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Abstract: For full-line Jacobi matrices, Schrödinger operators, and CMV matrices, we
show that being reflectionless, in the sense of the well-known property of m-functions,
is equivalent to a lack of reflection in the dynamics in the sense that any state that goes
entirely to x = −∞ as t → −∞ goes entirely to x = ∞ as t → ∞. This allows us to
settle a conjecture of Deift and Simon from 1983 regarding ergodic Jacobi matrices.

1. Introduction

In this paper, we discuss dynamics and spectral theory of whole-line Jacobi matrices,
Schrödinger operators, and CMV matrices. In this introduction we focus on Jacobi
matrices, that is, doubly infinite matrices,

J =

⎛
⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

a−2 b−1 a−1
a−1 b0 a0

a0 b1 a1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

(1.1)

acting as operators on �2(Z). We suppose throughout that the Jacobi parameters,
{an, bn}∞n=−∞, are bounded.

We will sometimes need half-line Jacobi matrices given by
⎛
⎜⎜⎝

b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .
...

...
...

. . .

⎞
⎟⎟⎠. (1.2)
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We call {an, bn}∞n=1 the Jacobi parameters for a half-line matrix and {an, bn}∞n=−∞ the
Jacobi parameters for a whole-line matrix.

We will call J measure theoretically reflectionless on a Borel set e ⊂ R if and only
if for all n, the diagonal Green’s function,

Gnn(λ + i0) = lim
ε↓0

〈δn, (J − λ− iε)−1δn〉 (1.3)

is pure imaginary, that is,

Re Gnn(λ + i0) = 0 (1.4)

for Lebesgue a.e. λ ∈ e. Among the vast literature, we mention [6,8,9,11,12,16,20,
22,25–32,36,37,41–45]. The name “reflectionless” is usually used without “measure
theoretically” but we add this for reasons that will be clear shortly.

The notion first became commonly used in connection with solitons and has recently
become especially important because of Remling’s discovery [37] that right limits of
half-line Jacobi matrices are measure theoretically reflectionless on �ac, the essential
support of the a.c. component of the half-line Jacobi matrix. The name comes from the
fact that in the short-range case (i.e., |an −1|+|bn | → 0 sufficiently rapidly as |n| → ∞),
the condition is equivalent to the time-independent reflection coefficient being zero
on e.

There is a second notion of reflectionless operator depending on ideas of Davies–
Simon [7]. For each n ∈ Z, let χ+

n be the characteristic function of [n,∞) and χ−
n of

(−∞, n]. We define

H+
� =

{
ϕ ∈ Hac

∣∣ for all n, lim
t→−∞ ‖χ+

n e−i t Jϕ‖ = 0

}
, (1.5)

that is, states that, as t → −∞, are concentrated on the left. H−
� is the same with

limt→+∞, and H±
r are defined using χ−

n . Here Hac is the a.c. subspace for J . We let Pac

be the projection onto Hac, and let P±
�,r be the orthogonal projection onto H±

�,r , that is,

P±
� = s-lim

t→∓∞ eit Jχ−
0 e−i t J Pac(J ) P±

r = s-lim
t→∓∞ eit Jχ−

0 e−i t J Pac(J ). (1.6)

Davies–Simon prove (they treat the analog for Schrödinger operators, but the argu-
ment is identical):

Theorem 1.1 ([7]). We have (⊕ = orthogonal direct sum)

Hac = H+
� ⊕ H+

r (1.7)

= H−
� ⊕ H−

r . (1.8)

That is, any a.c. state is a sum of a state that moves entirely to the left as t → −∞ and
one that moves to the right.

We call J dynamically reflectionless on a Borel set e if and only if, for e1 ⊂ e,

Pe1 Pac = 0 ⇒ |e1| = 0 (1.9)

(here Pe1 is the spectral projection for J ) and

Pe[H+
� ] = Pe[H−

r ]. (1.10)
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Before stating our main theorem, we want to define a third notion of reflectionless
operator for reasons that will become clear momentarily. For any n ∈ Z, let J +

n be the
Jacobi matrix obtained from dropping the row and column with bn and keeping the lower
right piece, that is, J +

n is the one-sided Jacobi matrix with Jacobi parameters

b(n),+� = bn+�, a(n),+� = an+�. (1.11)

J−
n has parameters

b(n),−� = bn+1−�, a(n),−� = an−�. (1.12)

Thus, if an is replaced by 0, the whole-line Jacobi matrix J breaks into a direct sum of
J +

n and a matrix unitarily equivalent to J−
n after reordering the indices in inverse order.

For any half-line Jacobi matrix, J , we define its m-function by

m(z, J ) = 〈δ1, (J − z)−1δ1〉, (1.13)

and for a whole-line Jacobi matrix,

m±
n (z, J ) = m(z, J±

n ). (1.14)

These are related to the Green’s function (1.3) by

Gnn(z) = − 1

a2
nm+

n(z)− m−
n (z)−1

. (1.15)

We call a whole-line Jacobi matrix spectrally reflectionless on a Borel set e if for a.e.
λ ∈ e and all n,

a2
nm+

n(λ + i0)m−
n (λ + i0) = 1. (1.16)

By (1.15), (1.16) implies Re Gnn = 0, so

(1.16) for λ and n ⇒ (1.4) for λ and n,

and so

J is spectrally reflectionless on e ⇒,

J is measure theoretically reflectionless on e.
(1.17)

Moreover, as we will see below,

(1.16) for λ and one n ⇒ (1.16) for λ and all n. (1.18)

This set of ideas is rounded out by the following theorem:

Theorem 1.2 (Gesztesy–Krishna–Teschl [11]; Sodin–Yuditskii [45]). If (1.4) holds for
a.e. λ ∈ e and three consecutive values of n, then (1.16) holds for a.e. λ ∈ e and
all n.

In particular, in (1.17), ⇒ can be replaced by ⇔. However, this is not true for CMV
matrices [4].

Here is our main result:
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Theorem 1.3. For any whole-line Jacobi matrix J and Borel set e of positive Lebesgue
measure, J is spectrally reflectionless on e if and only if it is dynamically reflectionless
on e.

This verifies a 25-year old conjecture of Deift–Simon [9], namely

Corollary 1.4. The a.c. spectrum for two-sided ergodic Jacobi matrices is dynamically
reflectionless.

Proof. By Kotani theory [25,38], such operators are spectrally reflectionless on the a.c.
spectrum. 
�

This is a special case of a more general result that we will prove concerning reflection
probability. Let �(2)ac be the set of λ ∈ R, where J has multiplicity 2, so automatically
a.c. spectrum (see [21,23,24,39]). P±

�,r commute with J , so they take Ran(P
�
(2)
ac
(J )) to

itself. J restricted to Ran(P±
�,r P

�
(2)
ac
(J )) is of multiplicity 1. Thus,

R = P+
� P−

� P+
� � Ran(P+

� P
�
(2)
ac
(J )) (1.19)

is a scalar function of J , and so there is a function R(E) on �(2)ac so that

R = R(J ) � Ran(P+
� P

�
(2)
ac
(J )). (1.20)

As defined by Davies–Simon [7], R(λ) is the dynamic reflection probability, the proba-
bility that a state of energy λ that comes in from the left at very negative times goes out
on the left. There is a time-reversal symmetry, namely that one gets the same function,
R, with P−

� P+
� P−

� � Ran(P−
� ). Similarly, there is a left-right symmetry, so one gets the

same function with P+
r P−

r P+
r � Ran(P+

r ).
Define the spectral reflection probability by (see Theorem 2.4 below for why this is

a good definition)

∣∣∣∣∣
a2

0m+
0(λ + i0)m−

0 (λ− i0)− 1

a2
0m+

0(λ + i0)m−
0 (λ− i0)− 1

∣∣∣∣∣
2

. (1.21)

We will prove

Theorem 1.5. R(λ) is given by (1.21) on �(2)ac (J ).

Theorem 1.5 implies Theorem 1.3 since

R(J ) � e = 0 ⇔ P+
� Pe = P−

r Pe (1.22)

and

(1.21) = 0 ⇔ (1.16) holds. (1.23)

The various formulae involving m±
n are complicated, in part because the simple for-

mulae are given by Weyl solutions. It pays to rewrite them here since the rewriting is
critical to our proof.

We are interested in solutions of

an−1un−1 + bnun + anun+1 = zun . (1.24)



Spectral and Dynamical Reflection 535

For any z ∈ C+ = {z | Im z > 0}, there are solutions u±
n (z)which are �2 at ±∞, unique

up to a constant. We will normalize by

u±
0 = 1. (1.25)

By general principles (see, e.g., [46, Chap. 2], though our notation is slightly different
from his), for Lebesgue a.e. λ, u±

n (λ + iε) has a limit as ε ↓ 0, which we denote by
u±

n (λ + i0) which solves (1.24) at λ.
m± can be expressed in terms of u± by ([46])

m+
n(λ + i0) = − u+

n+1(λ + i0)

anu+
n(λ + i0)

, (1.26)

m−
n (λ + i0) = − u−

n (λ + i0)

anu−
n+1(λ + i0)

. (1.27)

The Green’s function, (1.3), which is symmetric, is given for n ≤ m by

Gnm(λ + i0) = u−
n (λ + i0)u+

m(λ + i0)

W (λ + i0)
, (1.28)

where

W (z) = an[u+
n+1(z)u

−
n (z)− u−

n+1(z)u
+
n(z)] (1.29)

is n-independent.
From these formulae, (1.15) is immediate. Moreover, with the normalization u±

n=0 =
1, we see that (1.16) is equivalent to u+

n=1(λ+ i0) = u−
n=1(λ + i0)which, by uniqueness

of solutions, implies

u+
n(λ + i0) = u−

n (λ + i0) (1.30)

for all n. This explains why (1.18) holds. It shows that

J is spectrally reflectionless for λ ∈ e ⇔ (1.30) for λ ∈ e. (1.31)

The key to our proof of Theorem 1.3 (and also Theorem 1.5) will be

Almost-Theorem 1.6. Ran(P+
� P

�
(2)
ac
) is spanned by {u+

n(λ + i0) | λ ∈ �
(2)
ac } and

Ran(P+
r P

�
(2)
ac
) by {u−

n (λ + i0) | λ ∈ �(2)ac }.
We call this an almost-theorem because we are, for now, vague about what we mean

by “span.” The u±
n are only continuum eigenfunctions, so by span we will mean suitable

integrals.
We can now understand why the almost-theorem will imply Theorem 1.3. By

time-reversal invariance,

P−
r = P+

r . (1.32)

Thus,

J is dynamically reflectionless for λ ∈ e ⇔ P+
r P

�
(2)
ac

= P+
� P

�
(2)
ac
, (1.33)

and the almost-theorem says the right side is the same as (1.30).
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For short-range perturbations of the free Jacobi matrix (bn ≡ 0, an ≡ 1), the
almost-theorem follows from suitable stationary phase/integration by parts ideas as
noted in Davies–Simon [7]. Such methods cannot work for general Jacobi matrices,
where�(2)ac might be a positive measure Cantor set. What we will see is by replacing the
limit

P+
� = s-lim

t→−∞ eit Jχ−
0 e−i t J Pac(J ) (1.34)

that Davies–Simon [7] use by an abelian limit, a simple calculation will yield the
almost-theorem.

Section 2 proves all the above results for Jacobi matrices. Section 3 discusses (con-
tinuum) Schrödinger operators, and Sect. 4 CMV matrices.

2. The Jacobi Case

In this section, we prove Almost-Theorem 1.6 and use it to prove Theorem 1.5, and
thereby Theorem 1.3. To make sense of Almost-Theorem 1.6, we need to begin with
an eigenfunction expansion. While this expansion can be viewed as a rephrasing of
Sect. 2.5 of Teschl [46], it is as easy to establish it from first principles as to manipulate
the results of [46] to the form we need. Our use of Stone’s formula is similar to that of
Gesztesy–Zinchenko [18].

Fundamental to this is the matrix for λ ∈ R,

S(λ)nm = lim
ε↓0

(2π i)−1[(J − λ− iε)−1 − (J − λ + iε)−1]nm, (2.1)

defined for a.e. λ ∈ R and all n,m. We use S for “Stone” or “spectral” since Stone’s
formula (Thm. VII.13 of [34]) and the spectral theorem imply that for any ϕ,ψ of finite
support on Z and any Borel set, e,

〈ϕ, PePacψ〉 =
∫
λ∈e

(∑
n,m

ϕ̄nψm S(λ)nm

)
dλ. (2.2)

Define for λ ∈ �(2)ac ,

f±(λ) = ±a0 Im(u∓
1 (λ + i0))

π |W (λ + i0)|2 , (2.3)

where u±
n is normalized by (1.25) and W is given by (1.29). This looks asymmetric in

±, but

f+(λ) = −a−1 Im(u−
−1(λ + i0))

π |W (λ + i0)|2 (2.4)

= a2−1 Im(m−
−1(λ + i0))

π |W (λ + i0)|2 , (2.5)

while

f−(λ) = a2
0 Im(m+

0(λ + i0))

π |W (λ + i0)|2 , (2.6)
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symmetric under reflection about n = 0. This makes it clear that

f±(λ) > 0 a.e. λ ∈ �(2)ac . (2.7)

The key to our eigenfunction expansion is

Snm(λ) = u+
n(λ + i0) u+

m(λ + i0) f+(λ) + u−
n (λ + i0) u−

m(λ + i0) f−(λ) (2.8)

for all n,m and a.e. λ ∈ �(2)ac .

Theorem 2.1. Equation (2.8) holds for all n,m and a.e. λ ∈ �(2)ac .

Proof. By general principles on limits of Stieltjes transforms, for almost every
λ ∈ �

(2)
ac , limε↓0 u±

n (λ + iε) = u±
n (λ + i0) exists. We will prove (2.8) for such λ. It

is easy to see that Snm(λ) = Smn(λ), so it suffices to consider the case n ≤ m.
By the resolvent formula, for Im z > 0,

π Snm(z) ≡ (2i)−1[(J − z)−1 − (J − z̄)−1]nm

= (Im z)
∑

k

(J − z̄)−1
nk (J − z)−1

km (2.9)

= (Im z)|W (z)|−2(t (1)nm + t (2)nm + t (3)nm ) (2.10)

by (1.28), where

t (1)nm =
⎡
⎣∑

k≤n

|u−
k (z)|2

⎤
⎦ u+

n(z) u+
m(z), (2.11)

t (2)nm =
⎡
⎣ ∑

k≥m+1

|u+
k (z)|2

⎤
⎦ u−

n (z) u−
m(z), (2.12)

t (3)nm =
[

m∑
k=n+1

u+
k (z) u−

k (z)

]
u−

n (z) u+
m(z). (2.13)

Because of the Im z in front of (2.10), lim(Im z)t (3)nm (λ + iy) = 0, since the limit
exists (the sum is finite). Similarly, we can change the summation limits of the k sums
in t (1), t (2) to any other finite value, since in the limit, finite sums multiplied by Im z go
to zero. The result is

Snm(λ + i0) = q(1)(λ) u+
n(λ + i0) u+

m(λ + i0) + q(2)(λ) u−
n (λ + i0) u−

m(λ + i0), (2.14)

where

πq(1)(λ) = lim
ε↓0

|W (λ + i0)|−2ε
∑

k≤−1

|u−
k (λ + iε)|2, (2.15)

πq(2)(λ) = lim
ε↓0

|W (λ + i0)|−2ε
∑
k≥1

|u+
k (λ + i0)|2. (2.16)

By the resolvent formula for J +
0 and the analog of (1.28) (with the normalization

(1.25)),

Im m+
0(z) = Im(J +

0 − z)−1
11
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= (Im z)
∞∑

k=1

(J +
0 − z̄)−1

1k (J
+
0 − z)−1

k1

= (Im z)a2
0

∞∑
k=1

|u+
k (z)|2, (2.17)

so

q(2)(λ) = f−(λ), (2.18)

and similarly,

q(1)(λ) = f+(λ). (2.19)

This proves (2.8). 
�
From (2.8), we immediately get an eigenfunction expansion.

Theorem 2.2. For any ϕ ∈ �2(Z) of finite support, define

ϕ̂±(λ) =
∑

n

u±
n (λ) ϕn (2.20)

as functions on �(2)ac . Then
∫
�
(2)
ac

[|ϕ̂+(λ)|2 f+(λ) + |ϕ̂−(λ)|2 f−(λ)] dλ = ‖Pac P
�
(2)
ac
ϕ‖2. (2.21)

So ±̂ extend to continuous maps of �2(Z) to L2(�
(2)
ac , f± dλ). Moreover, if ̂= ( +̂, −̂),

then

(̂Jϕ)±(λ) = λϕ̂±(λ). (2.22)

For each n,
∫
�
(2)
ac

|u±
n (λ)|2 f±(λ) dλ ≤ 1. (2.23)

In particular, for any

g = (g+, g−) ∈ L2(�(2)ac , f+ dλ)⊕ L2(�(2)ac , f− dλ) ≡ HJ

and any n, we can define

ǧn =
∫

g+(λ)u
+
n(λ + i0) f+(λ) dλ +

∫
g−(λ)u−

n (λ + i0) f−(λ) dλ. (2.24)

ǧ lies in �2(Z), and for any ϕ ∈ �2,

〈ǧ, ϕ〉 = 〈g, ϕ̂〉 (2.25)

and

̂̌g = g. (2.26)

We have ǧ ∈ Ran(Pac P
�
(2)
ac
) and ˇ is a bijection of this range and HJ .



Spectral and Dynamical Reflection 539

Proof. Equation (2.21) is immediate from (2.2) and (2.8). Equation (2.22) follows from
a summation by parts and

∑
m

Jnmu±
m(λ + i0) = λu±

n (λ + i0). (2.27)

Equation (2.23) comes from putting δn into (2.21).
By (2.23), the integrals in (2.24) converge for all g ∈ HJ . For ϕ of finite support,

(2.25) is an interchange of integration and finite sum. In particular, if χN is the charac-
teristic function of { j ∈ Z | | j | ≤ N } and ϕ = χN ǧ, (2.25) implies

∑
| j |≤N

|ǧ j |2 ≤ ‖g‖ ‖ϕ̂‖

≤ ‖g‖ ‖ϕ‖

= ‖g‖
⎛
⎝ ∑

| j |≤N

|g j |2
⎞
⎠

1/2

, (2.28)

so for all N ,

‖χN ǧ‖ ≤ ‖g‖, (2.29)

so ǧ ∈ �2 and

‖ǧ‖ ≤ ‖g‖. (2.30)

Thus, (2.25) extends to all ϕ by continuity.
By (2.21) and (2.22),̂ is a unitary spectral representation for J̃ = J � Ran(Pac P

�
(2)
ac
)

on Ran(̂). Since J̃ has uniform multiplicity 2, Ran(̂) must be all HJ . It follows that
(̂)(̂)∗ = 1 on HJ . Since ˇ = (̂)∗, this is (2.26). 
�

We can now prove a precise version of Almost-Theorem 1.6. Let

H±
J = {g ∈ HJ | g∓ = 0}, (2.31)

and let P± be the projection in �2(Z) onto the image of H±
J under ˇ. Then

Theorem 2.3. We have

P+
r P

�
(2)
ac
(J ) = P−, (2.32)

P+
� P

�
(2)
ac
(J ) = P+, (2.33)

P−
r P

�
(2)
ac
(J ) = P−, (2.34)

P−
� P

�
(2)
ac
(J ) = P+. (2.35)

Remark. Let C be complex conjugation on �2. By Ā we mean CAC .
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Proof. We claim that it suffices to prove for ϕ ∈ Ran(P+) that

P+
� ϕ = ϕ (2.36)

for then, by reflection in n = 0, we see that for ψ ∈ Ran(P−),

P+
r ψ = ψ, (2.37)

and

(P+
� + P+

r )P�(2)ac
(J ) = P

�
(2)
ac
(J ) = P+ + P− (2.38)

implies (2.32)/(2.33). Since e−i t J = eit J , (2.34)/(2.35) then follow.
Clearly, it suffices to prove (2.36) for a dense set of ϕ ∈ Ran(P+); equivalently, for

a dense set of g ∈ L2(�
(2)
ac , f+ dλ), where

ϕn =
∫

g(λ)u+
n(λ + i0) f+(λ) dλ. (2.39)

By Egoroff’s theorem, for a dense set of g, we can suppose g ∈ L∞, and for each
fixed m, n, Gnm(λ + ik−1) → Gnm(λ + i0) as k → ∞, uniformly for λ ∈ supp(g). We
henceforth assume these properties for g.

By (1.6) and an abelian theorem [35, Sect. XI.6, Lemma 5],

P+
� ϕ = χ−

0 ϕ − i lim
t→−∞

∫ 0

t
eis J [J, χ−

0 ]e−is Jϕ ds

= χ−
0 ϕ − i lim

ε↓0

∫ 0

−∞
eεseis J [J, χ−

0 ]e−is Jϕ ds.

Since the limit exists, we can replace ε by 1/k and do the s integral,

(P+
� ϕ)n = χ−

0 (n)ϕn − lim
k→∞

∞∑
m,n=−∞

∫
Gnm

(
λ +

i

k

)−1

× [J, χ+
0 ]m�g(λ)u

+
� (λ + i0) f+(λ) dλ.

But [J, χ−
0 ] is rank two. In fact, [J, χ+

0 ]m� �= 0 only for (m, �) = (0, 1) or (1, 0), so
the sum is finite, and by the uniform convergence of Gnm(λ + i

k ) for λ ∈ supp(g) and
u+
� ∈ L2(R, f+ dλ), we see that we can take the limit inside the integral. The result is

(P+
� ϕ)n = χ−

0 (n)ϕn −
∫

a0g(λ)

× [Gn1(λ + i0)u+
0(λ + i0)− Gn0(λ + i0)u+

1(λ + i0)] f+(λ) dλ.
(2.40)

If n > 0, using (1.28),

a0[Gn1(λ + i0)u+
0(λ + i0)− Gn0(λ + i0)u+

1(λ + i0)]
= a0[u+

0(λ + i0)u−
1 (λ + i0)− u+

1(λ + i0)u−
0 (λ + i0)]

W (λ)
u+

n(λ + i0) (2.41)

= u+
n(λ + i0)
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so (2.40) says

(P+
� ϕ)n = ϕn . (2.42)

If n ≤ 0, the u+
0,1 in (2.41) becomes u−

0,1 and u+
n becomes u−

n , so the factor in [ ] is
zero, and again (2.42) holds. 
�
Remark. χ−

0 can be replaced by any χ−
� . So in the analog of (2.40) (where Gn1,Gn0

become Gn�+1Gn�), one can even take � to be n-dependent. Using this, one can use
either the argument we used for n > 0 (by picking � < n) or for n ≤ 0 (by picking
� ≥ n) rather than needing both calculations!

The above implies P+
� Pe = P−

r Pe if and only if for a.e. λ ∈ e, u+
n = u−

n , which holds
if and only if, by (1.26)/(1.27), (1.16) holds for a.e. λ ∈ e. Thus, one has Theorem 1.3.

The following proves Theorem 1.5, and thereby completes the proofs of the results
stated in Sect. 1.

Theorem 2.4. For a.e. λ ∈ �(2)ac , we can write

u+
n(λ + i0) = α(λ) u+

n(λ + i0) + β(λ) u−
n (λ + i0), (2.43)

and the function R of (1.20) is given by

R(λ) = |α(λ)|2. (2.44)

Moreover, R(λ) is given by (1.21).

Proof. For a.e. λ ∈ �(2)ac , Im u+
n(λ) < 0, Im u−

n (λ) > 0, so u±(λ) are linearly indepen-
dent solutions of Ju = λu. It follows that (2.43) holds. If

ϕ =
∫

g(λ)u+
n(λ + i0) f+(λ) dλ ∈ Ran(P+

� ), (2.45)

then (2.43) implies that

(P−
� ϕ)n =

∫
g(λ)α(λ) u+

n(λ + i0) f+(λ) dλ, (2.46)

from which

‖P−
� ϕ‖2 =

∫
|α(λ)g(λ)|2 f+(λ) dλ. (2.47)

This implies (2.44).
If

W ( f, g) = a0(g1 f0 − f1g0), (2.48)

then (2.43) implies

α(λ) = W (u+· (λ + i0), u−· (λ + i0))

W (u+· (λ + i0), u−· (λ + i0))
. (2.49)

Since

u±
0 = 1 u+

1 = −a0m+
0 u−

1 = −(a0m−
0 )

−1, (2.50)

(2.49) implies (1.27).


�
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3. The Schrödinger Case

In this section, we consider a Schrödinger operator on R,

H = − d2

dx2 + V (x), (3.1)

where V is in L1
loc and limit point at both +∞ and −∞, so H is the usual selfadjoint

operator (see, e.g., [14, App. A]). Because it is limit point, there are, for any z ∈ C+,
unique solutions u±(x, z) obeying

−u′′ + V u = zu, (3.2)

u±(0, z) = 1, (3.3)

u± ∈ L2(0,±∞). (3.4)

For Lebesgue a.e. λ ∈ R,

lim
ε↓0

u±(x, λ + iε) ≡ u±(x, λ + i0) (3.5)

exists for all x ∈ R. Moreover, �(2)ac , the a.c. spectrum of multiplicity 2, is determined
by

Im(∓u′±(0, λ + i0)) > 0 (3.6)

(it is always ≥ 0) for a.e. x ∈ �(2)ac , that is, positivity for both u+ and u−.
The Weyl m-functions (see [14, App. A]) are defined by

m±(x, λ + i0) = ∓
[

u′(x, λ + i0)

u(x, λ + i0)

]
, (3.7)

and for λ ∈ C+ if λ + i0 is replaced by λ. We define m(λ) ≡ m(x = 0, λ). The Green’s
function is given by (for x ≤ y)

G(x, y; λ) = u−(x, λ)u+(x, λ)

W (λ)
, (3.8)

where

W (λ) = u−(x, λ)u′
+(x, λ)− u′−(x, λ)u+(x, λ) (3.9)

is x-independent so that

W (λ) = −(m+(λ) + m−(λ)) (3.10)

and

G(x, x; λ) = −(m+(x, λ) + m−(x, λ))−1. (3.11)

H is called spectrally reflectionless on e ⊂ �
(2)
ac if and only if for a.e. λ ∈ e and

all x ,

m+(x, λ + i0) = −m−(x, λ + i0). (3.12)
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As proven in Davies–Simon [7], if χ±
y is the characteristic function of [y,±∞), then

P±
� = s-lim

t→∓∞ eit Hχ−
y e−i t H Pac (3.13)

exists and is y-independent. Indeed, χ−
y can be replaced by any continuous function, j ,

which goes to 1 at −∞ and 0 at +∞. If χ−
y is replaced by χ+

y , we get P±
r . If H±

�,r is

Ran(P±
�,r ), then (1.7) and (1.8) hold. If (1.9) and (1.10) hold, we say H is dynamically

reflectionless on H.
Following [7], the dynamic reflection probability is given by (1.19)/(1.20) with J

replaced by H . The spectral reflection probability (see, e.g., Gesztesy–Nowell–Pötz
[13] or Gesztesy–Simon [15]) is given on �(2)ac by

∣∣∣∣∣
m+(λ + i0) + m−(λ + i0)

m+(λ + i0) + m−(λ + i0)

∣∣∣∣∣
2

. (3.14)

Our main theorems in this case are:

Theorem 3.1. H is dynamically reflectionless on e ∈ �(2)ac if and only if it is spectrally
reflectionless.

Theorem 3.2. R(λ) is given by (3.14).

The proofs closely follow those of Sect. 2, so we settle for a series of remarks explain-
ing the differences:

1. S is now defined as

S(x, y; λ) = π−1 Im G(x, y; λ + i0), (3.15)

and there is still a Stone formula like (2.2). One defines

f±(λ) = Im m±(λ + i0)

π |m+(λ + i0) + m−(λ + i0)|2 . (3.16)

One proves

S(x, y; λ) = u+(x, λ + i0) u+(y, λ + i0) f+(λ)

+ u−(x, λ + i0) u−(y, λ + i0) f−(λ).
(3.17)

The proof is the same as that of Theorem 2.1, except sums over k become integrals
over w ∈ R.

2. Once one has (3.17), one can develop eigenfunction expansions analogously to
Theorem 2.2. The one difference is that since δ(x) is not in L2, we do not have
the analog of (2.23). However,

Im G(x, x; λ = i) =
∫

Im G(x, x; λ + i0)

λ2 + 1
dλ, (3.18)

which implies that
∫
�
(2)
ac

|u±(x, λ + i0)|2
λ2 + 1

f±(λ) dλ < ∞, (3.19)

and that suffices to define an inverse transform on L2(�
(2)
ac , dλ) functions of compact

support.
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3. As a preliminary to the next step, we note that if η is a function of compact support
with a continuous derivative and q is C∞, then by an integration by parts,

∫
η(x)

[
q(x)

d

dx
η(x) +

d

dx
(qη)(x)

]
dx = 0. (3.20)

4. In computing (P+
� ϕ)(x0) for x0 < 0, we can compute limt→∞(eit H je−i t Hϕ) with

a C∞ j which is 1 if x < 0 and 0 if x > 1. Thus, in following the calculation in the
proof of Theorem 2.3, we start with

(P−
� ϕ)(x0) = ϕ(x0)− i lim

ε↓0

∫ 0

−∞
eεs(eis H [H, j]ϕ)(x0) ds. (3.21)

Since [H, j] involves j ′ and j ′′, we can instead write F[H, j]F , where F is multi-
plication by a C∞ function supported in (x0, 2) which is 1 on [0, 1]. When we put
in the eigenfunction expansion, we get

∫
u−(x0, λ + i0) f+(λ)g(λ)h(λ) dλ, (3.22)

where h has the form of the left side of (3.20) with

η(x) = F(x)u+(x, λ + i0), q(x) = − j ′(x), (3.23)

yielding (P−
� ϕ)(x0) = ϕ(x0) for x0 < 0. By shifting j to the right, we get this for

all x0 (as in the remark following the proof of Theorem 2.3).

4. The CMV Case

The basic objects in this section are two-sided CMV matrices,C, depending on a sequence
{αn}∞n=−∞ of Verblunsky coefficients. One-sided CMV matrices appeared first in the
numeric matrix literature [1,2,33] and were rediscovered by the OPUC community [5].
Two-sided CMV matrices were defined first in [40], although related objects appeared
earlier in [3,10]. For further study, we mention [4,17,19,39].

C is defined as follows. Given α ∈ D, we let ρ = (1 − |α|2)1/2 and we let �(α) be
the 2 × 2 matrix,

�(α) =
(−α ρ
ρ α

)
,

and let � j be � acting on δ j−1, δ j in �2(Z). Then

C = LM, (4.1)

where

L =
∞⊕

n=−∞
�2n(α2n) M =

∞⊕
n=−∞

�2n+1(α2n+1). (4.2)

First, one can develop a unitary analog of the Davies–Simon theory [7]. It is not hard
to show that the Pearson theorem on two-space scattering (see, e.g., [35, Thm. XI.7])
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extends to the unitary case. That is, if U and V are unitary, J is bounded, and U J − J V
is trace class, then

s-lim
t→∓∞ U−n J V n Pac(V ) (4.3)

exists. Thus, if χ±
n are defined as in Sect. 1, one defines

P±
� = s-lim

n→∓∞ C−nχ−
0 Cn Pac(C),

P±
r = s-lim

n→±∞ C−nχ+
0 Cn Pac(C). (4.4)

As in Sect. 1, we define

H±
�,r = Ran(P±

�,r ), (4.5)

and we say C is dynamically reflectionless on e if (1.9) and (1.10) hold.
If αn−1 is replaced by 1, the CMV matrix breaks into a direct sum of two CMV matri-

ces, C+
n on �2({n, n + 1, . . . }) and C−

n−1 on �2({n − 2, n − 3, . . . }). F+(z, n) is defined
for z �∈ ∂D by setting

F+(z, n) =
〈
δn,

( C+
n + z

C+
n − z

)
δn

〉
(4.6)

and F−(z, n − 1) by

F−(z, n − 1) =
〈
δn−1,

(
C−

n−1 + z

C−
n−1 − z

)
δn−1

〉
. (4.7)

It is known (see, e.g., [40]) that when restricted to z ∈ D, F+(z, n) is the Carathéod-
ory function whose Verblunsky coefficients are {αn, αn+1, . . . }, and F−(z, n − 1) has
Verblunsky coefficients {−ᾱn−2,−ᾱn−3, . . . }. We will let F±(z) = F±(z, n = 0).

As Carathéodory functions, F±(z, n) have a.e. boundary values on ∂D which we
denote by F±(eiθ , n) = limr↑1 F±(reiθ , n). C is called spectrally reflectionless on e ⊂
∂D if and only if for a.e. eiθ ∈ e and all n ∈ Z,

F+(e
iθ , n) = F−(eiθ , n). (4.8)

There is an equivalent definition using Schur functions (see, e.g., [4]). The equiva-
lence is an easy computation using the relations between the Carathéodory and Schur
functions (see, e.g., [17]). It is known [17] that (4.8) for one n implies it for all n. It is
also known [4] that while (4.8) implies 〈δn, (C + z)/(C − z)δn〉 has purely real boundary
values a.e. on e, the converse can be false.

The dynamic reflection probability R(eiθ ) is given by (1.19)/(1.20) with J replaced
by C. The spectral reflection probability is given on �(2)ac by

∣∣∣∣∣
F+(eiθ )− F−(eiθ )

F+(eiθ ) + F−(eiθ )

∣∣∣∣∣
2

. (4.9)

Our main theorems in this case are:

Theorem 4.1. C is dynamically reflectionless on e if and only if it is spectrally reflec-
tionless on e.
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Theorem 4.2. R(eiθ ) is given by (4.9).

The proofs closely follow those of Sect. 2, so we again settle for a series of remarks:

1. The analysis requires us to simultaneously study solutions of C and CT . To do so, let

E =
(C 0

0 CT

)

acting on two sequences labeled by all of Z. Following Gesztesy–Zinchenko [19], let
(

p(z, n)
r(z, n)

)
and

(
q(z, n)
s(z, n)

)

be the two (Laurent polynomial) solutions to the equation

E
(

u
v

)
= z

(
u
v

)
(4.10)

satisfying the initial conditions
(

p(z, 0)
r(z, 0)

)
=
(

1
1

)
and

(
q(z, 0)
s(z, 0)

)
=
(−1

1

)
.

That is, for one solution, the components of u are p and of v are r , and this solu-
tion is uniquely determined by the initial conditions given (see (4.12)). Similarly, the
components for the second solution are given by q and s. Finally, we let

(
u±(z, n)
v±(z, n)

)
=
(

q(z, n)
s(z, n)

)
± F±(z)

(
p(z, n)
r(z, n)

)

be the unique solutions that are �2 at ±∞, normalized by
(

u±(z, 0)
v±(z, 0)

)
=
(−1 ± F±(z)

1 ± F±(z)

)
. (4.11)

We note that there are a number of relations between u± and v± that we will need
(see [19]). First, (4.10) is equivalent to

(
u(z, n)
v(z, n)

)
= T (z, n)

(
u(z, n − 1)
v(z, n − 1)

)
, (4.12)

where

T (z, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ρn

(
αn z
1/z αn

)
, n odd

1

ρn

(
αn 1
1 αn

)
, n even

. (4.13)

Similarly, (4.10) implies
(

u(z, 2n − 1)
u(z, 2n)

)
= �2n(α2n)

(
v(z, 2n − 1)
v(z, 2n)

)
,

(
u(z, 2n − 2)
u(z, 2n − 1)

)
= �2n−1(α2n−1)

(
v(z, 2n − 2)
v(z, 2n − 1)

)
.

(4.14)
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Finally, for all n ∈ Z, we have

v±(1/z̄, n) = −u±(z, n). (4.15)

This is because

Cu = zu holds ⇔ CT ū = (1/z̄)ū holds

and (4.6)/(4.7) imply F±(1/z̄) = −F±(z), and because the solutions to (4.10) that
are �2 at ±∞ are unique up to normalization.

2. Using the solutions u±(z, n) and v±(z, n) we can write the analog of (1.28)
(see [19]):

(C − z)−1
nm = −1

zW (z)

{
u−(z, n)v+(z,m), n < m or n = m = 2k + 1
v−(z,m)u+(z, n), m < n or n = m = 2k

, (4.16)

where

W (z) = u+(z, n)v−(z, n)− v+(z, n)u−(z, n) (4.17)

is independent of n ∈ Z.
3. Next we find the analog of [J, χ+

0 ]. Due to the structure of (4.1), the results are
different depending on whether n is even or odd. For n even:

[C, χ+
n ] = −ρn (ρn−1|δn〉〈δn−2| + αn−1|δn〉〈δn−1|

+αn+1|δn−1〉〈δn| − ρn+1|δn−1〉〈δn+1|) , (4.18)

while if n is odd we get the same thing but transposed and with a minus sign:

[C, χ+
n ] = ρn (ρn−1|δn−2〉〈δn| + αn−1|δn−1〉〈δn|

+αn+1|δn〉〈δn−1| − ρn+1|δn+1〉〈δn−1|). (4.19)

4. S is defined (using a.e. boundary values) as

S(n,m; eiθ ) = 1

2π
lim
r↑1
((C + reiθ )(C − reiθ )−1 − (C + r−1eiθ )(C − r−1eiθ )−1)nm

(4.20)

and there is a Stone formula like (2.2). Proceeding as in Sect. 2 and using (4.15) and
(4.16), one can deduce the analog of (2.8):

S(n,m; eiθ ) = u+(e
iθ , n)u+(eiθ ,m) f+(e

iθ ) + u−(eiθ , n)u−(eiθ ,m) f−(eiθ ),

(4.21)

where u±(eiθ , n) = limr↑1 u±(reiθ , n) and

π f±(eiθ ) = lim
r↑1

1

reiθ |W (reiθ )|2 〈u∓(r−1eiθ ), [C, χ∓
k ]u∓(r−1eiθ )〉.

As before, this is independent of k, and choosing k = 0 one may use (4.11), (4.12),
and (4.18)/(4.19) to find the analog of (2.3):

f±(eiθ ) = 4 Re F∓(eiθ )

π |W (eiθ )|2 . (4.22)

Once one has (4.21), one may develop eigenfunction expansions exactly as in Theorem
2.2.
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5. To prove Theorem 4.1, we first define P± and P± as in Section 2 but in this case, we
use limr↑1 u±(reiθ , n) and limr↑1 u±(r−1eiθ , n) respectively. As before, we consider
P+
� = s-limn→−∞ C−nχ−

0 Cn Pac(C). Because

C−nχ−
0 Cn − C−(n−1)χ−

0 Cn−1 = C−n[χ−
0 , C]Cn−1

and the strong limit defining P+
� exists, we see

P+
� = χ−

0 + s-lim
n→−∞

n∑
k=1

C−k[χ−
0 , C]Ck−1.

Choosing a dense set of ϕ ∈ Ran(P+) as before, and using the eigenfunction expan-
sion and an abelian theorem, we find

(P+
� ϕ)m = (χ−

0 ϕ)m +

⎛
⎝ lim

n→−∞
n∑

k=1

C−k [χ−
0 , C]Ck−1ϕ

⎞
⎠

m

= (χ−
0 ϕ)m + lim

r↑1
lim

n→−∞

∫ n∑
k=1

C−k [χ−
0 , C](reiθ )k−1u+(e

iθ ,m)g(eiθ ) f+(e
iθ )

dθ

2π

= (χ−
0 ϕ)m +

∫
(C − eiθ )−1[χ−

0 , C]u+(e
iθ ,m)g(eiθ ) f+(e

iθ )
dθ

2π
.

The proof of Theorem 4.1 then proceeds exactly as the proof of Theorem 1.3, but
now using (4.11)–(4.22). The proof of Theorem 4.2 follows that of Theorem 2.4
but with limr↑1 u±(reiθ , n) and limr↑1 u±(r−1eiθ , n) replacing u±(x + i0, n) and
u±(x + i0, n).
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