important aspects of the properties and uses of this kernel. We will
repeatedly make use of the CD formula:

Kn.x; y/D
anC1Œ pnC1.x/ pn.y/�pn.x/pnC1.y/�

Nx�y
I (1-15)

the Schwarz inequality:
jKn.x; y/j

2
�Kn.x; x/Kn.y; y/I (1-16)

and the reproducing property: Z
Kn.x; y/Kn.y; z/ d�.y/DKn.x; z/: (1-17)

It is a theorem [Simon 2009] that if the DOS exists, then

1

nC1
Kn.x; x/ d�.x/

weak
�! d�1.x/; (1-18)

and, in general, 1

nC1
Kn.x; x/ d�.x/ has the same weak limit points as d�n. This suggests that a.c. parts
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converge pointwise; that is, one hopes that for a.e.x0 2†ac,

1

nC 1
Kn.x0; x0/!

�1.x0/

w.x0/
: (1-19)

This has been proven for regular measures (in the sense of [Stahl and Totik 1992]; see also [Simon 2007])
with a local Szegő condition in a series of papers, of which the seminal ones are [Máté et al. 1991; Totik
2000]. We will prove it for ergodic Jacobi matrices.

We say bulk universality holds at x0 2 supp d� if and only if uniformly for a; b in compact subsets
of R, we have

Kn.x0C a=n; x0C b=n/

Kn.x0; x0/
!

sin.��.x0/.b� a//
��.x0/.b� a/

: (1-20)

We use the term bulk here because (1-20) fails at edges of the spectrum [Lubinsky 2008a]. We also note
that when (1-20) holds, typically (and in all cases below) for z; w complex, one has

Kn.x0C z=n; x0Cw=n/

Kn.x0; x0/
!

sin.�.x0/.w� Nz//
�.x0/.w� Nz/

: (1-21)

Freud [1971] proved bulk universality for measures on Œ�1; 1� with d�s D 0 and strong conditions
on w.x/. Because of related results (but with variable weights) in random matrix theory, this result
was reexamined and proven in multiple interval support cases with analytic weights by Kuijlaars and
Vanlessen [2002]. A significant breakthrough was made by Lubinsky [2009], whose contributions we
return to shortly.

The following theorem is a basic result of Freud [1971], rediscovered by Levin.1

Theorem 1.1 (Freud–Levin Theorem). Bulk universality at x0 implies strong clock behavior at x0.

Remarks. 1. The proof [Freud 1971; Levin and Lubinsky 2008; Simon 2008a] relies on the CD
formula (1-15), which implies that if y0 is a zero of pn, then the other zeros of pn are the points
y solving Kn.y; y0/D 0 and the fact that the zeros of sin.��.x0/.b � a// are at b � a D j=�.x0/
with j 2 Z.

2. Szegő [1939] proved strong clock behavior for Jacobi polynomials and Erdős and Turán [1940] for
a more general class of measures on Œ�1; 1�. Simon has a series on the subject [2005; 2006a; 2006b;
Last and Simon 2008]. The last of these papers was one motivation for [Levin and Lubinsky 2008].

It is also useful to define

�n D
1

n
w.x0/Kn.x0; x0/; (1-22)

so (1-19) is equivalent to
�n! �1.x0/: (1-23)

We say weak bulk universality holds at x0 if and only if, uniformly for a; b on compact subsets of R, we
have

Kn.x0C a=.n�n/; x0C b=.n�n//

Kn.x0; x0/
!

sin.�.b� a//
�.b� a/

; (1-24)

1See [Levin and Lubinsky 2008]. Lubinsky (private communication) has emphasized to us that this part of the paper is due
to Levin alone — hence our name for the result.
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the form in which universality is often written, especially in the random matrix literature. Notice that

weak universalityC (1-23) ) universality: (1-25)

Notice also that (1-24) could hold in case where �n does not converge as n!1. The same proof that
verifies Theorem 1.1 implies:

Theorem 1.2 (Weak Freud–Levin Theorem). Weak bulk universality at x0 implies quasiclock behavior
at x0.

With this background in place, we can turn to describing the main results of this paper: five theorems,
proven one per section in Sections 2–6.

The first theorem is an abstraction, extension, and simplification of Lubinsky’s second approach to
universality [2008b]. Lubinsky [2009] found a beautiful way of going from control of the diagonal CD
kernel to the off-diagonal (i.e., to universality). It depended on the ability to control limits not only of
.1=n/Kn.x0; x0/ but also .1=n/Kn.x0Ca=n; x0Ca=n/— what we call the Lubinsky wiggle. We will
especially care about the Lubinsky wiggle condition:

lim
n!1

Kn.x0C a=n; x0C a=n/

Kn.x0; x0/
D 1 (1-26)

uniformly for a 2 Œ�A;A� for each A. In addition to this, Lubinsky [2009] needed a simple but clever
inequality and, most significantly, a comparison model example where one knows universality holds.
For Œ�1; 1�, he took Legendre polynomials (that is, d�D .1=2/�Œ�1;1�.x/ dx). In extending this to more
general sets, one uses approximation by finite gap sets as pioneered by Totik [2001]. Simon [2008b]
then used Jacobi matrices in isospectral tori for a comparison model on these finite gap sets, while Totik
[� 2010] used polynomials mappings and the results for Œ�1; 1�.

For ergodic Jacobi matrices, where �.d�/ is often a Cantor set, it is hard to find comparison models,
so we will rely on a second approach developed by Lubinsky [2008b] that seems to be able to handle any
situation that his first approach can and which does not rely on a comparison model. Our first theorem,
proven in Section 2, is a variant of this approach. We need a preliminary definition.

Definition. Let d� be given by (1-5). A point x0 is called a Lebesgue point of d� if w.x0/ > 0 and

lim
ı#0

.2ı/�1
Z x0Cı

x0�ı

jw.x/�w.x0/j dx D 0; (1-27)

lim
ı#0

.2ı/�1�s.x0� ı; x0C ı/D 0: (1-28)

Standard maximal function methods [Rudin 1987] show that Lebesgue almost every x0 2†ac.d�/ is
a Lebesgue point.

Theorem 1. Let x0 be a Lebesgue point of �. Suppose that:

(i) The Lubinsky wiggle condition (1-26) holds uniformly for a 2 Œ�A;A� and any A <1.

(ii) We have
lim inf
n!1

1

nC 1
Kn.x0; x0/ > 0: (1-29)
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(iii) For any ", there is C" > 0 so that for any R <1, there is an N so that for all n > N and all z 2 C

with jzj<R, we have

1

nC 1
Kn

�
x0C

z

n
; x0C

z

n

�
� C" exp."jzj2/: (1-30)

Then weak bulk universality, and so, quasiclock behavior, holds at x0.

Remarks. 1. If one replaces the right-hand side of (1-30) by

C exp.Ajzj/; (1-31)

then the result can be proven by following Lubinsky’s argument in [2008b]. He does not assume
(1-31) directly but rather hypotheses that he shows imply it (but which are invalid when the support
of d� is a Cantor set).

2. Because our Theorem 3 below is so general, we doubt there are examples where (1-30) holds but
(1-31) does not, but we feel our more general abstract result is clarifying.

3. The strategy we follow is Lubinsky’s, but the tactics differ and, we feel, are more elementary and
illuminating.

In [Lubinsky 2008b], the only examples where the wiggle condition can be verified are the situations
where Totik [� 2010] proves universality using Lubinsky’s first method. To go beyond that, we need the
following, proven in Section 3:

Theorem 2. Let †�†ac. Suppose for a.e.x0 2†, condition (iii) of Theorem 1 holds and

(iv) limn!1.1=.nC 1//Kn.x0; x0/ exists and is strictly positive.

Then condition (i) of Theorem 1 holds for a.e.x0 2†.

Of course, (iv) implies condition (ii). So we obtain:

Corollary 1.3. If (iii) and (iv) hold for a.e.x0 2 †, then for a.e.x0 2 †, we have weak universality and
quasiclock behavior.

By (1-25), we see:

Corollary 1.4. If (iii) and (iv) hold for a.e. x0 2 †, and if the DOS exists and the limit in (iv) is
�1.x/=w.x/, then for a.e.x 2†, we have universality and strong clock behavior.

Next, we need to examine when (1-30) holds. We will not only obtain a bound of the type (1-31) but
one that does not need to vary N with R and is universal in z. We will use transfer matrix techniques
and notation.

Given Jacobi parameters, fan; bng1nD1, we define

Aj .z/D

 
z�bj
aj
�
1
aj

aj 0

!
; (1-32)

so that (1-2) is equivalent to �
pn.x/

anpn�1.x/

�
D An.x/

�
pn�1.x/

an�1pn�2.x/

�
: (1-33)
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We normalize, placing an on the lower component, so that

det.Aj .z//D 1: (1-34)

The transfer matrix is then defined by

Tn.z/D An.z/ : : : A1.z/; (1-35)

so �
pn.x/

anpn�1.x/

�
D Tn.x/

�
1

0

�
: (1-36)

If Qpn are the OPRL associated to the once stripped Jacobi parameters fanC1; bnC1g1nD1, and

qn.x/D�a
�1
1 Qpn�1.x/ (1-37)

with q0 D 0, then

Tn.z/D

�
pn.z/ qn.z/

anpn�1.z/ anqn�1.z/

�
: (1-38)

Here is how we will establish (1-30) and (1-31):

Theorem 3. Fix x0 2 R. Suppose that

sup
n

1

nC 1

nX
jD0

kTj .x0/k
2
� C <1: (1-39)

Then for all z 2 C and all n,

1

nC 1

nX
jD0

Tj�x0C z

nC 1

�2 � C exp.2C˛�1� jzj/: (1-40)

Moreover, if
sup
n
kTn.x0/k

2
D C <1; (1-41)

then for all z 2 C and n, Tn�x0C z

nC 1

�� C 1=2 exp.C˛�1� jzj/: (1-42)

Remarks. 1. Our proof is an abstraction of ideas of Avila and Krikorian [2006], who only treated the
ergodic case.

2. ˛� is given by (1-7).

3. There is a conjecture, called the Schrödinger conjecture [Maslov et al. 1993], that says (1-41) holds
for a.e. x0 2†ac.d�/.

Our last two theorems below are special to the ergodic situation. Let � be a compact metric space,
d� a probability measure on �, and S W�! � an ergodic invertible map of � to itself. Let A;B be
continuous real-valued functions on � with inf! A.!/ > 0. Let

˛C D kAk1; ˇ D kBk1; ˛� D kA
�1
k
�1
1 : (1-43)
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For each ! 2�, J! is the Jacobi matrix with

an.!/D A.S
n�1!/; bn.!/D B.S

n�1!/: (1-44)

Equation (1-43) is consistent with (1-4) and (1-7). Usually one only takes �, a measure space, and A;B
bounded measurable functions, but by replacing � by .Œ˛�; ˛C�� Œ�ˇ; ˇ�/1� z� and mapping �! z�
by ! 7! .A.Sn!/; B.Sn!//1nD�1, we get a compact space model equivalent to the original measure
model. We use d�! for the spectral measure of J! and pn.x; !/ for pn.x; d�!/.

The canonical example of the setup with a.c. spectrum is the almost Mathieu equation. Let ˛ be a
fixed irrational, � a nonzero real, and �D @D the unit circle fei� j � 2 Œ0; 2�/g. Then take

an D 1; bn D 2� cos.�˛nC �/;

(so S.ei� / D ei�ei�˛, d�.�/ D d�=2�). If 0 ¤ j�j < 1, it is known [Avila 2008; Avila and Damanik
2008; Avila and Jitomirskaya 2008; Jitomirskaya 2007] that the spectrum is purely a.c. and is a Cantor
set. It is also known [Jitomirskaya 2007] that if j�j � 1, there is no a.c. spectrum.

Theorem 4. Let fJ!g!2n be an ergodic family with †ac, the common essential support of the a.c. spec-
trum of J! , of positive Lebesgue measure. Then for a.e. pairs .x; !/ 2†ac ��,

lim
n!1

1

nC 1

nX
jD0

jpj .x; w/j
2 and lim

n!1

1

nC 1

nX
jD0

jqj .x; w/j
2 (1-45)

exist.

Theorem 5. For a.e. .x; !/ in†ac��, the first limit in (1-45) is �1.x/=w!.x/, where �1 is the density
of the a.c. part of the DOS.

This is, of course, an analog of the celebrated results of Máté et al. [1991] (for Œ�1; 1�) and Totik [2000]
(for general sets e containing open intervals) for regular measures obeying a local Szegő condition.

Theorems 3–5 show the applicability of Theorem 2, and so lead to:

Corollary 1.5. For any ergodic Jacobi matrix, we have universality and strong clock behavior for a.e.!
and a.e.x0 2†ac.

In particular, the almost Mathieu equation has strong clock behavior for the zeros.

Remark. It is possible to show that for the almost Mathieu equation there is universality for a.e.x0 2†ac

and every !. Our current approach to this uses that the Schrödinger conjecture is true for the almost
Mathieu operator, a recently announced result [Avila et al. � 2010].

For nD 1; 2; 3; 4; 5, Theorem n is proven in Section nC 1. Section 7 has some further remarks.

2. Lubinsky’s second approach

In this section, we will prove Theorem 1. We begin with two overall visions relevant to the proof. First,
the sinc kernel sin�z=�z [Lund and Bowers 1992] enters as the Fourier transform of a suitable multiple
of the characteristic function of Œ��; ��.
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Second, the ultimate goal of quasiclock spacing is that on a 1=n�n scale, zeros are a unit distance
apart, so on this scale

# of zeros in Œ0; n�� n: (2-1)

Lubinsky’s realization is that the Lubinsky wiggle condition and Markov–Stieltjes inequalities (see be-
low) imply that the difference of the two sides of (2-1) is bounded by 1. This is close enough that,
together with some complex variable magic, one gets unit spacing.

The complex variable magic is encapsulated in the following result whose proof we defer until the
end of the section.

Theorem 2.1. Let f be an entire function with the following properties:

(a) f .0/D 1.

(b) supx2Rjf .x/j<1.

(c)
Z 1
�1

jf .x/j2 dx � 1.

(d) f is real on R.

(e) All the zeros of f lie on R and if these zeros are labeled by � � � � z�2 � z�1 < 0 < z1 � z2 � � � � ,
with z0 � 0, then

jzj � zkj � jj � kj � 1: (2-2)

(f) For each " > 0, there is C" with
jf .z/j � C"e

"jzj2 : (2-3)

Then

f .z/D
sin.�z/
�z

: (2-4)

Remarks. 1. Equation (2-2) allows f a priori to have double zeros but not triple or higher zeros.

2. It is easy to see there are examples where (2-3) holds for some but not all " and where (2-4) is false,
so (2-3) is sharp.

Proof of Theorem 1 given Theorem 2.1. (This part of the argument is essentially in [Lubinsky 2008b].)
Fix a 2 R and let

fn.z/D
Kn
�
x0C a=.n�n/; x0C .aC z/=.n�n/

�
Kn.x0; x0/

: (2-5)

By (1-29), (1-30), and (1-16), the fn are uniformly bounded on each disk fz j jzj < Rg, so by Montel’s
theorem, we have compactness that shows it suffices to prove that any limit point f .z/ has the form
(2-4). We will show that this putative limit point obeys conditions (a)–(f) of Theorem 2.1.

The Lubinsky wiggle condition (1-26) implies (a). From the Schwarz inequality, (1-11) and the wiggle
condition, we get

sup
x2R

jf .x/j D 1; (2-6)

which is stronger than (b).
By (1-17), Z

jy�x0�.a=n�n/j�.R=n�n/

jKn.x; y/j
2w.y/ dy � Kn.x; x/ (2-7)



90 ARTUR AVILA, YORAM LAST AND BARRY SIMON

for each R <1. Changing variables and using the Lebesgue point condition leads toZ R

�R

jf .y/j2 dy � 1; (2-8)

which yields (c) (see Lubinsky [2008b] for more details). In this, one uses (1-29) and (1-30) to see that

0 < inf �n < sup �n <1: (2-9)

That f is real on R is immediate; the reality of zeros follows from Hurwitz’s theorem and the fact
[Simon 2008a] that pnC1.x/� cpn.x/ has only real zeros for c real.

The Markov–Stieltjes inequalities [Markoff 1884; Freud 1971; Simon 2008a] assert that if x1; x2; : : :
are successive zeros of pn.x/� cpn�1.x/ for some c, then for j � kC 2,

�.Œxj ; xk�/�

j�1X
`DkC1

1

Kn.x`; x`/
: (2-10)

Using the fact that the zj (including z0) are, by Hurwitz’s theorem, limits of xj ’s scaled by n�n and the
Lubinsky wiggle condition to control limits of n�n=Kn.x`; x`/, one finds that (2-2) holds (see [Lubinsky
2008b] for more details). Here one uses that x0 is a Lebesgue point to be sure that

1

xk � xj

Z xk

xj

d�.y/! w.x0/: (2-11)

Finally, (1-30) implies (2-3). Thus, (2-4) holds. �

We now reduce the proof of Theorem 2.1 to using conditions (a)–(e) to improve the bound (2-3).

Proposition 2.2. (a) Fix a > 0. If f is measurable, real-valued and supported on Œ�a; a� withZ a

�a

f .x/2 dx � 2a and
Z a

�a

f .x/ dx D 2a; (2-12)

then
f .x/D �Œ�a;a�.x/ a.e. (2-13)

(b) If f is real-valued and continuous on R and yf is supported on Œ��; �� withZ 1
�1

f .x/2 dx � 1 and f .0/D 1; (2-14)

then

f .x/D
sin.�x/
�x

: (2-15)

(c) If f is an entire function, real on R with (2-14), and for all ı > 0, there is Cı with

jf .z/j � Cı exp..� C ı/jIm zj/; (2-16)

then (2-4) holds.
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Proof. (a) Essentially this follows from equality in the Schwarz inequality. More precisely, (2-12) impliesZ a

�a

jf .x/��Œ�a;a�.x/j
2 dx � 0: (2-17)

(b) Apply Proposition 2.2 (a) to .2�/1=2 yf .k/ with aD � .

(c) By the Paley–Wiener theorem, (2-16) implies that yf is supported on Œ��; ��. �

Thus, we are reduced to going from (2-3) to (2-16).
By f .0/ D 1, the reality of the zeros and (2-3), we have, by the Hadamard factorization theorem

[Titchmarsh 1932, Section 8.24] that

f .z/D eAz
Y
j¤0

�
1�

z

zj

�
ez=zj ; (2-18)

with A real. For x 2 R, define zj .x/ to be a renumbering of the zj , so

: : :� z�1.x/ < x � z0.x/� z1.x/� : : : : (2-19)

By jzj � zkj � jk� j j � 1, we see that

znC1.x/� x � n; x� z�.nC1/.x/� n: (2-20)

In particular, .x � 1:1; x C 1:1/ can contain at most z0.x/; z˙1.x/; z˙2.x/. Removing the open
intervals of size 2=10 about each of the five points jz`.x/�xj (`D 0;˙1;˙2) from Œ0; 1� leaves at least
one ı > 0, that is, we can pick ı.x/ in Œ0; 1� so for all j ,

jzj .n/� .x˙ ı/j �
1
10
: (2-21)

Moreover, by (2-20), for nD 1; 2; : : : ,

jz˙.nC2/.x/� .x˙ ı/j � n: (2-22)

Since
j1� .xC iy/=zj j

2

j.1� .xC ı=zj /.1� x� ı/=zj /j
� 1C

.y2C ı2/

jzj � .xC ı/jjzj � .x� ı/j
; (2-23)

we conclude from (2-18) that

jf .xC iy/j2

jf .x� ı/jjf .xC ı/j
�

�
1C

y2C 1

.1=100/

�5 1Y
nD1

�
1C

1Cy2

n2

�2
�C.1Cy10/

�
sinh�

p
y2C 1

�
p
y2C 1

�2
: (2-24)

Thus, for any ", there is a C" with

jf .xC iy/j � C" exp..� C "/jyj/; (2-25)

for every xC iy 2 C, which is (2-16). This concludes the proof of Theorem 2.1.

Remark. It is possible to show, using the Phragmén–Lindelöf principle [Titchmarsh 1932], that if one
assumes, instead of (2-3), the stronger jf .z/j � Cejzj

ı

, then it is possible to weaken (2-2) to

jzj j � jj j � 1; (2-26)
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for if (2-26) holds, then (2-18) implies that

jf .iy/j � C.1Cjyj/e�jyj: (2-27)

Applying Phragmén–Lindelöf to .1� iz/�1f .z/ei�z on the sectors arg z 2 Œ0; �=2� and Œ�=2; �� proves
that

jf .xC iy/j � C.1Cjzj/e�jyj: (2-28)

3. Doing the Lubinsky wiggle

Our goal in this section is to prove Theorem 2.

Proof of Theorem 2. By Egorov’s theorem [Rudin 1987, p. 73], for every ", there exists a compact set
L�† with j†nLj<" (with j j D Lebesgue measure) so that on L, the sequence 1

nC1
Kn.x; x/� Qqn.x/

converges uniformly to a limit, which we call Qq.x/. If we prove that (1-26) holds for a.e.x0 2 L, then
by taking a sequence of "’s going to 0, we get that (1-26) holds for a.e.x0 2†

By Lebesgue’s theorem on differentiability of integrals of L1-functions [Rudin 1987, Theorem 7.7]
applied to the characteristic function of L, for a.e.x0 2 L, we get

lim
ı#0

.2ı/�1j.x0� ı; x0C ı/\Lj D 1: (3-1)

We will prove that (1-26) holds for all x0 with (3-1) and with condition (iv) of Theorem 2.
The expression 1

nC1
Kn
�
xC a

n
C
Nz
n
; xC a

n
C
z
n

�
is analytic in z, so by a Cauchy estimate and a real,ˇ̌̌̌

d

da
Qqn

�
xC

a

n

�ˇ̌̌̌
� sup
jzj�1

1

nC1

ˇ̌̌̌
Kn

�
xC

a

n
C
Nz

n
; xC

a

n
C
z

n

�ˇ̌̌̌
D sup
jzj�1

ˇ̌̌̌
Qqn

�
xC

a

n
C
z

n

�ˇ̌̌̌
: (3-2)

By a Schwarz inequality, for x; y 2 C,

1

nC1
jKn.x; y/j � . Qqn.x/ Qqn.y//

1=2: (3-3)

Thus, using the assumed (1-30), for any x0 for which (1-30) holds and any A<1, there are N0 and
C so for n�N0, ˇ̌̌

Qqn

�
x0C

a

n

�
� Qqn

�
x0C

b

n

�ˇ̌̌
� C ja� bj; (3-4)

for all a; b with jaj � A, jbj � A.
Since each Qqn is continuous and the convergence is uniform on L, Qq is continuous on L. Thus, we

have for each A <1,

sup
�ˇ̌̌
Qq
�
x0C

a

n

�
� Qq.x0/

ˇ̌̌ ˇ̌̌̌
jaj< A; x0C

a

n
2 L

�
! 0; (3-5)

as n!1. By the uniform convergence theorem,

sup
�ˇ̌̌
Qqn

�
x0C

a

n

�
� Qqn.x0/

ˇ̌̌ ˇ̌̌̌
jaj< A; x0C

a

n
2 L

�
! 0: (3-6)
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We next note that (3-1) implies

sup
jbj�A

n dist
�
x0C

b

n
;L
�
! 0I (3-7)

equivalently, for any ", there is an N1 so for n � N1 and jbj < A, there exists jaj < A (a will be
n-dependent) so that ja� bj< " and x0C a=n 2 L. We haveˇ̌̌

Qqn

�
x0C

b

n

�
� Qqn.x0/

ˇ̌̌
�

ˇ̌̌
Qqn

�
x0C

b

n

�
� Qqn

�
x0C

a

n

�ˇ̌̌
C

ˇ̌̌
Qqn

�
x0C

a

n

�
� Qqn.x0/

ˇ̌̌
; (3-8)

where jb�aj< " and x0Ca=n2L. By (3-4), if n�max.N0; N1/, the first term is bounded by C" and,
by (3-7), the second term goes to zero, that is,

sup
jbj<A

ˇ̌̌
Qqn

�
x0C

b

n

�
� Qqn.x0/

ˇ̌̌
! 0: (3-9)

Since Qqn.x0/! Qq.x0/¤ 0, we have

sup
jbj<A

ˇ̌̌
Qqn.x0C b=n/

Qqn.x0/
� 1

ˇ̌̌
! 0; (3-10)

as n!1, which is (1-26). �

4. Exponential bounds for perturbed transfer matrices

In this section, our goal is to prove Theorem 3. As noted in the Introduction, our approach is an extension
of a theorem of Avila and Krikorian [2006, Lemma 3.1] exploiting that one can avoid using cocycles and
so go beyond the apparent limitation to ergodic situations. The argument here is related to but somewhat
different from variation of parameters techniques [Jitomirskaya and Last 1999; Killip et al. 2003] and
should have wide applicability.

Proof of Theorem 3. Fix n and define, for j D 1; 2; : : : ; n,

QAj D Aj

�
x0C

z

nC 1

�
; (4-1)

Aj D Aj .x0/; (4-2)

Tj D Aj : : : A1; QTj D QAj : : : QA1: (4-3)

(Note that QAj and QTj depend on n as well as j .)
Note that, by (1-32),

QAj �Aj D a
�1
j

�
z=.nC 1/ 0

0 0

�
; (4-4)

so that

k QAj �Aj k � ˛
�1
�

jzj

nC 1
: (4-5)
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Write

T �1j
QTj D .T

�1
j
QAjTj�1/.T

�1
j�1
QAj�1Tj�2/ : : : .T

�1
1
QA1T0/

D .1CBj /.1CBj�1/ : : : .1CB1/; (4-6)

where
Bk D T

�1
k . QAk �Ak/Tk�1: (4-7)

Here we used
AkTk�1 D Tk : (4-8)

Since Tk has determinant 1 (see (1-34)), we have

kT �1k k D kTkk: (4-9)

So, by (4-5),

kBkk � kTkk kTk�1k˛
�1
�

jzj

nC 1
: (4-10)

Thus, since
k1CBj k � 1CkBj k � exp.kBj k/; (4-11)

Equation (4-6) implies that

k QTj k � kTj k exp
�
˛�1� jzj

h 1

nC 1

jX
kD1

kTkk kTk�1k
i�
: (4-12)

By the Schwarz inequality, for j D 1; 2; : : : ; n,

1

nC 1

jX
kD1

kTkk kTk�1k �
1

nC 1

jX
kD0

kTkk
2
�

1

nC 1

nX
kD0

kTkk
2: (4-13)

Using (1-39) and (4-12), we find

k QTj k � kTj k exp.C˛�1� jzj/: (4-14)

This clearly holds for j D 0 also. Squaring and summing,

1

nC 1

nX
jD0

k QTj k
2
�

� 1

nC 1

nX
jD0

kTj k
2
�

exp.2C˛�1� jzj/; (4-15)

which is (1-40).
Note that (1-41) implies (1-39) so that (1-42) is just (4-14). �

We note that the argument above can also be used for more general perturbative bounds. For example,
suppose that

C1 � sup
n
kTn.x0/k<1; (4-16)
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for a given set of Jacobi parameters. Let a0n D anC ıan and b0n D bnC ıbn with

C2 �

1X
nD1

jıanjC jıbnj<1 (4-17)

and
˛0� D inf a0n > 0: (4-18)

Defining QAn; QTn at energy x0 but with fa0n; b
0
ng
1
nD1 Jacobi parameters, one gets

k QAk �Akk � C3Œ˛
�1
� C .˛

0
�/
�1�.jıakjC jıbkj/ (4-19)

for some universal constant C3. Thus

kBkk � C3C
2
1 Œ˛
�1
� C .˛

0
n/
�1�.jıakjC jıbkj/ (4-20)

and
k QTnk � C1 exp.C 21C2C3Œ˛

�1
� C .˛

0
�/
�1�/; (4-21)

providing another proof of a standard `1 perturbation result.

5. Ergodic Jacobi matrices and Cesàro summability

In this section, our goal is to prove Theorem 4. We fix an ergodic Jacobi matrix setup. We will need to
use certain special solutions:

Theorem 5.1 [Deift and Simon 1983]. For any Jacobi matrix with †ac.d�!/ (which is a.e.!-indepen-
dent) of positive measure, for a.e. pair .x; !/ 2 †ac �� (a.e. with respect to dx ˝ d�.!/), there exist
sequences fu˙n .x; !/g

1
nD�1 such that

Tn.x; !/

 
u˙1 .x; !/

a0u
˙
0 .x; !/

!
D

 
u˙nC1.x; !/

anu˙n .x; !/

!
; (5-1)

with the following properties:

(i) u�n .x; !/D u
C
n .x; !/;

(ii) an.uCnC1u
�
n �u

�
nC1u

C
n /D�2i ;

(iii) juCn .x; !/j D ju
C
0 .x; S

n!/j;

(iv)
R
juCn .x; !/j

2 d�.!/ <1;

(v) u˙0 is real.

Of course, by (iii), the integral in (iv) is n-independent. For later purposes (see Section 6), we will
need an explicit formula for this integral. In fact, we will need explicit formulae for u0; u�1 in terms of
the m-function.

For Im z > 0, one defines QuCn .z; !/ so as to solve the following equation equivalent to (5-1):

an Qu
C
nC1C .bn� z/ Qu

C
n C an�1 Qu

C
n�1 D 0; (5-2)
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with
P1
nD1j Qu

C
n j
2 <1. This determines QuCn up to a constant, and so

m.z; !/D�
QuC1 .z; !/

a0 Qu
C
0 .z; !/

(5-3)

is normalization-independent and, by (5-2), obeys

m.z; !/D
1

�zC b1� a
2
1m.z; S!/

: (5-4)

(Note: We have suppressed the !-dependence of an; bn.)
As usual with solutions of (5-4),

m.z; !/D

Z
d�C! .x/

x� z
; (5-5)

where d�C! is the measure associated to the half-line Jacobi matrix J! .
For a.e.x 2†ac and a.e.!, m.xC i0; !/ exists and has

Imm.xC i0; !/ > 0 .a.e. x 2†ac/; (5-6)

We normalize the solution uC obeying Theorem 5.1 by defining:

uC0 .x; !/D
1

a0ŒImm.xC i0; !/�1=2
; (5-7)

uC1 .x; !/D�
m.xC i0; !/

ŒImm.xC i0; !/�1=2
: (5-8)

(We have listed all the formulae because [Deift and Simon 1983] only considers the case an � 1.) The
uCn are then determined by the difference equation, and the u�n by condition (i).

Of course, we have

pn D
uCnC1�u

�
nC1

uC1 �u
�
1

; (5-9)

since both sides obey the same difference equations with p�1 D 0 (since uC0 D u
�
0 ) and p0 D 1.

By (5-9), to prove Theorem 4 we need to show that

1

n

n�1X
jD0

.uCjC1�u
�
jC1/

2 (5-10)

exists. This follows from the existence of

lim
n!1

1

n

nX
jD1

juCj j
2 (5-11)

and

lim
n!1

1

n

nX
jD1

.uCj /
2: (5-12)
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From condition (iii) and the ergodic theorem (plus (iv)), the a.e.! existence of the limit in (5-11) is
immediate. In cases like the almost Mathieu equation with Diophantine frequencies where uCn is almost
periodic, one also gets the existence of the limit in (5-12) directly, but there are examples, like the almost
Mathieu equation with frequencies whose dual has singular continuous spectrum, where the phase of uCn
is not almost periodic. So this argument does not work in general. In fact, we will eventually prove that
for a.e. .x; !/ in †ac �� (see Theorem 6.3):

lim
n!1

1

n

nX
jD1

.uCj /
2
D 0: (5-13)

It would be interesting to have a direct proof of this (for the periodic case, see [Simon 2010]) rather than
the indirect path we will take.

Define the 2� 2 matrix

Un.x; !/D
1

.�2i/1=2

 
uCnC1.x; !/ u�nC1.x; !/

anu
C
n .x; !/ anu

�
n .x; !/

!
; (5-14)

(where we fix once and for all a choice of
p
�2i ). By condition (ii),

det.Un.x; !//D 1 (5-15)

and, by (5-1),
Tn.x; !/U0.x; !/D Un.x; !/ (5-16)

or
Tn.x; !/D Un.x; !/U0.x; !/

�1: (5-17)

For now, we fix x 2†ac with

E.Œa0.!/
2 Imm.xC i0; !/��1/ <1; (5-18)

(known Lebesgue a.e. by Kotani theory; see [Simon 1983; Deift and Simon 1983]), so Un can be defined
and is in L2.

Theorem 5.2. Fix a matrix Q. For a.e.!, the limit of matrices

lim
n!1

1

n

n�1X
jD0

Tj .x; !/
tQTj .x; !/ (5-19)

exists.

Proof of Theorem 4 given Theorem 5.2. Pick

QD

�
1 0

0 0

�
:

Then the 1,1 matrix element of Tj .x; !/tQTj .x; !/ is pj .x; !/2, and the 2,2 element is qj .x; !/2.
Since the limits in (1-45) exist, we are done. �
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Equation (5-17) plus condition (iv) will imply critical a priori bounds on kTn.x; � /kL1.d�/. It will be
convenient to use the Hilbert–Schmidt norm on these 2� 2 matrices.

Lemma 5.3. We have

sup
n

Z
kTn.x; !/k d�.!/ <1: (5-20)

Proof. Since det.Un/D 1,
kUn.x; !/

�1
k D kUn.x; !/k: (5-21)

Thus, by (5-17),
kTn.x; !/k � kUn.x; !/k kU0.x; !/k: (5-22)

By the Schwarz inequality,

sup
n

Z
kTn.x; !/k d�.!/� sup

n

Z
kUn.x; !/k

2 d�.!/D

Z
kU0.x; !/k

2 d�.!/ <1;

where we also have used condition (iv) and the equality

kUj .x; !/k D kU0.x; S
j!/k; (5-23)

a consequence of condition (iii) and our use of Hilbert–Schmidt norms. �

Let Aj .!/ be the matrix (1-32) with aj D aj .!/, bj D bj .!/ and let

A.!/� A1.!/; (5-24)

so
Aj .!/D A.S

j�1!/; (5-25)

and the transfer matrix for J! is

Tn.!/D A.S
n�1!/ : : : A.!/: (5-26)

Now form the suspension
y�D��SL.2;C/ (5-27)

and define yS W y�! y� by
yS.!; C /D .S!;A.!/C /; (5-28)

so
ySn.!; C /D .Sn!; Tn.!/C /: (5-29)

Theorem 5.4. There exists an yS -invariant probability measure d� on y� whose projection onto � is d�
and with Z

kCk d�.!; C / <1: (5-30)

Proof. Pick any probability measure �0 on SL.2;C/ with
R
kCkk d�0.C / <1 for all k. For example,

one could take d�0.C /DNe�kCk
2

d Haar.C / where N is a normalization constant. Let yS� be induced
on measures on y� by Œ yS�.�/�.f /D �.f ı yS/. Let

�n D yS
n
� .�˝�0/: (5-31)
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Then the invariance of � under S� implies the projection of �n is � andZ
kCk d�n D

Z
kTn.!/Ck d�˝ d�0 �

�Z
kTn.!/k d�

��Z
kCk d�0

�
; (5-32)

which, by (5-20), is uniformly bounded in n.
Let Q�n be the Cesàro averages of �n, that is,

Q�n D
1

n

n�1X
jD0

�j : (5-33)

So, by (5-32),

sup
n

Z
kCk d Q�n <1; (5-34)

so fQ�ng are tight, that is,
lim
K!1

sup
n
Q�nfC j kCk �Kg ! 0;

which implies that Q�n has a weak limit point in probability measures on z�. This weak limit point is
invariant and, by (5-34), it obeys (5-30). �

Lemma 5.5. Let L<1. Let

y�L D f.!; C / j kU0.!/k<L; kCk<Lg: (5-35)

Then for any ", there is a K so that for a.e. .!; C / 2 y�L,

lim
n!1

1

n

X
j2B.K;!;C/
0�j�n�1

kTj .!/Ck
2
� "; (5-36)

where
B.K;!; C /D fj j kTj .!/Ck �Kg: (5-37)

Proof. Since U0.!/ 2 L2.d�/, we have

lim
s!1

Z
kU0.!/k�s

kU0.!/k
2d�.!/D 0; (5-38)

so for any ı > 0, there exists s.ı/ so that the integral is less than ı.
Let zB. zK;!/ be defined by

zB. zK;!/D fj j kUj .!/k � zKg: (5-39)

By the Birkhoff ergodic theorem and (5-23) for a.e.!,

lim
n!1

1

n

X
j2 zB. zK;!/
0�j�n�1

kUj .!/k
2
D

Z
kU0.!/k� zK

kU0.!/k
2d�� ı; (5-40)

if zK � s.ı/.
Given " and L, let ı D "=L2 and K � L2s.ı/. Since

kTj .!/Ck � kUj .!/kL
2 (5-41)
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if .!; C /��L,

B.K;!; C /� zB
� K
L2
; !
�
:

So, by (5-40) and (5-41),

lim
n!1

1

n

X
j2B.K;!;C/
0�j�n�1

kTj .!/Ck
2
� L2ı D "; (5-42)

which is (5-35). �

Proof of Theorem 5.2. Without loss, suppose kQk � 1. Define on y�

fn.!; C /D
1

n

n�1X
jD0

C tTj .x; !/
tQTj .x; !/C: (5-43)

If we prove that this has a pointwise limit for � a.e. .!; C /, we are done: since � is the projection of �,
for � a.e.!, there are some C for which (5-43) has a limit. But C is invertible, so .C t /�1fnC�1 has a
limit, that is, (5-19) does.

Notice that if
h.!; C /D C tQC; (5-44)

then fn.!; C / is a Cesàro average of h. ySj .!; C //, so we can almost use the ergodic theorem except we
only know a priori that

R
kh.!; C /k1=2 d� <1, not

R
kh.!; C /k d� <1, so we need to use Lemma

5.5.
Fix L and consider .!; C / 2 y�L. Let

hK.!; C /D

(
C tQC if kCk �K;

0 if kCk>K:
(5-45)

Then, since kQk � 1,

khK. yS
j .!; C //� h. ySj .!; C //k �

(
0 if j … B.K;!; C /;

kTj .!/Ck
2 if j 2 B.K;!; C /:

(5-46)

It follows that if

f .K/n .!; C /D
1

n

n�1X
jD0

hK. yS
j .!; C //; (5-47)

then
kf .K/n .!; C /�fn.!; C /k � sum on left side of (5-36):

So, by Lemma 5.5,
lim sup
n!1

kf .K/n .!; C /�fn.!; C /k � "; (5-48)

if
K �K.";L/ (5-49)

given by the lemma.
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For any finite K, hK is bounded, so the Birkhoff ergodic theorem and the invariance of � imply, for
a.e. .!; C /, limf

.K/
n .!; C / exists. Thus (5-48) and (5-49) imply that limf

.K/
n .!; C / forms a Cauchy

sequence as K!1 (among, say, integer values), and that its limit is also lim fn.!; C /, for a.e. .!; C /
in y�L.

Since L is arbitrary and �. y�n y�L/! 0 on account of
R
kU0.!/k

2 d� <1, we see that fn has a limit
for a.e.!;C . �

6. Equality of the local and microlocal DOS

Our main goal in this section is to prove Theorem 5. We know from Theorem 4 that for a.e.! 2� and
x0 2†ac, we have

1

nC 1
Kn.x0; x0/! k!.x0/ (6-1)

some positive function. By Theorems 1 and 2, this implies that the spacing of zeros at a.e. Lebesgue
point is

x
.n/
jC1.x0/� x

.n/
j .x0/�

1

nw!.x0/k!.x0/
: (6-2)

Thus, for fixed K large, in an interval .x0�K=n; x0CK=n/, the number of zeros is 2Kw.x0/k.x0/.
On the other hand, if �1.x0/ is the density of states, for a.e.x0 in the a.c. part of the support of d�1,
the number of zeros in .x0 � ı; x0C ı/ is approximately 2ın�.x0/. If ı were K=n, this would tell us
that

w!.x0/k!.x0/D �1.x0/; (6-3)

which is precisely (1-23).
Of course, �1 is defined by first taking n!1 and then ı # 0, so we cannot set ı DK=n, but (6-3)

is an equality of a local density of zeros obtained by taking intervals with O.n/ zeros as n!1 and a
microlocal individual spacing as in (6-2).

So define
�L.x0; !/D w!.x0/k!.x0/; (6-4)

the microlocal DOS. Notice that we have indicated an !-dependence of �L because, at this point, we have
not proven !-independence. !-independence often comes from the ergodic theorem — we determined
the existence of k!.x0/ using the ergodic theorem, but unlike for �1, the underlying measure was only
invariant, not ergodic, and indeed, k! , the object we controlled is not !-independent.

Of course, once we prove �L D �1, �L will be proven !-independent, but we will, in fact, go the
other way: we first prove that �L is !-independent, use that to show that if u is the Deift–Simon wave
function, then the average of u2 (not juj2) is zero, and use that to prove that �L D �1.

Theorem 6.1. Suppose that J! is a family of ergodic Jacobi matrices. Let �L.x; !/ be determined by
(6-1) and (6-4) for x 2†ac, ! 2�. Then for a.e.x 2†ac, �L.x; !/ is a.e.!-independent.

Proof. Since �L.x; !/ is jointly measurable for .x; !/ 2 †ac ��, �L.x; � / is measurable for a.e.x.
Since S is ergodic, it suffices to prove that �L.x; S!/D �L.x; !/ for a.e. .x; !/.

Let pn.x; !/ be the OPs for J! . Then the zeros of pn�1.x; S!/ and pn.x; !/ interlace. It follows,
for any interval In;A.x0/D Œx0�A=n; x0CA=n�, thatˇ̌

# of zeros of pn.x; !/ in In;A.x0/� # of zeros of pn�1.x; S!/ in In;A.x0/
ˇ̌
� 2: (6-5)
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If �L.x0; S!/¤ �L.x0; !/ and AD k�L.x0; !/�1 with k large, it is easy to get a contradiction between
(6-5) and (6-2). Thus, �L.x; !/D �L.x; S!/ as claimed. �

Next, we need a connection between �L and u. Recall from (5-9) that

pn.x; !/D
ImuCnC1.x; !/

ImuC1 .x; !/
; (6-6)

while (5-8) and (5-5) give, respectively,

ImuC1 .x; !/D�ŒImm.xC i0; !/�1=2; (6-7)

Imm.xC i0; !/D �w!.x/ for a.e.x 2†ac: (6-8)

Thus, if we define

Av!.fj .!//� lim
n!1

1

n

nX
jD1

fj .!/; (6-9)

then

�L.x; !/D
1

�
Av!.ŒImuCj .x; !/�

2/: (6-10)

Note that ImuCj .x; !/ is not ImuC0 .x; S
j!/, so we cannot write (6-10) as an integral. In fact, the !-

independence of the right side of (6-10) (because of !-independence of the left side) will have important
consequences.

To see where we are heading, we note the following result (see also [Damanik 2007, Theorem 5]).

Theorem 6.2 [Kotani 1997]. For a.e.x 2†ac,

�1.x/D
1

2�

Z
juC0 .x; !/j

2 d�.x/: (6-11)

Remarks. 1. Kotani [1997] and Damanik [2007] treat an�1, but it is easy to accommodate general an.

2. Kotani’s theorem is not stated in this form but rather as (see Equation (22) in [Damanik 2007]):

��1.x/D

Z
ImG!.0; 0I xC i0/ d�.!/; (6-12)

where G! is the whole-line Green’s function. Because G! is reflectionless, G! is pure imaginary
and

Im.G!.0; 0I xC i0//D Œ2a20 Imm.xC i0; !/��1 D 1
2
juC0 .x; !/j

2; (6-13)

by (5-7).

Thus, the key to proving �L D �1 will be to show that

Av!.ŒImuCj .x; !/�
2/D Av!.ŒReuCj .x; !/�

2/: (6-14)

Note that (6-10) includes that the Av!.ŒImuCj �
2/ exists and, by the ergodic theorem, Av!.juCj j

2/ exists,
so we know for a.e. .x; !/ 2†ac �� that Av!.ŒReuCj .x; !/�

2/ exists. We are heading towards:
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Theorem 6.3. Suppose x 2†ac is such that �L.x; !/ exists for a.e.! and is !-independent, and that

�1..�1; x�/¤
1
2
: (6-15)

Then for a.e.!,
Av!..uCj .x; !//

2/D 0: (6-16)

Proof of Theorem 5 given Theorem 6.3. (6-15) fails at most a single x in †ac, so (6-16) holds for
a.e. .x; !/ 2†ac ��. Its real part implies (6-14), and so for a.e. .x; !/,

Av!.ŒImuCj .x; !/�
2/D 1

2
Av!.juCj .x; !/j

2/D 1
2

Z
juC0 .x; !/j

2 d�.x/; (6-17)

by the ergodic theorem. By (6-10), (6-11), and the definition of �L in (6-4) and the paragraphs preceding
it, we see that the first limit in (1-45) is �1.x/=w!.x/. �

Proof of Theorem 6.3. Fix x 2 †ac (at each stage, we work up to sets of Lebesgue measure 0). Define
'.!/ 2 .0; 2�/ by

Arg.�m.xC i0; !//D�'.!/: (6-18)

Then '.!/ 2 .0; �/ by Imm> 0. Let (' and sn also depend on x)

sn.!/D

nX
jD1

'.Sj�1!/: (6-19)

Then, by (5-3) and condition (iii),

uCn .x; !/D e
�isn.!/uC0 .x; S

n!/ and uCnCj .x; !/D e
�isn.!/uCj .x; S

n!/: (6-20)

It follows that for each fixed n,

Av!.ImuCj ..x; S
n!//2/D Av!..Im eisn.!/uCj .x; !//

2/: (6-21)

If s; x; y are real,

.Im.eis.xC iy///2 D .x sin sCy cos s/2

D y2C .sin2 s/.x2�y2/C xy.sin 2s/; (6-22)

and thus we can write for the left-hand side of (6-21)

Av!.ImuCj ..x; S
n!//2/D Av!.ŒIm.uCj .x; !//�

2/C sin2 sn.!/R.!/C 1
2

sin.2sn.!//I.!/; (6-23)

where
R.!/D Av!.Re..uCj .x; !//

2//; I.!/D Av!.Im..uCj .x; !//
2//; (6-24)

(all such averages having been previously shown to exist).
We know that for a.e. .x; !/, for n D 0; 1; 2; : : : , the left side of (6-21) exists and is n-independent

(and equal to �L.x; !/). For such .x; !/, (6-23) implies that for all n,

sin sn.!/Œsin sn.!/R.!/C cos sn.!/I.!/�D 0: (6-25)

We want to consider two cases:
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Case 1. For a positive measure set of !,

s2.!/D �; s4.!/D 2�; s6.!/D 3�; : : : : (6-26)

Case 2. For a.e.!, there is an n.!/ so

s2j .!/D j� .j D 1; : : : ; n� 1/ s2n.!/¤ n�: (6-27)

In Case 1, for such !, we have sn.!/=.n�/! 1
2

. It follows by standard Sturm oscillation theory
[Johnson and Moser 1982] that sn.!/=.n�/! �1..�1; x�/ for almost every !. Thus, the hypothesis
(6-15) eliminates Case 1.

For Case 2, suppose first that n is odd, so s2.n�1/.!/ is a multiple of 2� and (6-19), for 2n� 1 and
2n imply

sin.'2n�1/Œsin.'2n�1/RC cos.'2n�1/I �D 0; (6-28)

sin.'2n�1C'2n/Œsin.'2n�1C'2n/RC cos.'2n�1C'2n/I �D 0: (6-29)

Since '2n�1 2 .0; �/, sin.'2n�1/ ¤ 0 and since '2n�1C '2n 2 .0; 2�/ n f�g, (for if it equals � , then
s2n D n�!), sin.'2n�1C'2n/¤ 0.

The determinant of equations (6-28)/(6-29) is

� sin.'2n�1/ sin.'2n�1C'2n/ sin.'2n/¤ 0 (6-30)

since
sin.A/ cos.B/� sin.B/ cos.A/D sin.A�B/: (6-31)

Here ¤ 0 in (6-30) comes from '2n 2 .0; �/, so sin.'2n/¤ 0.
The nonzero determinant means that (6-28)/(6-29)) I DRD 0, that is, Av!..uCj /

2/D 0 for a.e.!.
If n is even, s2.n�1/.!/ is an odd multiple of � and all equations pick up minus signs, so the argument
is unchanged. �

7. Concluding remarks

1. We have proven for general ergodic Jacobi matrices that for a.e. .x; !/ 2†ac ��,

1

nC 1
Kn.x; xI!/!

�1.x/

w!.x/
: (7-1)

Here �1 is the Radon–Nikodým derivative of the a.c. part of d�1. Based on [Máté et al. 1991; Totik
2000], where results of this type are proven for regular measures, one expects

�1.x/D �e.x/: (7-2)

Here e is the essential spectrum of J! and �e its equilibrium measure. Simon [2007, Theorem 1.15]
proves

Theorem 7.1. If †ac is not empty, then (7-2) holds if and only if , for �e a.e.x, the Lyapunov exponent,
.x/, obeys

.x/D 0: (7-3)
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In particular, for examples where (7-3) fails on a set of positive Lebesgue measure in e [Bjerklöv 2006;
Bourgain 2002a; 2002b; Fedotov and Klopp 2005; 2006], (7-2) may not hold. On the other hand, for
examples like the almost Mathieu equation where it is known that (7-3) holds on all of e [Bourgain and
Jitomirskaya 2002], (7-2) holds. The moral is that (7-2) holds some, but not all, of the time for ergodic
Jacobi matrices.

2. Here is an interesting example that provides a deterministic problem where one has strong clock
behavior but with a density of zeros, �1, which is not �e. Let d� be a measure on Œ�2; 2� of the form
(N is a normalization constant)

d�.x/D
1

N

�
�Œ�1;1�.x/ dxC

1X
nD1

e�n
2

ıxn

�
; (7-4)

where fxng is a dense subset of Œ�2; 2� n .�1; 1/. Then, as in [Simon 2007, Example 5.8], �1 exists
and is the equilibrium measure for Œ�1; 1� (not eD Œ�2; 2�). Moreover, the method of [Lubinsky 2009]
shows that for x 2 .�1; 1/,

1

nC 1
Kn.x; x/!

�1.x/

N�1
: (7-5)

Using either the method of this paper (that is, of [Lubinsky 2008b]) or the method of [Lubinsky 2009],
one proves universality with �1.

3. Simon [2007, Example 5.8] provides a measure with �ess.�/D Œ�2; 2� but †ac D Œ�2; 0� and where
�n has multiple weak limits, including the equilibrium measures for Œ�2; 0� and for Œ�2; 2�. By general
principles [Stahl and Totik 1992], the set of limits is connected, so uncountable. One would like to prove
that quasiclock behavior nevertheless holds for the a.c. spectrum of this model as this will provide a key
test for the conjecture that quasiclock behavior always holds on †ac.

4. What has sometimes been called the Schrödinger conjecture [Maslov et al. 1993] says that for any
Jacobi matrix and a.e.x 2†ac.�/, we have a solution, un, with

0 < inf
n
junj � sup

n
junj<1 (7-6)

and u�1 D 0. Invariance of †ac under rank one perturbations then proves that for a.e.x 2 †ac.�/, the
transfer matrix is bounded. Thus, Theorem 3 in the strong form would always be applicable.

5. While (6-15) is harmless since it only eliminates at most one x, one can ask if (6-16) holds even if
(6-15) fails. Using periodic problems, it is easy to construct ergodic cases where arguCn D ��n=2, so
(6-25) provides no information on I.!/. Nevertheless, in these cases, one can show R.!/D I.!/D 0.
We have not been able to find an example where for a set of positive measure !’s, s2n.!/ D n� ,
s2nC1.!/ D n� C ' with ' some fixed point in .0; �/ n f�=2g. In that case, it might happen that
R.!/¤ 0, I.!/¤ 0. So it remains open if we need to exclude the x with (6-15).

6. While we could use soft methods in Section 3, at one point in our research we used an explicit formula
for the derivative of .1=n/Kn.x0Ca=n; x0Ca=n/ as a function of a that may be useful in other contexts,
so we want to mention it. We start with a variation of parameters formula (discussed, for example, in
[Jitomirskaya and Last 1999; Killip et al. 2003]) that says that, in terms of the second kind polynomials
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of (1-38),

pn.x/�pn.x0/D .x� x0/

n�1X
mD0

.pn.x0/qm.x0/�pm.x0/qn.x0//pm.x/; (7-7)

which implies

p0n.x0/D

n�1X
mD0

.pn.x0/qm.x0/�pm.x0/qn.x0//pm.x0/: (7-8)

Since
d

da

1

n
Kn

�
x0C

a

n
; x0C

a

n

�ˇ̌̌̌
aD0

D
1

n2

nX
jD0

2p0j .x0/pj .x0/; (7-9)

this leads to

d

da

1

n
Kn

�
x0C

a

n
; x0C

a

n

�ˇ̌̌̌
aD0

D
2

n2

nX
jD0

�
pj .x0/

2
� jX
kD0

pk.x0/qk.x0/
�
�qj .x0/pj .x0/

jX
kD0

pk.x0/
2

�
:

(7-10)
As noted in [Simon 2008a], if .1=n/

Pn
jD0 pj .x0/

2 and .1=n/
Pn
jD0 pj .x0/qj .x0/ have limits and

supnŒ.1=n/
Pn
jD0 qj .x0/

2� <1, then the right side of (7-10) goes to 0.
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László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu
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