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A Cayley-Hamiltonian theorem 
for periodic finite band matrices 

Barry Simon 

I hope Pavel Exner will enjoy this birthday bouquet. 

1 Introduction - The magic formula 

Let I be a doubly infinite, self-adjoint, tridiagonal Jacobi matrix (i.e., Ijk = 0 if 
Ii - kl > 1 and IjJ+l > 0) that is periodic, i.e., if 

(1) 

then for some 11 E Z+, sn I = I sn. There is a huge literature on this subject - see 
Simon [7], Chapter 5. . . 

(1 - E)u = 0 is a second order difference equation, so there IS a lmear map 
T(E) : C

2 
-+ C

2 
so that if Uo, Ul are given, then T(E) (:~n =:= (~I::~l) for the 

solution of (J - E)u = O. 6(E) = Tr(M(.E)) is called the dl~~n111111ant of ~ 
We note that det(T(E)) = 1 so T(E) has eigenvalues A and A and 6(E) _ 
A + A-I. If 6(E) E (-2,2), then A = eiB for some 8 in ±(O, Jr) and then Iu = Eu 
has Floquet solutions, u± obeying uAnk = e±ikBuf. These are bounded and these 

are only bounded solutions if 6(E) E [-2,2]. Thus spec(I) = 6-1([-2,2]). One 
often writes this relation as 

6(E) = 2cos(8). (2) 

In [2], Damanik, Killip and Simon emphasized and exploited the operator form 
of (2), namely 

(3) 

This follows from (2) and the view of I as a direct integral. More imp~rta~tly,. w~at 
they called the "magic formula", [2] shows that a two sided, not a pnol'l penodlc, 
Jacobi matrix, which obeys (3), is periodic and in the isospectral torus of 1. 
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A Laurent matrix is a finite band doubly infinite matrix that is constant along 
diagonals, so a polynomial in Sand S-l. sn + s-n is an example of such a matrix. 

The current paper had its genesis in a question asked me by Jonathan Breuer and 
Maurice Duits. They asked if K is finite band and periodic but not tridiagonal if 
there is a polynomial Q so that Q(K) is a Laurent matrix. They guessed that Q 
might be connected to the trace of a transfer matrix. 

While I don't have a formal example where I can prove there is no such Q, 
I have found a related result which strongly suggests that, in general, the answer is no. 
I found an object which replaces L'l for more general K which is width 2m + 1 
(i.e., Kjk = 0 if Ii - kl > 111), self-adjoint and non-degenerate in the sense that for 
all j, Kjj+m i= O. Namely we prove the existence of a polynomial, p(x, y), in x 
and y of degree 2111 in y, so that p(K, sn) = O. In the Jacobi case, 

p(x, y) = y2 - yL'l(x) + 1 

so that p(J, SIl) = 0 is equivalent to (3). 

We prove this theorem and begin the exploration of this object in Section 1. That a 
scalar polynomial vanishes when the variable is replaced by an operator is the essence 
of the Cayley-Hamiltonian theorem which says that a matrix obeys its secular equa­
tion. This was proven in 1853 by Hamilton [4] for the two special cases of three­
dimensional rotations and for multiplication by quaternions and stated in general by 
Cayley [1] in 1858 who proved it only for 2 x 2 matrices although he said he'd done 
the calculation for 3 x 3 matrices. In 1878, Frobenius [3] proved the general result 
and attributed it to Cayley. We regard our main result, Theorem 2.1, as a form of the 
Cayley-Hamiltonian Theorem. 

The magic formula had important precursors in two interesting papers of NaIman, 
namely [5] and [6]. These papers are also connected to our work here. 

It is a pleasure to present this paper to Pavel Exner for his 70th birthday. I have 
long enjoyed his contributions to areas of common interest. I recall with fondness 
the visit he arranged for me in Prague. He was a model organizer of an ICMP. 
And he is an all around sweet guy. Happy birthday, Pavel. 

2 Main result 

By a width 2111 + 1 matrix, 111 E {I, 2, ... }, we mean a doubly infinite matrix, K, with 
Kj k = 0 if Ii - k I > 111. If sup I Kj k I < 00, K defines a bounded operator on g2 (IE) 
which we also denote by K. We say that K is non-degenerate if Kjj±m i= 0 for all j. 
K is periodic (with period 11) if sn K = K sn, where S is the unitary operator given 
by (1). 
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We consider width 2111 + 1, non-degenerate, period-n self-adjoint matrices. 
In that case, for any E, because K is non-degenerate, K u = Eu, as a finite dif­
ference equation, has a unique solution for each choice of {Uj }7~Ol. T(E) will be 

defined as the map from {u j }j~o 1 to {u j }j:;m-1 - it is a 2111 x 2111, degree n matrix. 

If T(E)u = AU for A E C, Ku = Eu has a Floquet solution with Ukn+j = AkUj. 
If T (E) is diagonalizable, the set of Floquet solutions is a basis for all solutions of 
K u = Eu. If T(E) has Jordan anomalies (see [8] for background on linear-,algebra), 
there is a basis of modified Floquet solutions with some polynomial growth on top 
of the exponential A k . 

The values of A are determined by 

peE, A) = det(At - T(E». 

Since 

det(At - T(E» = A2m det(l- A-I T(E» 

2m j 

= A2m (I)-A)j Tr (1\ (T(E»)) 
j=O (4) 

2m 
= LA

j 
pj(E), 

j=O 

where Aj is given by multilinear algebra (Section 1.3 of [8]) with A 0 
(T(E» = 1 

on C so its trace is 1. Thus in (4), 

2m-j 

P2m(E) = 1, pj(E) = (-l)j Tr ( 1\ (T(E») (5) 

and Pj is of degree at most (2111 - j)11 in E. . . 
Since SII and K are commuting bounded normal operators, they have aJomt spec­

tral resolution which is supported precisely on the solutions of peE, A) = 0 with 
IA I = 1 because it is well known that the spectrum is precisely the set of energies 
with polynomially bounded solutions. By the spectral theorem (equivalently, a direct 

integral analysis), we thus have the main result of this note: 

Theorem 2.1. Let K be a self-adjoint, non-degenerate, ,vidth 2111 + 1, period 11 

matrix. Thenfor p given by (4)/(5), we have that 

p(K, SI1) = O. (6) 

We end with a number of comments. 
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(1) We used the self-adjointness of K to be able to exploit the spectral theorem. But 
just as the Cayley-Hamilton Theorem for finite tnatrices holds in the non-self­
adjoint case, it seems likely that Theorem 2.1 is valid for general non-degenerate, 
periodic K, even if not self-adjoint. 

(2) Since Kjj-m i= 0, the transfer matrix, T(E) is invertible and thus det(T(E)) 
has no zeros. Since it is a polynomial, it must be constant, that is Po(E) is a 
constant. It is thus of much smaller degree than the bound, 211111, obtained by 
counting powers of E. 

(3) In many cases of interest, T(E) will be symplectic, i.e., there exists an antisym­
metric Q on e2m with Q2 = -1 so that T(E)t Q T(E) = Q. Such a T(E) has 
T(E)-l and T(E)t similar, so the eigenvalues poj };~l can be ordered so that 

A211l+I-j = Ajl, j = 1, ... ,111. It follows that det(T(E)) = 1 but even more, 
we have that 

k 

Tr (!\ (T(E))) = L AiJ··. Ajk 
iJ <"'<jk 

x:-- l X:- l 
Jl '" J2m-k (7) 

(8) 

211l-k 

= Tr ( !\ (T(E))) 

and P211l-k (E) = Pk (E). In the above, (7) follows from the fact that the product 
of all the A's is 1, and we can sum over the complements of all k-sets. (8) then 
uses the fact that A211l+I-j = Ajl, j = 1, ... , m. 

(4) One can ask whether there is a magic formula in this case, i.e., does P (X, S 11) = 0 
imply that X is periodic and isospectral to K. There is already one subtlety one 
faces at the start. If X is not supposed a priori ll-periodic, then slIj Pj (X) may 
not equal Pj (X)SlIj so there is a question of what p(X, SII) = 0 means. Even 
if one supposes that X SII = SII X, p(X, SII) = 0 and the spectral theorem 
only implies that spec(X) C spec(K), so there is more to be proven. Indeed, 
the isospectral set in this case remains to be explored. 

(5) It seems unlikely that there is another independent relation besides (6) between 
a polynomial in K and Laurent polynomial in S. In general one cannot hope that 
p(K, S") = 0 yields a polynomial in one variable so that Q(K) is a Laurent 
polynomial in SII but it remains to find an explicit example where one can prove 
that the Breuer-Duits question has a negative answer. 

-----------~~--------"------"---
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There are lots of interesting open questions connected to our main res~1t, Theo­
rem 2.1. 
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