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Abstract We consider Chebyshev polynomials, Tn(z), for infinite, compact
sets e ⊂ R (that is, themonic polynomialsminimizing the sup-norm, ‖Tn‖e, on
e). We resolve a 45+ year old conjecture of Widom that for finite gap subsets
of R, his conjectured asymptotics (which we call Szegő–Widom asymptotics)
holds. We also prove the first upper bounds of the form ‖Tn‖e ≤ QC(e)n

(where C(e) is the logarithmic capacity of e) for a class of e’s with an infinite
number of components, explicitly for those e ⊂ R that obey a Parreau–Widom
condition.
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1 Introduction

This paper is the first of what we hope will be a series studying the asymptotics
of Chebyshev polynomials associated to an arbitrary compact subset, e ⊂
C, which has an infinite number of points. These are those degree n monic
polynomials, Tn , which minimize

‖ f ‖e = sup
z∈e

| f (z)| (1.1)

See [36] for background on general Chebyshev polynomials and their appli-
cations. It is known (see below for the case e ⊂ R) that theminimizer is unique.
We will denote this minimizer as Tn in cases where the intended e is clear. If
ReP is the polynomial whose coefficients are the real parts of those of P , we
have that |ReP(x)| < |P(x)| for all but finitely many x ∈ R unless ReP ≡ P .
Since ReP is monic if P is, ReTn is also a Chebyshev polynomial so by the
alternation theorem (see Theorem 1.1 below), |ReTn(x)| = ‖Tn‖ has at least
n + 1 solutions in R if e ⊂ R. Hence ImTn ≡ 0, that is, Tn is real.

Webegin by recalling a basic resultwhich goes back toBorel [4] andMarkov
[20] (which according to Akhiezer [1] was based on lectures from 1905 but
only published in 1948). It depends on a basic notion that comes from ideas
of Chebyshev [6]:

Definition We say that Pn , a real degree n polynomial, has an alternating set
in e ⊂ R if there exists {x j }nj=0 ⊂ e with x0 < x1 < · · · < xn so that

Pn(x j ) = (−1)n− j‖Pn‖e (1.2)

Theorem 1.1 (The Alternation Theorem) Let e ⊂ R be compact. The Cheby-
shev polynomial of degree n for e has an alternating set in e. Conversely, any
monic polynomial with an alternating set in e is the Chebyshev polynomial
for e.

Proof The proof is simple and not so available in our generality, so we include
it—it is essentially what Markov gives in [20] for the case e = [a, b]. If Tn
is the Chebyshev polynomial, let y0 < y1 < · · · < yk be the set of all the
points in e where its takes the value ±‖Tn‖e. If there are fewer than n sign
changes among these ordered points, then we can find a degree at most n − 1
polynomial, Q, non-vanishing at each y j and with the same sign as Tn at those
points. For ε small and positive, Tn − εQ will be a monic polynomial with
smaller ‖·‖e. Thus theremust be at least n sign flips and therefore an alternating
set.

Conversely, let Pn be a degree n monic polynomial with an alternating set
and suppose that ‖Tn‖e < ‖Pn‖e. Then at each point, x j , in the alternating set
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Asymptotics of Chebyshev polynomials, I: subsets of R 219

for Pn , Q ≡ Pn − Tn has the same sign as Pn , so Q has at least n zeros, which
is impossible, since it is of degree at most n − 1. ��

The alternation theorem implies uniqueness of the Chebyshev polynomial.
For, if Tn and Sn are two minimizers, so is Q ≡ 1

2 (Tn + Sn). At the alternating
points for Q, we must have Tn = Sn , so they must be equal polynomials since
there are n + 1 points in the alternating set and their difference has degree at
most n − 1.

The alternation theorem also implies some simple facts about the zeros of
Tn:

(a) All the zeros of the Chebyshev polynomials of a set e ⊂ R lie in R and
all are simple and lie in cvh(e), the convex hull of e. This is because there
must be at least one zero between any pair of points in an alternating set
and this accounts for all n zeros. The same argument shows that for any
γ ∈ (−‖Tn‖e, ‖Tn‖e) all n solutions of Tn(x) = γ are simple and lie
in cvh(e). This plus the open mapping theorem implies that (inverse as a
function from C)

en ≡ T−1
n ([−‖Tn‖e, ‖Tn‖e]) ⊂ cvh(e) (1.3)

(b) By a gap of e ⊂ R, we mean a bounded connected component of R \ e. If
there are only finitely many gaps and no component of e is a single point,
we speak of a finite gap set. Between any two zeros of Tn , there is a point
in the alternating set so each gap of e ⊂ R has at most one zero of Tn .

(c) Above the top zero (resp. below the bottomzero) of Tn, |Tn(x)| ismonotone
increasing. It follows that xn = supy∈e y (resp. x0 = inf y∈e y) so at the
endpoints of cvh(e) ⊂ R we have that |Tn(x)| = ‖Tn‖e.

To get ahead of our story, a key understanding in our analysis in this paper is
that en defined in (1.3) is the spectrum of a periodic Schrödinger operator and
up to normalization, Tn is its spectral theory discriminant; see Sect. 2. In the
end, we found proofs that didn’t emphasize this connection which we use to
make this paper more accessible to specialists on orthogonal polynomials. But
this intuition played an important role in our research. We mention in passing
that our methods don’t appear to work for weighted Chebyshev polynomials.

Going back at least to Szegő [41] is the idea that potential theory is essential
to the study of Chebyshev polynomials. To settle the notation we use, we recall
some of the basic definitions. References for the potential theory that we need
include [16,18,27,32,35,51]. Given a probability measure, dμ, of compact
support on C, we define its Coulomb energy, E(μ) by

E(μ) =
∫

dμ(x) dμ(y) log |x − y|−1 (1.4)
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220 J. S. Christiansen et al.

and we define the Robin constant of a compact set e ⊂ C by

R(e) = inf{E(μ) | supp(μ) ⊂ e andμ(e) = 1} (1.5)

If R(e) = ∞, we say e is a polar set or has capacity zero. If something
holds except for a polar set, we say it holds q.e. (for quasi-everywhere). The
capacity, C(e), of e is defined by

C(e) = exp(−R(e)), R(e) = log(1/C(e)) (1.6)

If e is not a polar set, it follows from weak lower semicontinuity of E(·)
and weak compactness of the family of probability measures that there is
a probability measure whose Coulomb energy is R(e). Since E(·) is strictly
convex on the probability measures, this minimizer is unique. It is called the
equilibrium measure or harmonic measure of e and denoted dρe. The second
name comes from the fact (see Conway [9] or Simon [35]) that if f is a
continuous function on e, there is a unique function, u f , harmonic on (C ∪
{∞}) \ e, which approaches f (x) for q.e. x ∈ e (i.e., solves the Dirichlet
problem) and

u f (∞) =
∫
e
f (x)dρe(x) (1.7)

The function �e(z) = ∫
e dρe(x) log |x − z|−1 is called the equilibrium

potential. The Green’s function, Ge(z), of a compact subset, e ⊂ C, is defined
by

Ge(z) = R(e) − �e(z) (1.8)

It follows from Frostman’s theorem that it is the unique function harmonic on
C \ e with q.e. boundary value 0 on e and so that Ge(z) − log |z| is harmonic
at ∞. Moreover, Ge(z) ≥ 0 everywhere and near ∞

Ge(z) = log |z| + R(e) + O(1/|z|) (1.9)

equivalently,

exp(Ge(z)) = |z|
C(e)

+ O(1) (1.10)

If Ge is zero on e and continuous on all of C, we say that e is regular (for
potential theory).

To put our new results in context, we need to remind the reader of some
previous results. Using what is now called the Bernstein–Walsh lemma, Szegő
[41] proved for all non-polar compact sets e ⊂ C

‖Tn‖e ≥ C(e)n (1.11)
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which was improved when e ⊂ R by Schiefermayr [31] (see Sect. 2) to

‖Tn‖e ≥ 2C(e)n (1.12)

Szegő [41], using in part prior results of Faber [11] and Fekete [13], proved

Theorem 1.2 (FFS Theorem) For any compact set e ⊂ C, one has that

lim
n→∞‖Tn‖1/ne = C(e) (1.13)

Upper bounds on ‖Tn‖ewhich complement (1.11) or (1.12) in that they also
grow like C(e)n are clearly interesting. The following is known

Theorem 1.3 (Totik–Widom Theorem) For any finite gap set e ⊂ R, one has,
for a constant Q ≥ 2 depending on e, that

‖Tn‖e ≤ QC(e)n (1.14)

Remarks 1. This result follows from work of Widom [53] that we discuss
below on asymptotics of ‖Tn‖e (see Theorem 1.8). Totik [46] proved an
equivalent result but in a different form involving control of C(en) where
en is the set of (1.3). We’ll discuss this further in Sect. 4.

2. Neither approach leads to very explicit control on the constant Q (although
Widom explicitly finds lim supn→∞‖Tn‖e/C(e)n in terms of the solution
to a minimization problem and he does have explicit bounds on this lim sup
but not on the sup).

3. Widom proved this bound also for certain sets e ⊂ C that have finitely
many components. Recently, Andrievskii [2] and Totik–Varga [49] have
increased the family of finite component sets in C for which (1.14) holds.

One of our two main results in this paper extends this last result to a larger
class of sets e ⊂ R with a simple explicit bound on Q in terms of Ge. Recall
[22,54].

Definition A set e ⊂ C is said to be a Parreau–Widom set if

PW (e) ≡
∑
w∈C

Ge(w) < ∞ (1.15)

where C is the set of critical points of Ge (i.e., points where ∂Ge(w) = 0).

In this paper, we use Wirtinger calculus:

∂ = 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂̄ = 1

2

(
∂

∂x
+ i

∂

∂y

)
(1.16)
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222 J. S. Christiansen et al.

We recall that ∂̄ f = 0 are the Cauchy–Riemann equations (so that, for
harmonic functions, u, ∂u is analytic) and that for analytic functions, f , we
have that ∂ f = f ′, the complex derivative.Moreover, by theCauchy–Riemann
equations

f analytic ⇒ 2 ∂(Re( f )) = f ′ (1.17)

If e ⊂ R, it is easy to see all the critical points lie in R. If e is also regular,
there is exactly one critical point in each gap and so (1.15) is the sum over the
maxima ofGe in the gaps. In particular, every finite gap set is a Parreau–Widom
set. Our new result, proven in Sect. 4, is:

Theorem 1.4 If e ⊂ R is a regular Parreau–Widom set, then

‖Tn‖e ≤ 2 exp(PW (e))C(e)n (1.18)

Remarks 1. For a finite gap set, the sum in (1.15) has finitely many terms,
so is finite, and thus this result implies Theorem 1.3 with a fairly explicit
Q. We note that homogeneous sets in the sense of Carleson [5], and, in
particular, positive measure Cantor sets, are regular Parreau–Widom sets
[17].

2. Recent work of Goncharov and Hatinoğlu [15] shows that there are very
thin Cantor-type sets for which ‖Tn‖e/C(e)n grows subexponentially.

3. It is interesting to know for which infinite gap sets inR a bound like (1.14)
is true. For example, does the classical 1/3 Cantor set, which is not a
Parreau–Widom set, obey (1.14)?

4. We wonder if this result extends to Parreau–Widom sets in C.
5. For the finite gap case,Widom [53] obtains a bound on the lim sup involving

exp(PW (e)) and our result is compatible with his in this finite gap case.

Our main focus will be on pointwise asymptotics of Tn(z) on C \ e. The
earliest results on this subject go back to Faber [11] in 1919. Let e be a Jordan
region with analytic boundary, i.e., an analytic Jordan curve together with its
interior region. By the maximum principle, the Chebyshev polynomials for e
are the same as those for the curve. There is a unique Riemann map, Be(z),
from (C ∪ {∞}) \ e onto D which is a bijection with Be(∞) = 0 and positive
“derivative”, B ′

e(∞), at ∞. Then:

Theorem 1.5 (Faber [11]) If e is a Jordan region with an analytic boundary,
then

lim
n→∞ Tn(z)Be(z)

n B ′
e(∞)−n = 1 (1.19)

uniformly for z in a neighborhood of the closure of (C ∪ {∞}) \ e.

Remarks 1. Since the curve is assumed analytic, Be(z) has a continuation into
a neighborhood of the curve.
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2. Since Be maps the curve to ∂D, and Ge is unique, on (C ∪ {∞}) \ e, we
have that

|Be(z)| = exp(−Ge(z)) (1.20)

so that near ∞, we have that

Be(z) = C(e)z−1 + O(|z|−2) (1.21)

This implies that B ′
e(∞) = C(e); thus, Faber’s result implies that

limn→∞‖Tn‖e/C(e)n = 1, a strong version of the FFS theorem.
3. We call (1.19) Szegő asymptotics after Szegő’s famous result [39,40] on the

aysymptotics of OPUC. Since Faber’s paper was earlier than Szegő’s, this
naming is perhaps unfair, but the term Szegő asymptotics is so common,
we use it in this case also.

In 1969, Widom wrote a 100+ page brilliant, seminal work [53] on the
asymptotics of Chebyshev and orthogonal polynomials associated to a set e,
where e is the union of a finite number of Jordan regions with C2+ boundary
and C2+ Jordan arcs (i.e., not closed, simple curves). As in Faber’s case, the
polynomials are the samewhether one takes Jordan regions or their boundaries,
as Widom does.

Widom began by looking for the replacement for Be(z) in (1.19)/(1.20).
Since Ge(z) is harmonic on C \ e, it has a local harmonic conjugate so one
can locally define an analytic function, Be(z), on (C∪{∞})\ e obeying (1.20)
(∞ is a removable singularity if one sets Be(∞) = 0.) Be(z) is determined by
(1.20), up to a phase which we can fix by demanding (1.21) near ∞.

Be(z) can be continued along any curve lying in (C ∪ {∞}) \ e and, by the
monodromy theorem, the continuation is the same for homotopic curves. Since
Ge is continuous, only the phase can change, i.e., the phase change is associated
with a character, χe, of the fundamental group of (C∪ {∞}) \ e. The character
is non-trivial if e is not connected (up to polar sets)—indeed, if a curve loops
once around a subset g of e, the phase change in Be is exp(−2π iρe(g)); see
Theorem 2.7.

There is a language introduced by Sodin–Yuditskii [37] for doing the book-
keeping for such functions. It relies on the fact that the universal cover of
(C∪{∞})\ e isD. Using the notation from our presentation of this machinery
[8], there is a Fuchsian group, 	, of Möbius transformations on D, and a map
x(z) from D → (C ∪ {∞}) \ e which is automorphic (i.e., invariant under 	).

x is a covering map, so a local bijection. Its “inverse”, z(x), is a multivalued
analytic function which is not character automorphic—rather its values are
an orbit of the group 	. 	 is such that

∑
γ∈	(1 − |γ (0)|) < ∞ so one can

form the Blaschke product B(z) = ∏
γ∈	 b(z, γ (0)). In this language, one

should use a complex variable, x , on (C ∪ {∞}) \ e in which case one has
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that Be(x) = B(z(x)) and the object whose asymptotics we should look at
is Tn(x(z))B(z)nC(e)−n on D. While we feel this language should be in the
back of one’s mind, we will do our analysis with multivalued functions on

 ≡ (C ∪ {∞}) \ e, as Widom did.

SoWidom looked at Tn(z)Be(z)nC(e)−n . Unlike the simply connected case
of
 studied by Faber, this cannot have a pointwise limit because the character
of this character automorphic function is χn

e which is not constant! Instead
Widom found a good candidate for the asymptotics:

Theorem 1.6 (Widom [53]) Let e be a finite union of disjoint smooth Jordan
regions and arcs. For every character, χ , of the fundamental group of 
 there
is a character automorphic function with that character, F(z, χ), on 
 which
minimizes ‖ f ‖
 among all character automorphic functions, f, with that char-
acter and which obey f (∞, χ) = 1. Moreover, this minimizer is unique and
it and its ‖·‖
 are continuous in χ (the functions in the topology of uniform
convergence on compact subsets of the universal cover of 
).

Remarks 1. We should refer to F as a function on the universal cover of 
,
not 
. The results of Widom then also say that every minimizer is a finite
product of Blaschke products on D.

2. Continuity in χ and uniqueness are intimately related.
3. We will use Fn(z) for the function F(z, χn

e ). Note that this function is
almost periodic in n (in fact, quasiperiodic) since the minimizer is contin-
uous in χ .

TheWidom surmise is the notion that

lim
n→∞

[
Tn(z)Be(z)n

C(e)n
− Fn(z)

]
= 0 (1.22)

When it holds uniformly on compact subsets of the universal cover of 
,
we will say that e has Szegő–Widom asymptotics.

Widom proved two results about the asymptotics of Tn . The first involves
the situation where there are no arcs—but only regions:

Theorem 1.7 (Widom [53]) Let e be the union of a finite number of disjoint
Jordan regionswith smooth boundaries. Then e has Szegő–Widomasymptotics,
i.e., (1.22) holds uniformly on compact subsets of the universal cover of 
.
Moreover,

lim
n→∞

‖Tn‖e
C(e)n‖Fn‖


= 1 (1.23)

The second concerns finite gap sets in R:

Theorem 1.8 (Widom [53]) Let e be a finite gap subset of R. Then

lim
n→∞

‖Tn‖e
C(e)n‖Fn‖


= 2 (1.24)
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Widom also conjectured that one had Szegő–Widom asymptotics in this
case.At first sight this seems surprising—(1.22) suggests that onemight expect
the limit in (1.24) to be 1 as it is in (1.23). Widomwas clearly motivated by the
example of e = [−1, 1]where both (1.22) and (1.24) hold! Indeed, in that case
x(z) is one half the Joukowski map, x(z) = 1

2 (z + z−1), and Be(x) = z(x),
the inverse of the one half the Joukowski map, i.e., Be(z) = z − √

z2 − 1 and
1/Be(z) = z+√

z2 − 1. The familiar formula for the Chebyshev polynomials
in this case (a multiple the usual Chebyshev polynomials of the first kind with
the multiple chosen to make the polynomials monic) is:

Tn(cos(θ)) = 2−n+1 cos(nθ), Tn(z) = 2−n[Bn
e (z) + B−n

e (z)] (1.25)

This implies that ‖Tn‖e = 2−n+1 = 2C(e)n sinceC([−1, 1]) = 1/2. This is
consistent with the FSS Theorem and saturates Schiefermayr’s bound (1.12).
Since (1.20) holds and Ge is 0 (resp. > 0) on e (resp. off e), we have that
|Be| is 1 (resp. < 1) on e (resp. off e). Thus off e, only B−n

e contributes to
the asymptotics while on e, there are points with Be(z) = 1 so both terms
contribute and the norm is twice as large as one might have expected. This
explains where Widom’s conjecture came from. Our second main result here
is a proof of this conjecture:

Theorem 1.9 The Chebyshev polynomials for any finite gap set in R have
Szegő–Widom asymptotics.

It seems to us reasonable to think that any Parreau–Widom subset of R
with the additional requirement that the direct Cauchy theorem holds (see the
discussion in section 3 of Christiansen [7] as well as [52,55]) has Szegő–
Widom asymptotics. This will be investigated in an upcoming paper.

Besides these results, we exploit the connection of Chebyshev polynomials
to the spectral theory of periodic Jacobi matrices which we present in Sect. 2.
In Sect. 3 we discuss several results about root asymptotics and we prove
Theorem 1.4 in Sect. 4 and Theorem 1.9 in Sect. 5.

As an aside we note that the limit 2 in (1.24) is special to the case of e ⊂ R

even though Widom had conjectured the limit was 2 as long as there was
at least one arc (and not just regions) included among the Jordan arcs and
regions. Indeed, for the case where e is a connected subset of the unit circle,
the limit has been computed by Thiran–Detaille [42] who find it is always
strictly between 1 and 2 if the connected set is a proper, non-empty subset.
Moreover, Totik–Yuditskii [50] have shown the lim sup is strictly less than 2
if at least one Jordan region is included among the components of a set e of
Widom’s class and Totik [48] has shown the lim inf is strictly bigger than 1 if
at least one Jordan arc is included among the components of a set e ofWidom’s
class. But it still seems to us a reasonable, albeit difficult, conjecture that every
set of Widom’s class has Szegő–Widom asymptotics.
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2 Periodic sets

In this section, we’ll see the important role played by the sets, en , of (1.3) and
the related sets: ◦

en≡ T−1
n ((−‖Tn‖e, ‖Tn‖e)) (2.1)

Clearly, by the definition of Tn and en , we have that

e ⊂ en (2.2)

We will see that the set en determines many properties of Tn . In particular,

‖Tn‖e = 2C(en)
n (2.3)

which, by (2.2), implies Schiefermayr’s bound, (1.12). If Bn is short for Ben ,
we’ll also prove (indeed, we’ll use this to prove (2.3))

2Tn(z)

‖Tn‖e = Bn(z)
n + Bn(z)

−n (2.4)

Given our discussion of Szegő–Widom asymptotics for e = [−1, 1], it
should not be a surprise that (2.4) is a significant part of our proof of Theorem
1.9.

The equilibrium measure for en which we’ll denote ρn will also play a role.
We’ll prove that, for any gap K of e, one has that

ρn(K ) ≤ 1/n (2.5)

which will be the key to our proof of Theorem 1.4.
An interesting further fact concerns the weight that ρn gives to components

of en . We will call a compact set g ⊂ R a period-n set if and only if each
connected component of g has harmonic measure k/n for some k ∈ {1, . . . , n}
(which, of course implies that g has at most n components and so is a finite
gap set). We will prove that any en is a period-n set and that conversely, if e is
a period-n set, then it is its own en .

The name “period-n set” comes from the fact that these sets are precisely
the spectra of two-sided periodic Jacobi matrices. The original proofs we had
for some of the results we just described used the theory of such matrices
and we have kept some of the terminology. While we will prove these results
here using only the alternation theorem and some potential theory, we’ll end
the section with a brief indication of the approach that relies on the fact that
2Tn/‖Tn‖e is the discriminant of a periodic Jacobi matrix.

We are not the first ones to note the special properties of polynomials, P ,
for which P−1([−A, A]) ⊂ R. Their use is implicit in much of the work
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Asymptotics of Chebyshev polynomials, I: subsets of R 227

on the theory of periodic Schrödinger operators and Jacobi matrices as we’ll
explain at the end of this section. In the orthogonal polynomial community,
there is an initial work of Geronimo–VanAssche [14] and important follow-up
of Peherstorfer [23–26] and Totik [43,44,46,47].

Theorem 2.1 Let e be an infinite, compact subset of R, Tn its nth Chebyshev

polynomial and let en and
◦
en be given respectively by (1.3) and (2.1). Then

there exist α1 < β1 ≤ α2 < · · ·β j ≤ α j+1 · · · < βn so that

◦
en=

n⋃
j=1

(α j , β j ), en =
n⋃
j=1

[α j , β j ] (2.6)

Moreover on (α j , β j ), we have that (−1)n− j T ′
n(x) > 0, {α1, βn} ∈ e and

for each j = 1, . . . , n − 1, at least one of β j and α j+1 lie in e.

Proof As we noted in the consequences of the alternation theorem, for any
γ ∈ (−‖Tn‖e, ‖Tn‖e) all n solutions of Tn(x) = γ are simple and lie in

cvh(e). This implies the claimed structure for
◦
en and en , (2.6) and the derivative

condition. The α’s and β’s are all the solution of Tn(x) = ±‖Tn‖e so the
remainder of the theorem is a restatement of the alternation theorem. ��

We will call [α j , β j ] = e
( j)
n , the j th band of en . Define

�n(z) ≡ 2Tn(z)

‖Tn‖e (2.7)

so that en is exactly the set where −2 ≤ �n(x) ≤ 2 and �n takes values
in C \ [−2, 2] on C \ en . The Joukowski map z �→ z + z−1 takes D one-
one to C \ [−2, 2] and ∂D two-one to [−2, 2] so its functional inverse z �→
z
2 −

√( z
2

)2 − 1 maps (C∪ {∞}) \ [−2, 2] to D. The numerical inverse of this,

z �→ z
2 +

√( z
2

)2 − 1, thus maps (C ∪ {∞}) \ [−2, 2] to (C ∪ {∞}) \ D. It
follows that

�n(z)

2
+

√(
�n(z)

2

)2

− 1 (2.8)

maps
n ≡ (C∪{∞})\ en to (C∪{∞})\D. If we take the log of the absolute
value of this nonvanishing analytic function,we get a strictly positive harmonic
function on C \ en . Since this function approaches 0 as one approaches en and
is n log |z| + O(1) near ∞, we have proven the first assertion in:

Theorem 2.2 Let e be an infinite compact subset of R, Tn its nth Chebyshev
polynomial, �n given by (2.7) and let en be given by (1.3). Then the Green’s
function, Gn, of en is given by:
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Gn(z) = 1

n
log

∣∣∣∣∣∣
�n(z)

2
+

√(
�n(z)

2

)2

− 1

∣∣∣∣∣∣ (2.9)

Moreover, we have that:

Bn(z)
n = �n(z)

2
−

√(
�n(z)

2

)2

− 1

Bn(z)
−n = �n(z)

2
+

√(
�n(z)

2

)2

− 1

(2.10)

and (2.4) and (2.3) hold.

Proof We proved (2.9) above. By that formula, the absolute value of the right-
hand side of the second equation in (2.10) is exp(nGe(z)). Since this expression
is analytic on 
n \ {∞} and is Czn + O(zn−1) with C > 0 there, it must be
Bn(z)−n . The first equation in (2.10) holds since both sides are inverses of the
two sides of the second equation, which we have just proven. Adding the two
equations in (2.10) and using (2.7), we get (2.4).

By (1.10), Bn(z)−n = znC(en)
−n + O(zn−1); we see that �n(z) =

znC(en)
−n + O(zn−1) also. By (2.7) and the fact that Tn is monic, we obtain

(2.3). ��
Since e ⊂ en , we have that C(e) ≤ C(en), so (2.3) immediately implies

Schiefermayr’s Theorem, (1.12).
Next, we turn to the form of the equilibrium measure, ρn , for en . We note

that �n runs monotonically from −2 to +2 or vice versa. We have that:

Theorem 2.3 In each band of en, define θ(x) ∈ [0, π ] by

�n(x) = 2 cos(θ(x)) (2.11)

Then
dρn(x) = (πn)−1|θ ′(x)|dx (2.12)

In particular, each band has ρn-measure 1/n. If η j ∈ e
( j)
n is the zero of Tn

in e
( j)
n , then each of [α j , η j ] and [η j , β j ] has ρn-measure 1/2n.

We will not give a formal proof of this result. The final sentence is an
immediate consequence of (2.12) given that �n runs monotonically from 2
to −2 or from −2 to 2 on a band, so that θ runs monotonically from 0 to π

or from π to 0. (2.12) is well known in the mathematical physics literature
obtained from the theory of discriminants. For example, Simon [34] has two
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proofs of it—one as Theorem 5.3.8 and one as Theorem 5.4.8. A quick proof
is to apply the operator ∂ of (1.16) to (2.9), using (1.17) to get

∫
dρn(x)

x − z
= 1

n

�′
n(z)√

�n(z)2 − 4
(2.13)

Taking imaginary parts of both sides, one gets (2.12) by noting the bound-
edness of this imaginary part and computing its boundary value. The square
root on the right of (2.13) is pure imaginary on en . One needs to track carefully
its phase from the square root singularity which is compensated in the ratio by
the change of the sign of �′

n from band to band. This immediately implies a
strong form of (2.5).

Theorem 2.4 Let K be a gap of e. Then (2.5) holds. If Tn has no zero in K ,
then 1/n can be replaced by 1/2n. Moreover, K ∩ en, if non-empty, is a single
interval.

Remarks 1. When e is a finite gap set, it is an implicit result of Sodin–Yuditskii
[36] and explicit result of Peherstorfer [23,25] that each gap contains no
more than one band.

2. The interval mentioned in the last sentence may be closed (if the band is
entirely in K ), half open (if one end of the intersection is an end-point of
K ), or open (if the intersection is all of K).

3. From (2.13), we deduce that ρn is a.c. with respect to dx and

dρn(x) = wn(x)dx, wn(x) = 1

πn

|�′
n(x)|√

4 − �n(x)2
(2.14)

for x ∈ en

Proof Suppose that e( j)n ∩ K �= ∅. Since K is connected and at least one of
β j or α j+1 lies in e, we conclude that K is disjoint from all the e(k)n for k > j .

Similarly, K is disjoint from all the e(k)n for k < j . Thus K contains at most
one band, so (2.5) follows from Theorem 2.3. If Tn has no zero in K, at most
half a band lies in K and we get the improved 1/2n result. Since K ∩ en , if
non-empty, is a single band, we get the single interval claim. ��

Theorem 2.3 has another immediate consequence:

Theorem 2.5 en is a period-n set.

Our penultimate result in this section is a converse to this result. We need
two preliminaries:

Theorem 2.6 Suppose that [α, β] is a connected component of a compact set
e ⊂ R. Then:
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(a) Ge has an analytic continuation across (α, β), i.e., there is an analytic
function in a neighborhood, N , of (α, β) whose real part agrees with
Ge on {z ∈ N | Im(z) > 0}. Ge vanishes everywhere on (α, β) and is
continuous on C± ∪ (α, β).

(b) If ∂ is given by (1.16), then h(z) ≡ √
(z − α)(β − z)∂Ge has an analytic

continuation across [α, β], i.e., there is an analytic function in a neigh-
borhood, N1, of [α, β] which agrees with h on {z ∈ N1 | Im(z) > 0}.

(c) We have that

dρe � [α, β] = q(x)√
(x − α)(β − x)

dx (2.15)

where q(x) > 0 on (α, β) and continuous on [α, β].
(d) Suppose that e = ⋃p

k=1[ak, bk]. Let {ck}p−1
k=1 be the critical points of

Ge where ak < bk < ck < ak+1 < bk+1, k = 1, . . . , p − 1. Then
dρe(x) = w(x)dx where, for x ∈ e,

w(x) =
1
π

∏p−1
k=1 |x − ck |∏p

k=1 |(x − an)(x − bk)|1/2
(2.16)

Remarks 1. We note the compatibility of (2.14) and (2.16). For the leading
coefficient of�′

n is n times that of�n canceling the 1/n yielding a formula
like (2.16) but with the product over all the zeros of �′

n in the numerator
and over all band edges in the denominator. At a closed gap, 4− �2

n has a
double zero and �′

n a single so they cancel and (2.16) results in the special
case where e is a period-n set.

2. (d) is, as we’ll note, equivalent to a product formula for 2∂Ge. This formula
can be found, for example, as (5.4.88) in Simon [34].

3. (2.18) below is not literally true but is a bit of poetry because Q(x) = 1
above cvh(e), so the integral in (2.18) diverges. One can use the renormal-
ized version of the Herglotz representation, only look at imaginary parts,
or put in a cutoff. For use in proving (b), the cutoff is no problem since
the remainder is analytic in a neighborhood of [α, β]. For (d), if the upper
cutoff is R above cvh(e), we get a log(R − z) term which is log(R) + o(1)
so if we absorb log(R) into redefining C , we get a limit and the argument
that we give then works.

Proof These results are well known to experts on potential theory and/or spec-
tral theory of Schrödinger operators. Especially relevant are ideas of Craig [10]
given thatGe(x) = 0 on e implies that−∂Ge is the Stieltjes transformof amea-
sure reflectionless on e. (We caution the reader that Craig’s “Green’s function”
is not Ge but −2∂Ge.) So we’ll only sketch the details.

Since Ge is a positive harmonic function on the upper half plane, C+,
there is a Herglotz function f on C+ with Im( f ) = Ge, so we can write
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a Herglotz representation for it. Since Ge is locally bounded, the measure in
this representation is absolutely continuous. Moreover, since q.e. on (α, β),
limε↓0 Ge(x+ iε) = 0, this measure gives zero weight to [α, β]which implies
(a).

By differentiating the formula for Ge in terms the potential of dρe, we see,
by (1.17), that:

F(z) ≡ −2∂Ge(z) =
∫

dρe(x)

x − z
(2.17)

(a) implies that F is analytic across (α, β) and Re(F(x)) = 0 there. Thus we
can use ideas of Craig [10] to write a Herglotz representation for log(F):

log(F(z)) = C +
∫

Q(x)dx

x − z
(2.18)

where C is a real constant and Q(x) = 1
π
limε↓0 Arg(F(x + iε)). It follows

that Q(x) = 1/2 on (α, β) and is either identically 0 or identically 1 just below
α and similarly just above β. Exponentiating (2.18) implies (b) which easily
leads to (c) with q(x) ≥ 0. To see that q(x) > 0, we note that the Herglotz
representation (2.18) implies that Im(log(F(z)) − π

2 goes to zero as (α, β)

is approached from the upper half plane. By the strong reflection principle,
log(F(z)) has continuous boundary values, so in particular F has no zeros on
(α, β). Since Re(F) = 0 there, we see that Im(F) is non-vanishing there.

To get (d), we use the representation (2.18) (noting that Q(x) is 1/2 on
each (a j , b j ), 1 on (bp, ∞) and on each (b j , c j ) and 0 on (−∞, a1) and each
(c j , a j+1)) to get a product formula for F . This is equivalent to the formula for
w by the integral representation in (2.17) and the theory of boundary values
of Stieltjes transforms. (The constant C in (2.18) is determined by the −1/z
asymptotics of F .) ��
Theorem 2.7 If e ⊂ C is compact and γ is any rectifiable curve inC\ e, then,
�γ (Be), the change in phase of Be in going around γ , is given by

�γ (Be) = exp

(
−2π i

∫
N (γ, x)dρe(x)

)
(2.19)

where N (γ, x) is the winding number of γ around x. In particular, if γ winds
once around g ⊂ e and around no other points of e, then the multiplicative
change of phase of Be around γ is exp(−2π iρe(g)).

Proof Applying 2∂ to both sides of log(|Be|) = −Ge, using the formula (1.8)
for Ge in terms of ρe and (1.17), we get that

B ′
e(z)B

−1
e (z) =

∫
dρe(x)

x − z
(2.20)
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where one needs an easy argument to justify interchanging the derivative and
integral. Multiplying by (2π i)−1 and doing the contour integral, one gets
(2.19) after interchanging the integrals and using the formula for N (γ, x) as a
contour integral. ��
Theorem 2.8 Let e ⊂ R be a period-n set. Then for k = 1, 2, . . ., e is the set
where its Chebyshev polynomial, Tkn, takes its values in [−‖Tkn‖e, ‖Tkn‖e],
i.e., ekn = e.

Remark It is easy to see that if Sn is the Chebyshev polynomial for [−1, 1]
(which is the classical Chebyshev polynomial of the first kind up to a constant),
then for the e’s of this theorem, one has that Tkn = ‖Tn‖keSk(Tn/‖Tn‖e).
Proof By Theorem 2.7, the argument of Bn

e changes by an integral multiple of
2π as one goes around any connected component of e so it defines a function
analytic in C \ e. Since this function is real on R near +∞, we have on C \ e
that Bn

e (z̄) = Bn
e (z). Moreover, by Theorem 2.6, this function is continuous

as e is approached from one or the other side of e and has magnitude 1 there.
This shows that

Pn(z) ≡ C(e)n
(
Bn
e (z) + B−n

e (z)
)

(2.21)

is continuous across the interior of e and so analytic there. The end points
of the intervals are thus removable singularities since Pn is bounded there by
Theorem 2.6. It follows that Pn is an entire function and, by the asymptotics,
(1.21), of Be, it is a monic polynomial of degree n.

Since |Be| = 1 on e, we have that ‖Pn‖e ≤ 2C(e)n , so by Schiefermayr’s
inequality, (1.12), and uniqueness of the minimizer, Pn is Tn . Since |Be| < 1
on C \ e, we see that en = e as claimed. This proves the k = 1 part of the
Theorem. But any period-n set is also a period-kn set. ��

Our final result in this section proves a minimality property of en .

Theorem 2.9 Let e ⊂ R. Then for any period-n set, g ⊃ e, we have that

C(en) ≤ C(g) (2.22)

with equality if and only if g = en.

Proof Let Hn be the nth Chebyshev polynomial for g. Since Hn is monic, we
have that

2C(en)
n = ‖Tn‖e ≤ ‖Hn‖e ≤ ‖Hn‖g = 2C(g)n (2.23)

proving (2.22). If one has equality in (2.22), then one has equality in the first
inequality in (2.23), so Tn = Hn which implies, by Theorem 2.8 and the
definition of en , that g = en . ��
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The results of this section can be understood from a spectral theory point
of view. We end this section with a description of this connection to periodic
Jacobi matrices—one place to find the details of the theory of such matrices
is Chapter 5 of Simon [34]. We consider two-sided sequences {a j , b j }∞j=−∞
with a j > 0, b j ∈ R and so that for some p > 0 and all j in Z

a j+p = a j , b j+p = b j (2.24)

We define doubly infinite tridiagonalmatrices, J , with b j along the diagonal
and a j on the principle subdiagonals (so that row k has non-zero elements
ak−1 bk ak with bk in column k).

For z ∈ C fixed, we are interested in solutions, {u j }∞j=−∞, of

a ju j+1 + b ju j + a j−1u j−1 = zu j (2.25)

We study the p-step transfer (aka update) matrix:

Mp(z)

(
u1
a0u0

)
=

(
u p+1
apu p

)
(2.26)

We put a’s in the bottom component so that the one step matrix

1
a j

(
z − b j −1
a2j 0

)
has determinant 1 and thus det(Mp(z)) = 1.

In terms of the first and second kind orthogonal polynomials for Jacobi
parameters {an, bn}∞n=1, as defined in Section 3.2 of [34],

Mp(z) =
(
pp(z) −qp(z)
ap pp−1(z) −apqp−1(z)

)
(2.27)

The discriminant, �(z), defined by

�(z) = Tr
(
Mp(z)

) = pp(z) − apqp−1(z) (2.28)

is a (real) polynomial of degree exactly p. Given the recursion relations for
p j (z) or the form of the one step transfer matrix, we see that �(z) is a poly-
nomial of degree p with leading coefficient (a1 · · · ap)−1.

If Mp(z) has an eigenvalue λ, it is easy to see the difference equation has a
(Floquet) solution obeying u j+mp = λmu j for allm ∈ Z. Since det(Mp(z)) =
1, if λ �= ±1, we get two linearly independent solutions, so if |λ| �= 1, all
solutions are exponentially growing at ∞ and/or at −∞. On the other hand, if
|λ| = 1, there is a bounded solution. Note that Mp(z) has an eigenvalue with
|λ| = 1 if and only if �(z) ∈ [−2, 2].
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Since it is known that the spectrum of J is the closure of the set of z’s
for which there are polynomially bounded solutions (Schnol’s Theorem), we
conclude that spec(J ) = �−1([−2, 2]). Since J is self-adjoint, we have that
�−1([−2, 2]) ⊂ R.

If f (z) is an entire function real on the real axis and f ′(x0) = 0 for x0 ∈ R,
because of the local structure of analytic functions, there will be non-real z’s
near x0 with f (z) a real value near f (x0). Thus �−1([−2, 2]) ⊂ R implies
that

�(x) ∈ (−2, 2) ⇒ �′(x) �= 0

Therefore, between successive points where �(x0) = ±2 and where
�(x1) = ∓2, �(x) is strictly monotone and � is a bijection. It follows that
� has an alternating set in e = �−1([−2, 2]). Therefore, a1 · · · ap� is the
Chebyshev polynomial for e = ep. It is known that J has purely absolutely
continuous spectrum ofmultiplicity 2, which implies that the half line operator
is regular in the sense of Stahl–Totik [38] so one has that (a1 · · · ap)1/p = C(e)
and the density of zeros is dρe. In the spectral theory literature, the density of
zeros is called the density of states and it is well known that each “band” of
the spectrum has density 1/n.

From a spectral theory point of view, the fact that every period-n set has a
discriminant follows from the fact that such a set is the spectrum of a periodic
Jacobi matrix. Indeed, if � is the number of gaps of a period-n set, then one
constructs an � dimensional torus of such periodic matrices. For any finite
gap set there is an isospectral torus which can be constructed as reflectionless
Jacobi matrices (see Remling [28]), or as minimal Herglotz functions (see
our paper [8]) or using Hardy spaces of character automorphic functions (see
Sodin–Yuditskii [37]). The elements of the isospectral torus are almost periodic
with frequencies generated by the harmonic measures of the components of
the finite gap set and so periodic with period n if all these measures are of the
form k/n.

3 Root asymptotics

In this section, before turning to our twomain theorems in the final sections, we
make a comment on the FSS theorem and a remark on a Theorem of Saff–Totik
concerning root asymptotics of the Chebyshev polynomials of any arbitrary
infinite, compact set e ⊂ C. The first concerns the following theorem of Totik:

Theorem 3.1 (Totik [43]) Given any infinite, compact subset e ⊂ R, there
exist period-n sets gn ⊃ e so that

lim
n→∞C(gn) = C(e) (3.1)
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Remarks 1. This is useful because one can use polynomial mappings to
extend some results from [−1, 1] to period-n sets and then this theorem to
extend the result to general sets in R. Polynomial inequalities have been
obtained by Totik using this method (see his review article [47]) and, using
this method, Lubinsky’s approach [19] to universality for the CD kernel
has been extended from [−1, 1] to general compact sets in R by Simon
[33] and Totik [45].

2. A stronger result is known for finite gap sets—namely, if e has � gaps, then
for n ≥ �, gn can be picked to also have exactly � gaps. Indeed, this is how
Totik proved Theorem 3.1. This stronger result has been discovered and
proven independently by several different authors [3,21,25,29,43].

Our point here is to note the following:

Theorem 3.1 is equivalent to the FSS Theorem

Totik informed us that he knew this but it seems not to be in the literature.
To see that FSS ⇒ Theorem 3.1, note that one can take gn = en and use (2.3)
and (1.13) plus 21/n → 1 to get (3.1). Conversely, given Theorem 3.1 and
(2.22), we see that (3.1) holds for gn = en . Then (2.3) and 21/n → 1 implies
(1.13).

Our other result on root asymptotics is:

Theorem 3.2 For any compact non-polar set, e ⊂ C,

|Tn(z)|1/n → C(e) exp(Ge(z)) = exp(−�e(z)) (3.2)

uniformly on compact subsets of C \ cvh(e).

Remarks 1. This theorem is not new. It appears in Saff–Totik [30, Chapter
3.3] as Theorem 3.9 in the more general context of weighted Chebyshev
polynomials.

2. Our proof is different. They first control the density of zeros and use that
to prove this result; shortly, we’ll go in the other direction.

Proof Recall the Bernstein–Walsh Lemma, which says that, for any polyno-
mial, P , of degree n, and any compact set e ⊂ C, and so for Tn , one has that
for all z ∈ C

|Tn(z)| ≤ ‖Tn‖e exp(nGe(z)) (3.3)

Taking nth roots and using C(e) = exp(−R(e)), we get that

|Tn(z)|1/n ≤ Y (n) exp(−�e(z)), Y (n) ≡ ‖Tn‖1/ne /C(e) (3.4)
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Fejér’s theorem [12] says that all the zeros of Tn lie in cvh(e) so on 
̃ ≡
(C ∪ {∞}) \ cvh(e), we have that

hn(z) ≡ log(Y (n)) − �e(z) − 1
n log(|Tn(z)|) (3.5)

are non-negative harmonic functions with hn(∞) = log(Y (n)). By the FFS
Theorem, Y (n) → 1, so by Harnack’s inequality, hn goes to zero, uniformly
on compact subsets of 
̃. ��

Standard methods of going from root asymptotics to control on the density
of zeros (see, for example [32,38]) imply the following result (which is a
special case of Theorem 4.7 of [30]):

Theorem 3.3 Let e ⊂ R be compact and non-polar. Then the density of zeros
measures for Tn converge to the equilibrium measure for e.

4 Totik–Widom bounds

Proof of Theorem 1.4 Consider the function

h(z) ≡ Ge(z) − Gen (z) (4.1)

This function is harmonic on (C ∪ {∞}) \ en . h is harmonic at ∞ since
the log(|z|) terms cancel and one can use the removable singularities theorem.
One has that

h(∞) = R(e) − R(en) = log

[
C(en)

C(e)

]
(4.2)

Since dρn is harmonic measure, (1.7) holds for h. Since h(x) = Ge(x) on
en , if {K j }Mj=1 are the gaps for e, then, using (2.5),

h(∞) ≤
M∑
j=1

ρn(K j ) max
x∈K j

(Ge(x)) ≤ 1

n

M∑
j=1

Ge(w j ) (4.3)

Since regularity of e implies that Ge vanishes at the ends of each gap, the
maximum is taken at a critical point,w j , and the sum is precisely the Parreau–
Widom sum. Exponentiating and using ‖Tn‖e = 2C(en)

n and (4.2), we get
the result, (1.18). ��
Remarks 1. Because of the final assertion in Theorem 2.4, one can replace

PW (e) in (1.18) by 1
2 PW (e) + 1

2 Sn where Sn is the sum of the n largest
values among the Ge(w j ).
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2. Just as the FFS Theorem is equivalent to information aboutC(en), so (1.14)
is equivalent to

C(en) ≤ C(e)
(
1 + q

n

)
(4.4)

for some q, which is the form that Totik proved in the finite gap case. To
see that (4.4) ⇒ (1.14), we note that it is well known that (1 + q

n )n is
monotone increasing in n to exp(q), so given (2.3), (4.4) implies (1.14)
with Q = 2 exp(q). In the other direction, since

ex − 1 =
∫ x

0
eydy ≤ xex for x ≥ 0 (4.5)

we have for n ≥ 1 and Q̃ ≥ 1 that

Q̃1/n = elog(Q̃)/n ≤ 1 + log(Q̃)

n
elog(Q̃)/n ≤ 1 + q

n
(4.6)

where q = Q̃ log(Q̃). This shows that given (2.3), (1.14) implies (4.4)
with Q̃ = Q/2 and q as just given.

3. This seems to be the first example of an upper bound of the form (1.14)
for an e with an infinite number of components although there have been a
number of papers, as we noted, for fairly general finite component sets in
C. Since Tn is defined variationally, in principle, upper bounds shouldn’t be
hard—one need only guess a clever trial polynomial and indeed, that’s what
the earlier work does. Our approach uses potential theory and doesn’t seem
to involve a variational guess although, it might be argued that underlying
(2.3) is using the discriminant of e as a trial polynomial. But that’s of course
Tn which is not merely a trial polynomial!

5 Szegő–Widom asymptotics

In this section, we will prove Theorem 1.9 settling Widom’s 1969 conjecture.
We begin with some notation and some preliminaries. e ⊂ R will be a finite
gap set (although some results like Theorem 5.1 hold more generally). As
before,


 ≡ (C ∪ {∞}) \ e, G ≡ Ge, B ≡ Be (5.1)

en is given by (1.3), Gn is its Green’s function, Bn ≡ Ben , and 
n ≡ (C ∪
{∞}) \ en . We’ll let


̃ ≡ (C ∪ {∞}) \ cvh(e), G̃ ≡ Gcvh(e), B̃ ≡ Bcvh(e) (5.2)

123



238 J. S. Christiansen et al.

Since Green’s functions of regular sets decrease as the set increases (by an
application of the maximum principle), we have that for all z ∈ C

e ⊂ en ⊂ cvh(e) ⇒ G̃(z) ≤ Gn(z) ≤ G(z)

⇒ |B(z)| ≤ |Bn(z)| ≤ |B̃(z)| (5.3)

Define

Ln(z) ≡ Tn(z)B(z)n

C(e)n
(5.4)

so that (1.22) says that limn→∞(Ln(z) − Fn(z)) = 0 uniformly on compact
subsets of the universal cover of
. By the Bernstein–Walsh lemma, (3.3), and
(1.14), for any n and z,

|Ln(z)| ≤ ‖Tn‖eC(e)−n ≤ Q (5.5)

Thus, by the Vitali convergence theorem, it suffices to prove that limn→∞
(Ln(z) − Fn(z)) = 0 uniformly on compact subsets of 
̃.

By (2.4) and (2.3), we have that

Ln(z) = 1
2‖Tn‖e(Bn(z)

−n + Bn(z)
n)B(z)nC(e)−n

= (1 + Bn(z)
2n)

C(en)
n B(z)n

C(e)n Bn(z)n

= (1 + Bn(z)
2n)Hn(z) (5.6)

where

Hn(z) ≡ C(en)
n B(z)n

C(e)n Bn(z)n
(5.7)

Since, by (5.3), |Bn(z)| ≤ |B̃(z)| and |B̃(z)| < 1 on 
̃, we conclude that to
prove (1.22), it suffices to prove that uniformly on compact subsets of 
̃,

lim
n→∞(Hn(z) − Fn(z)) = 0 (5.8)

Lest it go by too fast, we want to note that, in the above, we canceled two
factors of 2—namely those in (2.3) and (2.4)—and it is this cancelation that
enables the proof to work. For an additional use of one of the factors of 2
allows us to rewrite (1.24) as

lim
n→∞

C(en)
n

C(e)n‖Fn‖


= 1 (5.9)
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Since the first inequality in (5.3) implies that

‖Hn‖
̃ ≤ C(en)
n

C(e)n
≤ Q

2
(5.10)

we see that (1.24) and (2.3) imply that

lim sup
n→∞

‖Hn‖
̃

‖Fn‖


≤ 1 (5.11)

Our ability to settle Widom’s conjecture relies on a careful analysis of the
sets en . We also make use of the norm asymptotics obtained by Widom.

Since there is a uniform upper bound on Hn and Fn , Montel’s theorem
implies compactness, so we need only show convergence of enough subse-
quences and we can pick them so that Hn( j) has a limit which we’ll show is
a trial function for Widom’s variational problem—(5.11) will then imply the
limit must be the limit of the Fn( j). For this to work, we need to consider Hn
on a larger region than 
̃. Hn is, of course, defined as a multivalued function
on 
n so we’ll need the following to control en for n large. Recall (see point
(b) after the alternation theorem) that each gap, K , of e has at most one zero,
ζ

(K )
n , of Tn .

Theorem 5.1 Let K = (r, s) be a gap of e.

(a) If, for some subsequence, {n( j)}∞j=1, ζ
(K )
n( j) has a limit ζ (K )∞ ∈ K, then for

large j , en( j) ∩ K is a closed interval containing ζ
(K )
n( j) of size bounded by

e−Dn( j) for some D > 0.
(b) If, for some subsequence, {n( j)}∞j=1, K \ en( j) is connected, then for some

C > 0,
|K ∩ en( j)| ≤ Cn( j)−2 (5.12)

(c) If, for some subsequence, {n( j)}∞j=1, ζ
(K )
n( j) has a limit which is r or s and

if K \ en( j) is not connected, then for some C > 0,

|K ∩ en( j)| ≤ Cn( j)−1 (5.13)

and that intersection approaches r or s.

Remarks 1. For our application here, all we need is that in the first case, the
band shrinks to a point and, in the last two cases, the band moves to the
edges. But the quantitative estimates are not hard, are interesting and we
think optimal (as to order) in the first two cases and perhaps also in the
third.
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2. The second case can occur if the band of en that intersects K has a piece in
e (which is always the case if there are no zeros of Tn in K ) or if the band
is entirely in [r, s] but one of the touching gaps is closed, i.e., one edge is
r or s. It is also the case if K ∩ en = ∅.

Lemma 5.2 If, for some subsequence, {n( j)}∞j=1, ζ
(K )
n( j) has a limit ζ

(K )∞ ∈ K,
then for some δ > 0 and all large j , we have that for some D > 0 and all
x ∈ [ζ (K )∞ − δ, ζ

(K )∞ + δ],
Tn( j)(x)

‖Tn( j)‖e =
(
x − ζ

(K )
n( j)

)
Q j (x), |Q j (x)| > eDn( j) (5.14)

Proof The first part of (5.14) holds where Q j is the product of x − x (n)
j over

all zeros other than ζ
(K )
n( j) divided by ‖Tn( j)‖e. By Theorems 1.2 and 3.3, for δ

small, lim j→∞ n( j)−1 log |Q j (x)| = G(x) uniformly on [ζ (K )∞ −δ, ζ
(K )∞ +δ].

Since G is bounded away from 0 on this interval, the second part of (5.14) is
valid. ��

Recall that we use �n for 2Tn/‖Tn‖e.
Lemma 5.3 Let v ∈ K be the unique critical point of G in K . Suppose that for
some subsequence, {n( j)}∞j=1, and δ > 0, wehave that en( j)∩(v−δ, v+δ) = ∅.
Then for j large, there is a single zero, cn( j), of �′

n( j) in (v − δ, v + δ) and

lim
j→∞ cn( j) = v (5.15)

Proof We have that uniformly in [v − δ/2, v + δ/2], ∂Gn( j) → ∂G. By (2.9),
zeros of�′

n( j) are precisely the critical points ofGn( j). This implies uniqueness
of the zero while the uniform convergence implies existence and convergence.

��
It will be useful to have notation for the connected components of

e =
p⋃

k=1

[ak, bk], ak < bk < ak+1 < bk+1, k = 1, . . . , p − 1 (5.16)

It will also be convenient to have a notation for connected components of
en . We will denote these by

[an,k, bn,k], k = 1, . . . , sn, 1 ≤ sn < 2p (5.17)

since there is at most one extra band or partial band in each gap. Then en =⋃sn
k=1[an,k, bn,k] is a disjoint union. We let {cn,k}sn−1

k=1 be the zeros of �′
n(x)
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not in en , labeled so that an,k < bn,k < cn,k < an,k+1 < bn,k+1. By (2.16),
we have that

wn(x) = 1

πn

|�′
n(x)|√

4 − �n(x)2
=

1
π

∏sn−1
k=1 |x − cn,k |∏sn

k=1 |(x − an,k)(x − bn,k)|1/2 (5.18)

Lemma 5.4 For k = 2, . . . , sn − 1 and x ∈ [an,k, bn,k],

wn(x) ≥ 1

π

|x − cn,k |
|x − bp|

|x − cn,k−1|
|x − a1|

1

|(x − an,k)(x − bn,k)|1/2 (5.19)

When x ∈ [an,1, bn,1],

wn(x) ≥ 1

π

|x − cn,1|
|x − bp|

1

|(x − an,1)(x − bn,1)|1/2 (5.20)

When x ∈ [an,sn , bn,sn ],

wn(x) ≥ 1

π

|x − cn,sn |
|x − a1|

1

|(x − an,sn )(x − bn,sn )|1/2
(5.21)

Proof Suppose first that k = 2, . . . , sn − 1. Since an, j < bn, j < cn, j <

an, j+1 < bn, j+1, j = 1, . . . , sn − 1, the following estimates hold,

|x − cn, j |
|(x − an, j )(x − bn, j )|1/2 ≥ 1 for all x < an, j (5.22)

|x − cn, j−1|
|(x − an, j )(x − bn, j )|1/2 ≥ 1 for all x > bn, j (5.23)

Thus, we get a lower bound if we drop the first zero and second band, second
zero and third band, etc. and similarly drop the last zero and next to last band,
etc. We can then use, since x > b1, that |x − b1| < |x − a1| and similarly on
the other end to get the lower bound (5.19).

For the cases k = 1 or sn , we only need to do the zero shielding on one side
and we get (5.20) and (5.21). ��
Proof of Theorem 5.1 (a) By Lemma 5.2, Tn( j)(x) = ±‖Tn( j)‖e has solutions
within e−Dn( j) of ζ

(K )
n( j), so there is a band of en( j) of size less than 2e−Dn( j)

containing that zero. Since K ∩ en( j) contains at most one band, we have the
claimed result.

(b), (c) (common part)We begin by showing thatwhen the zeros don’t have a
limit point in (r, s), then anypart of K∩en( j) approaches the edges of K . If there
is a point in (r +2ε, s−2ε)∩en( j) and a zero in (r, r +ε), then since en( j) ∩K
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is connected, we have [r + ε, r + 2ε] ≡ I− ⊂ en( j) ∩ K and similarly with
I+ ≡ [s−2ε, s−ε] if the zero is within ε of s. If there is no zero in K , then the
band extends past one of the edges of K and again either I− or I+ is in en( j)∩K .
Thus, if it is not eventually true that (r+2ε, s−2ε)∩en( j) = ∅, then infinitely
often, either C(en) ≥ C(e ∪ I−) or the same for I+. This is inconsistent with
Theorems 2.9 and 3.1 which imply that limn→∞ C(en) = C(e) proving, by
contradiction, the desired result that the bands in e approach the edges.

(b) We consider the case where the band spreads into the left side of K and
k = 2, . . . , sn − 1. The argument is similar for k = 1 or k = sn or at the other
ends of the gaps. We let [a, b] be the connected component of e with b = r .
We thus suppose that K ∩ en( j) = [α j , β j ] with α j = b and β j → b and
that bn( j),k( j) = β j and an( j),k( j) ≤ a. We assume that cn( j) and v are as in
Lemma 5.3 and that (5.15) holds. Thus, we can suppose that j is so large that
for x < β j we have that |x − cn( j)| > v−b

2 . (5.19) then becomes

wn( j)(x) ≥ v − b

2π

|b − a|1/2
|bp − a1|2

1

|x − β j |1/2 (5.24)

Integrating from α j to β j and using Theorem 2.4, we get that

1

n( j)
≥

∫ β j

α j

wn( j)(x)dx ≥ v − b

π

|b − a|1/2
|bp − a1|2 |β j − α j |1/2 (5.25)

proving (5.12).
(c) The argument is similar to (b) except that now we don’t have

cn( j),k( j)−1 < a < b = α j but only b < cn( j),k( j)−1 < α j = an( j),k( j)
so (5.24) is replaced by

wn( j)(x) ≥ v − b

2π

|x − α j |1/2
|bp − a1|2

1

|x − β j |1/2 (5.26)

which leads to (5.13) using
∫ 1
0

√
x

1−x < ∞ and the analog of (5.25). ��
Proof of Theorem 1.9 As noted, by boundedness andMontel’s theorem, it suf-
fices to prove that any subsequence has a subsubsequence forwhich (5.8) holds.
We can choose this subsubsequence, {n( j)}∞j=1, so that:

(1) The characters χn( j) → χ∞ for some character χ∞. This implies, by
Theorem 1.6, that Fn( j) → F∞ uniformly on compact subsets and
‖Fn( j)‖
 → ‖F∞‖
.

(2) In each gap, K�, of e, either Tn( j) has a zero for j large and the limit of
the zeros is x� ∈ K� or any zero in the gap, K�, approaches e in the limit
or there is no zero in that gap.
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(3) On 
̃, the subsequence Hn( j)(z) has a limit H∞(z) by Montel’s theorem.
In this case, it is easy to see that ‖H∞‖
̃ ≤ lim inf‖Hn( j)‖
̃.

Let L be the set of gaps, K�, with a limit point of zeros. The Hn( j) can be
continued along any curve in
n( j). Since all the harmonic measures of sets in
en are multiples of 1/n, Bn

n is analytic on 
n . It follows that Hn( j) are defined
and character automorphic with character χn( j) on sets which converge to the
universal cover of 
 with the points that lie over the set {x�}{K�∈L} removed.
Thus, by (5.10) and Vitali’s theorem, H∞ has a continuation to that set. By
(5.10) again, x� are removable singularities.

Since near ∞, for any g, Bg(z) = z/C(g) + O(1), we see that for each n,
Hn(∞) = 1 ⇒ H∞(∞) = 1. Thus, H∞ is a trial function for the problem
where F∞ is the minimizer. By (5.11) and continuity of ‖Fn‖
, we see that
‖H∞‖
 ≤ ‖F∞‖
. Thus, the uniqueness of the minimizer implies that H∞ =
F∞, proving the desired convergence on 
̃. ��
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