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1 Introduction — The magic formula

Let J be a doubly infinite, self-adjoint, tridiagonal Jacobi matrix (i.e., Jig = 0if
[/ —k| > 1and J;j 41 > 0) that is periodic, i.e., if

(Sll)j =Uj41, (1)

then for some n € Z, S"J = JS". There is a huge literature on this subject — see
Simon [7], Chapter 5.

(J/ — E)u = 0 is a second order difference equation, so there is a linear map
T(E) : ©* — C? so that if g, u; are given, then T(E) (10) = (uyt,) for the
solution of (J — E)u = 0. A(E) = Te(M(E)) is called the discriminant of J.
We note that det(7'(E)) = 1 so T(E) has eigenvalues A and A~! and A(E) =
A+ AL IFA(E) € (=2,2), then A = e for some 6 in +(0, ) and then Ju = Eu
has Floquet solutions, u+ obeying uj.:_ nk = et kauf These are bounded and these
are only bounded solutions if A(E) € [2,2]. Thus spec(J) = A™1([-2,2]). One
often writes this relation as

[16] O. Post, Boundary pairs associated with quadratic forms. Mazh, Nachr, 2
(2016), no. 8-9, 1052-1099. MR 3512049 Zbl 06607012 'k

[17] T. Shirai, The spectrum of infinite regular line graphs. Trans. Amer. May,
Soc. 352 (2000), no. 1, 115-132. MR 1665338 Zbl 0931.05048 k

A(E) = 2cos(9). 2)

In [2], Damanik, Killip and Simon emphasized and exploited the operator form
of (2), namely

A(J)y=S"+ 8", ©)

This follows from (2) and the view of J as a direct integral. More importantly, what
they called the “magic formula”, [2] shows that a two sided, not a priori periodic,
Jacobi matrix, which obeys (3), is periodic and in the isospectral torus of J,




526 ; B. Simon

A Laurent matrix is a finite band doubly infinite matrix that is constant alon
diagonals, so a polynomial in S and S™. §” + S~ is an example of such a matrixg
The current paper had its genesis in a question asked me by Jonathan Breuer and'
Maurice Duits. They asked if K is finite band and periodic but not tridiagonal if
there is a polynomial Q so that Q(K) is a Laurent matrix. They guessed that 0
might be connected to the trace of a transfer matrix.

While I don’t have a formal example where T can prove there is no such 0}
I have found a related result which strongly suggests that, in general, the answer is no,
I found an object which replaces A for more general K which is width 2m + 1
(i.e., Ky = 0if [j — k| > m), self-adjoint and non-degenerate in the sense that for
all j, Kjj4m # 0. Namely we prove the existence of a polynomial, p(x, y), in x
and y of degree 2m in y, so that p(K, S™) = 0. In the Jacobi case, ’

p(x,y) =y* = yA(x) + 1
so that p(J, S™) = 0 is equivalent to (3).

We prove this theorem and begin the exploration of this object in Section 1. Thata
scalar polynomial vanishes when the variable is replaced by an operator is the essence
of the Cayley—Hamiltonian theorem which says that a matrix obeys its secular equa-
tion. This was proven in 1853 by Hamilton [4] for the two special cases of three-
dimensional rotations and for multiplication by quaternions and stated in general by
Cayley [1] in 1858 who proved it only for 2 x 2 matrices although he said he’d done
the calculation for 3 x 3 matrices. In 1878, Frobenius [3] proved the general result
and attributed it to Cayley. We regard our main result, Theorem 2, 1, as a form of the
Cayley—Hamiltonian Theorem.

The magic formula had important precursors in two interesting papers of Nafman,
namely [5] and [6]. These papers are also connected to our work here,

It is a pleasure to present this paper to Pavel Exner for his 70t birthday. I have
lqng enjoyed his contributions to areas of common interest. I recall with fondness
the visit he arranged for me in Prague. He was a model organizer of an ICMP,
And he is an all around sweet guy. Happy birthday, Pavel.

2 Main result

By awidth 2m + 1 matrix, m € {1,2,...}, we mean a doubly infinite matrix, X, with
Kjk = 0if [/ — k| > m. If sup |K ;x| < 0o, K defines a bounded operator on £2(Z)
which we also denote by K. We say that K is non-degenerate if K ji+m 7 Oforall j.
t]){ i(s periodic (with period n) if S"K = K S, where S is the unitary operator given

y (1).
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We consider width 2m + 1, non-degenerate, period-n self-adjoint matric\es.
In that case, for any E, because K is non-degenerate, Ku = Eu, as a finite dif-
ference equation, has a unique solution for each choice of {u; JZ.’Z"J L T(E) will be
defined as the map from {u; }12":"0_ Lo {u; }}’__‘fﬁ’"—l —itis a 2m x 2m, degree n matrix.
If T(E)u = Au for A € C, Ku = Eu has a Floquet solution with ug,; = /\kuj.
If T(E) is diagonalizable, the set of Floquet solutions is a basis for all solutions of
Ku = Eu. If T(E) has Jordan anomalies (see [8] for background on linear algebra),
there is a basis of modified Floquet solutions with some polynomial growth on top
of the exponential A,

The values of A are determined by

p(E, L) = det(Al — T'(E)).

Since

det(Al — T(E)) = A*" det(1 — A71T(E))

=27 %(—A)j e ( /\(T(E))))
j=0 4
= % A pj(E),
Jj=0

where /\j is given by multilinear algebra (Section 1.3 of [8]) with /\O(T(E)) =1
on C so its trace is 1. Thus in (4),

2m—j

pon(B) =1, pi(E) = (=1 e /\ (T(E))) 5)

and p; is of degree at most (2m — j)nin E.

Since S™ and K are commuting bounded normal operators, they have a joint spec-
tral resolution which is supported precisely on the solutions of p(E,A) = 0 with
|A| = 1 because it is well known that the spectrum is precisely the set of energies
with polynomially bounded solutions. By the spectral theorem (equivalently, a direct
integral analysis), we thus have the main result of this note:

Theorem 2.1. Let K be a self-adjoint, non-degenerate, width 2m + 1, period n
matrix. Then for p given by (4)/(5), we have that

p(K,8™) =0. . : ©)

We end with a number of comments.
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(D We used the self-adjointness of K to be able to exploit the spectral theorem. Byt
Jus.t as the Cayley—~Hamilton Theorem for finite matrices holds in the non-self-
adjoint case, it seems likely that Theorem 2.1 is valid for general non-degenerate
periodic K, even if not self-adjoint. ,

(2) Since Kj;_,,; # 0, the transfer matrix, T'(E) is invertible and thus det(T'(E))
has no Zeros'. Since it is a polynomial, it must be constant, that is po(F) is a
constant. It is thus of much smaller degree than the bound, 2mn, oObtained b
counting powers of E. !

(3) In mfmy cases of interest, 7'(E) will be symplectic, i.e., there exists an antisym-
metric 1Q on C?” with 02 = —1 so that T(E) QT(E) = Q. Sucha T(E) has

— £ .
Z(E) ar_lii T—(1E)' similar, so the eigenvalues {A; }]2.2’1 can be ordered so that
2ml—j = Aj »J = 1,...,m. It follows that det(T'(E)) = 1 but even more.
we have that :

Tr(/k\(T(E))) = ) A

J1<=<jr

= /'\'.—1 .—1
Z Ji ot AJZm—k

J1<<jom—_i

=

J1<<jam—i

Ao

Jom—k

2m—k

= ( A (T(E)))

and po,,— i (E ) = pr(E). Inthe above, (7) follows from the fact that the product
of all the A’s is 1, and we can sum over the complements of all k-sets. (8) then
uses the fact that A2, 41—; = /1].“1, j=1...,m.

(4) Onecan ask whether there is a magic formula in this case, i.e., does p(K.S ")=0
imply that K is pel'iogic and isospectral to K. There is already one sub;lety one
Taces at the start. If K is not supposed a priori n-periodic, then S™/ Dj (K ) may
.not equal p;(K)S™ so there is a question of what r(K, S§") = 0 means. BEven
if one supposes that K St =8 "K, p(K,S ") = 0 and the spectral theorem
only implies that spec(K) C spec(K), so there is more to be proven. Indeed
the isospectral set in this case remains to be explored. ,

(5) It seems unlikely that there is another independent relation besides (6) between
apolynomial in K and Laurent polynomial in S. In general one cannot hope that
P(K,S") = 0 yields a polynomial in one variable so that Q(K) is a Laurent
polynomial in S but it remains to find an explicit example where one can prove

that the Breuer—Duits question has a negative answer.
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There are lots of interesting open questions connected to our main result, Theo-
rem 2.1. ' '
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