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Abstract. Let e be a homogeneous subset of R in the sense of Carleson. Let

µ be a finite positive measure on R and Hµ(x) its Hilbert transform. We prove that
if limt→∞ t|e∩{x | |Hµ(x)| > t}| = 0, then µs(e) = 0, where µs is the singular part

of µ.

1 Introduction

This is a paper about the Hilbert transform of a measure defined as follows. The

Stieltjes transform (also called Borel transform or Markov function) of a finite

(positive) measure µ is defined on C+ = {z | Im z > 0} by

(1.1) Fµ(z) =

∫

dµ(x)

x − z
.

For Lebesgue a.e. x ∈ R,

(1.2) Fµ(x + i0) = lim
ε↓0

Fµ(x + iε)

exists. The Hilbert transform is given by

(1.3) Hµ(x) =
1

π
Re Fµ(x + i0).

A result of Loomis [8] is that for a universal constant C (‖µ‖ ≡ µ(R)),

(1.4) |{x : |Hµ(x)| ≥ t}| ≤
C‖µ‖

t
.

This was earlier proven for the a.c. case by Kolmogorov (attributed by Zygmund

[16]). For finite point measures, Boole [1] proved (and Loomis rediscovered)

(1.5) |{x : ±Hµ(x) ≥ t}| =
‖µ‖

πt
.
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We note that (1.5) was extended by Hruščëv–Vinogradov [7] to all singular mea-

sures; see also [5, 10].

Remark. We do not need an explicit value of C in (1.4). Davis [3, 4] has

shown the optimal constant in (1.4) is C = 1.

In distinction, for a.c. measures dµ = f dx, we have

(1.6) lim
t→∞

t|{x : |Hf dx(x)| ≥ t}| = 0.

This follows from the facts that if f ∈ L2, then Hf dx ∈ L2 (indeed, ‖Hf dx‖2 = ‖f‖2),

that L2 ∩ L1 is dense in L1, that (1.6) is trivial if Hf dx is L2, and that for any

θ ∈ [0, 1],

|{x : |f (x) + g(x)| > t}|

≤ |{x : |f (x)| > θt}| + |{x : |g(x)| > (1 − θ)t}|.
(1.7)

From (1.5), (1.6), and (1.7), one sees that

(1.8) lim
t→+∞

πt|{x : ±Hµ(x) ≥ t}| = ‖µs‖,

where

(1.9) dµ = f dx + dµs

is the Lebesgue decomposition of µ (i.e., µs is singular).

In fact, a more general statement holds: for any finite complex measure µ, the

measures
1
2
πtχ{x: |Hµ(x)|≥t} dx

converge in the ∗-weak topology to the measure |dµs|; see (5.4) or [10].

One can rephrase this. We recall that weak-L1 is defined by (this is not a norm!)

setting

(1.10) ‖f‖1,w ≡ sup
t

t|{x : |f (x)| ≥ t}|

and

(1.11) L1
w = {f : ‖f‖1,w < ∞},

so (1.4) says Hµ ∈ L1
w. We also define

(1.12) L1
w;0 =

{

f ∈ L1
w : lim

t→∞
t|{x : |f (x)| ≥ t}| = 0

}

.
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Then (1.8) implies that

(1.13) Hµ ∈ L1
w;0 ⇔ µs(R) = 0.

Our main goal is to provide a local version of this theorem for special sets

singled out by Carleson [2].

Definition. We say that a compact set e ⊂ R is homogeneous (with homo-

geneity constant δ) if there is δ > 0 such that for all x ∈ e and 0 < a < diam(e),

(1.14) |e ∩ (x − a, x + a)| ≥ 2δa.

Given a function f , we use f ↾ e to denote the function fχe with χe the charac-

teristic function of e. The purpose of this paper is to prove

Theorem 1.1. Let e be homogeneous and let µ be a measure on R such that

Hµ ↾ e ∈ L1
w;0. Then

(1.15) µs(e) = 0.

Remarks. 1. There is an analog for measures on ∂D = {z ∈ C : |z| = 1}.

2. The Hilbert transform can be defined if µ, rather than being finite, satisfies
∫

(1 + |x|)−1 dµ < ∞. Indeed, Hµ can be defined up to an additive constant if
∫

(1 + |x|2)−1 dµ(x) < ∞. Theorem 1.1 extends to both these cases.

3. It follows from the arguments in Section 2 that a converse to Theorem 1.1

holds and that Hµ ↾ e ∈ L1
w;0 if and only if Hµ↾e ∈ L1

w;0. Thus, we have a three-fold

equivalence,

(1.16) Hµ ↾ e ∈ L1
w;0 ⇔ Hµ↾e ∈ L1

w;0 ⇔ µs(e) = 0.

There is a special case that is both important and one motivation for this work.

Recall from [9] the following

Definition. A finite measure µ on R is called reflectionless on e ⊂ R, where

e is compact and of strictly positive Lebesgue measure, if and only if Hµ ↾ e = 0.

There has been an explosion of recent interest about reflectionless measures

due to work of Remling [12]. Clearly, the zero function lies in L1
w;0, so we have

Corollary 1.2. Let e be homogeneous, and let µ be a measure on R which is

reflectionless on e. Then (1.15) holds.

This result is not new. For cases where supp(µ) ⊂ e, it is due to Sodin–

Yuditskii [15], with some extensions due to Gesztesy–Zinchenko [6]. Recently,
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Poltoratski–Remling [11] have proven a stronger result than Corollary 1.2—

instead of requiring that e be homogeneous, they only need that for all x0 ∈ e,

(1.17) lim sup
a↓0

|e ∩ (x0 − a, x0 + a)|

2a
> 0.

If (1.17) holds for all x0 ∈ e, we call e weakly homogeneous, following [11].

The property of being reflectionless is not robust in that changing µ off e usu-

ally destroys the reflectionless property. As we see in Section 2, having Hµ ↾ e in

L1
w;0 is robust and explains one reason we sought this result.

Our proof is quite different from [11]. We note, however, that our proof, like

the one in [11], is essentially a real variable proof (we go into the complex plane

but use no contour integrals), while the earlier work of [15, 6] is a complex variable

argument.

We mention that Corollary 1.2 (and so Theorem 1.1) does not hold for arbitrary

e. Nazarov–Volberg–Yuditskii [9] have examples of reflectionless measures on

their supports where (1.17) fails and that have a singular component.

We mention another special case of Theorem 1.1.

Corollary 1.3. Let e be a homogeneous set in R. Let µ be a measure on R

such that there is a set A satisfying

(i) |A| = 0,

(ii) µ(R \ A) = 0,

(iii) A is closed and A ⊂ e.

Suppose Hµ ↾ e ∈ L1
w;0. Then µ = 0.

We need a strengthening of this special case.

Theorem 1.4. Let e be a homogeneous set in R. There is a constant C1

depending only on e such that for any measure µ obeying (i)–(iii) of Corollary 1.3,

we have

(1.18) µ(e) ≤ C1 lim inf
t→∞

t|{x ∈ e : |Hµ(x)| ≥ t}|.

Remarks. 1. In fact, C1 is only δ-dependent; explicitly, one can take

(1.19) C1 =
1536π3

δ2
.

We have made no attempt to optimize this constant and, indeed, have made choices

to simplify the arithmetic. The δ−2 may be optimal; it certainly seems that δ−1 is

not possible.

2. There is also a strengthening of Theorem 1.1 of this same form.
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We can say more about weakly homogeneous sets, that is, ones that obey

(1.17), and thereby illuminate and limit Theorem 1.1.

Theorem 1.5. Let e be a compact weakly homogeneous set and µ a measure

on R such that Hµ ↾ e ∈ L1
w;0. Then for all x0 ∈ e,

(1.20) µ({x0}) = 0,

that is, µ has no pure point masses in e.

Theorem 1.6. There exists a weakly homogeneous set e containing the clas-

sical Cantor set, such that if µ is the conventional Cantor measure, Hµ ↾ e ∈ L1
w;0.

In particular, Theorem 1.1 does not extend to weakly homogeneous sets.

While the gap between homogeneous and weakly homogeneous sets is not

large, we can extend Theorem 1.1 to partly fill it in. We call a set e non-

uniformly homogeneous if it is closed and

(1.21) lim inf
a↓0

(2a)−1|e ∩ (x − a, x + a)| > 0

for all x ∈ e.

Theorem 1.7. Let e be non-uniformly homogeneous and let µ be a measure

on R such that Hµ ↾ e ∈ L1
w;0. Then

(1.22) µs(e) = 0.

In fact, we obtains this from a stronger result. We emphasize that in the next

theorem, e is not assumed closed.

Theorem 1.8. Let e be a Borel set in R and µ a finite measure such that

Hµ ↾ e ∈L1
w;0. Then

(1.23) µs

(

{x ∈ e : lim inf
a↓0

(2a)−1|e ∩ (x − a, x + a)| > 0}
)

= 0.

This is to be compared with the result of Poltoratski–Remling [11] that if e is

Borel and Hµ ↾ e = 0, then

(1.24) µs

(

{x ∈ e : lim sup
a↓0

(2a)−1|e ∩ (x − a, x + a)| > 0}
)

= 0,

and the statement (which follows from our proof of Theorem 1.5) that if µpp is the

pure point part of µ, then if Hµ ↾ e ∈ L1
w;0,

µpp

(

{x ∈ e : lim sup
a↓0

(2a)−1|e ∩ (x − a, x + a)| > 0}
)

= 0.
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Moreover, we note that the example in Theorem 1.6 shows that in Theorem 1.8,

we cannot replace (1.23) by (1.24).

In Section 2, we reduce the proof of Theorem 1.1 to proving Theorem 1.4. In

Section 3, we prove Theorem 1.4. In proving Theorem 1.4, we first show that if

[a, b] is an interval on which |Fµ(x+ i0)| ≥ t, then |Fµ(x+ i(b−a))| ≥ t/8π2. Then

we use this to prove that on most of [a− (b−a), a] and [b, b + (b−a)], |Fµ(x + i0)|

is a significant fraction of t, which is the key to the proof. In Section 4, we prove

Theorems 1.5 and 1.6. In Section 5, we prove Theorem 1.8, and so Theorem 1.7.

Acknowledgement. We thank Jonathan Breuer and Yoram Last for useful

discussions.

2 Reduction to Theorem 1.4

In this section, we show that Theorem 1.4 implies Theorem 1.1.

Proposition 2.1. Let µ have the form (1.9). Then for any set e ⊂ R,

(2.1) Hµ ↾ e ∈ L1
w;0 ⇔ Hµs

↾ e ∈ L1
w;0.

In particular, we need only prove Theorem 1.1 for purely singular measures to get

it for all measures.

Remark. This shows the advantage of working with L1
w;0. Purely singu-

lar measures are never reflectionless (for |{x : Fµ(x + i0) = 0}| = 0 and thus,

Im Fµ(x + i0) > 0 a.e. on e if Hµ ↾ e = 0).

Proof. By (1.7) with θ= 1
2
,L1

w;0 is a vector space. SinceHµ−Hµs
=Hf dµ ∈L1

w;0,

by (1.6), we get (2.1) immediately. �

Proposition 2.2. Let e be a closed set. Let µ be a measure with µ(e) = 0.

Then

(2.2) Hµ ↾ e ∈ L1
w;0.

Proof. Let µm = µ ↾ {x : dist(x, e) ≥ m−1}. Then for x ∈ e,

(2.3) Hµm
(x) =

1

π

∫

dµm(y)

y − x
,

so

(2.4) ‖Hµm
↾ e‖∞ ≤

m

π
‖µm‖;
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hence Hµm
∈ L1

w;0.

By (1.7) with θ = 1
2
, for any m,

lim sup
t→∞

t|{x ∈ e : |Hµ(x)| ≥ t}| ≤ 2 lim sup
t→∞

t|{x ∈ e : |Hµ−µm
(x)| ≥ t}|

≤ 2C‖µ − µm‖,(2.5)

where C is the constant in (1.4).

Since (2.5) holds for all m and ‖µ − µm‖ → 0 (since µ(e) = 0), we conclude

Hµ ↾ e ∈ L1
w;0. �

Proposition 2.3. Let e be a closed set. Let ν = µ ↾ e, that is, ν(A) = µ(e ∩ A).

Then

(2.6) Hν ↾ e ∈ L1
w;0 ⇔ Hµ ↾ e ∈ L1

w;0.

In particular, it suffices to prove Theorem 1.1 for purely singular measures sup-

ported on e.

Proof. Let η = µ − ν. By Proposition 2.2,

(2.7) Hµ ↾ e − Hν ↾ e = Hη ↾ e ∈ L1
w;0.

Since L1
w;0 is a vector space, (2.7) implies (2.6). �

Proof of Theorem 1.1 given Theorem 1.4. By Proposition 2.3, we can

suppose µ is purely singular and supported by e. Thus, there exists A∞ ⊂ e with

|A∞| = 0, so µ(R \ A∞) = 0.

By regularity of measures, we can find An ⊂ An+1 ⊂ · · · ⊂ A∞ with each An

closed, and so

(2.8) µ(A∞ \ An) → 0.

Define µn = µ ↾ An and νn = µ − µn. By (1.7) with θ = 1
2
, Hµ ↾ e ∈ L1

w;0, and

(1.4),

lim sup
t→∞

t|{x ∈ e : |Hµn
(x)| ≥ t}| ≤ 2 lim sup

t→∞

t|{x ∈ e : |Hνn
(x)| ≥ t}|

≤ 2Cµ(A∞ \ An).(2.9)

Now An satisfies (i)–(iii) for µn, so by (1.18),

(2.10) µ(An) = µn(e) ≤ 2CC1µ(A∞ \ An).

As n → ∞, µ(An) → µs(e) while, by (2.8), µ(A∞ \ An) → 0. So µs(e) = 0. �



254 A. POLTORATSKI, B. SIMON AND M. ZINCHENKO

3 Proof of Theorem 1.4

Throughout this section, where we prove Theorem 1.4 and so complete the proof

of Theorem 1.1, we suppose e is homogeneous with homogeneity constant δ, and

µ is a measure for which there exists A ⊂ e satisfying covditions (i)–(iii) of Corol-

lary 1.3. In particular, since µ is singular, for a.e. x ∈ R,

(3.1) Fµ(x + i0) = πHµ(x).

We consider Fµ throughout.

The key is to prove that for all large t,

(3.2)
∣

∣

∣

{

x ∈ e : |Fµ(x + i0)| >
δ

128π2
t
}∣

∣

∣ ≥
δ

24
|{x : |Fµ(x + i0)| > t}|.

We do this by showing that if I is an interval in R\A where |Fµ(x+ i0)| > t, then at

most points of the two touching intervals of the same size, |Fµ| ≥ δt/128π2. We do

this in two steps. We show that at points over I with Im z = |I|, F(z) is comparable

to t and use that to control F on the touching intervals. A Vitali covering map

argument then boosts that up to the full sets. We need

Proposition 3.1. Let

(3.3) I = [c − a, c + a]

be an interval contained in

(3.4) {x : |Fµ(x + i0)| ≥ t}.

Then

(3.5) |Fµ(c + a + 2ia)| ≥
t

8π2
.

Proof. Fµ lies in weak L1 and is bounded off a compact subset of R. For

z ∈ C+, let

(3.6) G(z) =
√

Fµ(z)/i.

Then G has locally L1 boundary values on R and is bounded off a compact set, so

if z = x + iy,

(3.7) G(z) =
1

π

∫

yG(λ + i0) dλ

(x − λ)2 + y2
.
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Now arg(G) ∈ [−π
4
, π

4
], so on R,

(3.8) Re G(λ + i0) ≥ 0.

On I, arg(G) = ±π
4

, and so for λ ∈ I,

(3.9) Re G(λ + i0) ≥
√

t/2.

Thus, by (3.7), (3.8) and (3.9),

Re G(c + a + 2ia) ≥
1

π

∫

I

2a Re G(λ + i0)

(c + a − λ)2 + (2a)2
dλ

≥
1

π

(2a)2
√

t/2

(2a)2 + (2a)2
≥

1

2π

√

t/2,(3.10)

so

(3.11) |Fµ(c + a + 2ia)| ≥ (Re G(c + a + 2ia))2 ≥
t

8π2
.

�

Lemma 3.2. Fix t0 > 0 and let

(3.12) Ft0(z) =
F(z)

1 + 1
t0

F(z)
.

Then Im Ft0 > 0 on C+, and

(3.13) {x : |F(x + i0)| > t0} = {x : Ft0(x + i0) > t0/2}.

Remark. Ft0 is the Stieltjes transform of a measure associated with a rank

one perturbation (see, e.g., [14, Sect. 11.2]), but that plays no direct role here.

Proof. The invertible map

(3.14) H(z) =
z

1 + z/t0

maps C+ to C+ and (t0,∞) ∪ {∞} ∪ (−∞,−t0) to ( t0
2
,∞). �

For any x > 0, define

(3.15) Ŵs = {x : |F(x + i0)| > s}.

Proposition 3.3. Fix t > 0 and let

(3.16) t0 =
δ

128π2
t.
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Suppose

(3.17) I = [c − a, c + a] ⊆ Ŵt,

and let

(3.18) Ĩ = [c + a, c + 3a]

be the touching interval of the same size as I. Then

(3.19) |Ĩ \ Ŵt0 | ≤ aδ =
δ

2
|I|.

Proof. By the lemma for x real,

(3.20) χŴt0
(x) = 1 −

1

π
arg(Ft0(x + i0) − t0/2),

which is the boundary value of a bounded harmonic function.

Let

(3.21) z0 = c + a + 2ia.

Then

arg

(

Ft0(z0) −
t0

2

)

= arg

(

F(z0) − t0/2 − F(z0)/2

1 + 1
t0

F(z0)

)

= arg

(

F(z0)/t0 − 1

F(z0)/t0 + 1

)

= arg

(

1 −
2

F(z0)/t0 + 1

)

.(3.22)

By Proposition 3.1,

(3.23)

∣

∣

∣

∣

F(z0)

t0

∣

∣

∣

∣

≥
t

8π2t0
=

16

δ
≥ 16

since δ ≤ 1. Thus,

(3.24)

∣

∣

∣

∣

2

F(z0)/t0 + 1

∣

∣

∣

∣

≤
2

|F(z0)/t0| − 1
≤

2

15
< 1.

If |w| ≤ 1 for w ∈ C, then

(3.25) arg(1 + w) ≤ arcsin(|w|) ≤
π

2
|w|

(sin(y) ≥ (2y)/π for y ∈ [0, π/2] implies for x ∈ [0, 1], arcsin x ≤ π
2
x). By (3.22),

(3.26) arg

(

Ft0(z0) −
t0

2

)

≤
8π3t0

t − 8π2t0
.
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Thus, if χŴt0
(z) is the harmonic function whose boundary value is χŴt0

(x), we

find, by (3.20), that

(3.27) π(1 − χŴt0
(z0)) ≤

8π3t0

t − 8π2t0
.

By a Poisson formula with z0 = x0 + iy0 as in (3.21),

π(1 − χŴt0
(z0)) =

∫

R\Ŵt0

y0 dλ

(λ − x0)2 + y2
0

(3.28)

≥
1

2

|Ĩ \ Ŵt0 |

|I|
,(3.29)

since on Ĩ, the minimum of y0/((λ − x0)2 + y2
0) is 1/(2|I|).

Thus, by (3.27) and (3.29),

(3.30) |Ĩ \ Ŵt0 | ≤
16π3t0

t − 8π2t0
|I|.

Since 8π2t0
t

≤ 1
16

,

16π3t0
t

1 − 8π2t0
t

≤
256π3t0

15 t
=

4π

15

δ

2
≤

δ

2
,

and (3.30) implies (3.19). �

Proposition 3.4. Under the notation of Proposition 3.3, let

(3.31) I♯ = [c − 3a, c + 3a]

and suppose

(3.32) e ∩ I 6= ∅

and

(3.33) a ≤ diam(e).

Then

(3.34) |Ŵt0 ∩ e ∩ I♯| ≥
δ

2
|I|.

Proof. Pick x0 ∈ e ∩ I. Suppose x0 ≥ c. If not, we pick Ĩ to be the third of I♯

below I instead of the choice here. By homogeneity,

(3.35) |e ∩ (x0 − a, x0 + a)| ≥ 2aδ = δ|I|
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and the intersection lies in I ∪ Ĩ. Thus,

(3.36) |Ŵt0 ∩ e ∩ I♯| ≥ |e ∩ (x0 − a, x0 + a)| − |(I ∪ Ĩ) \ Ŵt0 |.

Since I ⊂ Ŵt ⊂ Ŵt0 ,

(3.37) |(I ∪ Ĩ) \ Ŵt0| = |Ĩ \ Ŵt0 | ≤
δ

2
|I|

by (3.19); (3.35) and (3.36) imply (3.34). �

Proof of Theorem 1.4. Suppose µ 6= 0. On R \ A, Fµ(x + i0) is continuous

and real, so {x : |Fµ(x + i0)| > t} is open, and hence a countable union of maximal

disjoint open intervals.

Let I = [c − a, c + a] be the closure of any such interval. On R \ A, Fµ(x) has

(3.38) F′
µ(x) =

∫

dµ(x)

(y − x)2
> 0.

If Fµ > t on I, c + a must be in A or else Fµ(c + a) < ∞ and Fµ(c + a + ε) ∈ Ŵt

for ε small (so I is not maximal). Similarly, if Fµ < −t on I, c − a ∈ A. Thus,

I ∩ A 6= ∅, so I ∩ e 6= ∅.

Let

(3.39) T =
πC‖µ‖

diam(e)
,

where C is the constant in (1.4). Then for t > T , |Ŵt| ≤ diam(e), so a ≤ diam(e).

Thus, by Proposition 3.4,

(3.40) |Ŵt0 ∩ e ∩ I♯| ≥
δ

2
|I|.

Clearly, the I’s and so the (I♯)int’s are an open cover of Ŵt\A. Thus, by the Vitali

covering theorem (see Rudin [13, Lemma 7.3]), we can find a subset of mutually

disjoint I♯’s (call them {I
♯
j }) such that

(3.41) |Ŵt| ≤ 4
∑

j

|I
♯
j | ≤ 12

∑

j

|Ij|.

By the disjointness, with t0 given by (3.16),

|Ŵt0 ∩ e| ≥
∑

j

|I
♯
j ∩ Ŵt0 ∩ e|

≥
δ

2

∑

j

|Ij| (by (3.34))
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≥
δ

24
|Ŵt| (by (3.41)).

Thus,

lim inf
t→∞

t0|Ŵt0 ∩ e| ≥ lim inf
t→∞

δ

24

δ

128π2
t|Ŵt|.

Therefore, by (1.8) and (3.1),

lim inf
t→∞

t|{x ∈ e : |Hµ(x)| > t}| ≥
δ2

3072π2

2(µ(A))

π
,

which is (1.18)/(1.19). �

4 Weakly homogeneous sets

Proof of Theorem 1.5. For x0 ∈ e and ε > 0, write

(4.1) µ = µ1 + µ2 + µ3

with µ1 = µ ↾ {x0}, µ2 = µ ↾ [(x0 − ε, x0 + ε) \ {x0}], µ3 = µ ↾ R \ (x0 − ε, x0 + ε);

and by (1.7), note that

|{x ∈ e; |x − x0| < ε
2

: |Hµ1
(x)| > 3t}|

≤|{x ∈ e : |Hµ(x)| > t}| + |{x : |Hµ2
(x)| > t}|

+ |{x; |x − x0| < ε
2

: |Hµ3
(x)| > t}|.

(4.2)

By hypothesis, the first term on the right of (4.2) is o(1/t). Since |Hµ3
(x)| ≤

2/ε, the third term is o(1/t). By (1.4), the second term is bounded by

Cµ((x0 − ε, x0 + ε) \ {x0})/t.

So long as t > 2µ({x0})

3πε
, the left side of (4.2) is |e ∩ (x0 −

2µ({x0})

3πt
, x0 +

2µ({x0})

3πt
)|.

Thus, if

(4.3) C(x0) = lim sup
s↓0

(2s)−1|e ∩ (x0 − s, x0 + s)|,

(4.2) implies that

(4.4)
4C(x0)µ({x0})

3π
≤ Cµ((x0 − ε, x0 + ε) \ {x0})

for any ε. Since ∩[(x0 − 1
m
, x0 + 1

m
) \ {x0}] = ∅, the right side of (4.4) goes to zero

as ε ↓ 0, and we conclude that µ({x0}) = 0. �
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To prove Theorem 1.6, we need to describe some sets connected with the Can-

tor set. Let K1 be the two connected closed sets K1,1, K1,2 obtained from [0, 1] by

removing the middle third. At level n, we have 2n intervals {Kn,j}
2n

j=1, each with

|Kn,j| = 3−n so |Kn| = ( 2
3
)n. The Cantor set, of course, is K∞ = ∩Kn. The Cantor

measure is determined by

(4.5) µ(Kn,j) =
1

2n
.

We order I = {(n, j) : n = 1, 2, . . . , j = 1, 2, . . . , 2n} with lexigraphic order and

use (n, j + 1) for the obvious pair if j < 2n and to be (n + 1, 1) if j = 2n. Similarly,

(n, j − 1) is (n − 1, 2n−1) if j = 1.

Let E1 be the middle closed third of [0, 1] \ K1, so |E1| = 1/9. Let E2 be the

two middle thirds of the two gaps in K1 \ K2; Em has 2m−1 closed intervals of size

1/3m+1. There is a unique affine order preserving map of [0, 1] to Kn,j. Let En,j,m be

the image of Em under this map, so En,j,m has 2m−1 intervals, each of size 1/3n+m+1,

that is,

(4.6) |En,j,m| = 2m−1/3n+m+1.

We want to pick a positive integer m(n, j) for each (n, j) ∈ I so that

(4.7) m(n, j + 1) > m(n, j),

and we define

(4.8) k(n, j) = n + m(n, j).

Given such a choice, we define

(4.9) e = K∞ ∪
⋃

n,j∈I

En,j,m(n,j).

Our goal will be to prove e is always weakly homogeneous, and that if m(n, j)

grows fast enough, then Hµ ↾ e is in L1
w;0.

Lemma 4.1. For any choice of m(n, j), e is weakly homogeneous. Indeed, for

any x0 ∈ e,

(4.10) lim sup
δ↓0

(2δ)−1|e ∩ (x0 − δ, x0 + δ)| ≥ 1/10.

Proof. Let

(4.11) Ẽn,j = En,j,m(n,j).
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If x0 ∈ Ẽn,j, which is a closed interval, for all small δ, (2δ)−1|Ẽn,j∩(x0−δ, x0 +δ)| =
1
2

or 1, depending on whether x0 is a boundary or an interior point. So (4.10) is

certainly true.

Thus, we need only consider x0 ∈ K∞. Fix x0 ∈ K∞. For each n, x0 ∈ Kn,

and so in Kn,jn for some jn. Let kn ≡ k(n, jn). On level kn, x0 is contained in some

interval Kkn,ℓ of size 3−kn , and on one side or the other there is an interval of size

3−kn−1 in Ẽn,jn in a touching gap. Let

(4.12) δn =
5

3
3−kn .

Then (x0 − δn, x0 + δn) contains this interval in Ẽn,jn . Thus,

(4.13) (2δn)−1|e ∩ (x0 − δn, x0 + δn)| ≥
3−kn−1

2δn

=
1

10
.

Since δn → 0 as n → ∞, (4.10) holds. �

For each (n, j), we wish to define

(4.14) µn,j = µ ↾ Kn,j ∪ Kn,j−1, µ̃n,j = µ − µn,j,

that is, single out the part of the Cantor measure near Kn,j, and so near En,j. We

define

(4.15) Fn,j = Fµn,j
, F̃n,j = Fµ̃n,j

.

Lemma 4.2. On
⋃

(ñ,j̃)≤(n,j) Ẽñ,j̃, we have

(4.16) |F̃n,j| ≤ 3k(n,j−1).

Proof. Since ‖µ̃n,j‖ ≤ 1, we have

(4.17) |F̃n,j(x)| ≤ dist(x, K∞ \ Kn,j−1 ∪ Kn,j))
−1.

By construction,

(4.18) dist(Ẽñ,j̃, K∞) = 3−k(ñ,j̃)−1,

so if (ñ, j̃) < (n, j − 1), then for x ∈ Ẽñ,j̃,

(4.19) |F̃n,j(x)| ≤ 3k(ñ,j̃)+1 ≤ 3k(n,j−1),

since m(ñ, j̃) + 1 < m(n, j − 1) implies k(ñ, j̃) + 1 ≤ k(n, j − 1).

On the other hand, since we have removed Kn,j−1 ∪ Kn,j,

(4.20) dist(Ẽn,j ∪ Ẽn,j−1, K∞ \ (Kn,j ∪ Kn,j−1)) ≥ 3−n.
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Thus, for x in Ẽn,j ∪ Ẽn,j−1, we have

(4.21) |F̃n,j(x)| ≤ 3n ≤ 3k(n,j−1),

proving (4.16) on the claimed set. �

Proof of Theorem 1.6. We construct e by using the above construction

where m(n, j) is picked inductively, so that

(4.22) k(n, j + 1) = 3k(n, j).

By Lemma 4.1, e is weakly homogeneous.

Let

(4.23) 3k(n,j−1) < t ≤ 3k(n,j).

Since Fµ = Fn,j + F̃n,j, by (1.7),

2t|{x ∈ e : |Fµ(x)| ≥ 2t}| ≤2t|{x : |Fn,j(x)| ≥ t}|

+ 2t|{x ∈ e : |F̃n,j(x)| ≥ t}|.
(4.24)

By Boole’s equality (1.5), the first term on the right side of (4.24) is bounded

by

(4.25) 4(µn,j−1(R) + µn,j(R)) ≤ 4[2−n + 2 · 2−n] = 12 · 2−n

(where we need the 2 · 2−n if j = 1).

By Lemma 4.2, the second term is bounded by

(4.26) 2 · 3k(n,j)
∑

(ñ,j̃)≥(n,j+1)

|Eñ,j̃|.

By (4.6),

(4.27) |Ẽn,j| =
1

2n+1 3

(

2

3

)k(n,j)

,

therefore, since

∞
∑

ℓ=ℓ0

(

2

3

)ℓ

= 3

(

2

3

)ℓ0

,(4.28)

(4.26) ≤ 3k(n,j) 2−n

(

2

3

)k(n,j+1)

.(4.29)

By (4.22) and ( 3
2
)3 = 27

8
> 3, we see that

(4.30) (4.26) ≤ 2−n.
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Thus, if t obeys (4.23), then by (4.24), (4.25), and (4.30),

(4.31) 2t|{x ∈ e : |Fµ(x)| ≥ t}| ≤ 13 · 2−n.

Since n → ∞ as t → ∞, we see that Fµ ↾ e ∈ L1
w;0. �

5 Non-uniformly homogeneous sets

Our goal in this section is to prove Theorem 1.8 and then also Theorem 1.7. For

any Borel set e, define

(5.1) en =

{

x ∈ e : ∀ a <
1

n
, |(x − a, x + a) ∩ e| ≥

2a

n

}

.

Proposition 5.1. Letµbe a measure with µ(R\en) =0. SupposeHµ ↾ e∈L1
w;0.

Then µs = 0.

Proof. First note that en is closed, for if xm → x and |(xm −a, xm +a)∩e| ≥ 2a
n

,

then for all m,

(5.2) |(x − a, x + a) ∩ e| ≥
2a

n
− 2|x − xm|,

so x ∈ en. Applying Theorem 1.1 to dµ and compact homogeneous sets

en ∩ [−N, N] for all N ≥ 1, we get the result. �

Because e is not closed, we cannot use Propositions 2.2 and 2.3 to restrict to

em. Instead we need

Proposition 5.2. Let µ and ν be two measures on R whose singular parts are

mutually singular. Then for all c > 0,

(5.3) t|{x : |Hµ(x)| ≥ t} ∩ {x : |Hν(x)| ≥ ct}| → 0

as t → ∞.

Remark. This result is essentially in Poltoratski [10] (see the last set out for-

mula in the proof of Theorem 2 in that paper), so we only sketch the proof.

Sketch. Suppose first that c = 1. We begin with what is essentially Theo-

rem 1 of [10], that for any positive measure µ, as t → ∞,

(5.4) 1
2
πtχ{x:|Hµ(x)|≥t} dx

w
−→ dµs
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in the weak-∗ topology. By (1.6) and (1.7), it suffices to prove this for µ = µs. In

that case, if µ(α) is the measure with Stieltjes transform,

(5.5) Fα(z) =
F(z)

1 + αF(z)
,

then ([5, 10])
∫ (πt)−1

−(πt)−1

(dµα(x)) dα = χ{x:|Hµ(x)|≥t} dx,

so (5.4) follows from dµα

w
→ dµ as |α| → 0.

By (1.8), if µ(t) is the measure on the left side of (5.4), then

(5.6) ‖µ(t)‖ → ‖µs‖.

By (5.4),

(5.7) µ(t) − ν(t) w
−→ µs − νs,

so

(5.8) lim inf ‖µ(t) − ν(t)‖ ≥ ‖µs − νs‖ = ‖µs‖ + ‖νs‖

by the assumed mutual singularity.

But

(5.9) ‖µ(t) − ν(t)‖ = ‖µ(t)‖ + ‖ν(t)‖ − π(lhs of (5.3));

(5.6) and (5.8) then imply (5.3) for c = 1.

This implies the result for c ≥ 1 and then, by symmetry, for all c > 0. �

Proof of Theorem 1.8. For each n, define

(5.10) µn = µ ↾ en, νn = µ − µn.

By (1.7),

|{x ∈ e : |Hµn
(x)| ≥ 2t}| ≤ |{x ∈ e : |Hµ(x)| ≥ t}|

+ |{x : |Hµn
(x)| ≥ 2t, |Hνn

(x)| ≥ t}|.
(5.11)

By the hypothesis, the first term on the right is o(1/t) and, by Proposition 5.2,

the second is o(1/t). Thus, Hµn
↾ e ∈ L1

w;0, and it follows from Proposition 5.1 that

(µn)s = 0, that is, µs(en) = 0.

Since
⋃

n

en =
{

x ∈ e : | lim inf
a↓0

(2a)−1|e ∩ (x − a, x + a)| > 0
}

,

we have (1.23). �
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