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Abstract

We present and exploit an analogy between lack of absolutely continuous spectrum for Schrödinger
operators and natural boundaries for power series. Among our new results are generalizations of Hecke’s
example and natural boundary examples for random power series where independence is not assumed.
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1. Introduction

In this paper, we’ll present and exploit a powerful analogy between spectral theory and
the question of when a power series f (z) = ∑∞

n=0 anz
n defining an analytic function on

D = {z | |z| < 1} has a natural boundary on ∂D, in that for no z0 = eiθ does f have an ana-
lytic continuation to {z | |z − z0| < δ} for some δ > 0. In particular, we shall import two notions
(“reflectionless” and “right limit”) from the spectral theory of Jacobi matrices and obtain a gen-
eral theorem regarding the consequence of the possibility to analytically continue f across an arc.
While spectral theory ideas motivated our approach to natural boundaries, what we develop does-
n’t require any spectral theory. The reader not knowledgeable in spectral theory and not interested
in the background should skip to the paragraph containing (1.4).
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As it turns out, some of the results presented in this paper are not new. In particular, in [1]
Agmon treated natural boundaries for general series with radius of convergence 1 using a related
approach. Our Theorem 1.3 is a special case of his results. To the best of our knowledge, how-
ever, our treatment of strong natural boundaries using this approach (see Theorem 1.4 below) is
completely new.

Of course, since the relevant spectral theoretic notions were not yet defined at the time of
publication of [1], Agmon was unaware of the analogy. Surprisingly, [1] is rarely quoted in the
relevant literature and seems to be little known. Thus, a secondary aim of our paper is to draw
attention to Agmon’s work.

Moreover, we believe the significance of the analogy presented in this paper is more than
merely anecdotal. As an example, our knowledge of the applications of these ideas to random
potentials in the spectral theoretic setting, led us to apply these methods to random series. In this
context we have obtained results for series where only a subsequence is random and for gen-
eral bounded ergodic nondeterministic series. Another example is Theorem 1.8 that has Hecke’s
famous example (1.14) as a special case.

Thus, Theorems 1.3 and 1.4 provide a general framework in which many existing and new
results concerning natural boundaries can be derived.

To set the stage, consider a Jacobi matrix,

J =

⎛⎜⎜⎝
b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .
...

...
...

. . .

⎞⎟⎟⎠ (1.1)

where {an, bn}∞n=1 are bounded. By a right limit of J , we mean a two-sided Jacobi matrix, J (r),

with parameters {a(r)
n , b

(r)
n }∞n=−∞ given by

a(r)
n = lim

k→∞an+nk
, b(r)

n = lim
k→∞bn+nk

(1.2)

where nk → ∞ is a subsequence. By compactness, right limits exist. This definition is from Last
and Simon [23], who used it in

Theorem 1.1. (See [23].) If Σac(A) is the essential support of the a.c. spectrum of an operator, A,
then

Σac(J ) ⊂ Σac
(
J (r)

)
(1.3)

for every right limit J (r) of J .

Right limits are also relevant to essential spectrum where they have been exploited by several
authors (e.g., [10,11,18,23–25,35]), but their relevance for a.c. spectrum goes back to Last and
Simon [23]. Recently, Remling [36] found a much stronger property of right limits when there
is a.c. spectrum. It depends on the notion of reflectionless two-sided Jacobi matrix. The precise
definition is irrelevant for our discussion here (see, e.g., [5,36,44,45]), but we note that if J̃ is
a two-sided Jacobi matrix, reflectionless on some e ⊂ R with the Lebesgue measure, |e|, of e

nonzero, then e ⊂ Σac(J̃ ) and {ãn, b̃n}−1
n=−∞ determine {ãn, b̃n}∞ . Remling [36] proved
n=0
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Theorem 1.2. (See [36].) If e is Σac(J ) for a Jacobi matrix, then any right limit, J (r), is reflec-
tionless on e.

With this result, Remling was able to recover and extend virtually every result on the absence
of a.c. spectrum for situations where {an, bn}∞n=1 are bounded, and the lack of a.c. spectrum is
due to a part of the a’s and b’s that is dominant at infinity (rather than a perturbation that goes to
zero at infinity).

Our work here began by our noticing that the major classes of Jacobi matrices with no a.c.
spectrum have analogs in the major classes of results on the occurrence of natural boundaries
(see Remmert [37, Chapter 11] for a summary of classical results on natural boundaries), as seen
in

• Gap theorems [19,17,16,37] ∼ sparse potentials [32,36].
• Finite-valued power series [47,37] ∼ finite-valued Jacobi matrices [22,36].
• Random power series [46,30,21] ∼ Anderson localization [8,31].

Let us describe our major abstract results on natural boundaries motivated by Last and Simon
[23] and Remling [36]. Given a power series f (z) = ∑∞

n=0 anz
n with

sup
n

|an| < ∞ (1.4)

we define a right limit of {an}∞n=0 to be a two-sided sequence {bn}∞n=−∞ with

bn = lim
j→∞an+nj

(1.5)

for some nj → ∞. By compactness and (1.4), right limits exist.
Given a two-sided bounded sequence, {bn}∞n=−∞, we consider two functions, f+(z) on D and

f−(z) on C ∪ {∞} \ D, defined by

f+(z) =
∞∑

n=0

bnz
n, f−(z) =

−1∑
n=−∞

bnz
n (1.6)

where the series are guaranteed to converge on the indicated sets. Let I be an open interval in ∂D.
We say {bn}∞n=−∞ is reflectionless on I if and only if f+ has an analytic continuation from D to
C ∪ {∞} \ (∂D \ I ), so that on C ∪ {∞} \ D, we have that

f+(z) + f−(z) = 0. (1.7)

Obviously, it suffices that f+ have a continuation to a neighborhood of I so that (1.7) holds in
the intersection of that neighborhood and C \ D.

Example. Let bn ≡ 1. Then f+(z) = (1 − z)−1 and f−(z) = −(1 − z)−1. This series is reflec-
tionless on I = {eiθ | 0 < θ < 2π}. Similarly, it is easy to see that a periodic bn of period p is
reflectionless on any I in ∂D with all the p-th roots of unity removed.
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Our first main theorem is:

Theorem 1.3. Let f (z) = ∑∞
n=0 anz

n be a power series with (1.4). Suppose I ⊂ ∂D is an open
interval so that f (z) has an analytic continuation to a neighborhood of I . Then every right limit
of {an}∞n=0 is reflectionless on I .

As remarked above, this theorem is a special case of the results in [1]. While our treatment is
limited to bounded sequences and produces interesting results only when an � 0, Agmon treats
general (not necessarily bounded) series. He introduces a way to renormalize the coefficients so
that any series with radius of convergence 1 has, after renormalization, nontrivial right limits.
He then shows that if the corresponding function has an analytic continuation to an arc on ∂D,
then the renormalized right limits are reflectionless across that arc. For bounded series, we will
actually prove a stronger result (we state Theorem 1.3 both for conceptual reasons and because
we need it in the proof of the stronger result):

Theorem 1.4. Let f (z) = ∑∞
n=0 anz

n be a power series with (1.4). Suppose I ⊂ ∂D is an open
interval so that

sup
0<r<1

∫
eiθ∈I

∣∣f (
reiθ

)∣∣ dθ

2π
< ∞. (1.8)

Then every right limit of {an} is reflectionless on I .

These theorems imply natural boundaries. We say f has a strong natural boundary on ∂D

if (1.8) fails for every I ⊂ ∂D. In particular, in that case, f is unbounded in every sector
{reiθ | 0 < r < 1, eiθ ∈ I }.
Corollary 1.5. Let f (z) = ∑∞

n=0 anz
n be such that for any open interval I ⊂ ∂D, there is a right

limit of {an}∞n=0 which is not reflectionless on I . Then f has a strong natural boundary on ∂D.

Of course, if an → 0, it can happen that there are natural boundaries which are not strong
natural boundaries. For example, by the Hadamard gap theorem [37],

f (z) =
∞∑

n=1

zn!

(n!)n (1.9)

has a natural boundary on ∂D but, for all k, f (k)(z) is bounded on D.
We note that Duffin and Schaeffer [13] and Boas [4] long ago had results on what we call

strong natural boundaries. These results are all for series with gaps or finite-valued series. These
authors and also Agmon [1] have results that prove that certain functions rather than merely
having classical natural boundaries are unbounded in every sector (we call this L∞ natural
boundaries). We note that our approach for going from classical to strong natural boundaries
is very close to the method that Agmon [1] uses to go from classical natural boundaries to un-
boundedness in every sector. Theorem 1.4 is, to the best of our knowledge, the first general
theorem concerning strong natural boundaries.

For us, the point of these theorems is conceptual: they provide a unified framework that makes
many theorems transparent. That said, the following results seem to be new:
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Theorem 1.6. Suppose {an}∞n=0 obeys (1.4) and there exists nj → ∞ so that for all k < 0,

lim
j→∞anj +k = 0, (1.10)

lim inf |anj
| > 0. (1.11)

Then f (z) = ∑∞
n=0 anz

n has a strong natural boundary on ∂D.

Remarks.

1. This result (as well as its extension—Theorem 4.3), for L∞ natural boundaries, appears in
Agmon [1].

2. The result is true if (1.10) is replaced by the assumption for all k > 0 or for all k < K , some
K < 0 or for all k > K , some K > 0. The proofs are essentially identical. In addition, (1.10)
can be replaced by an exponential decay condition on the limit; see Theorem 4.3.

3. This includes the famous examples
∑∞

n=1 zn! of Weierstrass and
∑∞

n=0 zn2
of Kronecker.

4. This allows gaps where the set of zeros has zero density. At first sight, this seems a violation
of the result of Pólya [33] and Erdös [15] that the Fabry gap theorem is optimal. We’ll explain
this apparent discrepancy in Section 4.

Theorem 1.7. Let {an(ω)}ω∈Ω be a translation invariant, ergodic, stochastic process, which is
nondeterministic, so that

sup
n,ω

∣∣an(ω)
∣∣ < ∞. (1.12)

Then for a.e. ω,
∑∞

n=0 an(ω)zn has a strong natural boundary.

Remarks.

1. So far as we know, all previous results on random power series rely on independence and
only obtain natural boundaries, not strong natural boundaries.

2. Recall that a stochastic process {an(ω)} is deterministic if a0(ω) is a measurable function of
{an(ω)}−1

n=−∞ for a.e. ω, and nondeterministic if it is not deterministic.
3. By taking an average of a deterministic and a nondeterministic process, it is easy to see that

ergodicity is essential for this theorem to be true.

Theorem 1.8. Let f : ∂D → C be a bounded and piecewise continuous function with only a finite
number of discontinuities, at one of which the one-sided limits exist and are unequal. Then for
any irrational number q and every θ ∈ R, we have that

∞∑
n=0

f
(
e2πi(qn+θ)

)
zn (1.13)

has a strong natural boundary.
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Remark. This includes Hecke’s famous example [20],

f (z) =
∞∑

n=0

{nq}zn (1.14)

where {x} is the fractional part of x ∈ R.

The following is elementary and does not require our full machinery. It was suggested to us
by the Wonderland theorem of Simon [43] and seems to be new.

Theorem 1.9. Let Ω ⊂ C be a compact set with more than one point. Let Ω∞ be a count-
able product of copies of Ω in the weak topology. Then {{an} ∈ Ω∞ | ∑∞

n=0 anz
n has a natural

boundary on ∂D} is a dense Gδ in Ω∞.

In Section 2, we prove Theorem 1.3. The key is a lemma of M. Riesz whose proof we include
for completeness. In Section 3, we prove Theorem 1.4 using the theory of Hp spaces on a sector
(Duren [14]). In Section 4, we discuss gap theorems, including Theorem 1.6. In Section 5, we dis-
cuss Szegő’s theorem on finite-valued power series using Theorem 1.4. In Section 6, we discuss
random power series, including Theorem 1.7. In Section 7, we prove Theorem 1.8, following a
spectral theory analysis of Damanik and Killip [12]. In Section 8, we prove Theorem 1.9.

We believe our work here opens up numerous new directions in the study of power series
and of spectral theory. In particular, there is a dynamical view of reflectionless in spectral theory
(see [5]) and there is the distinction in spectral theory between pure point and singular continuous
spectra. What are the analogs for power series?

2. Classical natural boundaries

In this section, we prove Theorem 1.3. The key will be a lemma of M. Riesz [38] used by
many other authors in the study of natural boundaries. The use of right limits and reflectionless
power series can be viewed as a tool for squeezing maximum benefit from Riesz’s lemma.

Given a power series f (z) = ∑∞
n=0 anz

n, where the an obey (1.4), we define

f
(N)
+ (z) =

∞∑
n=0

an+Nzn, f
(N)
− (z) =

−1∑
n=−N

an+Nzn (2.1)

so for z ∈ D \ {0},

f
(N)
+ (z) + f

(N)
− (z) = z−Nf (z). (2.2)

Clearly, f− is defined and analytic on C \ {0}, f+ is defined initially on D, but by (2.2), has
analytic continuation to any region that f does.

Theorem 2.1 (M. Riesz’s lemma). Suppose {an}∞n=0 obeys (1.4) and that f has an analytic con-
tinuation to a neighborhood of D ∪ S where

S = {
reiθ

∣∣ 0 < r � R, α � θ � β
}

(2.3)
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for some R > 1 and α < β . Then

sup
z∈S

N=0,1,2,...

∣∣f (N)
+ (z)

∣∣ < ∞. (2.4)

Remark. Riesz’s lemma is usually in terms of z−N(f (z) − ∑N−1
n=0 anz

n), but this is exactly

f
(N)
+ (z).

Proof of Theorem 2.1. While the result is classical and appears in many places (e.g., [37]), we
sketch the proof for completeness.

By comparing with a geometric series, for z ∈ D and all N ,

∣∣f (N)
+ (z)

∣∣ �
(
1 − |z|)−1 sup

n
|an| (2.5)

and similarly, for z ∈ C \ D,

∣∣f (N)
− (z)

∣∣ �
(
1 − |z|−1)−1 sup

n
|an|. (2.6)

Let S̃ have the form of S with α,β replaced by α̃, β̃ and α̃ < α < β < β̃ so that S̃ lies in the
neighborhood of analyticity of f . Let z1 = eiα̃ , z2 = eiβ̃ , and define

g
(N)
± (z) = (z − z1)(z − z2)f

(N)
± (z). (2.7)

Clearly, (2.4) is implied by

sup
z∈S̃

N=0,1,2,...

∣∣g(N)
+ (z)

∣∣ < ∞. (2.8)

By the maximum principle, we need only check this on ∂S̃ \ {z1, z2}.
Because of (2.5) and the zeros of g

(N)
+ , we have

sup
z∈∂S̃∩D

N=0,1,2,...

∣∣g(N)
+ (z)

∣∣ < ∞. (2.9)

Similarly, by (2.6),

sup
z∈∂S̃∩C\D

N=0,1,2,...

∣∣g(N)
− (z)

∣∣ < ∞. (2.10)

Since |z−N | < 1 on C \ D, (2.2) and (2.10) imply
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sup
z∈∂S̃∩C\D

N=0,1,2,...

∣∣g(N)
+ (z)

∣∣ < ∞ (2.11)

proving (2.8). �
Proof of Theorem 1.3. Suppose aNj +n → bn for n ∈ Z and let f± be the functions in (1.6).
Then, by estimating Taylor series, we have

f
(Nj )

+ (z) → f+(z), f
(Nj )

− (z) → f−(z) (2.12)

uniformly on compact subsets of D and C ∪ {∞} \ D, respectively.
If f has an analytic continuation to a neighborhood of I = {eiθ | α0 < θ < β0}, we can apply

Riesz’s lemma for any S of the form (2.3) with α0 < α < β < β0 and some suitable R > 1

(depending on α,β). Thus, by the Vitali convergence theorem, f
(Nj )

+ converges uniformly on S,
so f+(z) has an analytic continuation to S. Moreover, by the analytic continuation of (2.2) to S

and z−Nj → 0 on C \ D, we see on S \ D,

f+(z) + f−(z) = 0. (2.13)

Thus, {bn}∞n=−∞ is reflectionless across I . �
The proof shows that if ΩI = C ∪ {∞} \ (∂D \ I ) and if R is the family of all right limits and

fb(z) the function on ΩI equal to
∑∞

n=0 bnz
n on D, then

Theorem 2.2. Fix I an interval in ∂D and A ∈ (0,∞). Let R be the set of two-sided sequences
reflectionless across I with

sup
−∞<n<∞

|bn| � A. (2.14)

Then, one has that, for any compact K ⊂ ΩI ,

sup
b∈R

sup
z∈K

∣∣fb(z)
∣∣ < ∞. (2.15)

Moreover, R is compact in the topology of uniform convergence on compacts of ΩI and on{{bn}−1
n=−∞

∣∣ {bn}∞n=−∞ ∈ R
}
, (2.16)

b0, b1, . . . are continuous functions of {bn}−1
n=−∞. In fact, for any k < �, there is a homeomor-

phism of {bn}kn=−∞ to {bn}∞n=� by associating the two ends of a two-sided sequence.

Proof. If K ⊂ D or K ⊂ C\D, one can use (2.5) or (2.6) for fb and supn |bn|. For K straddling I ,
use the argument in the proof of Riesz’s lemma and the fact that fb is

∑∞
n=0 bnz

n on D and
−∑−1

n=−∞ bnz
n on C \ D. This proves (2.15).

Compactness then follows from Montel’s theorem and the fact that, by these bounds, the set
of reflectionless functions is closed. The continuity is immediate if one notes that {bn}−1

n=−∞
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determines f near ∞ and f near 0 determines {bn}∞n=0. The “in fact” statement uses that if
{bn}∞n=0 is reflectionless, so are its translates. �

Since Theorem 1.3 says that if some right limit is not reflectionless, then f has a natural
boundary, and since reflectionless {bn}∞n=−∞ have one half determining the other half, we have
the following, which implies almost all the natural boundary results of this paper:

Theorem 2.3. Let {an}∞n=0 be a bounded sequence with two right limits, {bn}∞n=−∞ and
{cn}∞n=−∞, that obey

b0 �= c0 (2.17)

and either for some k > 0 and all j � k or for some k < 0 and all j � k,

bj = cj . (2.18)

Then
∑∞

n=0 anz
n has a natural boundary.

Remarks.

1. For example, if k > 0, we look at the right limits {bn−k}∞n=−∞ and {cn−k}∞n=−∞ which have
the same f+’s but unequal f−’s.

2. In the next section, we extend this to conclude strong natural boundaries.

3. Strong natural boundaries

In this section, we prove Theorem 1.4. We suppose that f obeys (1.8) where I = (α,β).
Since (1.8) implies

∫ 1
0 (

∫ β

α
|f (reiθ )| dθ

2π
) dr < ∞, for a.e. θ0 in (α,β), we have∫ 1

0 |f (reiθ0)|dr < ∞. So, for a sequence εn ↓ 0, we have f ∈ E(Sn), where Sn = {reiθ | 0 <

r < 1, α + εn < θ < β − εn} and E(Sn) is the space introduced in [14, Section 10.1]. It follows
that:

(a) limr↑1 f (reiθ ) = f (eiθ ) exists for a.e. θ ∈ (α,β) [14, Theorem 10.3].

(b) For all ε,
∫ β−ε

α+ε
|f (eiθ )| dθ

2π
< ∞ [14, Theorem 10.3].

(c) For every ε > 0,

lim
r↑1

β−ε∫
α+ε

∣∣f (
reiθ

) − f
(
eiθ

)∣∣ dθ

2π
= 0. (3.1)

(d) If we define

F(z) =
β−ε∫

f
(
eiθ

)(
eiθ − z

)−1 dθ

2πi
(3.2)
α+ε



J. Breuer, B. Simon / Advances in Mathematics 226 (2011) 4902–4920 4911
then F is analytic in C \ {eiθ | α + ε < θ < β − ε} and

lim
r↑1

F
(
reiθ

) − lim
r↓1

F
(
reiθ

) = f
(
eiθ

)
(3.3)

(follows from [14, Theorem 10.4]).

We also need the following Painlevé-type theorem, which follows easily from Morera’s theo-
rem:

(e) If f+ is analytic in D, f− in C \ D, and

sup
0<r<1

β∫
α

∣∣f+
(
reiθ

)∣∣ dθ

2π
+ sup

1<r<2

β∫
α

∣∣f−
(
reiθ

)∣∣ dθ

2π
< ∞ (3.4)

and if for a.e. θ ∈ (α,β),

f+
(
eiθ

) = f−
(
eiθ

)
(3.5)

then there is G analytic in C \ [∂D \ {eiθ | α < θ < β}] so that G = f+ on ∂D and f− on
C \ D.

Proof of Theorem 1.4. Let F be given by (3.2) and define

bn =
β−ε∫

α+ε

e−inθf
(
eiθ

) dθ

2π
. (3.6)

Then, by expanding (eiθ − z)−1 in suitable geometric series, the Taylor expansion of F near zero
is

∑∞
n=0 bnz

n and near ∞ is
∑−1

n=−∞ bnz
n. Moreover, by the Riemann–Lebesgue lemma and (b)

above,

lim|n|→∞bn = 0. (3.7)

Let cn = an − bn and

f+(z) =
∞∑

n=0

cnz
n. (3.8)

Then, by (a), for a.e. θ ∈ (α + ε,β − ε),

lim
r↑1

f+
(
reiθ

) = f
(
eiθ

) − lim
r↑1

F
(
reiθ

)
(3.9)

and if



4912 J. Breuer, B. Simon / Advances in Mathematics 226 (2011) 4902–4920
f−(z) = −
−1∑

n=−∞
bnz

n (3.10)

then, for a.e. θ ∈ (α + ε,β − ε),

lim
r↓1

f−(z) = − lim
r↓1

F
(
reiθ

)
. (3.11)

It follows that (3.5) holds, so f+ has a classical analytic continuation across (α + ε,β − ε).
By Theorem 1.3, every right limit of cn is reflectionless on (α + ε,β − ε).

But, by (3.7), the right limits of cn and an are the same! Thus, each right limit of an is
reflectionless on each (α + ε,β − ε), and so on (α,β). �
Theorem 3.1. If the hypotheses of Theorem 2.3 hold, then

∑∞
n=0 anz

n has a strong natural
boundary on ∂D.

Example 3.2. The Rudin and Shapiro [39,42] sequence is defined by defining polynomi-
als Pn and Qn recursively by P0(z) = Q0(z) = 1, Pn+1(z) = Pn(z) + z2n

Qn(z), Qn+1(z) =
Pn(z) − z2n

Qn(z). As power series with bounded coefficients, limPn(z) exists and defines
a series f (z) = ∑∞

n=0 anz
n, where each an is = 1 or −1. By using Szegő’s theorem, Brill-

hart [7] proved this function had a natural boundary. Here is an elementary direct proof. Pn+1
is Pn−1Qn−1Pn−1(−Qn−1). Taking right limits at the end of the Pn−1 in Pn−1Qn−1 and in
Pn−1(−Qn−1) yields right limits which agree at negative index but have opposite signs at posi-
tive index.

4. Gap theorems

In this section, we’ll prove Theorem 1.6 and resolve the apparent contradiction to Pólya [33]
and Erdös [15]. The following proof shows the power of reflectionless theorems.

Proof of Theorem 1.6. By compactness, we can find a subsubsequence, nj�
, so lim�→∞ anj�

+k =
bk exists for all k and b0 �= 0, bk = 0 for k < 0. For such a right limit, f−(z) = 0, but
f+(0) = b0 �= 0. Thus, f− cannot be an analytic continuation of f+ through any I , and this
{bn}∞n=−∞ is not reflectionless on any I . Theorem 1.4 completes the proof. �

It is simplest to resolve the apparent contradiction with [33,15] in the context of an example.

Example 4.1. Let U = ⋃∞
j=2{n | j ! � n � j ! + j}. We want to consider bounded power series

with an = 0 if n ∈ U . If aj !+j+1 = 1 for j � 2 and an is arbitrary but bounded for n /∈ U ∪
{j ! + j + 1}∞j=2, then f (z) has a strong natural boundary on ∂D. The zero values may be only
on U , which is a set with zero density.

On the other hand, [33,15] say that since U does not have density 1, there must be {an}∞n=1
with an = 0 for n ∈ U so that ∂D is not a natural boundary.

The resolution is that our natural boundary examples have hard edges, that is, an jumps at
the edges of U , while the examples of [15] have soft edges. Z+ \ U has longer and longer
nonzero intervals and Erdös’ examples ramp up slowly and down slowly to be 1 in the center of
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these intervals. It is easy to see that these examples have right limits which are constant, and so
reflectionless!

These examples of Erdös are reminiscent of the sparse potentials of Molchanov [27] and
Remling [36], where approximate solitons are placed in between long gaps. In fact, given the
chronology, we should say the examples of [27,36] are reminiscent of Erdös [15]!

As noted by Agmon [1,2], it isn’t important that aNj +n → 0 as j → 0 from gaps, only that its
lim sup decays exponentially fast. Using right limits, this is easy to see since

Theorem 4.2. Let {bn}∞n=−∞ be a two-sided series which is reflectionless on some interval,
I ⊂ ∂D. Suppose that for some C,D > 0, we have that

|bn| � Ce−Dn for n > 0. (4.1)

Then bn ≡ 0.

Proof. By (4.1), f+(z) has an analytic continuation to the circle {z | |z| < eD}. Since f+ = −f−
in a neighborhood of I , we conclude that f+ defines an entire function. Since |f−(z)| → 0 as
|z| → ∞, f+ ≡ 0, so f− ≡ 0 also, and then bn ≡ 0. �

This immediately implies the following extension of Theorem 1.6:

Theorem 4.3. Suppose {an}∞n=0 obeys (1.4) and there exists nj → ∞ so that for some C,D > 0
and for all k < 0,

lim sup
j→∞

|anj +k| � Ce−D|k|, (4.2)

lim inf |anj
| > 0. (4.3)

Then f (z) = ∑∞
n=0 anz

n has a strong natural boundary on ∂D.

Proof. By compactness, there exists a right limit, so (4.1) holds for n < 0 and b0 �= 0. If
{bn}∞n=−∞ is reflectionless on I , then {b−n}∞n=−∞ is reflectionless on Ī = {z | z̄ ∈ I }, so The-
orem 4.2 implies bn ≡ 0 if this right limit is reflectionless. But b0 �= 0. �
5. Szegő’s theorem

In this section, we’ll prove

Theorem 5.1. Let
∑∞

n=0 anz
n where the values of {an} lie in a finite set, F . Then either f (z) =∑∞

n=0 anz
n has a strong natural boundary or an is eventually periodic, in which case f is a

rational function with poles at roots of unity.

Remark. This result for ordinary natural boundaries is due to Szegő [47]. That f is unbounded
on any sector is due to Duffin and Schaeffer [13], and that there is a strong natural boundary is a
result of Boas [4]. This is an analogy of spectral theory results of Kotani [22] and Remling [36].
One could use an argument of Kotani and our reflectionless machinery to prove Theorem 5.2,
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but instead we’ll borrow part of Boas’ argument and note one could use that to find an alternate
proof of the spectral theory results.

Proof of Theorem 5.1. Let V be the finite set of possible values of an. Suppose {an} is not
eventually periodic. Fix p = 1,2, . . . and consider p blocks, {aj }(�+1)p

j=�p+1 for � = 0,1,2, . . . . Since
there are only (#V )p possible p blocks, some value must recur, that is, there exist Qp > Pp so
that

aQp+j = aPp+j , j = 1, . . . , p. (5.1)

If (5.1) holds for all j � 1, then for k = Pp + j � Pp + 1, we have

a(Qp−Pp)+k = ak, k = 1, . . .

that is, a is eventually periodic. Since we are assuming the contrary, there is Lp � p + 1, so
aQp+Lp �= aPp+Lp .

Let Np = Pp + Lp → ∞ as p → ∞ since Lp � p and Mp = Qp + Lp > Np + L. Then

aNp + j = aMp + j, j = −p, . . . ,−1, (5.2)

aNp �= aMp . (5.3)

By compactness, we get right limits, b, c, obeying (2.16), (2.17), so by Theorem 3.1,
∑∞

n=0 anz
n

has a strong natural boundary. �
We note the following extension of Szegő’s theorem which appears in Bieberbach [3] (who

only proved classical natural boundary):

Theorem 5.2. Let {an}∞n=0 be a bounded sequence with finitely many limit points. Then either∑∞
n=0 anz

n has a strong natural boundary or there is a periodic sequence, cn, with

|an − cn| → 0 as n → ∞. (5.4)

Proof. Let V be the finite set of limit points. Let γ = 1
2 minx,y∈V,x �=y |x − y|. Eventually, for

all n, there is cn ∈ V with |an − cn| � γ . It follows that (5.4) holds. If cn is eventually periodic,
it can be modified for small n to be periodic and (5.4) still holds.

If cn is not eventually periodic, by the above, it has a right limit which is not reflectionless.
But an and cn have the same right limits. �
6. Random power series

In this section, we’ll prove Theorem 1.7 as well as

Theorem 6.1. Let {an(ω)}∞n=0 be a sequence of independent random variables so that

(i) supn,ω |an(ω)| = K < ∞.
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(ii) For some sequence nj → ∞,

lim sup
j→∞

[
E

(∣∣anj
(ω)

∣∣2) − ∣∣E(
anj

(ω)
)∣∣2]

> 0. (6.1)

Then for a.e. ω,
∑∞

n=0 an(ω)zn has a strong natural boundary.

Remark. E is expectation. We’ll use P for probability and V for variation, so (6.1) is
lim supj→∞ V(anj

(ω)) > 0.

Lemma 6.2.

(i) For any K and m, there exists Km > 0 so that for any random variable f with ‖f ‖∞ � K ,
there exists z ∈ C so that

P

(∣∣f (ω) − z
∣∣ � 1

m

)
� Km. (6.2)

(ii) For any K , m, and σ > 0, there exists K̃m > 0 so that for any random variable f with
‖f ‖∞ � K and V(f ) � σ , there exist z,w ∈ C with

|z − w| �
(

σ

2

)1/2

(6.3)

so that

P

(∣∣f (ω) − z
∣∣ � 1

m

)
� K̃m, P

(∣∣f (ω) − w
∣∣ � 1

m

)
� K̃m. (6.4)

Proof. (i) Cover {z | |z| � K} by disks of radius 1
m

. By compactness (or simple geometry),
one can arrange for a finite number Nm. One of these disks must have probability at least
Km = (Nm)−1. (6.2) holds for the center of that disk.

(ii) For any c > 0 and bounded random variable g,

E
(|g|2) � c2

P
(|g| � c

) + ‖g‖2∞P
(|g| � c

)
. (6.5)

Thus, for any α with |α| � ‖f ‖∞,

Var(f ) � c2 + (
2‖f ‖∞

)2
P
(|f − α| > c

)
. (6.6)

Picking c � ( σ
2 )1/2 with σ = Var(f ), we see that

P
(|f − α| > c

)
� 1

2
Var(f ). (6.7)
8‖f ‖∞
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Use (i) to find z so P(|f (ω) − z| � 1
m

) � Km where, if necessary, m is increased so
1
m

� ( σ
2 )1/2. By repeating (i) using P(|f − z| � ( σ

2 )1/2) � 1
8‖f ‖∞ σ , we get a w outside the disk

{ζ | |ζ − z| � ( σ
2 )1/2} so that P(|f (ω) − w| � 1

m
) � K̃m for some K̃m � Km. �

Proof of Theorem 6.1. Pick σ > 0 and nj → ∞ so that V(anj
(ω)) � σ for all j and so that

nj+1 � nj and nj+1 − nj → ∞. For each n �= nj , for all j , use (i) of Lemma 6.2 to pick z
(m)
n so

that

P

(∣∣an(ω) − z(m)
n

∣∣ � 1

m

)
� Km. (6.8)

By compactness and using the diagonalization trick, one can pass to a subsequence of the nj ,

which we’ll still denote by nj , so for all m and all k �= 0, z
(m)
nj +k → zk as j → ∞.

By using (ii) of Lemma 6.2, find w
(m)
j , ζ

(m)
j so that

P

(∣∣anj
(ω) − w

(m)
j

∣∣ � 1

m

)
� K̃m,

P

(∣∣anj
(ω) − ζ

(m)
j

∣∣ � 1

m

)
� K̃m (6.9)

and |w(m)
j −ζ

(m)
j | � ( σ

2 )1/2. Again, by passing to a subsequence, we may assume that w
(m)
j → w,

ζ
(m)
j → ζ where, of course, |ζ − w| � ( σ

2 )1/2.
By the Borel–Cantelli lemma, for each m and each Q,

∣∣anj
(ω) − w

(m)
j

∣∣ � 1

m
,

∣∣anj +k(ω) − z
(m)
nj +k

∣∣ � 1

m
(6.10)

for all k with 0 < |k| � Q, occurs infinitely often for a.e. ω, and the same for ζ
(m)
j . Thus, for

a.e. ω, the right limits include b, c with

bk = ck = zk for k �= 0, b0 = w, c0 = ζ �= w. (6.11)

It follows from Theorem 3.1 that an(ω) has a strong natural boundary for all ω. �
Remark. The use of the Borel–Cantelli lemma to get nonreflectionless limits (in the context of
spectral theory of CMV matrices) is taken from work of Breuer, Ryckman and Zinchenko [6].

For our proof of Theorem 1.7, we need two lemmas whose proof we defer to the end of the
section.

Lemma 6.3. Let α < β in (−π,2π) with |β − α| < 2π . Then {{an}∞n=0 | supn |an| � A for all

ε > 0; sup0<r<1(
∫ β−ε

α+ε
|∑∞

n=0 anr
neinθ | dθ

2π
) < ∞} is a measurable set (in the product topology)

invariant under an → an+1.
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Lemma 6.4. Let μ be a probability measure on {{an}∞n=−∞ | supn |an| � A} that defines an
ergodic invariant stochastic process. Let Rμ be the set of two-sided series {bn}∞n=−∞ so that
{bn}∞n=−∞ is a right limit of {an}∞n=0 with positive probability. Then Rμ is the support of the
measure μ.

Proof of Theorem 1.7. By Lemma 6.3, Theorem 1.4, and ergodicity (letting α,β run through
rational multiples of 2π ), either

∑∞
n=0 anz

n has a strong natural boundary with probability 1
or there is an interval, I , in ∂D so that with probability 1, all right limits of

∑∞
n=0 anz

n are
reflectionless across I . In that case, by Lemma 6.4, all {bn}∞n=−∞ in the support of μ are reflec-
tionless across I . By Theorem 2.2, on supp(μ), b0 is a continuous, and so measurable, function
of {bn}−1

n=−∞. Thus, the process is deterministic (in the strong sense of there being a continuous,
rather than merely a measurable function). �
Proof of Lemma 6.3. By Theorem 10.1 of Duren [14], the space E (sector) can be defined
by a countable family of approximating curves. Thus, letting z

(n)
1 = exp(i(α + 1

n
)), z

(n)
2 =

exp(i(β − 1
n
)), the sup condition can be replaced by

sup
m,n

( β− 1
n∫

α+ 1
n

∣∣∣∣∣(z − z
(n)
1

)(
z − z

(n)
2

) ∞∑
n=0

anz
n

∣∣∣∣∣
∣∣∣∣∣
z=(1− 1

m
)eiθ

dθ

2π

)
< ∞. (6.12)

Since it is described by a countable sup of uniformly convergent sums, this set is clearly measur-
able.

If f (z) = ∑∞
n=0 anz

n and f̃ (z) = ∑∞
n=0 an+1z

n, then

f̃ (z) = z−1(f (z) − a0z
)

(6.13)

and finiteness of the sup in (6.12) implies finiteness of the sup for f̃ replacing f . This proves the
claimed invariance. �
Proof of Lemma 6.4. If bn is in supp(dμ), then for any ε, N,μ({an | |aN+n − bn| < ε,

n = 0,±1, . . . ,±N}) > 0. By the ergodic theorem for a.e. ω,

lim
M→∞

1

M
#
{
j < M

∣∣ |an+j+N − bj | < ε, n = 0,±1, . . . ,±N
}

> 0 (6.14)

so for a.e. ω, there exists N� → ∞ with |an+N�
− bn| < ε for all n with |n| < N . By a diagonal-

ization trick, bn is a right limit for a.e. ω.
If bn is not in the support of μ, pick N and ε so that μ({an | |aN+n − bn| � ε, |n| � N}) = 0.

By translation invariance for all k,

μ
({

an

∣∣ |aN+k+n − bn| � ε, n � N
}) = 0 (6.15)

which implies bn is not a right limit with probability 1. �
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7. Hecke’s example

Motivated by a spectral theory result of Damanik and Killip [12], we prove the following that
includes Theorem 1.8 and so, Hecke’s example.

Theorem 7.1. Let T : ∂D → ∂D be a homeomorphism so that for any eiθ ∈ ∂D, {T k(eiθ ) | k =
0,1, . . .} is dense in ∂D. Let f : ∂D → C be a bounded and piecewise continuous function with a
finite number of discontinuities so that at, at least, one discontinuity, the right and left limits exist
and are not equal. Then for any eiθ ∈ ∂D,

∑∞
n=0 f (T n(eiθ ))zn has a strong natural boundary

on ∂D.

Remark. For other papers on other extensions of Hecke’s example, see [40,29,28,41,26,34,9].

Proof of Theorem 7.1. By rotating, we suppose eiθ = 1 is a point of a discontinuity with
limθ↓0 f (eiθ ) = r �= s = limθ↑0 f (eiθ ). By the density of any orbit for any eiθ , we can find
nj → ∞, so T nj (eiθ ) → 1 with T nj (eiθ ) = eiψj with −π < ψj < 0 and mj → ∞, so
T mj (eiθ ) → 1 and T mj (eiθ ) = eiηj with π > ηj > 0 (for find nj+1 > nj so |T nj+1(eiθ ) −
e−i/(j+1)| � (j + 1)−2).

Thus, anj
→ s and amj

→ r . On the other hand, look at the orbit {T �(1) | � = 1,2, . . .}. Since
this orbit is dense, the T �(1) must be distinct, so for some L and all � > L, T �(1) must be a
point of continuity. Thus, for � > L, anj +� − amj +� → 0. The hypotheses of Theorem 2.3 hold
for the right limits defined by anj +n and amj +n. So, by Theorem 3.1, we have a strong natural
boundary. �
8. Baire genericity

Proof of Theorem 1.9. Let {an}∞n=0 ∈ Ω∞. Pick two distinct points, z0, z1 ∈ Ω . For any �,
define

a(�)
n =

⎧⎨⎩
an, n � �,

z0, n = � + k! for k = 1,2, . . . ,

z1, n = � + m, m � 1, m �= k! for any k.

Then, by the gap theorem, {a(�)
n } has a natural boundary on ∂D, indeed, by Weierstrass’ original

direct arguments. But lim�→∞ a
(�)
n = an for each fixed n, so the set in the theorem is dense in the

weak topology.
For every rational multiple α,β of 2π with α < β , and every K = 1,2, . . . , and any n =

1, . . . , let Fα,β,K,n = {{an}∞n=1 ∈ Ω∞ | f (z) = ∑∞
n=0 anz

n has an analytic continuation to {z |
|z| < 1 + n−1, α < arg(z) < β} with |f (z)| � K there}. It is easy to see that

(i) Each Fα,β,K,n is closed in the topology of pointwise convergence of the an’s (by the Vitali
theorem).

(ii)
⋃

Fα,β,K,n is the set of power series for which ∂D is not a natural boundary.

Thus, the complement of the set in the theorem is an Fδ , so the set is a Gδ . �
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