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Abstract: We study the stability of convergence of the Christoffel–Darboux kernel,
associated with a compactly supported measure, to the sine kernel, under perturbations of
the Jacobi coefficients of the measure. We prove stability under variations of the boundary
conditions and stability in a weak sense under �1 and random �2 diagonal perturbations.
We also show that convergence to the sine kernel at x implies that μ({x}) = 0.

1. Introduction

Let dμ(x) = w(x)dx + dμsing(x) be a compactly supported probability measure with
an infinite number of points in its support, where μsing denotes the part of μ which is
singular with respect to Lebesgue measure. Let {pn}∞n=0 be the normalized orthogonal
polynomials for dμ and let {an, bn}∞n=1 be the Jacobi parameters defined by

xpn(x) = an+1 pn+1(x) + bn+1 pn(x) + an pn−1(x), n ≥ 1

xp0(x) = a1 p1(x) + b1 p0(x),
(1.1)

and satisfying an > 0, bn ∈ R, supn (an + |bn|) < ∞ (note p0(x) ≡ 1 by the normal-
ization).

The nth Christoffel–Darboux (CD) kernel associated with μ, Kn(μ; x, y), is the
kernel of the projection from L2(dμ) to the subspace spanned by {1, x, x2, . . . , xn−1}.
Namely,

Kn(μ; x, y) =
n−1∑

j=0

p j (x)p j (y). (1.2)
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The asymptotics of Kn(x, y) for x − y ∼ 1
n as n → ∞ has been a topic of intensive

study recently, motivated in part by the connection to the asymptotic behavior of zeros
of pn (see [2,26,27,40]), and to the problem of universality in random matrix theory
(see, e.g., [8,21,31]). In particular, the limit

lim
n→∞

Kn
(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw(x0)(b − a)
, (1.3)

has been shown to hold for large classes of measuresμ, whenever x0 is a Lebesgue point
of μ ([2,13,14,28–30,35,40] is a very partial list of relevant references). In (1.3), ρ(x0)

is some positive number. In all known examples, ρ is the density (i.e., the derivative with
respect to Lebesgue measure) of the weak limit of the sequence Kn(x,x)

n dμ(x). We will
want to avoid such a restriction below.

As is well known [38,39], there is a one to one correspondence (through (1.1))
between compactly supported probability measures with infinite support and bounded
real sequences {an, bn}∞n=1 satisfying an > 0 for all n. Given a measure, μ, with Jacobi
parameters {an, bn}∞n=1, and a perturbing sequence {βn}∞n=1, it is natural to ask what
properties of μ carry over to the measure μβ associated with the Jacobi parameters
{an, bn + βn}∞n=1.

The purpose of this paper is to study the stability of (1.3) under such perturbations.
We shall focus on points where μ has some regularity. More precisely,

Definition 1.1. We say x0 is a strong Lebesgue point for μ if the following conditions
hold:

(i) Letting Fμ(z) = ∫ dμ(t)
t−z be the Stieltjes transform of μ,

Fμ(x0 + i0) = lim
ε→0+

Fμ(x0 + iε) (1.4)

exists and is finite.
(i i) The derivative of μ with respect to Lebesgue measure exists and is positive at x0,

namely

lim
ε→0

μ(x0 − ε, x0 + ε)

2ε
= w(x0) > 0. (1.5)

Moreover, x0 is a Lebesgue point of w:

lim
ε→0+

∫ x0+ε

x0−ε
|w(t)− w(x0)|

2ε
dt = 0. (1.6)

Remark 1.1. Note that (1.5) and (1.6) imply immediately that the part ofμ that is singular
with respect to Lebesgue measure satisfies

lim
ε→0

μsing (x0 − ε, x0 + ε)

2ε
= 0. (1.7)

Maximal function methods [33] show that almost every x0 w.r.t.μac (=the part ofμ that is
absolutely continuous with respect to Lebesgue measure) satisfies (1.5) and (1.6). Similar
methods also show that Lebesgue almost every x0 satisfies (1.4) (see [34, Theorem I.4]).
Thus, almost every point with respect to μac is a strong Lebesgue point of μ.
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Definition 1.2. We say that quasi bulk universality (or simply quasi universality) holds
for μ at x0 ∈ R if x0 is a strong Lebesgue point of μ and (1.3) holds uniformly for a, b
in compact subsets of C, for some positive number ρ(x0).

Remark 1.2. Using the uniform convergence on compacts and the continuity of the func-
tion sin(x−y)

x−y , it is not hard to see that Definition 1.2 is equivalent to the following two
conditions (given that x0 is a strong Lebesgue point):

i) Uniformly for a, b ∈ compact subsets of C

lim
n→∞

Kn

(
x0 + a

w(x0)Kn(x0,x0)
, x + b

w(x0)Kn(x0,x0)

)

Kn(x0, x0)
= sin (π(b − a))

π(b − a)
, (1.8)

(known as weak bulk universality).
ii) limn→∞ Kn(x0,x0)w(x0)

n = ρ(x0).

Remark 1.3. In the case that Kn(x,x)
n dμ(x) has a weak limit, ν (aka ‘the density of states’

or density of zeros of pn [36]), and if ρ(x0) is the density of ν at the point x0, quasi bulk
universality implies bulk universality [2].

In a sense, the simplest nontrivial perturbing sequence, {βn}∞n=1, is a sequence sat-
isfying βn = 0 for all n �= 1. In order to treat this case, we first consider the problem
(which is interesting in its own right) of the consequences of universality for the second
kind CD kernel.

For this, recall that the second kind orthogonal polynomials associated with μ,
{qn}∞n=0, are defined by

qn(x) =
∫

pn(x)− pn(t)

x − t
dμ(t). (1.9)

Note that qn is a polynomial of degree (n − 1) for n ≥ 1, and q0 = 0. Moreover (see
Sect. 2 below), a1qn are the orthonormal polynomials with respect to the measure μ′
whose Jacobi coefficients are {an+1, bn+1}∞n=1. We let

K̃n(x, y) =
n−1∑

j=0

q j (x)q j (y)

be the second kind CD kernel and we let μ̃ be the orthogonality measure of the second
kind orthogonal polynomials (so μ̃ = a2

1μ
′). We can now state our first main result,

which we shall prove in Sect. 3.

Theorem 1.3. Assume that μ has compact support and x0 is a strong Lebesgue point of
μ. Assume further that

lim
n→∞

Kn
(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw(x0)(b − a)
(1.10)

uniformly for a, b in compact subsets of C, for some positive number ρ(x0).
Then

lim
n→∞

K̃n
(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw̃(x0)(b − a)
(1.11)

uniformly for a, b in compact subsets of C, where w̃(x0) �= 0 is the weight of dμ̃ at x0.
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Remark 1.4. There is an extensive literature, going back to Kato, on the stability of
absolutely continuous spectrum of Schrödinger operators and Jacobi matrices [1,3,5,7,
9,10,12,16–19,22–24,32]. The asymptotics of Kn(x, y) for x − y ∼ 1

n as n → ∞ are
connected to the microscopic behavior of zeros of pn which are eigenvalues of truncated
operators (for example, universality implies clock behavior [27,37]) and so stability of
universality is a delicate issue. To the best of our knowledge, the current paper is the
first work to deal with the issue of stability of these asymptotics.

Now, let β1 ∈ R and let μ(β1) be the orthogonality measure whose Jacobi parameters
are {an, bn+β1δn1}∞n=1. Denote the corresponding orthogonal polynomials by {p(β1)

n }∞n=0,
and the corresponding CD kernel

K (β1)
n (x, y) =

n−1∑

j=0

p(β1)
j (x)p(β1)

j (y). (1.12)

As we show in Sect. 3, Theorem 1.3 implies

Theorem 1.4. Under the assumptions of Theorem 1.3, for any β1 ∈ R,

lim
n→∞

K (β1)
n

(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw(β1)(x0)(b − a)
(1.13)

uniformly for a, b in compact subsets of C, where w(β1)(x0) �= 0 is the weight of dμ(β1)

at x0.

Remark 1.5. As we note in the proof of Theorem 1.5, the proof of Theorem 1.3 yields
an interesting formula for the limit of the symmetrized mixed CD kernel under the
conditions of the theorem as well (see (4.3) and (4.4)). It is essentially this formula,
together with the limit of K̃n , which is at the heart of the proof of Theorem 1.4.

Theorems 1.3 and 1.4 say that quasi universality is stable under a perturbation of b1,
with the additional bonus that the number ρ(x0) remains the same after the perturbation.
Note that the limiting behavior of Kn(x,x)dμ(x)

n is stable under such a perturbation so in
the case that ρ is the density of this limit then this part of the stability is trivial. If we
remove this restriction and allow x0 to vary over a set of positive Lebesgue measure,
we can also treat more general perturbations. The following two theorems are proven in
Sect. 4.

Theorem 1.5. Assume that μ has compact support with Jacobi parameters {an, bn}∞n=1
and that quasi universality holds at Lebesgue almost every x ∈ A. Let {βk}∞k=1 be a
sequence of real numbers satisfying

∞∑

k=1

|βk | < ∞.

Then quasi universality holds at Lebesgue a.e. x ∈ A also for the measure corre-
sponding to {an, bn + βn}∞n=1.

For random perturbations we can allow slower decay:
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Theorem 1.6. Assume that μ has compact support with Jacobi parameters {an, bn}∞n=1,
orthogonal polynomials {pn(x)}∞n=0, and second kind orthogonal polynomials
{qn(x)}∞n=0. Assume that quasi universality holds at Lebesgue almost every x ∈ A. Let{
βω,k

}∞
k=1 be a sequence of independent random variables with zero mean satisfying

∞∑

k=1

E

(
β2
ω,k

)
(|pk(x)| + |pk−1(x)| + |qk(x)| + |qk−1(x)|)4 < ∞ (1.14)

for Lebesgue a.e. x ∈ A.
Then, with probability one, quasi universality holds at Lebesgue a.e. x ∈ A also for

the measure corresponding to {an, bn + βω,n}∞n=1.

Remark 1.6. We shall prove Theorems 1.5 and 1.6 by showing that the existence of

limn→∞ Kn(x,x)
n and limn→∞ K̃n(x,x)

n , for a.e. x , is stable under the perturbations con-
sidered. The results of [2] then say that the existence of these limits for a.e. x implies
(1.8) for a.e. x (they prove it there for a, b ∈ R, but the proof extends to a, b ∈ C).
Letting ρ(x) ≡ limn→∞ Kn(x,x)

n w(x) we see, by Remark 1.2, that these conditions im-
ply quasi universality at x . Theorem 1.3 completes the picture to show that in fact quasi
universality almost everywhere is equivalent to the a.e. existence of these limits.

If we assume that Kn(x,x)
n dμ(x)has a weak limit, ν, and that ν is absolutely continuous

with weight ρ̃(x), then this limit is stable under the perturbations of Theorem 1.5 and
1.6. However, even if we assume that limn→∞ Kn(x,x)w(x)

n = ρ̃(x) for a.e. x ∈ A, we do
not know how to deduce this convergence for the CD kernel of the perturbed problem.
The issue is that in general weak convergence and the existence of a pointwise limit do
not guarantee that the pointwise limit coincides with the weak limit. Equality of these
limits would follow, for example, if we know that Kn(x,x)

n is uniformly bounded on an
interval, but we do not want to assume this. This is the reason behind our notion of quasi
universality.

On physical grounds, one expects a connection between local continuity of μ at x

and the asymptotics of
Kn

(
x+ a

n ,x+ b
n

)

n . In particular, for all known examples where μ
is absolutely continuous at x , universality has been shown to hold there. A significant
motivating factor for this paper was the fact that absolute continuity of μ is stable under
the perturbations considered above.

It is important to note, however, that universality can occur also for purely singular
measures, as demonstrated in [4]. Unfortunately, we have nothing to say on the issue of
stability of universality in such a case. Still, the work in [4] raises an interesting question:
assuming universality holds at x , what can one say about the local continuity ofμ there?
The next theorem, proven in Sect. 5, says that universality at x implies that μ cannot
have a pure point there.

Theorem 1.7. Assume μ has compact support. Fix x ∈ R. If there exists a number
ρ(x) > 0 such that for any a, b ∈ R,

lim
n→∞

Kn
(
x + a

n , x + b
n

)

Kn(x, x)
= sin (πρ(x)(b − a))

πρ(x)(b − a)
, (1.15)

then

lim
n→∞ Kn(x, x) = ∞. (1.16)
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Remark 1.7. The condition (1.16) is equivalent to μ ({x}) = 0. This is because μ has a
pure point at x iff the operator of multiplication by t on L2(dμ(t)) has an eigenvalue at x .
Since {p j (·)}∞j=0 is an orthonormal basis for L2(dμ), this holds iff

∑∞
j=0 |p j (x)|2 < ∞.

The rest of this paper is structured as follows: Section 2 has some preliminary facts
we shall need from the theory of rank one perturbations. The proofs of Theorems 1.3
and 1.4 are given in Sect. 3. The proofs of Theorems 1.5 and 1.6 are given in Sect. 4.
Finally, Sect. 5 has the proof of Theorem 1.7.

2. Preliminaries

Let μ be a probability measure on R, whose support is a compact, infinite set. Then μ
is the spectral measure of the operator of multiplication by x on the space L2(dμ(x)).
The recursion relation (1.1) says that in the orthonormal basis {pn(·)}∞n=0, this operator
is given by a Jacobi matrix

J =

⎛

⎜⎜⎜⎜⎝

b1 a1 0 0 . . .

a1 b2 a2 0 . . .

0 a2 b3 a3
. . .

...
...

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎠
. (2.1)

Thus μ is the spectral measure of the operator J on �2(N) and the vector δ1 =

⎛

⎜⎜⎝

1
0
0
...

⎞

⎟⎟⎠.

If follows that, for β1 ∈ R, the measureμ(β1) corresponding to the Jacobi parameters
{an, bn + β1δn1}∞n=1 is also the spectral measure of the Jacobi matrix

J (β1) =

⎛

⎜⎜⎜⎜⎝

b1 + β1 a1 0 0 . . .

a1 b2 a2 0 . . .

0 a2 b3 a3
. . .

...
...

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎠
. (2.2)

But J (β1)ψ = Jψ + β1〈δ1, ψ〉δ1, namely a rank one perturbation of J . Thus, we need
some facts from the theory of rank one perturbations of self-adjoint operators. A com-
prehensive review of the relevant theory is given in [34]. Here we shall merely collect
the facts we will use.

We first define the Stieltjes (aka Cauchy/Borel) transform of μ by

Fμ(z) =
∫

dμ(t)

t − z
. (2.3)

Fμ is analytic on C\supp(μ) and has positive imaginary part on C+ = {z | Im(z) > 0}.
The limit limε→0+ F(x + iε) ≡ F(x + i0) exists for strong Lebesgue points of μ and is
related to μ through the fact that

1

π
Im Fμ(x + iε)dx → dμ(x) (2.4)
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weakly as ε → 0+. In fact, for the absolutely continuous part we have

1

π
Im Fμ(x + i0) = w(x) (2.5)

whenever x is a strong Lebesgue point of μ, in the sense that the limit exists at x and is
equal to w(x) there. This implies that

1

π
Im Fμ(x + i0)dx = dμac(x) (2.6)

since a.e. point with respect to μac is a strong Lebesgue point of μ.
The identification

Fμ(z) = 〈δ1, (J − z)−1 δ1〉,
through the spectral theorem, and the resolvent formula

(
J (β1) − z

)−1 − (J − z)−1 = −β1

〈
δ1,

(
J (β1) − z

)−1 ·
〉
(J − z)−1 δ1

imply that

F (β1)
μ (z) = Fμ(z)

1 + β1 Fμ(z)
(2.7)

where F (β1)
μ (z) = ∫ dμ(β1)(t)

t−z . This immediately implies

Im F (β1)
μ (z) = Im Fμ(z)∣∣1 + β1 Fμ(z)

∣∣2 = Im Fμ(z)

1 + 2β1Re(Fμ(z)) + β2
1

∣∣Fμ(z)
∣∣2 (2.8)

so that for x a strong Lebesgue point of μ,

w(β1)(x) = 1

π

Im Fμ(x + i0)

1 + 2β1Re(Fμ(x + i0)) + β2
1

∣∣Fμ(x + i0)
∣∣2

= w(x)

1 + 2β1Re(Fμ(x + i0)) + β2
1

∣∣Fμ(x + i0)
∣∣2 . (2.9)

The case “β1 = ∞” is of particular significance. By [15, Section 4] (also see [34]),
as β1 → ∞, J (β1) converges in the strong resolvent sense to the operator

J (∞) =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 b2 a2 0 . . .

0 a2 b3 a3
. . .

...
...

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎠
. (2.10)

In addition, if μ̃ is the spectral measure of J (∞) and the vector Jδ1 − 〈δ1, Jδ1〉δ1 =⎛

⎜⎜⎝

0
a1
0
...

⎞

⎟⎟⎠, then

Fμ̃(z) = − 1

Fμ(z)
(2.11)
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which means that

Im Fμ̃(z) = Im Fμ(z)∣∣Fμ(z)
∣∣2 . (2.12)

The connection of this to qn , the second kind polynomials associated with μ, is through
the fact that if p∞

n are the orthogonal polynomials associated with the Jacobi matrix

J̃ =

⎛

⎜⎜⎜⎜⎜⎝

b2 a2 0 . . .

a2 b3 a3
. . .

0 a3 b4
. . .

...
...

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎠

then qn(x) = a−1
1 p∞

n−1(x). Since μ̃ is a2
1 times the orthogonality measure of the p∞

n , we
see that qn is precisely the (n − 1)’th orthonormal polynomial with respect to μ̃. Thus,
μ̃ is the measure of orthogonality for the qn’s. It follows from (2.5), (2.6), and (2.12)
that whenever x is a strong Lebesgue point of μ we may use

w̃(x) = w(x)

|F(x + i0)|2 (2.13)

for the Radon–Nikodym derivative, w̃, of μ̃.
An important part of our analysis rests on the fact that the limits above can be defined

somewhat more generally. In fact, for any a with Im a > 0,

F(x + i0) = lim
n→∞ F

(
x +

a

n

)

whenever F(x + i0) exists. Also note that for such a,

F(x + i0) = lim
n→∞ F

(
x +

a

n

)
.

To deduce Theorem 1.4 from Theorem 1.3 we need to express p(β1)
n as a linear

combination of pn and qn . This is possible since both sequences pn and qn satisfy
the same recursion relation (with different boundary conditions). Since q0(x) ≡ 0 and
p0(x) = p(β1)

0 (x) = 1, it is obvious that p(β1)
n (x) = pn(x) + γ qn(x). By plugging this

into (1.1) for p(β1)
n we immediately see that γ = −β1 and so

p(β1)
n (x) = pn(x)− β1qn(x). (2.14)

It will be convenient for us to write the recursion relation in matrix form: letting

S j (z) =
(

z−b j
a j

− 1
a j

a j 0

)
(2.15)

we see that
(

pn(z)
an pn−1(z)

)
= Sn(z)

(
pn−1(z)

an−1 pn−2(z)

)
. (2.16)
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Note also that det
(
S j (z)

) = 1. The transfer matrix is defined by

�n(z) = Sn(z)Sn−1(z) . . . S1(z) (2.17)

so that
(

pn(z)
an pn−1(z)

)
= �n(z)

(
1
0

)
, (2.18)

and
( −qn(z)

−an pn−1(z)

)
= �n(z)

(
0
1

)
. (2.19)

Thus we see that

�n(z) =
(

pn(z) −qn(z)
an pn−1(z) −anqn−1(z)

)
. (2.20)

Finally, we note that, by the fact that det�n(z) = 1,

‖�n(z)‖ = ‖ (�n(z))
−1 ‖. (2.21)

3. Proof of Theorems 1.3 and 1.4

We first prove the following lemma:

Lemma 3.1. Under the conditions of Theorem 1.3

lim
n→∞

1

n

(∫
Kn

(
x0 + a

n , s
)

(
x0 + b

n − s
) dμ(s)

)
=

∫ ∞

−∞
sin πρ(x0) (s − a)

π(s − a)(b − s)
ds, (3.1)

lim
n→∞

1

n

(∫
Kn

(
x0 + b

n , t
)

(
x0 + a

n − t
) dμ(t)

)
=

∫ ∞

−∞
sin πρ(x0) (t − b)

π(t − b)(a − t)
dt, (3.2)

and

lim
n→∞

1

n

(∫ ∫
Kn(t, s)

(
x0 + a

n − t
) (

x0 + b
n − s

)dμ(t)dμ(s)

)

=
∫ ∞

−∞

∫ ∞

−∞
sin πρ(x0) (t − s)

π(t − s)(t − a)(s − b)
w(x0)dtds (3.3)

for any a, b with Im(a) > 0, Im(b) < 0.

Proof. We first prove (3.3). For simplicity of notation we assume x0 = 0.
Fix M > 0, and let In = [− M

n ,
M
n ]. We split the integral as follows

∫ ∫
Kn(t, s)dμ(t)dμ(s)

( a
n − t

) ( b
n − s

) =
∫

In

∫

In

Kn(t, s)dμac(t)dμac(s)( a
n − t

) ( b
n − s

)

+
∫

In

∫

In

Kn(t, s)dμac(t)dμsing(s)( a
n − t

) ( b
n − s

) +
∫

In

∫

In

Kn(t, s)dμsing(t)dμac(s)( a
n − t

) ( b
n − s

)
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+
∫

In

∫

In

Kn(t, s)dμsing(t)dμsing(s)( a
n − t

) ( b
n − s

) +
∫

R\In

∫

In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
)

+
∫

In

∫

R\In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
) +

∫

R\In

∫

R\In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
) .

We evaluate the first term by changing variables
∫

In

∫

In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμac(t)dμac(s)

=
∫

In

∫

In

Kn(t, s)
( a

n − t
) ( b

n − s
)w(t)w(s)dtds

=
∫ M

−M

∫ M

−M

Kn(t/n, s/n)

(a − t) (b − s)
w(t/n)w(s/n)dtds.

By the fact that
Kn

(
a
n ,

b
n

)

n → sin(πρ(0)(b−a))
πw(0)(b−a) as n → ∞, uniformly on compacts, together

with the fact that 0 is a Lebesgue point of w, we see that

lim
n→∞

1

n

(∫

In

∫

In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμac(t)dμac(s)

)

=
∫ M

−M

∫ M

−M

sin πρ(0) (t − s)

π(t − s)(t − a)(s − b)
w(0)dtds

which converges to the desirable limit as M → ∞. Suppose we show that

lim sup
n→∞

1

n

∫

R\In

∫

In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμ(t)dμ(s) = O(M−1/2) (3.4)

lim sup
n→∞

1

n

∫

In

∫

R\In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμ(t)dμ(s) = O(M−1/2), (3.5)

lim sup
n→∞

1

n

∫

R\In

∫

R\In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμ(t)dμ(s) = O(M−1/2), (3.6)

and

lim sup
n→∞

1

n

∫

In

∫

In

Kn(t, s)
( a

n − t
) ( b

n − s
)dμsing(t)dμ(s) = 0. (3.7)

Then, by taking first n → ∞ and then M → ∞, we are done.
For any sets I, J ⊆ R, write

∣∣∣∣∣

∫

I

∫

J

Kn(t, s)
( a

n − t
) ( b

n − s
)dμ(t)dμ(s)

∣∣∣∣∣

=
∣∣∣∣∣∣

n−1∑

j=0

∫

I

p j (t)
a
n − t

dμ(t)
∫

J

p j (s)
b
n − s

dμ(s)

∣∣∣∣∣∣
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≤
⎛

⎝
n−1∑

j=0

∣∣∣∣
∫

I

p j (t)
a
n − t

dμ(t)

∣∣∣∣
2
⎞

⎠
1/2 ⎛

⎝
n−1∑

j=0

∣∣∣∣∣

∫

J

p j (s)
b
n − s

dμ(s)

∣∣∣∣∣

2
⎞

⎠
1/2

≤
⎛

⎝
∞∑

j=0

∣∣∣∣
∫

I

p j (t)
a
n − t

dμ(t)

∣∣∣∣
2
⎞

⎠
1/2 ⎛

⎝
∞∑

j=0

∣∣∣∣∣

∫

J

p j (s)
b
n − s

dμ(s)

∣∣∣∣∣

2
⎞

⎠
1/2

,

by Cauchy–Schwarz, and note that

∞∑

j=0

∣∣∣∣
∫

I

p j (t)dμ(t)
z
n − t

∣∣∣∣
2

=
∞∑

j=0

∫

I

p j (t)dμ(t)
z
n − t

∫

I

p j (s)dμ(s)
z
n − s

=
∫

I

dμ(t)
∣∣ z

n − t
∣∣2 ,

for any z with Im(z) �= 0, by the completeness of {p j (·)}∞j=0 in L2(dμ).
It follows that
∣∣∣∣∣

∫

R\In

∫

In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
)

∣∣∣∣∣ ≤
(∫

R\In

dμ(t)
∣∣ a

n − t
∣∣2

)1/2 (∫

In

dμ(s)
∣∣ b

n − s
∣∣2

)1/2

,

∣∣∣∣∣

∫

In

∫

R\In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
)

∣∣∣∣∣ ≤
(∫

In

dμ(t)
∣∣ a

n − t
∣∣2

)1/2 (∫

R\In

dμ(s)
∣∣ b

n − s
∣∣2

)1/2

,

∣∣∣∣∣

∫

R\In

∫

R\In

Kn(t, s)dμ(t)dμ(s)
( a

n − t
) ( b

n − s
)

∣∣∣∣∣ ≤
(∫

R\In

dμ(t)
∣∣ a

n − t
∣∣2

)1/2 (∫

R\In

dμ(s)
∣∣ b

n − s
∣∣2

)1/2

,

and (by further restricting from In to a supporting set of zero Lebesgue measure for
μsing)

∣∣∣∣∣

∫

In

∫

In

Kn(t, s)dμsing(t)dμ(s)( a
n − t

) ( b
n − s

)

∣∣∣∣∣ ≤
(∫

In

dμsing(t)∣∣ a
n − t

∣∣2

)1/2 (∫

In

dμ(s)
∣∣ b

n − s
∣∣2

)1/2

.

Thus, if we show that
∫

In

dμ(t)
∣∣ a

n − t
∣∣2 = O(n), (3.8)

∫

In

dμsing(t)∣∣ a
n − t

∣∣2 = o(n), (3.9)

and
∫

R\In

dμ(t)
∣∣ a

n − t
∣∣2 = O

( n

M

)
(3.10)

for any a ∈ C with Im(a) �= 0, then (3.4)–(3.7) will follow.
Note that x0 being a strong Lebesgue point of μ implies that for sufficiently large

n, μ
([− M

n , t
])

� t + M
n for any − M

n < t ≤ M
n . Regarding μsing, for any ε > 0, for
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n large enough (depending on ε), μsing
([− M

n , t
]) ≤ ε

(
t + M

n

)
for any − M

n < t ≤ M
n .

Thus, integration by parts gives

∫

In

dμ(t)
∣∣ a

n − t
∣∣2 � n2μ(In)

1

|a − M |2 +

∣∣∣∣∣

∫

In

μ
([− M

n , t
])

∣∣ a
n − t

∣∣3 dt

∣∣∣∣∣

� nM

|a − M |2 +
∫

In

∣∣t + M
n

∣∣
∣∣t − a

n

∣∣3 dt

≤ nM

|a − M |2 + n
∫ M

−M

|t + M |
|t − a|3 dt

= nM

|a − M |2 + n
∫ 2M

0

t

|t − M − a|3 dt

� nM

|a − M |2 + n

(
2M

|M − a|2
)

+ n
∫ 2M

0

1

|t − M − a|2 dt

≤ nM

|a − M |2 + n

(
2M

|M − a|2
)

+ n
∫ ∞

−∞
1

|t − a|2 dt = O(n)

where the implicit constant is independent of M . This is (3.8).
In the same way,

∫

In

dμsing(t)∣∣ a
n − t

∣∣2 � n2μsing(In)
1

|a − M |2 +

∣∣∣∣∣

∫

In

μsing
([− M

n , t
])

∣∣ a
n − t

∣∣3 dt

∣∣∣∣∣

� ε
nM

|a − M |2 + ε
∫

In

∣∣t + M
n

∣∣
∣∣t − a

n

∣∣3 dt

≤ ε
nM

|a − M |2 + εn
∫ M

−M

t + M

|t − a|3 dt

= ε
nM

|a − M |2 + εn
∫ 2M

0

t

|t − M − a|3 dt = O(n)ε

which means that

lim sup
n→∞

1

n

∫

In

dμsing(t)∣∣ a
n − t

∣∣2 � ε

for ε arbitrarily small. This is (3.9).
As for (3.10), following [6] we define Hn = [− M

n1/3 ,
M

n1/3 ] and split the integral over
Hn . For M ≥ 2|a|

∫

R\In

dμ(t)
∣∣ a

n − t
∣∣2 ≤ 4

∫

R\In

dμ(t)

t2 = 4
∫

R\Hn

dμ(t)

t2 + 4
∫

Hn\In

dμ(t)

t2 .

Since μ is a probability measure and t /∈ Hn satisfies t2 ≥ M2

n2/3 we see that

∫

R\Hn

dμ(t)

t2 ≤ n2/3

M2 .
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For the remaining integral we use (again) integration by parts:

∫

Hn\In

dμ(t)

t2 � n2/3

M2 μ (Hn\In) +
∫ M/n1/3

M/n

μ
([ M

n , t
])

+ μ
([−t,− M

n

])

t3 dt

� M

n1/3

n2/3

M2 +
∫ M/n1/3

M/n

t − M
n

t3 dt � n

M
+ n

∫ n2/3 M

M

t − M

t3 dt

� n

M
+ n

∫ ∞

M

t − M

t3 dt = O
( n

M

)
.

The last two inequalities imply (3.10) and thus finish the proof of (3.3).
The proof of (3.1) and (3.2) follows the same strategy of the proof of [6, Theorem

3.1] with the following modifications: first, Kn(x, x)w(x) of that proof (denoted in [6]
by K̃n(x, x)) needs to be replaced by n and the appropriate modifications made to the
limit. For this purpose note that, by (1.10), lim Kn(x0,x0)w(x0)

n = ρ(x0). Second, the
condition of the measure μ being purely absolutely continuous in a neighborhood of
0 may be relaxed to the conditions satisfied by μ here. The appropriate changes to the
proof proceed by using integration by parts arguments in much the same way as we did
above. ��
Proof of Theorem 1.3. We first prove (1.11) for a, b satisfying Im(a) > 0, Im(b) < 0.
Write

K̃n
(
x0 + a

n , x0 + b
n

)

n
= 1

n

n−1∑

j=0

q j

(
x0 +

a

n

)
q j

(
x0 +

b

n

)

= 1

n

n−1∑

j=0

(∫
p j

(
x0 + a

n

) − p j (t)

x0 + a
n − t

dμ(t)
∫

p j
(
x0 + b

n

) − p j (s)

x0 + b
n − s

dμ(s)

)

= An + Bn + Cn

where An, Bn,Cn are obtained by carrying out the multiplication and collecting the
terms, so

An = 1

n

n−1∑

j=0

(
p j

(
x0 +

a

n

)
p j

(
x0 +

b

n

) (∫
dμ(t)

x0 + a
n − t

∫
dμ(s)

x0 + b
n − s

))

= Kn
(
x0 + a

n , x0 + b
n

)

n

(∫
dμ(t)

x0 + a
n − t

∫
dμ(s)

x0 + b
n − s

)
,

Bn = 1

n

(∫ ∫
Kn(t, s)

(
x0 + a

n − t
) (

x0 + b
n − s

)dμ(t)dμ(s)

)
,

and

Cn = −1

n

(∫ ∫
Kn

(
x0 + a

n , s
)

+ Kn
(
x0 + b

n , t
)

(
x0 + a

n − t
) (

x0 + b
n − s

) dμ(t)dμ(s)

)
.

By (1.10), the fact that x0 is a strong Lebesgue point, and the fact that Im(a) Im(b) < 0
we get
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lim
n→∞ An = sin (πρ(x0)(b − a))

πw(x0)(b − a)
|F(x + i0)|2 = sin (πρ(x0)(b − a))

πw̃(x0)(b − a)
.

Where we used (2.13) to write w̃(x) = w(x0)

|F(x0+i0)|2 .

By (3.3),

lim
n→∞ Bn =

∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

π(t − s)(t − a)(s − b)
w(x0)dtds

=
∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

π(t − s)(t − a)(s − b)
dtds

Im (F(x0 + i0))

π

=
∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

π2(t − s)(t − a)(s − b)
dtds

(
F(x0 + i0)− F(x0 + i0)

2i

)
,

and by (3.1) and (3.2), together with

lim
n→∞

∫
dμ(t)

x0 + b
n − t

= F(x0 + i0) = lim
n→∞

∫
dμ(t)

x0 + a
n − t

,

we see that

lim
n→∞ Cn

=
∫ ∞

−∞
sin (πρ(x0)(s − a)) F(x0 + i0) + sin (πρ(x0)(s − b)) F(x0 + i0)

π(s − a)(s − b)
ds.

Combining the limiting expressions for An , Bn and Cn , we see that

K̃n
(
x0 + a

n , x0 + b
n

)

n
− sin (πρ(x0)(b − a))

πw̃(x0)(b − a)

=
∫ ∞

−∞
sin (πρ(x0)(s − a)) F(x0 + i0) + sin (πρ(x0)(s − b)) F(x0 + i0)

π(s − a)(s − b)
ds

+
∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

π2(t − s)(t − a)(s − b)
dtds

(
F(x0 + i0)− F(x0 + i0)

2i

)

+ o(1).

This step of the proof will therefore be complete if we show that
∫ ∞

−∞
sin (πρ(x0)(s − a))

π(s − a)(s − b)
ds = −

∫ ∞

−∞
sin (πρ(x0)(s − b))

π(s − a)(s − b)
ds

=
∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

2π2i(t − s)(t − a)(s − b)
dtds.

We first write
∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

2π2i(t − s)(t − a)(s − b)
dtds

=
∫ ∞

−∞
ds

2π i(s − b)

∫ ∞

−∞
sin (πρ(x0) (t − s))

π(t − s)(t − a)
dt.
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Now, the inner integral can be evaluated using contour integration, by first deforming
R into a path, , which differs from R only by bypassing s along a small semicircle
through the lower half-plane around s. We then split the integrand as follows:

∫ ∞

−∞
sin (πρ(x0) (t − s))

π(t − s)(t − a)
dt =

∫



sin (πρ(x0) (t − s))

π(t − s)(t − a)
dt

=
∫



ei(πρ(x0)(t−s)) − e−i(πρ(x0)(t−s))

2π i(t − s)(t − a)
dt

= 1

2π i

∫



ei(πρ(x0)(t−s))

(t − s)(t − a)
dt − 1

2π i

∫



e−i(πρ(x0)(t−s))

(t − s)(t − a)
dt.

The first integral is evaluated by contour integration through the upper half-plane to
show:

1

2π i

∫



ei(πρ(x0)(t−s))

(t − s)(t − a)
dt = eiπρ(x0)(a−s)

(a − s)
+

1

(s − a)
= eiπρ(x0)(a−s) − 1

(a − s)
,

and the second integral is evaluated through the lower half-plane to show:

1

2π i

∫



e−i(πρ(x0)(t−s))

(t − s)(t − a)
dt = 0.

Thus we see that

∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

2π2i(t − s)(t − a)(s − b)
dtds =

∫ ∞

−∞
eiπρ(x0)(a−s) − 1

2π i(s − b) (a − s)
ds.

Now note that

∫ ∞

−∞
eiπρ(x0)(a−s) − 1

2π i(s − b) (a − s)
ds −

∫ ∞

−∞
sin (πρ(x0)(s − a))

π(s − a)(s − b)
ds

=
∫ ∞

−∞
eiπρ(x0)(a−s) − 1

2π i(s − b) (a − s)
ds −

∫ ∞

−∞
sin (πρ(x0)(a − s))

π(a − s)(s − b)
ds

=
∫ ∞

−∞
eiπρ(x0)(a−s) − 1

2π i(s − b) (a − s)
ds −

∫ ∞

−∞
ei(πρ(x0)(a−s)) − e−i(πρ(x0)(a−s))

2π i(a − s)(s − b)
ds

=
∫ ∞

−∞
e−i(πρ(x0)(a−s)) − 1

2π i(a − s)(s − b)
ds = 0

by contour integration through the upper half-plane! (Note that a is not a pole of the
integrand and the integrand decays like |s|−2 as |s| → ∞ in the upper half plane).

By writing

∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

2π2i(t − s)(t − a)(s − b)
dtds

=
∫ ∞

−∞
dt

2π i(t − a)

∫ ∞

−∞
sin (πρ(x0) (s − t))

π(s − t)(s − b)
ds
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and carrying out the analogous computation (essentially, interchanging the roles of
“upper half-plane” and “lower half-plane” in the argument above) we see that also

∫ ∞

−∞
sin (πρ(x0)(s − b))

π(s − a)(s − b)
ds = −

∫ ∞

−∞

∫ ∞

−∞
sin (πρ(x0) (t − s))

2π2i(t − s)(t − a)(s − b)
dtds

which finishes the first step of the proof. Since it will be important again later, we note
we have shown that

∫ ∞

−∞
sin (πρ(x0)(s − a))

π(s − a)(s − b)
ds = −

∫ ∞

−∞
sin (πρ(x0)(s − b))

π(s − a)(s − b)
ds. (3.11)

Now, by taking b = a we see that

1

n

n−1∑

j=0

∣∣∣q j

(
x0 +

a

n

)∣∣∣
2

is bounded uniformly on compact sets of C\R. Since this is true also for

1

n

n−1∑

j=0

∣∣∣p j

(
x0 +

a

n

)∣∣∣
2
,

we deduce, using Cauchy–Schwarz and the boundedness of an , that

1

n

n−1∑

j=0

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2

is bounded uniformly on compact sets of C\R.
It now follows from a modification of the proof of [2, Theorem 3] that in fact

sup
n

1

n

n−1∑

j=0

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2
< ∞

is bounded uniformly for a in compact subsets of C. Explicitly, note that for any a, b ∈ C,
∥∥∥∥S j

(
x0 +

a

n

)
− S j

(
x0 +

b

n

)∥∥∥∥ ≤ α−1−
|a − b|

n
,

where α− = infn an > 0 (which follows from [11] since μ has a non-trivial absolutely
continuous component). Writing

� j

(
x0 +

a

n

)−1
� j

(
x0 +

b

n

)
= (

1 + B j
) (

1 + B j−1
)
. . . (1 + B1) ,

with

Bk = �k

(
x0 +

a

n

)−1
(

Sk

(
x0 +

b

n

)
− Sk

(
x0 +

a

n

))
�k−1

(
x0 +

a

n

)
,



Stability of Asymptotics of Christoffel–Darboux Kernels 1171

we get that
∥∥∥∥� j

(
x0 +

b

n

)∥∥∥∥

≤
∥∥∥� j

(
x0 +

a

n

)∥∥∥ exp

⎛

⎝α
−1− |a − b|

n

j∑

k=1

∥∥∥� j

(
x0 +

a

n

)∥∥∥
∥∥∥� j−1

(
x0 +

a

n

)∥∥∥

⎞

⎠

≤
∥∥∥� j

(
x0 +

a

n

)∥∥∥ exp

⎛

⎝α
−1− |a − b|

n

j∑

k=1

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2

⎞

⎠

≤
∥∥∥� j

(
x0 +

a

n

)∥∥∥ exp

(
α−1− |a − b|

n

n−1∑

k=1

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2
)
.

(Note that‖Bk‖ ≤ ∥∥�k
(
x0 + b

n

)∥∥ ∥∥�k−1
(
x0 + b

n

)∥∥ α−1− |a−b|
n , by its definition and (2.21);

also note that ‖1 + Bk‖ ≤ exp (‖Bk‖)).
Now, if

sup
n

1

n

n−1∑

j=0

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2 = C,

it follows that

1

n

n−1∑

j=0

∥∥∥∥� j

(
x0 +

b

n

)∥∥∥∥
2

≤ 1

n

n−1∑

j=0

∥∥∥� j

(
x0 +

a

n

)∥∥∥
2

exp
(

2Cα−1− |a − b|
)

and we see that

sup
n

1

n

n−1∑

j=0

∥∥∥∥� j

(
x0 +

b

n

)∥∥∥∥
2

< ∞

is bounded uniformly for b in compact sets of C.
Now, by Cauchy–Schwarz,

∣∣∣∣∣∣
1

n

n−1∑

j=0

q j

(
x0 +

a

n

)
q j

(
x0 +

b

n

)∣∣∣∣∣∣

≤
⎛

⎝1

n

n−1∑

j=0

∣∣∣q j

(
x0 +

a

n

)∣∣∣
2

⎞

⎠
1/2 ⎛

⎝1

n

n−1∑

j=0

∣∣∣∣q j

(
x0 +

b

n

)∣∣∣∣
2
⎞

⎠
1/2

.

This implies that for any fixed a ∈ C, the family

g̃n(b) = 1

n

n−1∑

j=0

q j

(
x0 +

a

n

)
q j

(
x0 +

b

n

)
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is a normal family. Fixing a ∈ C\R, we note that the limit on a set with a limit point
determines the limit and so we get that for any fixed a ∈ C\R and any b ∈ C

lim
n→∞

K̃n
(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw̃(x0)(b − a)
.

Fixing now b ∈ C we see that the family

h̃n(a) = 1

n

n−1∑

j=0

q j

(
x0 +

a

n

)
q j

(
x0 +

b

n

)

is a normal family, which implies finally that

lim
n→∞

K̃n
(
x0 + a

n , x0 + b
n

)

n
= sin (πρ(x0)(b − a))

πw̃(x0)(b − a)

for any a, b ∈ C, uniformly in compact sets. ��
Proof of Theorem 1.4. By the same arguments as in the proof of Theorem 1.3, it is
enough to prove (1.13) for a, b such that Im(a) > 0, Im(b) < 0. (Note that the second
kind polynomials for μ(β1) are still {qn}∞n=0).

Using (2.14), it is easy to see that

K (β1)
n (x, y) = Kn (x, y) + β2

1 K̃n (x, y)

−β1

⎛

⎝
n−1∑

j=0

q j (x) p j (y) +
n−1∑

j=0

q j (y) p j (x)

⎞

⎠

=
(

1 − β1

∫
dμ(t)

x − t
− β1

∫
dμ(t)

y − t

)
Kn (x, y) + β2

1 K̃n (x, y)

−β1

(∫
Kn(x, t)dμ(t)

y − t
+

∫
Kn(y, t)

x − t

)
(3.12)

where the last equality was obtained by substituting q j (x) = ∫ p j (x)−p j (t)
x−t dμ(t) and

collecting the terms. Now, all we have to do is compute the appropriate limits for x =
x0 + a

n and y = x0 + b
n . By Lemma 3.1,

lim
n→∞

1

n

(∫
Kn

(
x0 + a

n , t
)

dμ(t)

x0 + b
n − t

+
∫

Kn
(
x0 + b

n , t
)

x0 + a
n − t

)

= −
(∫ ∞

−∞
sin πρ(x0)(s − a)

π(s − a)(s − b)
ds +

∫ ∞

−∞
sin πρ(x0)(s − b)

π(s − a)(s − b)
ds

)
= 0

by (3.11).
Since

lim
n→∞

(
1 − β1

∫
dμ(t)

x0 + a
n − t

− β1

∫
dμ(t)

x0 + b
n − t

)

= lim
n→∞

(
1 + β1

∫
dμ(t)

t − x0 − a
n

+ β1

∫
dμ(t)

t − x0 − b
n

)

= 1 + β1(F(x0 + i0) + F(x0 + i0)) = 1 + 2β1Re(F(x0 + i0))
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we see that

lim
n→∞

1

n
K (β1)

n

(
x0 +

a

n
, x0 +

b

n

)

= lim
n→∞ (1 + 2β1Re(F(x0 + i0))) lim

n→∞
1

n
Kn

(
x0 +

a

n
, x0 +

b

n

)

+β2
1 lim

n→∞
1

n
K̃n

(
x0 +

a

n
, x0 +

b

n

)

=
(

1 + 2β1Re(F(x0 + i0)) + β2
1 |F(x0 + i0)|2

) sin πρ(x0)(b − a)

πw(x0)(b − a)

by Theorem 1.3. But by (2.9) this is precisely

sin πρ(x0)(b − a)

πw(β1)(x0)(b − a)
.

We are done. ��

4. Proofs of Theorems 1.5 and 1.6

Both the proof of Theorem 1.5 and that of 1.6 are standard applications of variation of
parameters methods. In the proofs we give, we explain the connection and then refer to
relevant theorems from the literature.

Proof of Theorem 1.5. Let μ(β) be the spectral measure of the perturbed Jacobi matrix
and write p(β)k and q(β)k for the first and second kind orthogonal polynomials, respectively,
associated with the measure μ(β). Theorem 3 and Corollary 1.3 of [2] say that if

lim
n→∞

1

n

n−1∑

j=0

|p(β)j (x)|2 (4.1)

and

lim
n→∞

1

n

n−1∑

j=0

|q(β)j (x)|2 (4.2)

both exist and are finite for a.e. x ∈ A then quasi universality holds for a.e. x ∈ A. We
shall show that this is indeed the case.

First note that Lebesgue a.e. point of A is a strong Lebesgue point of μ. Thus, it
follows from the assumptions of the theorem and Theorem 1.3 that

lim
n→∞

1

n

n−1∑

j=0

|p j (x)|2

and

lim
n→∞

1

n

n−1∑

j=0

|q j (x)|2
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both exist and are finite for a.e. x ∈ A. We claim also that

lim
n→∞

1

n

n−1∑

j=0

p j (x)q j (x)

exists and is finite for a.e. x ∈ A. To see this, consider

1

n

n−1∑

j=0

(
p j

(
x +

a

n

)
q j

(
x +

b

n

)
+ p j

(
x +

b

n

)
q j

(
x +

a

n

))
(4.3)

for a, b satisfying Im(a) > 0, Im(b) < 0. By the arguments in the proof of Theorem
1.4, if x is a strong Lebesgue point of μ and quasi universality holds at x , then this
converges, as n → ∞, to

2Re(F(x + i0))
sin πρ(x)(b − a)

πw(x)(b − a)
. (4.4)

Using the same normal family argument as in the proof of Theorem 1.3 we see that this
convergence holds for every a, b ∈ C. In particular, taking a = b = 0, we get

lim
n→∞

1

n

n−1∑

j=0

p j (x) q j (x) = Re(F(x + i0))
ρ(x)

w(x)

for every strong Lebesgue point of μ where quasi universality holds. In particular, the
limit exists and is finite for Lebesgue a.e. x ∈ A.

To prove (4.1) and (4.2) we use variation of parameters. We write

p(β)k (x) = u1,k(x)pk(x) + u2,k(x)qk(x),

p(β)k−1(x) = u1,k(x)pk−1(x) + u2,k(x)qk−1(x),

and

q(β)k (x) = v1,k(x)pk(x) + v2,kqk(x),

q(β)k−1(x) = v1,k(x)pk−1(x) + v2,kqk−1(x).

Suppose that we know that uk(x) =
(

u1,k(x)
u2,k(x)

)
converges to u(x) =

(
u1(x)
u2(x)

)
as

k → ∞, then it is not hard to see that

1

n

n−1∑

j=0

u1, j (x)
2 p j (x)

2 → u1(x)
2 lim

n→∞
1

n

n−1∑

j=0

p j (x)
2,

and

1

n

n−1∑

j=0

u2, j (x)
2q j (x)

2 → u2(x)
2 lim

n→∞
1

n

n−1∑

j=0

q j (x)
2,
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as n → ∞. With a little more work (using Cauchy–Schwartz), it follows that

1

n

n−1∑

j=0

u1, j (x)u2, j (x)p j (x)q j (x) → u1(x)u2(x) lim
n→∞

1

n

n−1∑

j=0

p j (x)q j (x).

But from writing

p(β)j (x)2 = u1, j (x)
2 p j (x)

2 + u2, j (x)
2q j (x)

2 + 2u1, j (x)u2, j (x)p j (x)q j (x)

we see that the existence of these limits implies (4.1). Similarly, convergence of vk(x) =(
v1,k(x)
v2,k(x)

)
implies (4.2).

Thus, proving the convergence of uk(x) and vk(x) for a.e. x ∈ A will prove the
theorem. Note that since limn→∞ 1

n

∑n−1
j=0

(
p j (x)2 + q j (x)2

)
< ∞ at Lebesgue a.e.

x ∈ A, A (up to a set of zero Lebesgue measure) is a subset of the essential support of
the a.c. part of both μ and μ̃, where μ̃ is the orthogonality measure of the {qn}∞n=0, (see,
e.g., [25]). Thus, the restrictions of both μac and μ̃ac to A are equivalent to Lebesgue
measure (and are also mutually equivalent). From

∫ ∞∑

k=1

|βk |p2
k (x)dμ(x) =

∞∑

k=1

|βk | < ∞

and
∫ ∞∑

k=1

|βk |q2
k (x)dμ̃(x) =

∞∑

k=1

|βk | < ∞,

we see that for Lebesgue a.e. x ∈ A

∞∑

k=1

(
|βk |pk(x)

2 + |βk |qk(x)
2
)
< ∞

which also implies that

∞∑

k=1

|βk ||pk(x)qk(x)| < ∞

for Lebesgue a.e. x ∈ A. These are precisely the conditions of the discrete version of
Theorem 2.2 in [20] with f+ = f− ≡ 1 (see especially the remarks after the proof and
equation (2.9) there). It follows that for a.e. x ∈ A, both uk(x) and vk(x) converge as
k → ∞ to a finite limit, which finishes the proof. ��
Proof of Theorem 1.6. We use precisely the same strategy where now uk(x) and vk(x)
are random vectors which we need to show have limits with probability one. Here, the
condition (1.14) precisely means that the conditions of Lemma 3.1 from [5] are satisfied
for Lebesgue a.e. x ∈ A (with f+ ≡ 1). It follows that for Lebesgue a.e. x ∈ A, uk(x)
and vk(x) converge a.s. to a finite limit. An application of Fubini finishes the proof of
the theorem. ��
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5. Proof of Theorem 1.7

Proof of Theorem 1.7. Assume (1.15) holds but (1.16) does not. Then

lim
n→∞ Kn(x, x) =

∞∑

j=0

(p j (x))
2 = C < ∞. (5.1)

By (1.15), for any a ∈ R

lim
n→∞ Kn

(
x +

a

n
, x +

a

n

)
= lim

n→∞

n−1∑

j=0

(
p j

(
x +

a

n

))2 = C

and also,

lim
n→∞ Kn

(
x +

a

n
, x

)
= C

sin (πρ(x)a)

πρ(x)a
. (5.2)

It follows that

lim
n→∞

n−1∑

j=0

(
p j

(
x +

a

n

)
− p j (x)

)2

= lim
n→∞ Kn(x, x) + lim

n→∞ Kn

(
x +

a

n
, x +

a

n

)
− lim

n→∞ 2Kn

(
x +

a

n
, x

)

= 2C

(
1 − sin (πρ(x)a)

πρ(x)a

)
. (5.3)

We shall use the fact that C < ∞ to show that at the same time, for any a ∈ R,

lim
n→∞

n−1∑

j=0

(
p j

(
x +

a

n

)
− p j (x)

)2 = 0, (5.4)

contradicting (5.3) and thus proving the theorem.
Fix a ∈ R and let ε > 0. Define ε′ = ε

5+
√

3
. Let N0 be so large that for any n ≥ N0

n∑

j=N0

(p j (x))
2 ≤

∣∣∣∣∣∣
C −

N0−1∑

j=0

(p j (x))
2

∣∣∣∣∣∣
< ε′,

and in addition
∣∣∣∣∣∣
C −

n∑

j=0

(
p j

(
x +

a

n

))2

∣∣∣∣∣∣
< ε′.

Now let N1 be so large that for any n ≥ N1

N0−1∑

j=0

∣∣∣∣
(

p j (x)
)2 −

(
p j

(
x +

a

n

))2
∣∣∣∣ < ε′,
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and also

N0−1∑

j=0

(
p j

(
x +

a

n

)
− p j (x)

)2
< ε′.

(This can clearly be done since {p j }N0−1
j=0 is a finite set of continuous functions). It follows

that for any n ≥ max(N0, N1)

n∑

j=N0

(
p j

(
x +

a

n

))2 =
n∑

j=0

(
p j

(
x +

a

n

))2 − C + C −
N0−1∑

j=0

(
p j

(
x +

a

n

))2

≤
∣∣∣∣∣∣

n∑

j=0

(
p j

(
x +

a

n

))2 − C

∣∣∣∣∣∣
+

∣∣∣∣∣∣
C −

N0−1∑

j=0

(
p j (x)

)2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

N0−1∑

j=0

(
p j (x)

)2 −
(

p j

(
x +

a

n

))2

∣∣∣∣∣∣
< 3ε′.

Thus, for any n ≥ max(N0, N1)

n∑

j=0

(
p j

(
x +

a

n

)
− p j (x)

)2 ≤
n∑

j=N0

(
p j

(
x +

a

n

)
− p j (x)

)2
+ ε′

=
n∑

j=N0

(
p j (x)

)2 +
n∑

j=N0

(
p j

(
x +

a

n

))2 −
n∑

j=N0

p j (x)p j

(
x +

a

n

)
+ ε′

< ε′ + 3ε′ +

⎛

⎝
n∑

j=N0

p j (x)
2

⎞

⎠
1/2 ⎛

⎝
n∑

j=N0

(
p j

(
x +

a

n

))2

⎞

⎠
1/2

+ ε′

< (5 +
√

3)ε′ = ε.

We are done. ��
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