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Abstract We consider a gas of fermions at zero temperature and low density, interacting
via a microscopic two-body potential which admits a bound state. The particles are confined
to a domain with Dirichlet boundary conditions. Starting from the microscopic BCS theory,
we derive an effective macroscopic Gross–Pitaevskii (GP) theory describing the condensate
of fermion pairs. The GP theory also has Dirichlet boundary conditions. Along the way, we
prove that the GP energy, defined with Dirichlet boundary conditions on a bounded Lipschitz
domain, is continuous under interior and exterior approximations of that domain.
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1 Introduction

We consider a gas of fermions at zero temperature in d = 1, 2, 3 dimensions and at chemical
potential μ < 0. The particles are confined to an open and bounded domain Ω ⊆ R

d with
Dirichlet (i.e. zero) boundary conditions. They interact via a microscopic local two-body
potential V which admits a two-body bound state. Additionally, the particles are subjected
to a weak external field W , which varies on a macroscopic length scale.

At low particle density, this leads to tightly bound fermion pairs. The pairs will approxi-
mately look like bosons to one another and, since we are at zero temperature, they will form
a Bose–Einstein condensate (BEC). It was understood in the 1980s [25,30] that BCS theory,
initially used to describe Cooper pair formation in superconductors on much larger (but still
microscopic) length scales [3], also applies in this situation. Moreover, the macroscopic vari-
ations of the condensate density are given in terms of the nonlinear Gross–Pitaevskii (GP)
theory [10,31,32]. An effective GP theory was recently derived mathematically starting from
the microscopic BCS theory, see [4,21] for the stationary case and [20] for the dynamical
case. This is in the spirit of Gorkov’s paper [18] on how Ginzburg–Landau theory arises
from BCS theory for superconductors at positive temperature. The latter problem has been
intensely studied mathematically in recent years [13–16,22].

The papers mentioned above all work under the assumption that the system has no bound-
ary (either by working on the torus or on the whole space). In the present paper, we start from
low-density BCS theory with Dirichlet boundary conditions and we show that the effective
macroscopic GP theory also has Dirichlet boundary conditions.

Our result is new even in the linear setting. The formal statement and its compara-
tively short proof can be found in Appendix E and we hope that this part may serve to
illustrate the ideas. In a nutshell, in the linear case we consider the two-body Schrödinger
operator

Hh := h2

2
(−ΔΩ,x + W (x) − ΔΩ,y + W (y)) + V

(
x − y

h

)
,

acting on L2(Ω × Ω), where −ΔΩ is the Dirichlet Laplacian. Hh describes the energy of a
fermion pair confined to Ω . While the center of mass variable x+y

2 and the relative variable
x − y do not decouple due to the boundary conditions, we show that, up to first subleading
order as h → 0, the ground state energy of Hh can be computed in a decoupled manner.
Namely, one can separately minimize (a) in the relative variable without boundary conditions
and (b) in the center of mass variable with Dirichlet boundary conditions and combine the
results to obtain the leading and subleading terms in the asymptotics for the ground state
energy of Hh as h ↓ 0. For the details, we refer to Theorem 12.1.

At positive temperature, de Gennes [9] predicted that BCS theory with Dirichlet bound-
ary conditions should instead lead to a Ginzburg–Landau theory with Neumann boundary
conditions. We believe that the discrepancy with our result here is due to the fact that we
study the system in the low density limit.
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1.1 BCS theory with a boundary

Let Ω ⊂ R
d , d = 1, 2, 3, be open; further assumptions on Ω are described below. In the

BCS model, one considers so-called BCS states (also called “quasi-free” states), which are
fully described by an operator

Γ =
(

γ α

α 1 − γ

)
, 0 ≤ Γ ≤ 1 (1.1)

acting on L2(Ω)⊕ L2(Ω). Physically, γ is the one-body density matrix and α is the fermion
pairing function, see also Remark 1.1 (ii). The condition 0 ≤ Γ ≤ 1 implies that 0 ≤ γ ≤ 1,
α = α∗ and 0 ≤ αα ≤ γ − γ 2. (The last inequality can be proved by observing that
γ − γ 2 − αα is the top left entry of the non-negative block operator Γ (1 − Γ ) and must
therefore be a non-negative operator as well.)

We let h > 0 denote the ratio between the microscopic and macroscopic length scales; it
will be a small parameter in our study. The energy of unpaired electrons at chemical potential
μ < 0 is described by the one-body Hamiltonian

h = −h2ΔΩ + h2W − μ, W : Ω → R.

Here, −ΔΩ is the Dirichlet Laplacian on Ω . By definition, it is the self-adjoint operator
corresponding to the quadratic form∫

Ω

|∇ f (x)|2dx, f ∈ H1
0 (Ω).

The BCS energy of a BCS state Γ is given by

E BCS
μ (Γ ) = Tr

[
hγ

] +
∫∫

Ω2

V

(
x − y

h

)
|α(x, y)|2dxdy. (1.2)

Here and in what follows, we denote by γ (x, y) and α(x, y) the integral kernels of the
operators γ and α. (The fact that γ and α are indeed integral operators is guaranteed by
Definition 1.5 of admissible BCS states.)

Remark 1.1 (i) The formulation of the BCS model that we use is due to [2,25]. A heuristic
derivation from the quantum many-body Hamiltonian can be found in the appendix to
[19].

(ii) The matrix elements of a BCS state Γ have the following physical significance. If we
write 〈·〉 for the expectation value of an observable in the system state, then γ (x, y) =
〈a†

xay〉 is the one-particle density matrix and α(x, y) = 〈axay〉 is the fermion pairing
function. (Here a†

x , ax denote the fermion creation and annihilation operators.)
(iii) We ignore spin variables. Implicitly, the pairing function α(x, y) (which is symmetric

since α∗ = α) is to be tensored with a spin singlet, yielding an antisymmetric two-body
wave function, as is required for fermions.

(iv) For simplicity, we do not include an external magnetic field in the model. There is
no apparent obstruction to applying the methods with a sufficiently regular and weak
external magnetic field as in [13,15,21].

Throughout, we make

Assumption 1.2 (Regularity of V and W ) V : Rd → R is a locally integrable function
that is infinitesimally form-bounded with respect to −Δ (the ordinary Laplacian) and V is
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reflection-symmetric, i.e. V (x) = V (−x). Moreover, −Δ + V admits a ground state of
negative energy −Eb.

We also assume that W ∈ L pW (Ω) with 2 ≤ pW ≤ ∞ if d = 1, 2 < pW ≤ ∞ if d = 2
and 3 ≤ pW ≤ ∞ if d = 3.

Remark 1.3 (i) The assumption that −Δ+V admits a ground state is critical for the fermion
pairs to condense. Without it, the pairs would prefer to drift far apart to be energy-
minimizing. (Strictly speaking, each fermion pair is described by the operator −2Δ+2V
and has the ground state energy −2Eb. We have made the factor two disappear for
notational convenience; observe also the lack of a symmetrization factor 1/2 in front of
the V term in (1.2).)

(ii) The integrability assumption on W is such that Wψ ∈ L2(Ω) for every ψ ∈ H1
0 (Ω)

and the numerical value of pW is derived from the critical Sobolev exponent.
Note that the assumption implies that W is infinitesimally form-bounded with respect to
−Δ. However, the assumption is stronger than infinitesimal form-boundedness and the
two places where we use this additional strength are (a) for the semiclassical expansion
(Lemma 3.2) and (b) for Davies’ approximation result (Lemma 7.2).

Assumption 1.4 (Regularity of Ω) The open set Ω ⊆ R
d is a bounded Lipschitz domain.

We recall that a set Ω is a Lipschitz domain if its boundary can be locally represented as
the graph of a Lipschitz continuous function. The formal definition is given in Appendix D.

Definition 1.5 (Admissible states) We say that a BCS state Γ of the form (1.1) is admissible,
if Tr

[
γ 1/2(1 − ΔΩ)γ 1/2

]
< ∞. Here γ 1/2 denotes the square root in the sense of operators.

An admissible state Γ has the integral kernel α ∈ H1
0 (Ω2) thanks to the operator inequality

αα ≤ γ and α∗ = α (we skip the proof, see the last step in the proof of Proposition 4.2 for
a closely related argument). We note

Proposition 1.6 E BCS
μ is bounded from below on the set of admissible states Γ .

In principle, this is a standard argument based on the operator inequality αα ≤ γ and
our assumption that V is infinitesimally form-bounded with respect to −Δ. However, a little
care has to be taken regarding the boundary conditions; we leave the proof to the interested
reader because the required ideas appear throughout the paper.

In this paper, we shall study the minimization problem

EBCS
μ := inf

Γ admissible
E BCS

μ (Γ ). (1.3)

Note that EBCS
μ > −∞ by Proposition 1.6. We are especially interested in the occurrence

of EBCS
μ < 0 and in that case we say that the system exhibits fermion pairing.

Here is the reasoning behind this definition: We will consider chemical potentials μ =
−Eb + Dh2 with D ∈ R so that h ≥ 0 for h small enough, see Proposition 5.3. Then
EBCS

μ < 0 implies that any minimizer Γ must satisfy α �= 0, i.e. it must have a non-trival
fermion pairing function α.

Main results. We now discuss our main results in words, they are stated precisely in Sect.
1.3 below.

By the monotonicity of μ �→ EBCS
μ for every fixed h > 0, there exists a unique critical

chemical potential μc(h) such that we have fermion pairing iff μ > μc(h). The first natural
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question is then whether one can compute μc(h). In our first main result, Theorem 1.7, we
show that

μc(h) = −Eb + h2Dc + O(h2+ν), as h ↓ 0.

That is, to lowest order in h, μc(h) is just one half of the binding energy of a fermion pair.
The subleading correction term Dc ∈ R is the ground state energy of an explicit Dirichlet
eigenvalue problem on Ω (the linearization of the GP theory below).

Physically, the choice of μ ≈ μc(h) corresponds to small density; this is explained after
Proposition 1.11. We expect that for μ above and close to μc(h), the fermion pairs look like
bosons to each other and (since we are at zero temperature) the pairs will form a Bose–Einstein
condensate, which will then be describable by a Gross–Pitaevskii (GP) theory.

Accordingly, in our secondmain result,Theorem 1.10, we derive an effective, macroscopic
GP theory of fermion pairs from the BCS model for all μ = −Eb + Dh2 with D ∈ R. The
resulting GP theory also has Dirichlet boundary conditions.

Theorems 1.7 and 1.10 show that the boundary conditions make a significant difference
on the (macroscopic!) GP scale, a physically non-trivial fact. The results hold for the rather
general class of bounded Lipschitz domains.

Related works. The BCS model that we consider has received considerable interest in recent
years in mathematical physics. Most closely related to our paper are the derivations of effective
GP theories for periodic boundary conditions in [21] and for a system in R

3 at fixed particle
number [4]. The dynamical analogue of this derivation was performed in [20]. The related,
and technically more challenging, case of BCS theory close to the critical temperature for
pair formation has also been considered: In [12,19], the critical temperature was described by
a linear criterion. The analogue of Theorem 1.7 for the upper and lower critical temperatures
was the content of [15]. In [14,16] and especially [13] effective macroscopic Ginzburg–
Landau theories have been derived.

We emphasize that all of these papers assume that the system has no boundary (either by
working on the torus or on the whole space) and the same holds true for the resulting effective
GP or GL theories. (We also mention that the derivation in [4] depends on ‖W‖L∞(Rd ) < ∞
and so one cannot obtain the Dirichlet boundary conditions as the limiting case of a sufficiently
deep potential well from [4].)

Our main contribution is thus to show the non-trivial effect of boundary conditions on
the effective macroscopic GP theory. As we mentioned in the introduction, this is in some
contrast to de Gennes’ arguments [9] at positive temperature and positive density.

1.2 Main result 1: the critical chemical potential

Considering definitions (1.2) and (1.3) of the BCS energy, we see that the non-positive
function μ �→ EBCS

μ is monotone decreasing (and concave). This allows us to define the
critical chemical potential μc(h) as the unique number (potentially infinity) such that

μc(h) := inf
{
μ < 0 : EBCS

μ < 0
}

(1.4)

If μc(h) is finite, then the monotonicity and continuity of the function μ �→ EBCS
μ allows us

to write
{
μ : EBCS

μ < 0
} = (μc(h),∞). The definition (1.4) is analogous to the definition

of the upper and lower critical temperature in [15], but the explicit dependence of the BCS
energy on μ simplifies matters here.

123



 54 Page 6 of 40 R. L. Frank et al.

Our first main result gives an asymptotic expansion of μc(h) in h up to second order,
where the subleading term Dc is given as an appropriate Dirichlet eigenvalue, namely

Dc := inf specL2(Ω)

(
−1

4
ΔΩ + W

)
(1.5)

The result is the analogue of the main result in [15] for the critical temperature.

Theorem 1.7 (Main result 1) We have

μc(h) = −Eb + Dch
2 + O(h2+ν), as h ↓ 0

The exponent of the error term is ν := min{d/2, cΩ − δ} where δ > 0 is arbitrarily small
and cΩ ∈ (0, 1] depends only on Ω , see Remark 1.8 (iii) below.

Remark 1.8 (i) It follows from the definition of Dc that the Dirichlet boundary conditions
have a non-trivial effect on the value of μc(h).

(ii) The critical value Dc is uniquely determined by EGP
D = 0 for D ≤ Dc and EGP

D < 0
for D > Dc, where EGP

D is defined in (1.7) and (1.8) below. For the proof, see Lemma
2.5 in [15].

(iii) The constant cΩ in the definition of ν is the constant such that the Hardy inequality
(7.2) holds on Ω . Under additional assumptions on Ω , quantitative information on cΩ

is known: If Ω is convex or if ∂Ω is given as the graph of a C2 function, then cΩ = 1
which is optimal [5,27,28] and if Ω ⊂ R

2 is simply connected, then we can take
cΩ = 1/2 [1].

(iv) The asymptotic expansion of μc(h) to this order is the same as the expansion of the
ground state energy of the two-body Schrödinger operator Hh , see Theorem 12.1.
Intuitively, this is due to the fact that at μc(h) fermion pairing just onsets, so the order
parameter is small and the nonlinear terms become negligible.

1.3 Main result 2: effective GP theory

Definition 1.9 (i) We write α∗ for the unique positive and L2-normalized ground state of
−Δ + V . By definition, it satisfies (−Δ + V )α∗ = −Ebα∗. We let

gBCS := (2π)−d
∫
Rd

(p2 + Eb)|̂α∗(p)|4dp. (1.6)

Here α̂∗ denotes the Fourier transform of α∗.
(ii) For any D ∈ R and ψ ∈ H1(Rd), we define the Gross–Pitaevskii (GP) energy functional

by

EGP
D (ψ) :=

∫
Rd

(
1

4
|∇ψ(X)|2+(W (X) − D)|ψ(X)|2 + gBCS |ψ(X)|4

)
dX. (1.7)

Here and in the following, we extend W : Ω → R by zero to obtain a function on R
d

to compute the integral.
(iii) Given a domain U ⊂ R

d , we will consider its Dirichlet GP energy, defined as

EGP
U,D := inf

ψ∈H1
0 (U )

EGP
D (ψ). (1.8)

Here and in the following, we extend ψ ∈ H1
0 (U ) by zero to obtain a function in

H1(Rd).

123



Condensation of fermion pairs in a domain Page 7 of 40  54 

We now state our second main result. It says that the GP theory EGP
D arises from E BCS

−Eb+Dh2

as the scale parameter h goes to zero.

Theorem 1.10 (Main result 2) Let μ = −Eb + Dh2 with D ∈ R.

(i) As h ↓ 0, we have

EBCS
μ = h4−d EGP

Ω,D + O(h4−d+ν), (1.9)

where ν is as in Theorem 1.7.
(ii) Let Ω be convex. Suppose that Γ is a BCS state such that

E BCS
μ (Γ ) ≤ EBCS

μ + εh4−d

for some small ε > 0. Then, its upper right entry α in the sense of (1.1) can be
decomposed as

α(x, y) = h1−dψ

(
x + y

2

)
α∗

(
x − y

h

)
+ ξ

(
x + y

2
, x − y

)
(1.10)

with ψ ∈ H1
0 (Ω) satisfying EGP

D (ψ) ≤ EGP
Ω,D + ε + O(hν) and ξ ∈ H1

0 (Ω ×R
d) such

that

‖ξ‖2
L2(Ω×Rd )

+ h2‖∇ξ‖2
L2(Ω×Rd )

≤ O(h4−d). (1.11)

The interpretation of Theorem 1.10 (ii) is that GP theory describes the center-of-mass
part of the fermion pairing function of any approximate minimizer of the BCS energy. To
see this, observe first that ξ is an error term in (1.10), because for the first term in (1.10) the
square of the norm in (1.11) is of order h2−d . Therefore, to leading order in h, the fermion
pairing function of any approximate BCS minimizer is of the form ψ

( x+y
2

)
α∗

( x−y
h

)
. Here

α∗ describes the pair binding on the microscopic scale h. By contrast, ψ describes the center-
of-mass of the pairs on a macroscopic scale and it must be an approximate minimizer of the
GP energy.

If Ω is not convex, one can still get a weaker version of Theorem 1.10 (ii) in which ψ and
the Dirichlet energy live on a slightly enlarged domain, see Theorem 2.1 (LB).

We close the presentation of the main results by explaining why the choice of μ =
−Eb + Dh2 corresponds to a low density limit.

Proposition 1.11 (Convergence of the one-body density) Let Γ be a BCS state satisfying
the inequality E BCS

−Eb+Dh2(Γ ) ≤ EBCS
−Eb+Dh2 + o(h4−d) (e.g. Γ is an approximate minimizer

as in Theorem 1.10 (ii)) and let ργ denote its one-body density (i.e. ργ (x) = γ (x, x) if γ is
continuous). Then we have

hd−2ργ ⇀ |ψ∗|2, in L p′
W (Ω) (1.12)

where ψ∗ is a minimizer of EGP
D . p′

W is the Hölder dual exponent of pW .

We mention that minimizers of EGP
D exist and are unique up to a complex phase by

Proposition 2.5 (though they may be identically zero).
The proof of Proposition 1.11 is in Appendix B. It is a classical argument which is based

on Theorem 1.10 and the fact that the one-body density ργ and the external field W are “dual
variables” [17,26].

Note that we can test (1.12) against the indicator function 1Ω to obtain the expected
particle number
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N :=
∫

Ω

ργ dx = h2−d
∫

Ω

|ψ∗|2dx + o(h2−d),

compare (1.14) in [21]. The expected particle density in microscopic units is given by

hd N = h2‖ψ∗‖2
L2(Ω)

+ o(h2) → 0.

We see that our scaling limit indeed corresponds to low density. (We point out that the physical
model is somewhat pathological in d = 1 because even N will go to zero as h → 0. Since
N is only the expected particle number, the model still makes sense in principle, but it is of
course debatable that statistical mechanics still applies in this case.)

1.4 Outline of the paper

The proof of the main results is based on two distinct key results.

– In key result 1 (Theorem 2.1), we bound the BCS energy over Ω in terms of GP energies
on a slightly smaller domain than Ω (upper bound) and on a slightly larger domain than
Ω (lower bound). If Ω is convex, the lower bound simplifies to the GP energy on Ω

itself. The general strategy here is as in [13,20,21], though some technical difficulties
arise from the Dirichlet boundary conditions, see (i) and (ii) below. This part only requires
Ω to be a domain of finite Lebesgue measure.

– In key result 2 (Theorem 2.2), we show that the GP energy is continuous under approxi-
mations of the domain Ω , if Ω is a bounded Lipschitz domain. The idea is to use Hardy
inequalities to control the boundary decay of GP minimizers using the fact that these lie
in the operator domain of the Dirichlet Laplacian. This approach is due to Davies [7,8]
who treated the linear case of Dirichlet eigenvalues. (Davies does not treat continuity
under exterior approximations because a Hardy inequality is not sufficient for this to
hold, see the example in Remark 2.4).

We point out that key result 1 concerns the many-body system. Key result 2, by contrast,
is a continuity result for a certain class of nonlinear functionals on R

d and is based on ideas
from spectral theory and geometry.

In Sect. 2, we present the two key results in detail and derive the two main results from
them.

In Sect. 3, we present the semiclassical expansion (Lemma 3.2). This is an important tool
in the proof of all parts of Theorem 2.1 (key result 1). The version here is very close to the
one in [4], though we generalize it somewhat as described in (iii) below.

In Sect. 4, we prove the upper bound part of Theorem 2.1. We construct a trial state
following [4,20], with an appropriate cutoff to ensure that it satisfies the Dirichlet boundary
conditions. The semiclassical expansion then yields an upper bound by a GP energy in a
slightly smaller region than Ω . One finishes the proof by applying the continuity of the GP
energy under domain approximations (key result 2).

In Sects. 5, 6, we prove the lower bound part of Theorem 2.1. The overall strategy is as in
[4,13]: One first proves an a priori decomposition result yielding (1.10) for the off diagonal
entry α of any approximate BCS minimizer Γ (with H1 control on the involved functions).
This is Theorem 5.1 and it shows that the GP order parameter is naturally associated with
the center of mass variable x+y

2 (living on the macroscopic scale). Then, one can use the
semiclassical expansion on the main part of α to finish the proof.

While the overall strategy is as in [4,13], there are some significant difficulties due to the
boundary conditions:
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(i) The boundary conditions prevent the variables in the center of mass frame from decou-
pling as usual. This poses a problem, because the GP energy/order parameter should
only depend on the center of mass variable. The solution we have found to this is to for-
get the boundary conditions in the relative coordinate altogether. (Note that this gives
a lower bound, since Dirichlet energies decrease under an increase of the underlying
function spaces.) In this way, we decouple the variables in the center of mass frame.
Moreover, one has not lost much, thanks to the exponential decay of the Schrödinger
eigenfunction α∗ governing the relative coordinate via (1.10). This idea is most clearly
seen in Appendix E.

(ii) The center of mass variable x+y
2 naturally takes values in the set

Ω̃ := Ω + Ω

2
.

After some steps in the lower bound, we are led to a GP energy on Ω̃ . Note that when
Ω is convex, Ω̃ = Ω and so one is essentially done at this stage. If Ω is not convex,
however, some additional work is required. The idea is to use the exponential decay of
α∗ again, the details are in Sect. 6.3.

(iii) We observe that the arguments from [4] can be extended to dimensions d = 1, 2 and
to external potentials which satisfy W ∈ L pW (Ω). We do not see, however, that the
arguments can be extended to the case W = ∞ on a set of positive measure (i.e. the
Dirichlet boundary conditions).

In Sect. 7, we prove key result 2, Theorem 2.2. The crucial input are Davies’ ideas [7,8]
of deriving continuity of the Dirichlet energy under domain approximations from the Hardy
inequality, see Lemma 7.2. Along the way, we need Theorem 7.3 which says that the Hardy
inequality holds along a suitable sequence of exterior approximations Ω� to Ω , with uniform
dependence of the Hardy constants on �, and may be of independent interest.

Theorem 7.3 is proved in Appendix D by extending Necas’ proof [29] of the Hardy
inequality on any bounded Lipschitz domain. The appendix also contains the proofs of some
technical results used in the main text, as well as a presentation of the linear version of
our main results, the asymptotics of the ground state energy of the two-body Schrödinger
operator Hh mentioned in the introduction (see Appendix E).

Notation We write C,C ′, . . . for positive, finite constants whose value may change from line
to line. We typically do not track their dependence on parameters which are assumed to be
fixed throughout, such as the dimension d and the potentials V and W . The dependence on
D will be explicit only where relevant.

We will suppress the parameter dependence on μ and D in the following. That is, we will
write E BCS

μ ≡ E BCS, EGP
D ≡ EGP , etc.

Finally, we will abuse notation and identify a function ψ ∈ H1
0 (U ) on some domain

U ⊂ R
d with the function on R

d that is obtained by extending ψ by zero. We note that this
extension lies in H1(Rd).

2 The two key results

2.1 Key result 1: bounds on the BCS energy

We bound the BCS energy on Ω in terms of GP energies on interior approximations of Ω

for an upper bound (“UB”) and on exterior approximations of Ω for a lower bound (“LB”).
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Let Ω ⊂ R
d be an open domain of finite Lebesgue measure. For � > 0, define the interior

and exterior approximations of Ω

Ω−
� := {

X ∈ Ω : dist(X,Ωc) > �
}
, (2.1)

Ω+
� :=

{
X ∈ R

d : dist(X,Ω) < �
}

, (2.2)

and define Ω±
0 := Ω .

Theorem 2.1 (Key result 1) Let �(h) := h log(h−q) with q > 0 sufficiently large but fixed.
Let μ = −Eb + Dh2 for some fixed D ∈ R. Then:

(UB) For every function ψ ∈ H1
0 (Ω−

�(h)), there exists an admissible BCS state Γψ such that

E BCS(Γψ) = h4−dEGP (ψ) + O(h5−d)
(
‖ψ‖2

H1(Rd )
+ ‖ψ‖4

H1(Rd )

)
. (2.3)

The implicit constant depends continuously on D.
(LB) Let Γ be an admissible BCS state satisfying E BCS(Γ ) ≤ CΓ h4−d . Then, there exists

ψ ∈ H1
0 (Ω+

�(h)) such that

E BCS(Γ ) ≥ h4−dEGP (ψ) + O
(
h4−d+ν′)

, (2.4)

where ν′ = min{d/2, 1}. Moreover, there exists ξ ∈ H1
0 (Ω̃ × R

d), Ω̃ := Ω+Ω
2 , such

that α can be decomposed as in (1.10) and we have the bounds

‖∇ψ‖
L2

(
Ω+

�(h)

) ≤ C‖ψ‖
L2

(
Ω+

�(h)

) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd )

+ h2‖∇ξ‖2
L2(Ω̃×Rd )

≤ O(h4−d)
(
‖ψ‖2

L2(Ω̃)
+ CΓ

) (2.5)

The constant C and the implicit constants depend continuously on D.
(LBC) If Ω is convex, then one can take �(h) = 0 everywhere in (LB). In particular, there

exists ψ ∈ H1
0 (Ω) such that

E BCS(Γ ) ≥ h4−dEGP (ψ) + O(h4−d+ν′
). (2.6)

2.2 Key result 2: continuity of the GP energy under domain approximations

The following theorem says that, on any bounded Lipschitz domain Ω , we have continuity
of the GP energy under domain approximations. The continuity is derived from the Hardy
inequality (7.2) in an approach due to Davies [7,8], see also [11]. The details are in Sect. 7.

We recall Definition 1.9 of the GP energies and the conventions made therein.

Theorem 2.2 (Key result 2) Assume that Ω is a bounded Lipschitz domain. For � > 0,
define Ω±

� as before Theorem 2.1. Then, there exists a constant cΩ ∈ (0, 1] such that∣∣∣EGP
Ω±

�

− EGP
Ω

∣∣∣ ≤ O(�cΩ ). (2.7)

Moreover, the statement holds irrespectively of the value of the parameters gBCS and D in
(1.8). In particular it holds for gBCS = D = 0 and then it shows that

∣∣D±
c (�) − Dc

∣∣ ≤ O(�cΩ ), D±
c (�) := inf specL2(Ω)

(
−1

4
ΔΩ±

�
+ W

)
. (2.8)

Here Dc ≡ D±
c (0) is defined in (1.5).
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Remark 2.3 The constant cΩ is the same as in Theorem 1.7; see Remark 1.8 (iii) for quan-
titative results on cΩ if more information on Ω is known.

We close with a cautionary example, which shows that a two-sided continuity result such
as (2.7) cannot be valid without additional assumptions on the regularity of the boundary
∂Ω .

Remark 2.4 (Exterior approximation is delicate) Consider the slit domain Ω = [−1, 1]2 \
((−1, 0] × {0}). The slit will disappear for any exterior approximation Ω+

� (� > 0) and
this will lead to an order one decrease of the GP energy. Therefore, the GP energy on Ω

is not continuous under exterior approximation. (However, it is continuous under interior
approximation: As discussed in Sect. 7.1, this follows from the validity of the Hardy inequality
(7.2) on Ω , and since Ω ⊂ R

2 is simply connected, it satisfies the Hardy inequality with
cΩ = 1/2 [1].)

2.3 On GP minimizers

We collect some standard results about GP minimizers for later use. We recall Definition 1.9
of the GP energy.

Proposition 2.5 (i) For any ψ ∈ H1(Rd), we have the coercivity inequality

EGP (ψ) ≥ C1‖ψ‖2
H1

0 (Rd )
− (C2 + D)2, (2.9)

where the constants C1,C2 > 0 are independent of D.
(ii) Let U ⊂ R

d be an open domain of finite Lebesgue measure. Then EGP
U > −∞.

Moreover, there exists a minimizer for EGP
U and it is unique up to multiplication by a

complex phase. Minimizing sequences are precompact in H1
0 (U ).

(iii) There exists C > 0, independent of U and D, such that the minimizerψ∗ corresponding
to EGP

U satisfies

‖ΔUψ∗‖L2(U ) ≤ C(1 + |D|)
(
‖ψ∗‖H1

0 (U ) + ‖ψ∗‖3
H1

0 (U )

)
. (2.10)

For completeness, the standard proof of these results is included in Appendix A.

2.4 Derivation of the main results from the key results

In this section, we assume that the two key results (Theorems 2.1 and 2.2) hold.

2.4.1 Proof of main result 1, Theorem 1.7

Upper bound Let μ = −Eb + Dh2 with D = Dc + C0hν for some constant C0 > 0 to be
determined. We will show that for large enough C0 > 0, there exists an admissible BCS state
Γ such that

E BCS(Γ ) < 0. (2.11)

By Definition (1.4) (and the comment following it), this implies the claimed upper bound
μc(h) ≤ −Eb + Dch2 + C0h2+ν .
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We let � ≡ �(h) = h log(h−q) with q > 0 large enough and we recall Definitions (2.1)
and (2.8) of Ω−

� and D−
c (�). Following [15] p.209, we choose ψ = θψ�, where θ > 0 and

ψ� ∈ H1
0 (Ω−

� ) is the eigenfunction

(−ΔΩ−
�

+ W )ψ� = D−
c (�)ψ�.

Optimizing over θ yields

EGP (ψ) = −C
(
D − D−

c (�)
)2

, θ = C ′
√
D − D−

c (�). (2.12)

Hence, any relevant norm of ψ = θψ� is proportional to
√
D − D−

c (�). Since ψ ∈
H1

0 (Ω−
�(h)), we can apply Theorem 2.1 (UB) to get an admissible BCS state Γψ such that

hd−4E BCS(Γψ) = EGP (ψ) + O(hν)
(
‖ψ‖2

H1(Rd )
+ ‖ψ‖4

H1(Rd )

)

= −C
(
D − D−

c (�)
)2 + O(hν)

(
θ2‖ψ�‖2

H1(Rd )
+ θ4‖ψ�‖4

H1(Rd )

)
.

We have the a priori bound ‖ψ�‖H1(Rd ) ≤ O(1). Indeed, the infinitesimal form-boundedness
of W with respect to −ΔΩ−

�
implies

‖ψ�‖2
H1(Rd )

− C ≤ D−
c (�) ≤ D−

c (�),

where �0 > � is fixed. In the second step, we used the fact that Dirichlet energies increase
when the underlying domain decreases.

By our choice of D and the last part of Theorem 2.2, there exists C1 > 0 such that

D = Dc + C0h
ν ≥ D−

c (�) + (C0 − C1)h
ν

and so, for C0 > C1,

hd−4E BCS(Γψ) ≤ −C(C0 − C1)
2h2ν + O(h2ν)(C0 − C1).

We recall that the implicit constant depends on D in a continuous way. Let C2 denote the
maximum absolute value that this constant takes on the interval [Dc −1, Dc +1]. We choose
C0 = 2C2/C +C1. Then, for all small enough h > 0, D = Dc +C0hν ∈ [Dc − 1, Dc + 1]
and consequently

hd−4E BCS(Γψ) ≤ h2ν(C0 − C1)(−C(C0 − C1) + C2) < 0.

This proves (2.11) and hence the claimed upper bound on μc(h). ��

Lower bound (convex case) Let μ = −Eb + Dh2 and D = Dc − C0hν with C0 to be
determined. Let Γ be a BCS state satisfying E BCS(Γ ) ≤ 0. We will show that Γ ≡ 0 and
this will prove the claim μc(h) ≥ −Eb + h2Dc − C0h2+ν .

Assumption 1.2 on W implies that it is infinitesimally form-bounded with respect to −ΔΩ

on H1
0 (Ω) and from this one derives that h ≥ 0 for sufficiently small h, see Proposition 5.3.

Therefore, the zero state is the unique minimizer of the first term tr
[
hγ

]
in E BCS and it

suffices to show that α ≡ 0 to get Γ = 0.
We apply Theorem 2.1 (LBC) with CΓ = 0 and obtain ψ ∈ H1

0 (Ω) such that

0 ≥ hd−4E BCS(Γ ) ≥ EGP (ψ) + O(hν).
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Inspection of the proof of Theorem 2.1 (LBC) shows that, for C� = 0, we can estimate the
error term by O(hν) ≥ −C ′hν‖ψ‖2

H1
0 (�)

for some C ′ > 0 that depends continuously on D

but not on ψ . (This essentially follows from the a priori bounds in Theorem 5.1.)
We drop the (non-negative) quartic term in εGP for a lower bound and use the denition of

Dc to get

EGP (ψ) ≥ (Dc − D)‖ψ‖2
L2(�)

The analogue of the first relation in (2.5) in the convex case gives ‖ψ‖2
H1

0 (�)
≤ C‖ψ‖2

L2(�)

where C depends continuously on D. This gives

0 ≥ (C−1(Dc − D) − C ′)‖ψ‖2
H1

0 (�)
.

Recall thatC andC ′ depend on D in a continuous way. LetC2,C ′
2 > 0 denote their maximum

values on the interval [Dc − 1, Dc + 1]. Taking D = Dc −C0hν with C0 = 2C2C ′
2, we find

that ψ ≡ 0 for small enough h > 0.
Since CΓ = 0, the analogue of the second bound in (2.5) in the convex case yields ξ ≡ 0

and so α ≡ 0 as claimed.

Lower bound (non convex case) We write � ≡ �(h) throughout. We apply Theorem 2.1 (LB)
and argue as in the convex case to find

0 ≥ hd−4E BCS(Γ ) ≥ (D+
c (�) − D − C ′hν)‖ψ‖2

H1
0 (Ω+

� )
.

Now, the last part of Theorem 2.2 gives D+
c (�) − D + O(hν) = Dc − D + O(hν). This can

be made positive by choosing C0 large enough in the same way as above. We conclude that
ψ = 0 and so ξ = 0 by (2.5) and CΓ = 0 (since we assume E BCS(Γ ) ≤ 0). This completes
the proof of Theorem 1.7. ��

2.4.2 Proof of main result 2, Theorem 1.10

We let μ = −Eb + Dh2 with D ∈ R fixed and we let �(h) = h log(h−q), with q ≥ 1 large
but fixed.
Upper bound By Proposition 2.5, the minimization problem EGP

Ω−
�(h)

has a unique minimizer,

call it ψ− ∈ H1
0 (Ω−

�(h)). We apply Theorem 2.1 (UB) with ψ = ψ− to obtain an admissible
BCS state Γψ− such that

EBCS ≤ E BCS(Γψ−) = h4−dEGP (ψ−) + O(h5−d)
(
‖ψ−‖2

H1(Rd )
+ ‖ψ−‖4

H1(Rd )

)

≤ h4−dEGP
Ω−

�(h)

+ O(h5−d)

(
1 + EGP

Ω−
�(h)

)2

.

In the second step, we used the fact that ψ− is a minimizer and the coercivity (2.9).
Now we apply Theorem 2.2. Since �(h) = O(h1−δ) for every δ > 0, we get

EBCS ≤ h4−dEGP
Ω + O(h4−d+ν),

where ν is as in Theorem 1.7.
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Lower bound Thanks to the upper bound right above, for any minimizer Γ of the BCS energy,
we have

E BCS(Γ ) ≤ h4−d(EGP
Ω + ε)

for all ε > 0. In particular, E BCS(Γ ) ≤ CΓ h4−d and so Γ satisfies the assumption in
Theorem 2.1 (LB) and (LBC).

If Ω is convex, the claim follows directly from Theorem 2.1 (LBC).
If Ω is a non convex bounded Lipschitz domain, Theorem 2.1 (LB) yields ψ ∈ H1

0 (Ω+
�(h))

such that

E BCS(Γ ) ≥ h4−dEGP (ψ) + O(h4−d+ν′
) ≥ h4−d EGP

Ω+
�(h)

+ O(h4−d+ν′
).

The lower bound now follows from Theorem 2.2. This finishes the proof of Theorem 1.10.
��

3 Semiclassical expansion

We state an important tool for the proof of Theorem 2.1, the semiclassical expansion. The
version here is essentially the one from [4].

Though not strictly necessary for the result, it will be convenient for us to assume the
following decay condition.

Definition 3.1 We say that a function a ∈ L2(Rd) decays exponentially in the L2 sense with
the rate ρ, if

∫
Rd

e2ρ|s||a(s)|2ds < ∞. (3.1)

Recall that α∗ denotes the unique ground state of −Δ + V . It is well known that weak
assumptions on the potential V imply the exponential decay of α∗ in an L2 sense. The fact
that infinitesimal form-boundedness of V is sufficient is essentially contained in [33] but was
known to the experts even earlier. That is, there exists ρ∗ > 0 such that

∫
Rd

e2ρ∗|s||α∗(s)|2ds < ∞. (3.2)

In particular, we can apply the following lemma with a = α∗ later on.

Lemma 3.2 (Semiclassics) For ψ, a ∈ H1(Rd), we set

aψ(x, y) := h−dψ

(
x + y

2

)
a

(
x − y

h

)
, x, y ∈ R

d . (3.3)

Suppose that a(x) = a(−x) and that a decays exponentially in the L2 sense of Definition
3.1.

Then:
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(i)

Tr
[
(−h2Δ − μ)aψaψ

] +
∫∫

Rd×Rd

V

(
x − y

h

)
|aψ(x, y)|2dxdy

= h−d‖ψ‖2
L2(Rd )

〈a |−Δ + Eb + V | a〉

+ ‖a‖2
L2(Rd )

(
h2−d

4
‖∇ψ‖2

L2(Rd )
+ h−d(−Eb − μ)‖ψ‖2

L2(Rd )

)
.

(ii) There exists a constant C > 0 such that∣∣∣∣Tr
[
Waψaψ

] − h−d‖a‖2
L2(Rd )

∫
Rd

W (X)|ψ(X)|2dX

∣∣∣∣
≤ Ch1−d‖a‖2

L2(Rd )
‖W‖L pW (Ω)‖ψ‖2

H1(Rd )
.

(iii) Let

gBCS(a) : = (2π)−d
∫
Rd

(p2 + Eb)|â(p)|4dp,

g0(a) : = (2π)−d
∫
Rd

|â(p)|4dp
(3.4)

Then, as h ↓ 0,

Tr
[
(−h2Δ+Eb+h2W )aψaψaψaψ

] = h−dgBCS(a)‖ψ‖4
L4(Rd )

+ O(h1−d)‖ψ‖4
H1(Rd )

,

Tr
[
aψaψaψaψ

] = h−dg0(a)‖ψ‖4
L4(Rd )

+ O(h1−d)‖ψ‖4
H1(Rd )

Lemma 3.2 was proved in in [4] for d = 3, a = hα∗, W ∈ L∞(R3) and at fixed particle
number. We sketch the proof in Appendix C to show that it generalizes to the present version.

Remark 3.3 To see that gBCS(a), g0(a) < ∞, observe that the decay assumption (3.1)
implies a ∈ L1(Rd) ∩ H1(Rd) and so â is bounded.

4 Proof of Theorem 2.1 (UB)

The idea of the proof is to construct an appropriate trial state and then to use the semiclassical
expansion from Lemma 3.2.

4.1 The trial state

The trial state Γψ is defined as in [4], following an idea of [20], see (4.2) below. However,
we multiply α∗ by an appropriate cutoff function χ , in order to satisfy the Dirichlet boundary
conditions in the relative variable.

Definition 4.1 (Trial state) Let χ ∈ C∞
c (Rd) be a symmetric cutoff function, i.e. χ(r) =

χ(−r), 0 ≤ χ ≤ 1 and χ ≡ 1 on B1 and suppχ ⊂ B3/2. Let �(h) = hφ(h) with
limh→0 φ(h) = ∞ and define

a(r) := χ

(
r

φ(h)

)
hα∗(r). (4.1)

123



 54 Page 16 of 40 R. L. Frank et al.

For any ψ ∈ H1(Rd), we define aψ by (3.3) and

γψ := aψaψ + (1 + h1/2)aψaψaψaψ, Γψ :=
(

γψ aψ

aψ 1 − γψ

)
. (4.2)

Proposition 4.2 Let ψ ∈ H1
0 (Ω−

�(h)). For all sufficiently small h, Γψ is an admissible BCS
state.

Proof 0 ≤ Γψ ≤ 1 holds by a short computation, see [4]. We show that aψ ∈ H1
0 (Ω2).

First, we observe that supp aψ ⊆ Ω2. To see this, we note that supp ψ ⊆ Ω−
�(h) and

supp a ⊆ supp χ(·/φ(h)) ⊆ B3φ(h)/2 and therefore

supp aψ ⊆
{
(x, y) ∈ R

d × R
d : x + y

2
∈ Ω−

�(h),
x − y

2
∈ B3�(h)/4

}
,

where we also used hφ(h) = �(h). By construction, dist( x+y
2 ,Ωc) ≥ �(h) and by expressing

(x, y) =
(
x + y

2
+ x − y

2
,
x + y

2
− x − y

2

)
,

we obtain that, indeed, supp aψ ⊆ Ω2.
It remains to show that, after extending ψ and a by zero to R

d , we have aψ ∈ H1(Rd ×
R
d). By using a(r) = a(−r) to symmetrize the derivatives and changing to center-of-

mass coordinates (5.3), we indeed get an upper bound on ‖aψ‖H1(Rd×Rd ) in terms of the
(finite) quantities ‖ψ‖H1(Rd ) and ‖a‖H1(Rd ). We leave the details to the reader, as similar
computations appear several times in the lower bound, see e.g. the proof of Lemma 5.2.

This proves aψ ∈ H1
0 (Ω2). To see that γψ satisfies Definition 1.5, we note that γψ ≤

3aψaψ since aψaψ ≤ γψ ≤ 1. We can then bound

√
1 − ΔΩγψ

√
1 − ΔΩ ≤ 3

√
1 − ΔΩaψaψ

√
1 − ΔΩ = 3

√
1 − ΔΩaψ

(√
1 − ΔΩaψ

)∗

by a product of two Hilbert Schmidt operators and therefore it is trace class. ��
4.2 Controlling the effect of the cutoff

When we apply the semiclassical expansion in Lemma 3.2, we want to remove the effect of
the cutoff, i.e. we want to replace a by α∗, up to higher order corrections. We will get this
from the estimates in Proposition 4.3 below, which follow essentially from the exponential
decay (3.2) of α∗.

We recall Definition (3.4) of gBCS(a) and g0(a).

Proposition 4.3 We have

‖a‖2
L2(Rd )

= h2
(

1 + O(e−2ρ∗φ(h))
)

, (4.3)

gBCS(a) = h4
(
gBCS + O(e−ρ∗φ(h)/2)

)
, (4.4)

g0(a) = h4
(
g0(α∗) + O(e−ρ∗φ(h)/2)

)
, (4.5)

〈a |−Δ + Eb + V | a〉 = h2O(e−2ρ∗φ(h)). (4.6)
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Proof For (4.3), we observe

‖hα∗‖2
L2(Rd )

− ‖a‖2
L2(Rd )

= h2
∫
Rd

|α∗(r)|2
(

1 − χ

(
r

φ(h)

)2
)

dr

≤ h2
∫
Bc

φ(h)

|α∗(r)|2dr ≤ Ch2e−2ρ∗φ(h).

In the last step, we used the fact that α∗ satisfies the decay Assumption (3.2). This proves
(4.3) since ‖α∗‖L2(Rd ) = 1.

To get (4.4), we first write

|hα̂∗|4 − |â|4 = (|hα̂∗|2 + |â|2) (|hα̂∗| + |â|) (|hα̂∗| − |â|) . (4.7)

The smallness comes from the last term. Indeed, the decay Assumption (3.2) gives

sup
p∈Rd

||hα̂∗(p)| − |â(p)|| ≤ sup
p∈Rd

|hα̂∗(p) − â(p)| ≤ ‖hα∗ − a‖L1(Rd )

≤ h
∫
Bc

φ(h)

|α∗(r)|dr = h
∫
Bc

φ(h)

|α∗(r)|eρ∗r e−ρ∗rdr ≤ Che−ρ∗φ(h)/2.

Note also that (3.2) implies ‖α̂∗‖L∞(Rd ) ≤ (2π)−d/2‖α∗‖L1(Rd ) ≤ C and consequently
‖̂a‖L∞(Rd ) ≤ Ch. Applying these estimates to (4.7), we get

|hα̂∗|4 − |â|4 ≤ Ch2e−ρ∗φ(h)/2 (|hα̂∗|2 + |â|2) .

Recall the definition (3.4) and observe that gBCS(α∗) = gBCS from (1.6). Hence,

|gBCS(a) − h4gBCS | ≤ Ch2e−ρ∗φ(h)/2
∫
Rd

(p2 + Eb)
(|hα̂∗|2 + |â|2) dp

≤ Ch2e−ρ∗φ(h)/2
(
h2‖α∗‖2

H1(Rd )
+ ‖a‖2

H1(Rd )

)
.

To conclude the claim (4.4), it remains to see that ‖a‖2
H1(Rd )

≤ Ch2 as h ↓ 0. For the L2 part

of the H1 norm this follows from χ2 ≤ 1. For the derivative term, we denote χh ≡ χ(·/φ(h))

and use the Leibniz rule to get

‖∇a‖2
L2(Rd )

≤ 2h2
(
‖χh∇α∗‖2

L2(Rd )
+ ‖α∗∇χh‖2

L2(Rd )

)
.

For the first term, we use χ2 ≤ 1 to get ‖χh∇α∗‖2
L2(Rd )

≤ ‖χh∇α∗‖2
L2(Rd )

≤ C . The second
term is in fact much smaller:

‖α∗∇χh‖2
L2(Rd )

≤ Ce−2ρ∗φ(h). (4.8)

Indeed, by Hölder’s inequality and (3.2) we have

‖α∗∇χh‖2
L2(Rd )

= ‖α∗∇χh‖2
L2(B2φ(h)\Bφ(h))

≤ e−2ρ∗φ(h)‖∇χh‖2
L∞(Rd )

= e−2ρ∗φ(h)φ(h)−2‖∇χ‖2
L∞(Rd )

≤ Ce−2ρ∗φ(h).

In the last step we used φ(h) → ∞ as h → 0. This proves (4.8) and completes the proof of
(4.4). The argument for (4.5) is even simpler.

Finally, we come to (4.6). Since (−Δ + Eb + V )α∗ = 0,

〈a |−Δ + Eb + V | a〉 = h〈a |[−Δ,χh]| α∗〉 = h2‖α∗∇χh‖2
L2(Rd )

.

Therefore, (4.6) follows from (4.8) and Proposition 4.3 is proved. ��
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4.3 Conclusion

Given a function ψ ∈ H1
0 (Ω−

�(h)), we define Γψ as in Proposition 4.2. We have

E BCS(Γψ) = Tr
[
haψaψ

] +
∫∫

Rd×Rd
V

(
x − y

h

)
|aψ(x, y)|2dxdy

+(1 + h1/2)Tr
[
haψaψaψaψ

]
.

We apply the semiclassical expansion in Lemma 3.2 (note that the assumptions are satisfied
by a, since it is as regular as α∗ and of compact support). We find, using D = h−2(μ+ Eb),

E BCS(Γψ) = h−d‖ψ‖2
L2(Rd )

〈a |−Δ + Eb + V | a〉

+ ‖a‖2
L2(Rd )

(
h2−d

4
‖∇ψ‖2

L2(Rd )
− h2−d D‖ψ‖2

L2(Rd )

)

+ h2−d‖a‖2
L2(Rd )

∫
Rd

W (X)|ψ(X)|2dX + h−dgBCS(a)‖ψ‖4
L4(Rd )

+ O(h5−d)
(
‖ψ‖2

H1(Rd )
+ ‖ψ‖4

H1(Rd )

)

The main term in this expression is h4−d times the GP energy defined in (1.8), up to errors
which are controlled by Proposition 4.3 and the choice φ(h) = log(h−q) with q sufficiently
large compared to 1/ρ∗. We find

E BCS(Γψ) = EGP (ψ) + (O(h5−d) − Ch6−d D)
(
‖ψ‖2

H1(Rd )
+ ‖ψ‖4

H1(Rd )

)
.

Note that the constant in front of the error term is an affine function of D; in particular it is
continuous in D. This proves Theorem 2.1 (UB). ��

5 Proof of Theorem 2.1 (LB): decomposition

We prove Theorem 2.1 (LB) and (LBC) together. (The situation will drastically simplify for
convex Ω in due course.)

In this first part of the proof, we consider any BCS state Γ satisfying E BCS(Γ ) ≤ CΓ h4−d

and we show that its off-diagonal element α can be decomposed as in (1.10), with good a
priori H1 control on all the functions involved. Recall that

Ω̃ := Ω + Ω

2
.

Theorem 5.1 (Decomposition and a priori bounds) Suppose that μ = −Eb + Dh2 for some
D ∈ R and that Γ is an admissible BCS state satisfying E BCS(Γ ) ≤ CΓ h4−d . Then, there
exist ψ ∈ H1

0 (Ω̃) and ξ ∈ H1
0 (Ω̃ × R

d) such that α, the upper right entry of Γ , can be
decomposed as in (1.10). Moreover, we have the bounds

‖∇ψ‖2
L2(Ω̃)

≤ C(‖ψ‖2
L2(Ω̃)

+ C�) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd )

+ h2‖∇ξ‖2
L2(Ω̃×Rd )

≤ O(h4−d)
(
‖ψ‖2

L2(Ω̃)
+ CΓ

)
.

(5.1)

The constant C and the implicit constants depend continuously on D.

The key input to the proof is the spectral gap of the operator −Δ + V above its ground
state energy −Eb.
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5.1 Center of mass coordinates

Define the set

D :=
{
(X, r) ∈ Ω̃ × R

d : X + r

2
, X − r

2
∈ Ω

}
.

Lemma 5.2 Suppose thatμ = −Eb+Dh2. LetΓ be anadmissibleBCS state. Set α̃(X, r) :=
α(X + r/2, X − r/2) so that α̃ ∈ H1

0 (D). Then, for sufficiently small h > 0, we have

E BCS(Γ ) ≥
∫∫
D

α̃(X, r)

(
− h2

4
ΔX − h2Δr + h2W (X + r/2) − μ

+ V (r/h)

)
α̃(X, r)drdX + Eb

2
Tr [αααα] .

We separate the following statement from the proof for later use. The constant 1/2 is not
sharp, but it is sufficient for the purpose of proving a priori bounds.

Proposition 5.3 For h small enough, h ≥ Eb/2 > 0.

Proof By Assumption 1.2 W is infinitesimally form-bounded with respect to −ΔΩ . Hence,

|W | ≤ − 1
2Δ + C and h ≥ − h2

2 Δ − μ − h2C hold in the sense of quadratic forms. Since

μ = −Eb + Dh2, this implies that h ≥ Eb
2 for small enough h > 0. ��

We come to the

Proof of Lemma 5.2 The key input is that for any BCS state, we have the operator inequality
αα + γ 2 ≤ γ . For small enough h, we have h ≥ 0 by Proposition 5.3. Hence, we can apply
αα + γ 2 ≤ γ to the term tr

[
hγ

] = tr
[
h1/2γ h1/2

]
in the BCS energy to get

E BCS(Γ ) ≥ Tr [hαα] +
∫∫

Ω2

V

(
x − y

h

)
|α(x, y)|2dxdy + Tr

[
hγ 2] . (5.2)

We estimate the last term further. By Proposition 5.3, αα ≤ γ and the fact that A �→ Tr
[
A2

]
is operator monotone, we have

Tr
[
hγ 2] ≥ Eb

2
Tr

[
γ 2] ≥ Eb

2
Tr [αααα] .

We now rewrite the first two terms in (5.2) in center of mass coordinates. Using α(x, y) =
α(y, x) (Γ is Hermitian), we can write out the first term as

Tr [hαα] =
∫∫

Ω2

α(x, y)

(
−h2Δx + h2W (x) − μ + V

(
x − y

h

))
α(x, y)dxdy

=
∫∫

Ω2

α(x, y)

(
−h2

2
Δx − h2

2
Δy + h2W (x) − μ + V

(
x − y

h

))
α(x, y)dxdy.

Now we change to center-of-mass coordinates

X = x + y

2
, r = x − y, α̃(X, r) := α(X + r/2, X − r/2). (5.3)

Since the Jacobian is equal to one and Δx + Δy = 1
2ΔX + 2Δr , Lemma 5.2 follows. ��
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5.2 Definition of the order parameter ψ

An important idea is that from now on we isometrically embed H1
0 (D) ⊂ H1

0 (Ω̃ × R
d) by

extending functions by zero. Note that all local norms are left invariant by the extension, in
particular ‖α̃‖L2(D) = ‖α̃‖L2(Ω̃×Rd ).

We define the order parameter ψ and establish some of its basic properties. For a fixed
X ∈ Ω̃ , we define the fiber

DX :=
{
r ∈ R

d : (X, r) ∈ D
}

=
{
r ∈ R

d : X + r

2
, X − r

2
∈ Ω

}
.

Proposition 5.4 For α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ × R
d), define

ψ(X) := h−1
∫
DX

α∗(r/h)α̃(X, r)dr, for allX ∈ Ω̃, (5.4)

α̃ψ (X, r) := h1−dψ(X)α∗(r/h), for a.e. X ∈ Ω̃, r ∈ R
d , (5.5)

ξ(X, r) := α̃(X, r) − α̃ψ (X, r), for a.e. X ∈ Ω̃, r ∈ R
d . (5.6)

Then:

(i) ψ ∈ H1
0 (Ω̃) and ξ ∈ H1

0 (Ω̃ × R
d).

(ii) We have the norm identities

‖α̃‖2
L2(D)

= h2−d‖ψ‖2
L2(Ω̃)

+ ‖ξ‖2
L2(Ω̃×Rd )

,

‖∇X α̃‖2
L2(D)

= h2−d‖∇ψ‖2
L2(Ω̃)

+ ‖∇X ξ‖2
L2(Ω̃×Rd )

.
(5.7)

Proof From the definition of the weak derivative, we get that ψ ∈ H1
0 (Ω̃) with

∇ψ(X) = h−1
∫
DX

α∗(r/h)∇X α̃(X, r)dr. (5.8)

Since α∗ ∈ H1(Rd) and H1
0 (Ω̃ ×R

d) is a vector space, we also get ξ ∈ H1
0 (Ω̃ ×R

d). This
proves claim (i). For claim (ii), we observe the orthogonality relation

∫
Rd

α∗(r/h)ξ(X, r)dr = 0, (5.9)

which holds for a.e. X ∈ Ω̃ . Thus, by expanding the square that one gets from (5.6) and
using ‖α∗(·/h)‖2

L2(Rd )
= hd ,

‖α̃‖2
L2(D)

= ‖α̃‖2
L2(Ω̃×Rd )

= h2−d‖ψ‖2
L2(Ω̃)

+ ‖ξ‖2
L2(Ω̃×Rd )

.

This is the first identity in (5.7). The second one follows by an analogous argument using
(5.8). ��
5.3 Bound on the W term

Lemma 5.5 Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ ×R
d) and let α̃ψ and ξ be as in Proposition 5.4. For

every ε > 0, there exists Cε > 0 such that
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∫
Ω̃

∫
Rd

|W (X + r/2)||α̃ψ (X, r)|2drdX ≤ h4−d
(
ε‖∇ψ‖2

L2(Ω̃)
+ Cε‖ψ‖2

L2(Ω̃)

)
∫

Ω̃

∫
Rd

|W (X + r/2)||ξ(X, r)|2drdX ≤ h2
(
ε‖∇ξ‖2

L2(Ω̃×Rd )
+ Cε‖ξ‖2

L2(Ω̃×Rd )

)
.

holds for sufficiently small h.

Proof Recall that α̃ = α̃ψ + ξ , see (5.6). In the following, we freely identify functions with
their extensions by zero to all of Rd , respectively to all of Rd × R

d . By the semiclassical
expansion in Lemma 3.2(ii),∫

Ω̃

∫
Rd

|W (X + r/2)||α̃ψ (X, r)|2drdX

≤ h2−d
∫
Rd

|W (X)||ψ(X)|2dX + Ch3−d‖W‖L pW (Rd )‖ψ‖2
H1(Rd )

= h2−d
∫

Ω

|W (X)||ψ(X)|2dX + Ch3−d‖W‖L pW (Ω)‖ψ‖2
H1

0 (Ω̃)
.

In the second step, we used our knowledge of where the functions are actually supported.
Recall that W is infinitesimally form-bounded with respect to −Δ. Hence, for every ε > 0,
there exists Cε > 0 such that∫

Ω

|W (X)||ψ(X)|2dX ≤ ε‖∇ψ‖2
L2(Ω)

+ Cε‖ψ‖2
L2(Ω)

This proves the first claimed bound.
By Hölder’s inequality (on the space Ω̃ × R

d with Lebesgue measure) and the Sobolev
interpolation inequality (on R

d ×R
d ), we get that for every ε > 0, there exists Cε > 0 such

that ∫
Ω̃

∫
Rd

|W (X + r/2)||ξ(X, r)|2drdX ≤ 2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2
L4(Ω̃×Rd )

= 2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2
L4(Rd×Rd )

≤ 2d/2|Ω̃|1/2‖W‖L2(Ω)

(
ε‖∇ξ‖2

L2(Ω̃×Rd )
+ Cε‖ξ‖2

L2(Ω̃×Rd )

)
.

Since pW ≥ 2 in all dimensions, this finishes the proof of Lemma 5.5. ��
5.4 Proof of Theorem 5.1

The auxiliary results proved so far combine to give the following H1 type lower bound on
E BCS . From it, the a priori bounds stated in Theorem 5.1 will readily follow.

Lemma 5.6 Assume thatμ = −Eb +Dh2. Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ ×R
d) be decomposed

as α̃ = α̃ψ + ξ as in Proposition 5.4. Then, there exist constants c1, c2 > 0 independent of
D such that

E BCS(Γ ) ≥c1h
2
(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd )

)
+ c1‖ξ‖2

L2(Ω̃×Rd )

− (μ + Eb + c2h
2)‖α̃‖2

L2(Ω̃×Rd )
+ Eb

2
Tr [αααα] .

holds for all sufficiently small h.
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Proof Given the bounds from Lemma 5.1 and from Lemma 5.5 on the W term, it suffices
to use the spectral gap of the operator −� + V above its ground state (and the standard fact
that the gap can be used to obtain H1 control on the error term). See e.g. the proof of Lemma
3 in [4] for details.

Proof of Theorem 5.1 Let μ = −Eb + Dh2 and let Γ be a BCS state satisfying E BCS(Γ ) ≤
CΓ h4−d . By Lemma 5.6 and μ = −Eb + Dh2, we have

h2(c2 + D)‖α̃‖2
L2(Ω̃×Rd )

+ CΓ h
4−d ≥ h2

(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd )

)

+‖ξ‖2
L2(Ω̃×Rd )

+ Tr [αααα] (5.10)

We will eventually use all the terms in this equation. We write c2 + D = O(1). All the
following implicit constants are obtained from this one in a continuous way and will therefore
be continuous in D.

We begin by concluding from (5.10) that

‖ξ‖2
L2(Ω̃×Rd )

≤ h2(c2 + D)‖α̃‖2
L2(Ω̃×Rd )

+ CΓ h
4−d . (5.11)

From the first identity in (5.7), we therefore get

‖α‖2
L2(Ω2)

≤ h2−d‖ψ‖2
L2(Ω̃)

+ O(h2)‖α‖2
L2(Ω2)

+ CΓ h
4−d

and so, for all sufficiently small h,

‖α‖2
L2(Ω2)

≤ Ch2−d‖ψ‖2
L2(Ω̃)

+ CΓ h
4−d . (5.12)

Applying (5.12) to (5.10) and dropping some non-negative terms, we conclude

‖∇ψ‖2
L2(Ω̃)

≤ C(‖ψ‖2
L2(Ω̃)

+ CΓ ), (5.13)

‖ξ‖2
L2(Ω̃×Rd )

+ h2‖∇ξ‖2
L2(Ω̃×Rd )

≤ O(h4−d)
(
‖ψ‖2

L2(Ω̃)
+ CΓ

)
. (5.14)

Thus, to prove (5.1), it remains to show

Lemma 5.7 ‖ψ‖L2(Ω̃) = O(1).

Remark 5.8 At this stage, [4] prove Lemma 5.7 (in three dimensions) by using ‖ψ‖2
L2 ≤

h‖α‖2
L2 = hTr [αα] ≤ hTr

[
γ
]

and the fact that they work at fixed particle number Tr
[
γ
] =

N/h. Since we do not have this assumption, we use the semiclassical expansion of the quartic
term Tr [αααα] similarly as in [13]. Here, as in the proof of Lemma 6.1 and in [4], one uses
that in the Schatten norm estimate ‖ξ‖S4 ≤ ‖ξ‖S2 , the right hand side is still of higher order
in h for dimensions d ≤ 3.

Proof of Lemma 5.7 We retain only the trace on the right-hand side of (5.10),

Ch2‖α‖2
L2(Ω2)

+ CΓ h
4−d = Ch2‖α̃‖2

L2(Ω̃×Rd )
+ CΓ h

4−d ≥ Tr [αααα] . (5.15)

For the following argument, we extend all the relevant kernels to functions on R
d × R

d . In
this way, we can identify Tr [αααα] ≡ ‖α‖4

S4 , where ‖ · ‖Sp denotes the Schatten trace

norm of an operator on L2(Rd). Equation (5.6) may be rewritten as

α = αψ + ξ̃ , αψ(x, y) = h1−dψ

(
x + y

2

)
α∗

(
x − y

h

)
,

ξ̃ (x, y) = ξ

(
x + y

2
, x − y

)
.

(5.16)
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Here and in the following, the kernel functions αψ, ξ̃ are understood to be functions on
R
d ×R

d (obtained by extension by zero). The Schatten norms satisfy the triangle inequality
and are monotone decreasing in p. Also, the ‖ · ‖S2 norm of any operator agrees with the
‖ · ‖L2(Rd×Rd ) norm of its kernel. From these facts, we obtain

‖α‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S2 = ‖αψ‖S4 − ‖ξ̃‖L2(Rd×Rd )

= ‖αψ‖S4 − ‖ξ‖L2(Ω̃×Rd ) ≥ ‖αψ‖S4 + O(h)‖α‖L2(Ω2) + O(h2−d/2).

In the last step, we used (5.11). From this, (5.15) and (5.12), we get

‖αψ‖4
S4 ≤ C

(
‖α‖4

S4 + h4‖α‖4
L2(Ω2)

+ O(h8−2d)
)

≤ C
(
h2‖α‖2

L2(Ω2)
+ h4‖α‖4

L2(Ω2)
+ O(h4−d)

)

≤ C
(
h4−d‖ψ‖2

L2(Ω̃)
+ h8−2d‖ψ‖4

L2(Ω̃)
+ O(h4−d)

)
.

(5.17)

Along the way, we used 8−2d > 4−d for d = 1, 2, 3. After extension by zero, ψ ∈ H1(Rd)

and we apply Lemma 3.2 (iv) to get

‖αψ‖4
S4 = h4−dg0(α∗)‖ψ‖4

L4(Ω̃)
+ O(h5−d)‖ψ‖4

H1
0 (Ω̃)

.

Then, by (5.13) and Hölder’s inequality, ‖αψ‖4
S4 ≥ Ch4−d‖ψ‖4

L2(Ω̃)
. Combining this esti-

mate with (5.17) and using 8 − 2d > 4 − d , we get

‖ψ‖4
L2(Ω̃)

≤ C‖ψ‖2
L2(Ω̃)

+ O(1)

This proves ‖ψ‖L2(Ω̃) ≤ O(1) and hence Lemma 5.7 and Theorem 5.1. ��

6 Proof of Theorem 2.1 (LB): semiclassics

6.1 From a priori bounds to GP theory

We begin by deriving a lower bound in terms of GP energy on Ω̃ , by assuming a decomposition
with a priori bounds as in Theorem 5.1 and applying the semiclassical expansion from Lemma
3.2.

Accordingly, in this section, ψ and ξ are general functions, not necessarily the ones defined
previously in Proposition 2.5 (they will be the same for convex domains).

Lemma 6.1 Let μ = −Eb + Dh2 and define ν′ := min{d/2, 1}. Let Γ be a BCS state
such that α can be decomposed as in (1.10) for some ψ ∈ H1

0 (Ω̃) and ξ ∈ H1
0 (Ω̃ × R

d).
Moreover, suppose that ‖ψ‖H1

0 (Ω̃) ≤ O(1) and ξ satisfies the bound in (5.1). Then, wee have

E BCS(Γ ) ≥ h4−dEGP (ψ) + O(h4−d+ν′
). (6.1)

The implicit constant depends continuously on D.
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6.1.1 Proof of Lemma 6.1

It will be convenient to define the auxiliary energy functional

ELB(α) := Tr
[
(−h2ΔΩ + h2W − μ)αα

]

+
∫∫

Ω×Ω

V

(
x − y

h

)
|α(x, y)|2dxdy + Tr [hαααα] .

We first note that this auxiliary functional provides a lower bound to the BCS energy. The
basic idea is to replace γ by expressions in α using αα ≤ γ as in the proof of Lemma
5.2. However some additional difficulty is present here because the last term in ELB(α) still
features h and so we need the stronger operator inequality (6.2) below.

Proposition 6.2 For sufficiently small h, we have E BCS(Γ ) ≥ ELB(α), where α denotes the
off-diagonal element of the BCS state Γ .

Proof of Proposition The claim will follow from the operator inequality

γ ≥ αα + αααα. (6.2)

To prove (6.2), we start by observing that 1 − γ ≤ (1 + γ )−1 by the spectral theorem.
Consequently

0 ≤ Γ =
(

γ α

α 1 − γ

)
≤

(
γ α

α (1 + γ )−1

)
.

The Schur complement formula implies

γ ≥ α(1 + γ )α.

Using γ ≥ αα, we find

γ ≥ α(1 + γ )α ≥ αα + αααα

which proves (6.2). To conclude, let h be sufficiently small such that h ≥ 0, see Proposition
5.3. Then (6.2) yields

Tr
[
hγ

] ≥ Tr [hαα] + Tr [hαααα]

and this proves Proposition 6.2. ��
The following key lemma says that we can apply the semiclassical expansion to the

auxiliary energy functional with the desired result.

Lemma 6.3 Under the assumptions of Lemma 6.1, we use the splitting α = αψ + ξ̃ from
(5.16). Then

ELB(α) ≥ ELB(αψ) + O(h4−d+ν′
).

The implicit constant depends continuously on D.

Before we prove this lemma, we note that it directly implies Lemma 6.1. Indeed, it gives

E BCS(Γ ) ≥ ELB(α) ≥ ELB(αψ) + O(h4−d+ν′
).

All the terms in ELB(αψ) were computed in the semiclassical expansion in Lemma 3.2. On
the result of the expansion, we use the eigenvalue equation (−Δ+V + Eb)α∗ = 0 and recall
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gBCS(α∗) = gBCS from (1.6). This yields EGP (ψ) plus the appropriate error terms. These
are of the claimed size because ‖ψ‖H1(Rd ) ≤ O(1) by Theorem 5.1 and μ = −Eb + Dh2

by assumption. Moreover, they depend on the previously derived error terms in explicit
continuous ways and are therefore also continuous in D.

It remains to give the

Proof of Lemma 6.3 We treat the terms in ELB in four separate parts. First, by changing to
center-of-mass coordinates (5.3), compare the proof of Lemma 3 in [4],

Tr
[
(−h2ΔΩ + Eb)αα

] +
∫∫

Rd×Rd

V

(
x − y

h

)
|α(x, y)|2dxdy

≥ Tr
[
(−h2ΔΩ + Eb)αψαψ

] +
∫∫

Rd×Rd

V

(
x − y

h

)
|αψ(x, y)|2dxdy.

(6.3)

Second, from μ = −Eb + Dh2, (5.12) and (5.1), we get

− (μ + Eb)Tr [αα] ≥ −(μ + Eb)Tr
[
αψαψ

] + O(h6−d)‖ψ‖2
L2(Ω̃)

. (6.4)

Next, by Cauchy–Schwarz, Lemma 5.5 and (5.1):

Tr [Wαα] ≥Tr
[
Wαψαψ

] − C
(
‖ξ‖2

L2(Ω̃×Rd )
+ h2‖∇ξ‖2

L2(Ω̃×Rd )

)

− C
(
‖ξ‖2

L2(Ω̃×Rd )
+ h2‖∇ξ‖2

L2(Ω̃×Rd )

)1/2
h1− d

2 ‖ψ‖H1
0 (Ω̃)

≥Tr
[
Wαψαψ

] + O(h3−d).

Using h = −h2ΔΩ + h2W − μ, the claim will then follow from

Tr [hαααα] ≥ Tr
[
hαψαψαψαψ

] + O(h4−d+ν′
). (6.5)

This can be obtained by expanding the quartic and using the a priori bounds (5.1), see the
proof of (7.12) in [4]. Modifications are only needed for the W term, which we control via

form-boundedness (instead of using ‖W‖L∞ ). Consider e.g. the term Tr
[
Wαψααξ̃

]
. By

cyclicity of the trace, Hölder’s inequality for Schatten norms and form-boundedness,

Tr
[
Wαψααξ̃

]
≤ ‖α‖2

S6‖
√|W |αψ‖S6‖√|W |sgn(W )ξ̃‖S2

= ‖α‖2
S6‖αψ |W |αψ‖1/2

S3 ‖ξ̃ |W |ξ̃‖1/2
S1

≤ C‖α‖2
S6

(‖∇αψ‖S6 + ‖αψ‖S6
) (

‖∇ ξ̃‖S2 + ‖ξ̃‖S2

)
.

(6.6)

In the last step, we used the fact that form-boundedness of W implies the operator inequality
|W | ≤ C(1 − Δ). The resulting expression is up to constants the first term on the right hand
side in (7.16) of [4] and is estimated there for d = 3. The bounds directly generalize to all
d = 1, 2, 3 and we briefly sketch the conclusion of the argument in that general case.

First, one uses α = αψ + ξ , the triangle inequality for the S6-norm and the fact that
‖ · ‖S6 ≤ ‖ · ‖S2 to get

‖α‖2
S6 ≤ C

(‖αψ‖2
S6 + ‖ξ‖2

S2

)
.

Now one can bound all the terms by generalizing the estimates in Lemma 1 of [4] to all
d = 1, 2, 3 and by the a priori bounds from Theorem 5.1 (recall that the Hilbert–Schmidt
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norm is equal to the L2 × L2 norm of the kernel). This gives

‖αψ‖S2 ≤ O(h1−d/2), ‖αψ‖S6 ≤ O(h1−d/6),

‖ξ̃‖S2 ≤ O(h2−d/2), ‖∇ ξ̃‖S2 ≤ O(h1−d/2),

‖∇αψ‖S6 ≤ C
(‖∇Xαψ‖S6 + ‖∇rαψ‖S6

) ≤ O(h−d/6)

and we conclude that

h2Tr
[
Wαψααξ̃

]
≤ O(h5−d).

The same idea applies to all the other W dependent terms in the expansion of the quartic and
we obtain (6.5). This proves Lemma 6.3 and consequently Lemma 6.1. ��
6.2 Proof of Theorem 2.1 (LBC)

Let Ω be convex and let Γ be an approximate BCS minimizer, i.e. E BCS(Γ ) ≤ CΓ h4−d .
We apply Theorem 5.1 and then Lemma 6.1. Since Ω = Ω̃ by convexity, this finishes the
proof. ��
6.3 Proof of Theorem 2.1 (LB)

Let Ω be a non-convex bounded Lipschitz domain. The order parameter ψ defined in Propo-
sition 5.4 now lives on Ω̃ = Ω+Ω

2 , which may be a much larger set than Ω .

6.3.1 Decay of the order parameter

We first show that ψ in fact decays exponentially away from Ω . This follows easily from its
definition (5.4) and the exponential decay of α∗, see (3.2).

Proposition 6.4 There exists a constant C0 > 0 such that for every � > 0 and almost every
X ∈ Ω̃ with dist(X,Ω) ≥ �, we have

|ψ(X)| ≤ C0h
d/2−1e−ρ∗ 2�

h ‖α̃(X, ·)‖L2(DX ) (6.7)

|∇ψ(X)| ≤ C0h
d/2−1e−ρ∗ 2�

h ‖∇X α̃(X, ·)‖L2(DX ). (6.8)

Proof Let � > 0 and X ∈ Ω̃ with dist(X,Ω) ≥ �. The key observation is that the triangle
inequality implies

DX ⊆
{
r ∈ R

d : |r | > 2�
}

,

where DX was defined in Proposition 5.4. Therefore, by Cauchy–Schwarz and (3.2)

|ψ(X)| ≤ h−1
∫
DX

|α∗(r/h)||α̃(X, r)|dr

= h−1
∫
DX

e−ρ∗ r
h eρ∗ r

h |α∗(r/h)||α̃(X, r)|dr

≤ C0h
d/2−1e−ρ∗ 2�

h ‖α̃(X, ·)‖L2(DX ).

This proves (6.7). Starting from (5.8), the same argument gives (6.8). ��
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6.3.2 Conclusion by a cutoff argument

With Proposition 6.4 at our hand, we just have to cut off the part of ψ that lives sufficiently far
away from Ω . We first apply Theorem 5.1 to get the decomposition and the a priori bounds
stated there. Then, we define

ψ1(X) : = η �(h)
4 ,Ω+

�(h)
(X)ψ(X),

ξ1(X, r) : = ξ(X, r) + (ψ(X) − ψ1(X))α∗(r/h).

Here Ω+
� was defined in (2.2), the cutoff function η�,U is defined in (7.3) and �(h) =

h log(h−q). Note that we also have (1.10) with ψ, ξ replaced by ψ1, ξ1.
Note that ψ1 ∈ H1

0 (Ω+
�(h)). Hence, the claim will follow from Lemma 6.1 applied with

the choices ψ = ψ1, ξ = ξ1. It remains to show that its assumptions are satisfied, namely
that ‖ψ1‖H1

0 (Ω+
�(h)

) ≤ O(1) and ξ1 satisfies (5.1).

For this part, we denote η ≡ η c0�(h)

4 ,Ω+
�(h)

and � ≡ �(h) for short. We first prove that

‖ψ1‖H1
0 (Ω+

� ) ≤ O(1). Using η ≤ 1 and Cauchy–Schwarz, we get

‖ψ1‖2
H1

0 (Ω+
� )

≤ 2‖ψ‖2
H1

0 (Ω̃)
+ 2

∫
Ω+

� (h)

|∇η|2|ψ |2dX = O(1) + 2
∫

Ω+
�

|∇η|2|ψ |2dX.

(6.9)

The term with |∇η| may look troubling since we can only control |∇η| ≤ �−2 on supp ∇η.
The key insight is that this potential blow up in h is sufficiently dampened on supp ∇η by
the exponential decay of |ψ | established by Proposition 6.4. Namely, we will prove.

Lemma 6.5 supp ∇η(p) ⊂ (Ω+
�/4)

c.

We postpone the proof of this geometrical lemma for now. Assuming it holds, it is straight-
forward to use the decay estimates from Proposition 6.4 to conclude from (6.9) that
‖ψ1‖H1

0 (Ω+
� ) ≤ O(1), by choosing q large enough (with respect to 1/ρ∗).

Next, we show that ξ1 satisfies (5.1). From Theorem 5.1, we already know that ξ satisfies
(5.1). When integrating the other term in the definition of ξ1, we change to center of mass
coordinates and write ψ − ψ1 = ψ(1 − η). Since ∇(1 − η) and ∇η are supported on the
same set, one can use the argument from above again on the center of mass integration (i.e.
a combination of Lemma 6.5 and Proposition 6.4). We leave the details to the reader.

To finish the proof of Theorem 2.1 (LB), it remains to give the

Proof of Lemma 6.5 Let p ∈ R
d be a point such that ∇η(p) �= 0. Then, by definition (7.3)

of η,

dist(p, (Ω+
� )c) ≤ �/2.

Let q� ∈ (Ω+
� )c be a point such that dist(p, (Ω+

� )c) = |p − q�| and let q ∈ Ω be a point
such that dist(p,Ω) = |p−q| (such points exists by a compactness argument). By definition
(2.2) of Ω+

� and the triangle inequality,

� ≤ dist(Ω, (Ω+
� )c) ≤ |q − q�| ≤ |q − p| + |p − q�| ≤ |q − p| + �/2.

Therefore, dist(p,Ω) = |q − p| ≥ �/2 and so p ∈ (Ω+
�/4)

c. Since p was an arbitrary point

with ∇η(p) �= 0 and (Ω+
�/4)

c is closed, Lemma 6.5 is proved. ��
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7 Proof of the continuity of the GP energy (Theorem 2.2)

7.1 Davies’ use of Hardy inequalities

This section serves as a preparation to prove the second key result Theorem 2.2.
The central idea that we discuss here is Lemma 7.2. It is based on the insight of Davies

[7,8] that continuity of the Dirichlet energy under interior approximations of a domain U
follows from good control on the boundary decay of functions that lie in the operator domain
of ΔU (the decay is better than that of functions that merely lie in the form domain of −ΔU ).
The key assumption is that the domain U satisfies a Hardy inequality (7.2).

Importantly, GP minimizers corresponding to EGP
U are in dom(ΔU ) thanks to the Euler

Lagrange equation; this was proved in Proposition 2.5.
As its input, the lemma requires the validity of the

Definition 7.1 (Hardy inequality) Let U ⊆ R
d and denote

dU (x) := dist(x,Uc). (7.1)

We say that U satisfies a Hardy inequality, if there exist cU ∈ (0, 1] and λ ∈ R such that
∫
U
dU (x)−2|ϕ(x)|2dx ≤ 4

c2
U

‖∇ϕ‖2
L2(U )

+ λ‖ϕ‖2
L2(U )

, ∀ϕ ∈ C∞
c (U ). (7.2)

We shall refer to cU and λ as the “Hardy constants”.

We can now state

Lemma 7.2 For any 0 < � < 1, we define the function η�,U : Rd → [0,∞) by

η�,U (x) :=

⎧⎪⎨
⎪⎩

0, if 0 ≤ dU (x) ≤ �
dU (x)−�

�
, if � ≤ dU (x) ≤ 2�

1, otherwise.

(7.3)

Suppose that U satisfies the Hardy inequality (7.2) for some cU ∈ (0, 1] and some λ ∈ R.
Then, there exists a constant c > 0 depending only on cU and λ such that

EGP (η�,Uϕ) − EGP (ϕ) ≤ c�cU
(
‖ϕ‖H1

0 (U )‖ΔUϕ‖L2(U ) + ‖ϕ‖2
H1

0 (U )

)
, ∀ϕ ∈ dom(ΔU ).

Moreover, the same bound holds for the quantity ‖η�,Uϕ‖2
H1

0 (U )
− ‖ϕ‖2

H1
0 (U )

.

We remark that η�,U is a Lipschitz continuous function with a Lipschitz constant that is
independent of U (this is because dU has the Lipschitz constant one for all U ).

Proof We write η ≡ η�,U . First, we note that the nonlinear term drops out because |ηϕ|4 −
|ϕ|4 = (η4 − 1)|ϕ|4 ≤ 0 thanks to 0 ≤ η ≤ 1. For the gradient term, we note that the Hardy
inequality (7.2) is the main assumption in [7,8]. Thus, by Lemma 11 in [8], there exists a
c > 0 (depending only on the Hardy constants cU and λ) such that

∫
U

(|∇(ηϕ)|2 − |∇ϕ|2)dx ≤ c�cU ‖ΔUϕ‖L2(U )‖∇ϕ‖L2(U ), ∀ϕ ∈ dom(−ΔU ).
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Since η ≤ 1, this already implies the last sentence in Lemma 7.2. Using Cauchy–Schwarz,
Assumption 1.2 on W and Theorem 4 in [8], we get

∫
U

(W + D)(η2 − 1)|ϕ|2dx ≤
∫
U

(|W | + |D|)(1 − η2)|ϕ|2dx

≤ (‖Wϕ‖L2(Ω) + |D|‖ϕ‖L2(Ω)

) (∫
U∩{dU≤2�}

|ϕ|2dx

)1/2

≤ c
(‖W‖L pW (Ω) + |D|) ‖ϕ‖H1

0 (U )�
1+cU /2 (‖ΔUϕ‖L2(U )‖∇ϕ‖L2(U )

)1/2

for another constant c depending only on cU and λ. We estimate the last term via 2
√
ab ≤

a + b. Then we use that �1+cU /2 ≤ �cU holds for all cU ∈ (0, 1] and 0 < � < 1. This proves
Lemma 7.2. ��

With Lemma 7.2 at our disposal, we need conditions on U such that it satisfies the Hardy
inequality (7.2).

It is a classical result of Necas [29] that any bounded Lipschitz domain Ω satisfies a Hardy
inequality for some cΩ ∈ (0, 1] and some λ ∈ R. Hence, we can apply Lemma 7.2 with
U = Ω and this is already sufficient to obtain continuity of the GP energy under interior
approximation, i.e. Theorem 2.2 with Ω−

� . The details of this argument are given in the next
subsection.

To summarize, we see that therefore Necas’ result is already sufficient to derive

(i) the upper bounds in the two main results, Theorems 1.7 and 1.10.
(ii) the complete Theorem 1.10 for bounded and convex domains Ω . Indeed, Theorem 2.1

(LBC) gives the lower bound and the upper bound holds because any convex domains
satisfies a Hardy inequality [27,28]. (In fact, the Hardy constants can be taken as c = 1
and λ = 0.)

To prove the lower bounds in the main results for non-convex domains, we need continuity
of the GP energy under exterior approximation. This relies on the following new theorem
which is is an extension of Necas’ argument [29]. The proof is deferred to Appendix D.

Theorem 7.3 Let Ω be a bounded Lipschitz domain. There exist cΩ ∈ (0, 1], λ ∈ R and
�0 > 0, as well as a sequence of exterior approximations {Ω�}0<�<�0 such that the Hardy
inequality (7.2) holds with U = Ω� for all � < �0.

Moreover, the sequence of approximations {Ω�}� satisfies the following properties.

(i) There exists a constant c0 > 1 such that Ω+
� ⊂ Ω� ⊂ Ω+

c0�.
(ii) There exists a constant a > 0 such that

{
q ∈ R

d : dist(q, (Ω�)
c) > a�

}
⊂ Ω. (7.4)

We emphasize that the Lipschitz character of Ω is important for the sequence of
approximations {Ω�}� to exist. Concretely, properties (i) and (ii) cannot both hold for exte-
rior approximations of the slit domain example presented in Remark 2.4 (while there do
exist approximations that all satisfy the Hardy inequality with the �-independent constant
cΩ = 1/2).
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7.2 Proof of Theorem 2.2

We begin by observing that Ω−
� ⊂ Ω ⊂ Ω+

� trivially gives

EGP
Ω+

�

≤ EGP
Ω ≤ EGP

Ω−
�

.

Theorem 2.2 says that the reverse bounds hold as well, up to the claimed error terms. The
basic idea is to take a minimizer on the larger domain and to cut it off near the boundary,
where the energy cost of the cutoff is controlled by Lemma 7.2.

7.2.1 Interior approximation

The situation is easier for interior approximation, since then we consider GP minimizers and
the Hardy inequality on the fixed domain Ω . We want to apply Lemma 7.2 and we gather
prerequisites.

First, by Proposition 2.5, there exists a unique non-negative minimizer corresponding to
EGP

Ω , call it ψ , and it satisfies

‖ΔUψ‖L2(U ) ≤ C(1 + |D|)
(
‖ψ‖H1

0 (U ) + ‖ψ‖3
H1

0 (U )

)
(7.5)

Second, since Ω is a bounded Lipschitz domain, there exists cΩ ∈ (0, 1] and λ ∈ R such
that the Hardy inequality (7.2) holds on U = Ω [29]. Now we apply Lemma 7.2 with the
domain U = Ω and the cutoff function η2�,Ω . We get

EGP (η2�,Ωψ) ≤ EGP (ψ) + O(�2/cΩ )
(
‖ψ‖H1

0 (Ω)‖ΔΩψ‖L2(Ω) + ‖ψ‖2
H1

0 (Ω)

)

≤ EGP (ψ) + O(�2/cΩ )

In the second step, we used (7.5) and the fact that all norms of ψ are independent of �.
The definitions of η2�,Ω and Ω−

� are such that supp η2�,Ω ⊂ Ω−
� . Since η2�,Ω is Lipschitz

continuous, this implies η2�,Ωψ ∈ H1
0 (Ω−

� ) and therefore

EGP (η2�,Ωψ) ≥ EGP
Ω−

�

. (7.6)

This proves the claimed continuity under interior approximation.

7.2.2 Exterior approximation

The idea is similar as before, but additional � dependencies complicate the argument some-
what. We let {Ω�}0<�<�0 be the sequence of exterior approximations given by Theorem 7.3.
That is, Ω+

� ⊂ Ω� and the Hardy inequality (7.2) holds on all U = Ω� with Hardy constants
that are uniformly bounded in �.

By Proposition 2.5, there exists a unique non-negative minimizer corresponding to EGP
Ω�

,
call it ψ�, and it satisfies the analogue of (7.5) with a C that is independent of �.

Recall definition (7.3) of the cutoff function ηa�,Ω�
. Here we choose a > 0 such that

property (ii) in Theorem 7.3 holds which is equivalent to

supp ηa�,Ω�
⊂ Ω. (7.7)

Now we apply Lemma 7.2. We note that the constant c appearing in it depends only on the
Hardy constants (and these are uniformly bounded in �). Therefore, using the analogue of
(7.5), we get

123



Condensation of fermion pairs in a domain Page 31 of 40  54 

EGP (ηa�,Ω�
ψ�) ≤ EGP (ψ�) + O(�2/c)O

(
‖ψ�‖2

H1
0 (Ω�)

+ ‖ψ�‖4
H1

0 (Ω�)

)
. (7.8)

Regarding the error term, we note

Lemma 7.4 ‖ψ�‖H1
0 (Ω�)

≤ O(1).

Proof of Lemma 7.4 We use that the GP energy can only increase under a decrease of the
underlying domain to get

EGP (ψ�) = EGP
Ω�

≤ EGP
Ω (7.9)

The claim now follows from the coercivity (2.9), since the constants C1,C2, D there do not
depend on the underlying domain and hence not on �. ��

By (7.7) and the fact that ηa�,Ω�
is a Lipschitz function, we get ηa�,Ω�

ψ� ∈ H1
0 (Ω).

Returning to (7.8), we can conclude the proof as in (7.6), which yields Theorem 2.2. ��
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8 Appendix A: On GP minimizers

We prove Proposition 2.5.
Proof of (i).The coercivity (2.9) is a straightforward consequence of the form-boundedness

of W and the elementary bound

|ψ |4 − (C + D)|ψ |2 ≥ −(C2 + D)2.

The constants C1,C2 only depend on W .
Proof of (ii). Let {ψn} be a minimizing sequence corresponding to EGP

U . By the coercivity
(2.9), the sequence is bounded in H1

0 (U ) and hence weakly H1
0 (U )-precompact. Let ψ∗ ∈

H1
0 (U ) denote one of its weak limit points. By Rellich’s theorem, ψn → ψ∗ in L2(U ).

Hence, ∣∣∣∣
∫
U
W (|ψn |2 − |ψ∗|2)dx

∣∣∣∣
≤ (‖Wψn‖L2(U ) + ‖Wψ∗‖L2(U )

) ‖|ψn | − |ψ∗|‖L p(U )

≤ C‖W‖L pW (U )(‖∇ψn‖H1
0 (U ) + ‖∇ψ∗‖H1

0 (U ))‖ψn − ψ∗‖L2(U ) → 0.

The last estimate holds by Assumption 1.2 on W . The same argument gives the continuity
of the D term in EGP .

Let # ∈ {n, ∗}. We write EGP (ψ#) = A# + B#, where A# = ‖∇ψ#‖2
L2(U )

and B#

contains the remaining terms. Then, the above shows that Bn → B∗. Moreover, by weak
convergence is H1

0 (U ), lim inf An ≥ A∗, so EGP
U = lim(An + Bn) ≥ A∗ + B∗. Since

A∗+B∗ ≥ EGP
U by definition of EGP

U , we conclude that ψ∗ is a minimizer and that An → A∗.
Thus, ‖ψn‖H1

0 (U ) → ‖ψ∗‖H1
0 (U ) and therefore ψn → ψ∗ strongly in H1

0 (U ).
To prove the uniqueness statement we first note that ‖∇|ψ |‖L2(U ) ≤ ‖∇ψ‖L2(U ). More-

over, note that ρ �→ ‖∇√
ρ‖2

L2(U )
is convex and ρ �→ ‖ρ‖2

L2(U )
is strictly convex when
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considered on functions with overlapping supports. This can be used to show that EGP (ψ)

is a strictly convex functional of |ψ |2, and therefore it has a unique minimizer.
Proof for (iii). We compute the Euler Lagrange equation for the GP energy and find

−1

4
ΔUψ∗ + (W − D)ψ∗ + 2gBCS |ψ∗|2ψ∗ = 0.

This equation holds in the dual of H1
0 (U ), that is, when tested against H1

0 (U ) functions. By
our Assumption 1.2 on W and Sobolev’s inequality, ΔUψ∗ is in fact an L2(U ) function and
we have the bound

‖ΔUψ∗‖L2(U ) = ‖4(W − D)ψ∗ + 8gBCS |ψ∗|2ψ∗‖L2(U )

≤ C(1 + |D|)
(
‖ψ∗‖H1

0 (U ) + ‖ψ∗‖3
H1

0 (U )

)
.

This finishes the proof of Proposition 2.5. ��

9 Appendix B: Convergence of the one-body density

Proof of Proposition 1.11 We fix a real valued w ∈ L pW (Ω) and t ∈ R and define Wt :=
W + tw. We denote the BCS/GP energies which are defined with Wt by E BCS

t , EBCS
t , EGP

t ,

etc. On the one hand, our assumption on Γ gives

EBCS − EBCS
t ≥ E BCS(Γ ) − E BCS

t (Γ ) + o(h4−d) = th2Tr
[
γw

] + o(h4−d).

On the other hand, Theorem 1.10 yields

EBCS − EBCS
t = h4−d(EGP − EGP

t ) + O(h4−d+ν)

where the implicit constant depends on w. We denote the unique non-negative minimizer of
EGP
t by ψt (see Proposition 2.5). Multiplying through by hd−4 and taking h → 0, we find

lim sup
h→0

thd−2Tr
[
γw

] ≤ EGP − EGP
t ≤ EGP (ψt ) − EGP

t (ψt ) = t
∫

Ω

w|ψt |2dx .

(9.1)

We claim that ψt → ψ∗ in H1
0 (Ω). This will imply the main claim (1.12). To see this, one

divides (9.1) by t , distinguishing the cases t > 0 and t < 0, and sends t → 0. Then one uses
Rellich’s theorem to get |ψt |2 → |ψ0|2 in L p′

W (Ω).
Hence, it remains to prove that ψt → ψ∗ in H1

0 (Ω). This is a simple compactness
argument. We denote ηt := ψt − ψ∗. The coercivity (2.9) and the triangle inequality imply
that ‖ηt‖H1

0 (Ω) remains bounded as t → 0. We have

0 ≤ EGP (ψt ) − EGP (ψ∗) = EGP
t (ψt ) − EGP

t (ψ∗) − t
∫

Ω

w
(
2Re(ηt )ψ∗ + |ηt |2

)
dx

≤ −t
∫

Ω

w
(
2Re(ηt )ψ∗ + |ηt |2

)
dx

The right hand side vanishes as t → 0, since‖ηt‖H1
0 (Ω) remains bounded as t → 0. Therefore,

ψt is a sequence of approximate minimizers of EGP . Proposition 2.5 (ii) then implies that
ψt → ψ∗ in H1

0 (Ω). ��
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10 Appendix C: On the semiclassical expansion

We sketch the proof of Lemma 3.2, especially where it departs from similar results in [4].
All norms and all integrals are taken over Rd , unless noted otherwise.

Proof of Lemma 3.2 Proof of (i). This follows directly from changing to the center-of-mass
coordinates (5.3), compare the proof of Lemma 5.2.

Proof of (ii). We write out the trace with operator kernels, change to center-of-mass
coordinates (5.3) and apply the fundamental theorem of calculus to get

Tr
[
Waψaψ

] = h−d
∫∫

W (X)|a(r)|2
∣∣∣∣ψ

(
X − hr

2

)∣∣∣∣
2

dXdr

= h−d‖a‖2
L2

∫
W (X)|ψ(X)|2dX − h−dη

with

η = Re
∫∫

W (X)|a(r)|2
(∫ 1

0
ψ

(
X − shr

2

)
hr · ∇ψ

(
X − shr

2

)
ds

)
dXdr.

(10.1)

By Hölder’s and Sobolev’s inequalities, |η| ≤ h‖W‖L pW (Ω)‖√| · |a‖2
L2‖ψ‖2

H1 . This is O(h),

since ‖√| · |a‖2
L2 < ∞ by our assumptions on a.

Proof of (iii). The argument in Lemma 1 in [4] generalizes because the critical Sobolev
exponent is always greater or equal to six in d = 1, 2, 3 and so all the error terms can be
bounded in terms of ‖ψ‖H1(Rd ). We mention that the idea of the proof is to write the trace
in terms of operator kernels and to change to the four-body center-of-mass coordinates

X = x1 + x2 + x3 + x4

4
, rk = xk+1 − xk, k = 1, 2, 3.

Then, one rescales the relative coordinates rk by h (since they appear as a(rk/h)) and expands
in h.

When proving the first equation in (iii), the W term requires a different argument.
Namely, as in the proof of (6.5), one uses Hölder’s inequality for Schatten norms and form-
boundedness of W with respect to −Δ to get

|Tr
[
Wαψαψαψαψ

] | ≤ C
(‖∇αψ‖2

S4 + ‖αψ‖2
S4

) ‖∇αψ‖2
S4 .

Afterwards, one multiplies by h2 and uses the bounds from Corollary 1 in [4]. This gives the
first equation in (iii). For the second equation in (iii), one replaces ‖V a‖L1 in the estimate of
the error term A2 in [4] by ‖a‖L1 , which is also finite. ��

11 Appendix D: On Lipschitz domains and Hardy inequalities

We first present the construction of a suitable sequence of exterior approximations to a
bounded Lipschitz domain. Then, we prove that this sequence satisfies Hardy inequalities
with uniformly bounded Hardy constants (Theorem 7.3).

The proof of Theorem 7.3 is an extension of Necas’ argument [29] for a fixed Lipschitz
domain and draws on known results on the geometry of the sequence of the exterior approx-
imations [6,24]. (We remark that we could alternatively work with the naive enlargements
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Ω+
� (11.3), but this would require writing down a non trivial amount of elementary geometry

estimates.)

11.1 Definitions

We begin by recalling

Definition 11.1 (Lipschitz domain) A bounded domain Ω ⊆ R
d is a Lipschitz domain, if

its boundary ∂Ω can be covered by finitely many bounded and open coordinate cylinders
C1, . . . , CK ⊂ R

d such that for all 1 ≤ k ≤ K , there exist Rk, βk > 0 and a Cartesian
coordinate system such that

∂Ω ∩ Ck ={
(x, fk(x)) ∈ BRk × R

}
,

Ω ∩ Ck = {
(x, y) ∈ BRk × R : −βk < y < fk(x)

}
,

Ωc ∩ Ck = {
(x, y) ∈ BRk × R : fk(x) < y < βk

}
.

where fk : BRk → R is a uniformly Lipschitz continuous function on BRk ⊂ R
d−1, the ball

of radius Rk centered at the origin.

The exterior approximations Ω� are obtained by extending Ω in the direction of a smooth
transversal vector field, which any Lipschitz domain is known to host.

By Rademacher’s theorem, the Lipschitz continuous function fk is differentiable almost
everywhere. Hence, for every 1 ≤ k ≤ K and almost every x ∈ BRk , we can define the
outward normal vector field (to ∂Ω) in the coordinate cylinder Ck by

n(x) := (∇ fk(x),−1)√
1 + |∇ fk(x)|2

. (11.1)

Proposition 11.2 (Normal and transversal vector fields) Let Ω be a bounded Lipschitz
domain in the sense of Definition 11.1. Then, Ω hosts a smooth vector field v : Rd → R

d

which is “transversal”, i.e. there exists κ ∈ (0, 1) such that for all 1 ≤ k ≤ K,

v(x, fk(x)) · n(x) ≥ κ, |v(x, fk(x))| = 1, (11.2)

for almost every x ∈ BRk .

The basic idea for Proposition 11.2 is that in each coordinate cylinder Ck from Definition
11.1, one takes the constant vector field ed , i.e. the y direction, and then one smoothly
interpolates between different Ck via a partition of unity. For the details, see e.g. pages 597-
599 in [24] (and note that the surfaces measure, called σ there, and the Lebesgue measure
on BRk are mutually absolutely continuous).

We are now ready to give

Definition 11.3 (Exterior approximations) Let Ω be a bounded Lipschitz domain and let v

be the transversal vector field from Proposition 11.2. For every � > 0, define its enlargement
by

Ω̂� := {p + �v(p) : p ∈ Ω} . (11.3)
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11.1.1 Bounds on Ω̂�

Each set Ω̂� has many nice properties if � is small enough, see Proposition 4.19 in [24] (though
this is stated for the case � < 0, analogous results hold for � > 0, as is also mentioned there).
In particular, Ω̂� is also a bounded Lipschitz domain and there exist coordinate cylinders in
which both ∂Ω and ∂Ω̂� are represented as the graphs of Lipschitz continuous functions,
with Lipschitz constants that are uniformly bounded in �. Moreover:

Proposition 11.4 There exists a constant c0 > 0, such that for all � > 0 small enough,

Ω+
c0� ⊂ Ω̂� ⊂ Ω+

� . (11.4)

This lemma will give property (i) in Theorem 7.3, up to reparametrizing Ω� := Ω̂�/c0 .

Proof The second containment follows directly from Proposition 4.15 in [24].
For the first containment, we invoke Proposition 4.19 in [24]. It gives Ω ⊂ Ω̂� and

consequently

dist(Ω, Ω̂c
� ) = dist(∂Ω, ∂̂Ω�). (11.5)

We will show that dist(∂Ω, ∂Ω̂�) ≥ c0�. By Proposition 4.19 (i) in [24],

∂Ω̂� = {p + �v(p) : p ∈ ∂Ω} . (11.6)

Hence, by a compactness argument, there exist p, p′ ∈ ∂Ω such that

dist(∂Ω, ∂Ω̂�) = |p′ − (p + �v(p))| = |V (p′, 0) − V (p, �)|,
where we introduced the map

V : ∂Ω × (−�0, �0) → R
d

(p, s) �→ p + sv(p).
(11.7)

By (4.67) in [24], V is bi-Lipschitz if �0 > 0 is small enough. In particular, there exists
c0 > 0 such that

|V (p′, 0) − V (p, �)| ≥ c0|(p′, 0) − (p, �)| ≥ c0�.

This proves dist(∂Ω, ∂Ω̂�) ≥ c0�. The claim then follows from (11.5) and definition (2.2)
of Ω+

� . ��

11.1.2 Proof of Theorem 7.3

We apply Necas’ proof [29] to all Ω� simultaneously (with � sufficiently small) and observe
that all the relevant constants can be bounded uniformly in �.

By Proposition 4.19 (ii) in [24], for �0 > 0 small enough, there exist coordinate cylinders
C1, . . . , CK that (a) cover ∂Ω� for all 0 ≤ � < �0 and (b) characterize them as the graph of
Lipschitz functions fk,� in the ed direction, as described in Definition 11.1. Moreover, the
Lipschitz constants of fk,� are uniformly bounded in �.

Let C0 ⊂ Ω be an open set such that dist(C0,Ω
c) > 0 and such that Ω ⊂ ⋃K

k=0 Ck . Let
φ0, . . . , φK : Rd → R

d be a smooth partition of unity subordinate to this covering, i.e.

supp φk ⊂ Ck,
K∑

k=0

φk = 1 on
K⋃

k=0

Ck .

123



 54 Page 36 of 40 R. L. Frank et al.

The key observation is that, locally, the distance d� := dist(·, ∂Ω�) is comparable to fk,� − y
up to constants which depend on the Lipschitz constant of fk,� and are thus uniformly bounded
in �. Concretely, we have

Lemma 11.5 There exist constants a > 0 and 0 < b ≤ 1 such that for all 1 ≤ k ≤ K and
all 0 ≤ � < �0, we have

min{a, b| fk,l(x) − y|} ≤ d�(x, y) ≤ | fk,�(x) − y| (11.8)

for all (x, y) ∈ supp φk .

Proof Fix 1 ≤ k ≤ K . The second inequality is trivial because (x, fk,�(x)) ∈ ∂Ω� implies

d�(x, y) ≤ |(x, y) − (x, fk,�(x))| = | fk,�(x) − y|.
For the proof of the first inequality in (11.8), we define

a := min
k=0,...,K

dist( supp φk, ∂Cck ) > 0.

Since ∂Ω� is compact, d�(x, y) is achieved at some point p0 ∈ ∂Ω�. In case p0 /∈ Ck , we
can bound

d�(x, y) = |p0 − (x, y)| ≥ a,

and in case p0 ∈ Ck we can write it as p0 = (x0, fk,�(x0)) and proceed as follows. Recall
that every fk,� is Lipschitz continuous with a Lipschitz constant that is uniformly bounded
in �; call the bound L . Hence, for every τ ∈ (0, 1),

d�(x, y)2 = (x − x0)
2 + (y − fk,�(x0))

2

≥ (x − x0)
2 + (1 − τ−1)( fk,�(x) − fk,�(x0))

2 + (1 − τ)(y − fk,�(x0))
2

≥ (1 − L(τ−1 − 1))(x − x0)
2 + (1 − τ)(y − fk,�(x))2.

Now one chooses τ ∈ (0, 1) so that 1 − L(τ−1 − 1) = 0. This yields the first inequality in
Lemma 11.5 with an appropriate b > 0. We have thus proved Lemma 11.5. ��

We resume the proof of Theorem 7.3. Take any ϕ ∈ C∞
c (Ω�) and use the partition of

unity to write the left hand side of the Hardy inequality (7.2) as

∫
Ω�

|ϕ(x)|2d�(x)
−2dx =

K∑
k=0

∫
Ck∩Ω�

φk(x)|ϕ(x)|2d�(x)
−2dx

≤C‖ϕ‖2
L2 +

K∑
k=1

∫
Ck∩Ω�0

φk(x)|ϕ(x)|2d�(x)
−2dx .

where C = dist(C0,Ω
c)−2 < ∞. We emphasize that we used Ω� ⊂ Ω�0 in the last integral.

Now, we write each integral over Ck in boundary coordinates and apply Lemma 11.5. Impor-
tantly, the resulting expression is independent of � (it only depends on �0). Hence, one can
conclude the proof, exactly as in [29], by Fubini and the one-dimensional Hardy inequality
[23]. This proves the first part of Theorem 7.3.

It remains to show properties (i) and (ii) in Theorem 7.3. (i) holds by Proposition 11.4.
For (ii), we take any q ∈ R

d such that dist(q,Ωc
� ) ≥ a�. In particular, q ∈ Ω�. Hence, if �

is small enough, there exists p ∈ Ω such that

q = p + �v(p).
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Recall that the vector field v : Rd → R
d is differentiable. We introduce the finite and �

independent constants

C0 := ‖v‖L∞(Ω�0 ), C1 := ‖∇v‖L∞(Ω�0 ).

Using the characterization (11.6) and q ∈ Ω�, we have

a� ≤ dist(q,Ωc
� ) = min

p′∈∂Ω
|p + �v(p) − p′ − �v(p′)|

≤ (1 + C1�) min
p′∈∂Ω

|p − p′| = (1 + C1�)dist(p,Ωc).

We can choose � small enough so that C1� ≤ 1. We get

dist(q,Ωc) = inf
p′∈Ωc

|p + �v(p) − p′| ≥ inf
p′∈Ωc

|p − p′| − C0�

= dist(p,Ωc) − C0� ≥ �(a/2 − C0).

By choosing a > 0 large enough, we get that q ∈ Ω as claimed. This finishes the proof of
Theorem 7.3. ��

12 Appendix E: The linear case: ground state energy of a two-body
operator

In this section, we discuss a linear version of our main result. It gives an asymptotic expansion
of the ground state energy of the two-body operator (12.1), describing a fermion pair which
is confined to Ω .

While in principle the center of mass and relative coordinate are coupled due to the
boundary conditions, the result shows that they contribute to the ground state energy of Hh

on different scales in h (and therefore in a decoupled manner).

Theorem 12.1 Let Ω ⊂ R
d be a bounded Lipschitz domain. Given functions V : Rd → R

and W : Ω → R satisfying Assumption 1.2, we define the two-body operator

Hh := h2

2
(−ΔΩ,x + W (x) − ΔΩ,y + W (y)) + V

(
x − y

h

)
(12.1)

with form domain H1
0 (Ω × Ω). Then, as h ↓ 0,

inf specL2(Ω×Ω)Hh = −Eb + h2Dc + O(h2+ν), (12.2)

where ν > 0 is as in Theorem 1.10 (i) and

−Eb = inf specL2(Rd )(−Δ + V ), Dc = inf specL2(Ω)

(
−1

4
ΔΩ + W

)
.

This could be proved by following the line of argumentation in the main text and ignoring
the nonlinear terms throughout. However, the proof of the lower bound is considerably simpler
in the linear case. To not obscure the key ideas, we give the proof in the special case when
W ≡ 0 and Ω is convex.

It is instructive to think of the even more special case when Ω is an interval, say Ω = [0, 1].
This case is depicted in Fig. 1 and the proof is sketched in the caption.
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Fig. 1 When Ω = [0, 1], the
region Ω × Ω has a diamond
shape when depicted in the center
of mass coordinates (X, r). To
prove the upper bound in
Theorem 12.1, one uses a trial
state, see (12.3), which is
supported on the small dashed
rectangular region I , where
�(h) = h log(h−q ) with q > 0
large but fixed. When Ω = [0, 1],
the Dirichlet eigenfunctions are
explicit sine functions and so one
does not need to invoke Theorem
2.2 to get the upper bound. For
the lower bound, one drops the
Dirichlet condition in the relative
variable, i.e. one extends the
problem from the diamond to the
strip I I = [0, 1] × R. This
decouples the X and r variables
and directly yields the lower
bound

Proof We denote the ground state energy of − 1
4ΔΩ−

�
by D−

c (�) (compare (2.8)), where Ω−
�

is defined in (2.1).
Upper bound We construct a trial state with the following functions: α∗, the ground state

satisfying (−Δ + V )α∗ = −Ebα∗, χ a cutoff function as described in Definition 4.1, and
ψ�(h), the normalized ground state of −ΔΩ−

�(h)
for �(h) = h log(h−q) and q > 0 large but

fixed. In center of mass variables, X = x+y
2 , r = x − y, the trial state then reads

ψ�(h)(X)χ

(
r

�(h)

)
h1−dα∗

( r
h

)
. (12.3)

We apply Hh to this and use the fact that − 1
2Δx − 1

2Δy = − 1
4ΔX − Δr . The exponential

decay of α∗ controls the localization error introduced by χ as in the proof of Proposition 4.3.
Therefore the energy of the trial state is −Eb +h2D−

c (�(h))+O(h2+ν). The second (linear)
part of Theorem 2.2 with W ≡ 0 says that D−

c (�(h)) ≤ Dc +O(hν). Hence the upper bound
in (12.2) is proved.

Lower bound The key idea is to drop the Dirichlet boundary condition in the relative
variable. The center of mass coordinates are originally defined on the domain

D :=
{
(X, r) ∈ Ω × R

d : X + r

2
, X − r

2
∈ Ω

}
.

(Here we use the convexity of Ω .) Observe that D ⊂ Ω × R
d . On the space L2(Ω × R

d),
we define a new operator

H̃h = −h2

4
ΔΩ,X − h2Δr + V (r/h),

with form domain H1
0 (Ω ×R

d). By domain monotonicity we have H̃h ≤ Hh in the sense of
quadratic forms, and therefore

inf specL2(Ω×Rd ) H̃h ≤ inf specL2(Ω×Ω)Hh . (12.4)
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Now inf specL2(Ω×Rd ) H̃h can be computed exactly since the X and r variables are decoupled
and so the corresponding operators commute. The ground state is just

ψ0(X)h1−dα∗
( r
h

)

where ψ0 is the normalized ground state of − 1
4ΔΩ . The energy of this state is precisely equal

to −Eb + h2Dc. By (12.4), the lower bound follows. ��
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