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Part I 

I. Introduction 

In the last decade there has been considerable progress in the areas of 
constructive quantum field theory and rigorous statistical mechanics. Both 
disciplines, as studies of physical systems with an infinite number of degrees 
of freedom, are concerned with the same sorts of questions, for example, 
the existence of the infinite volume limit, and the uniqueness of the physical 
states obtained. Thus the developments in field theory and statistical 
mechanics have often been parallel and some of the methods have been 
shared (especially the techniques of C*-algebras). But the subjects have 
not really cross-fertilized each other to any noticeable extent. 

This paper is based on the idea that the Euclidean P($), field 
theory for two-dimensional massive self-coupled Bose fields is nothing 
more nor less than a model of classical mechanics. The continuation of 
the usual relativistic P(#), model to the Euclidean region, by allowing 
a direct use of functional integration, not only introduces remarkable 
technical simplifications, but also makes i t  possible to decide the basic 
physical questions (broken symmetry, dynamical instability 11161, etc.) in 
the spirit and language of statistical mechanics. Our discussion is reason- 
ably self-contained, but for an understanding of the traditional construc- 
tive field theory program as advanced by Glimm and Jaffe and their 
followers, we refer the reader to [32] and the references cited there. Our 
basic reference for the ideas and methods of statistical mechanics will be 
Ruelle's book [85]. 

On occasion there have been discussions in the literature of a direct 
analogy between field theory and quantum statistical mechanics a t  zero 
temperature. For example, Hepp 1471 has considered the analogy between 
the P(#), field theory and a Heisenberg ferromagnet in one dimension. In 
this paper we consider the deeper analogy between quantum field theory 
analytically continued to imaginary time [89] (Euclidean quantum field 
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theory) and classical statistical mechanics a t  finite temperatures. For a 
number of years i t  had been realized (e.g., [50]) that  there was a cor-
respondence between field theory and statistical mechanics based on the 
similarity between the Gell'Mann-Low formula [5], [46] of quantum field 
theory, 

-- (QO, T(Q,(~,,  t,) . . . g0(x,, t,)e-i"~~(+o(z)t))dzdt 
(QO, ~(~-i"H~(+ol%,t~d~dt  

and the usual Gibbs formula of statistical mechanics, 

It was Symanzik [110], [ I l l ]  who first emphasized the usefulness of 
this correspondence by passing to the Euclidean region, and this idea has 
since been developed by a number of other authors [18], [21], [76]. Symanzik 
undertook a systematic study of Euclidean field theory, basing his analogy 
with classical statistical mechanics on the Kirkwood-Salsburg equations 
[85]. But he was unable to recover the relativistic theory from the 
Euclidean one, nor was he able to control the infinite volume limit (compare 
what little technology was available a t  the time concerning the thermo- 
dynamic limit in rigorous statistical mechanics). Nevertheless, recent 
developments have proved that the program envisaged by Symanzik was a 
sound one. 

Because the connection between Euclidean field theory and the rela- 
tivistic Hamiltonian theory had not been established on a rigorous basis, i t  
was not possible to exploit the above ideas in constructive field theory. 
Recent work of Nelson [66], [67], [68] has dramatically altered the situa- 
tion, making Euclidean techniques available as a powerful constructive 
tool. Nelson isolated the important Markov property (noted by Symanzik 
in [log]), and for Euclidean field theories with this property he showed 
how to continue analytically back to a relativistic theory (for a statement 
of the Nelson Reconstruction Theorem see Theorem 11.8 below). It is our 
goal in this paper to use Nelson's ideas as the basis for a discussion of the 
statistical mechanics of the P ( O ) ~  Shortly after the announcement model. 
of our results [44], we learned that  Albeverio and Hoegh-Krohn [I] had also 
used Nelson's ideas together with statistical mechanics methods in order to 
study the infinite volume limit in a field-theoretic model with a bounded 
interaction. In a recent significant paper [74], Osterwalder and Schrader 
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have produced a set of axioms for the Euclidean Green's functions which 
are necessary and sufficient conditions that  they be the analytic continua- 
tions of the Wightman functions of a relativistic theory. What is perhaps 
surprising is that  they do not need to assume that  Euclidean fields exist or 
that  there is any property like the Markov property. We emphasize that  
our discussion of the statistical mechanical nature of the Euclidean theory 
relies critically on the additional structure provided by Euclidean fields and 
their Markov property. 

In Section 11.1we begin by reviewing Nelson's construction of the free 
Euclidean Markov field: The field ~ ( x )  is viewed as a (formal) family of 
Gaussian random variables labelled by x E Rd,and the underlying probability 
space Q carries a suitable Gaussian measure dp,. Of course, the fields $(x) 
commute. There is a natural embedding of the relativistic Fock space Y in 
s = d -1space dimensions as a constant "time" subspace of L2(Q, dp,) and this 
leads to the Feynman-Kac-Nelson formula relating the relativistic P($J),+, 
theory on Y to the Euclidean P($), theory on LYQ, dp,) (of Theorem 11.16). 
In particular, we obtain this imaginary time Gel17Mann-Low formula: For 
t, 2 t, 2 . . . 2 t,, 

On the left side all objects are associated with the relativistic Fock space 
Y: $,(x) is the time-zero relativistic field on Y, 

is the spatially cutoff Hamiltonian on Y, and Q, is its unique vacuum vector, 
&a1 = 0. The expressions on the right side are in terms of the Euclidean 
field on Q. 

Note that  the problem of the infinite volume limit is "half solved" in the 
right side of (I. I),and that  if we could also take I -c.= then i t  would follow 
that the vacuum expectation values for the relativistic P(o),+, theory would 
also converge as I -rn (cf. [35]). I t  is convenient to consider regions 
A c R2 that  are more general than rectangles and thus the basic objects 
under consideration are the spatially cutoff Schwinger functions in 
volume A, 
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\ dwg(j;,) . . . g(j;,)e-u~ 
4 

7(1.3) SA(Z,,. . . , x,) = 
dp0e-'" 

where Z,, . . ., 4 E R2and UA= \ : P ( ( ) ) :d .  The central problem is to 
A 

prove the existence of the thermodynamic limit, A - w. 

The structure of our classical statistical mechanics model is now 
apparent: 

Configuration space Q 

Free expectations (40= A d ~ o  

Basic observables Q(x) 

Gibbs' expectation in A (A) = 1 ~e-""dp,/\  e-'adp, 

Partition function in A A -- e-r"dll0 

Pressure in A p, = -
1 

log 2,
I Al 

Correlation functions in A S,(x,, . . ., x,) 
State f Family {f,} of positive, normalized 

consistent densities on Q 

Entropy in A of state f S,( f )  = -1 dp,f, log f A  

It will turn out that  the nature of this model is determined largely by the 
properties of the free measure dp,. A Gaussian measure d p  on Q is defined 
by specifying its mean (taken to be 0) and its covariance, 

which we shall generally take to be the Green's function for the operator 
( - A  + m2)with some choice of boundary conditions. Since operators of 
the type (-A + my-' are nonlocal, the measures dp  will be nonlocal, i.e., 
observables ~ ( x )and ~ ( y )will not in general be independent if x f y. On 
the other hand, the interaction U, is local in the sense that  U,,,,, = 

U,, + U,, for disjoint A,, A,. This situation is just the reverse of that  
usually encountered in classical statistical mechanics. There, the coupling 
between different regions is due purely to the interaction, whereas in 
Euclidean field theory the coupling between regions is produced by the 
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basic coupling in the free theory mediated by the interaction. A further 
determining feature of dp, is that  it is ferromagnetic and of nearest 
neighbour type, and these properties will become evident when we consider 
the lattice approximation to the model in Section IV. As a result, our model 
is very close in behaviour to the standard Ising ferromagnet. 

As in classical statistical mechanics, we expect tha t  the freedom to  
employ a variety of boundary conditions (B. C.) will be a useful technical 
device. The effect of Dirichlet type B. C. on d h  in decoupling the fields in 
h from those in Yxthas already played an important role in the work of 
Glimm and Spencer [35] and of Nelson [69]. In this paper we employ 
primarily the two most natural types of B. C.: free B. C. and Dirichlet B. C. 
In the case of free B. C., the covariance (1.4) is taken to be the free Green's 
function for ( -A + my vanishing a t  m: 

For Dirichlet B. C. on d h  the measure is defined in terms of the Green's 
function with vanishing data on ah: J dpcloq,+(x)#(y) = G,,,(x, y) . 
In a subsequent paper we plan to present an analysis of more general B. C. 
(but see 11.5 below for such an analysis when d = 1). We expect that the 
role of boundary conditions will take on added significance when there are 
several distinct infinite volume states (dynamical instability). 

At this point i t  might be helpful to summarize the relations among the 
various P(#), theories that  we shall consider in this paper: 

Relativistic Euclidean Markov Lattice Markov Hamiltonian 
Gaussian spin 

Free (s=1) ( C 1 Free (d=2) I----- -ferromagnet
Imbedding Lattice (d=2) 

I I 
' approximation ' ' ' ' 

Ii . ........ Perturbation by P(4)interaction in a finite volume ........i
I 
.1 i 

Perturbed 
Gaussian 

Feynman-Kac- Lattice ferromagnet 

i Nelson Formula approximation I 

& J. 

Relativistic Euclidean 
P(d)l+l Nelson Reconstruc- P(#)2 

tion Theorem 
(Osterwalder-Schrader
Reconstruction Theorem: 

I I____I 



121 p(g), EUCLIDEAN QUANTUM FIELD THEORY 

The traditional route to a relativistic field theory without cutoffs con- 
sisted of proceeding down the first column of Fig. 1.1[32]. The statistical 
mechanics approach is to move down the middle column by taking ad- 
vantage of information from the third column, and then to appeal to 
the Nelson Reconstruction Theorem [67] or to Osterwalder-Schrader [74]*. 
Although less direct, the Euclidean route has distinct advantages (see also 

P I ) !  
The contents and organization of this paper are as follows: 

11. Markov fields, page 129. 

1. The Free Markov Field. We review Nelson's construction of the 
free field. 

2. Nelson's Axioms for Euclidean Markov Fields. We discuss Nelson's 
axioms and his method of obtaining the relativistic Hamiltonian from the 
Euclidean Markov theory, the key step in the proof of the Reconstruction 
Theorem. 

3. The Spatially Cuto$P(g), Markov Theory. We define the cutoff P(g), 
Markov theory and show how to recover from i t  most of the known results 
for the spatially cutoff P ( O ) ~  Hamiltonian. This involves our first proof of 
the Feynman-Kac-Nelson formula and identifies the Euclidean theory as 
path space over the relativistic theory. 

4. The Feynman-Kac-Nelson Formula: A Second Proof. This second 
proof starts from the relativistic Hamiltonian theory and follows the lines 
of the "classical" proof. As a corollary, we obtain the Gell'Mann-Low 
formula (1.1) which identifies the Hamiltonian theory as a transfer matrix 
for the Euclidean theory. 

5. Conditioned Theories. We introduce a procedure, involving positive 
definiteness relations, for obtaining one theory from another by projecting 
out certain degrees of freedom. In particular, since the difference Go- GD, ,  
is positive definite as an operator on L2(h),this method applies to obtaining 
the Dirichlet theory from the free B. C. theory. The method also allows 
an analysis of general B. C. when d = 1. 

6. Dirichlet Boundary Conditions. Dirichlet B. C. in A can also be 
obtained from free B. C. by an appropriate insertion of &functions on the 

* There is a gap in [74]; alternate procedures utilizing similar axiom schemes a re  
discussed in [129]. 
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boundary ah. We make the important distinction between the "full- 
Dirichlet" and "half-Dirichlet" theories, according to whether the inter- 
action is Wick-ordered relative to dp:, or to dp,,. 

111. Lp-Estimates, page 175. 

1. Hypercontrac t ive  E s t i m a t e s .  Although d p ,  couples distinct regions, 
we obtain LP-estimates which express the "exponential decoupling" of 
distant regions. 

2. S a n d w i c h  a n d  Checkerboard E s t i m a t e s .  These estimates apply to 
particular geometric configurations of regions and are useful in the study 
of the relativistic Hamiltonian and of the entropy ( 5  VI). 

3. H y p e r c o n t r a c t i v i t y  a n d  the  Mass G a p .  We note tha t  the above 
estimates imply a mass gap in the Hamiltonian theory, but the problem 
remains to obtain hypercontractive estimates u n i f o r m  in the spatial cutoff. 

IV. Lattice Markov fields, page 191. 

1. T h e  L a t t i c e  A p p r o x i m a t i o n .  Based on the finite difference approxi- 
mation to (-A + mZ),the lattice approximation to the spatially cutoff P(g), 
Markov theory consists of an array of Gaussian spins on lattice sites. 

2. Proper t i es  of  the  L a t t i c e  Theory .  We isolate the ferromagnetic and 
nearest neighbour (= Markov) nature of the lattice approximation. B. C. 
enter in the manner in which the boundary spins are coupled to one another. 

3. Dir ich le t  B o u n d a r y  Condi t ions .  The special status of Dirichlet 
B. C. is investigated; that  is, the boundary spins have no couplings beyond 
those produced by dp,.  We prove that  the lattice approximations for the 
full- and half-Dirichlet theories converge in the continuum limit. 

4. T h e  L a t t i c e  T h e o r y  a s  a n  I s i n g  Ferromagne t .  We remark that  the 
lattice approximation is just a continuous spin Ising ferromagnet whose 
nature is determined chiefly by the free measure: The interaction is local 
and thus does not affect the coupling between spins but only the distribu- 
tion of each uncoupled spin. 

V. Correlation inequalities, page 206. 

1. G a u s s i a n  Measures  of Ferromagne t ic  T y p e .  We prove correlation 
inequalities of Griffiths [38] and FKG [20] type for a class of measures on 
R"which includes the measures of 3 IV. 

2. Corre la t ion  Inequal i t i e s  for  M a r k o v  Fields .  In the continuum limit 
these inequalities transfer to inequalities for the Schwinger functions (1.3) 
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of the P($), Markov' theory. For example, if P is even (and semibounded), 
then 

where xjE R2. 

3. Correlation Inequalities for Wick Powers. The fact that the inter- 
action U, involves Wick powers limits the applicability of the correlation 
inequalities (and is responsible for the above restriction to even P ) .  
Inequalities involving Wick powers would be very useful but we are able 
to handle only a single quadratic power :$'(x):. We speculate on other 
possible inequalities and disprove some of these. One such disproof depends 
on ,the independently interesting theorem that,  for small coupling constant 
and P(p) = #', the Hamiltonian (1.2) has an eigenvalue in the "gap" (0, m). 

4. Applications. In analogy with statistical mechanics, we apply the 
correlation inequalities to deduce monotonicity statements in terms of the 
coefficients of p and $2 in P($) for (i) the correlation functions, (ii) the mass 
gap, and (iii) the "Bogoliubov parameters" measuring broken symmetry. 
We discuss Nelson's result [69] that the Schwinger functions for the half- 
Dirichlet states are monotonically increasing in the volume and thus con- 
verge in the infinite volume limit; we explain how a change in "local bare 
mass" is involved. 

VI. The basic objects of statistical mechanics, page 228. 

1. The Pressure. We show that, as A--t m, the pressure p, converges 
to a,, the vacuum energy per unit volume in the Hamiltonian theory, and 
the Dirichlet pressure p,D converges to a limit a:. We investigate the (lack 
of) dependence of the pressure on B. C. in a subsequent paper. 

2. States and Entropy. We define the notions of state and entropy of 
a state and we show that the entropy S,(f) has the usual property of 
monotonicity in A, but, because of the nonlocality of dp,, satisfies only a 
weak form of subadditivity in A. 

3. Coltvergence of tlze Entropy per Unit Volume. As A - w ,  the 
limit s(f) = lim (111 -\j)S,(f) exists if f is a translation invariant, "weakly 
tempered" state. 

VII. Equilibrium and Variational Equations, page 238. 

1. The DLR Equations. In analogy to the equilibrium equations of 
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statistical mechanics (cf. Dobrushin [13], Lanford-Ruelle [56]), we introduce 
DLR equations for the P(p), Markov theory. These equations express the 
fact that,  for every compact A, the density is Gibbsian, f, = e-uA+,,, except 
for a "correction" +,, concentrated on the boundary ah. We discuss the 
equivalence of theories with different bare masses. 

2. Spurious Solutions of the DLR Equations and Boundary Condi- 
tions a t  Infinity. By an explicit one-dimensional example we show that  the 
DLR equations admit nonphysical solutions and must be supplemented by a 
B. C. a t  We propose that  weak temperedness is the "right" B. C .W .  

3. Gibbs Variational Principle: Part ia l  Results. If we denote the 
mean value of the interaction in the state f by p(f, P ) ,  then we prove the 
Gibbs variational inequality: s(f) - p(f, P )  5 a,(P); but we are unable to 
prove that  there is a state f for which equality holds. We conjecture tha t  
equality holds if and only i f f  is a weakly tempered, translation invariant 
state which satisfies the DLR equations. Our analysis further indicates 
that  the Gibbs variational principle is the statistical mechanics counterpart 
of the Rayleigh-Ritz variational principle of the relativistic theory, and 
tha t  the entropy is a free energy density. 

Appendix A. Positive Definite Matrices with Nonpositive Of-
Diagonal Elements. We summarize a few properties of a class of matrices 
which includes those occurring in $ IV. 

Appendix B. Correlation Inequalities for the Anharmonic Oscillator: 
Alternate Proofs. For one-dimensional P($) theories it is possible to prove 
correlation inequalities without recourse to the lattice approximation. 

Appendix C. Fisher Convergence: Some Technical Results. We 
establish some facts of a geometric nature concerning convergence of A to 
infinity in the sense of Fisher. 

The reader can thus see that  after the partially expository material of 
$9 11.1-11.4, there are four (partly overlapping) main lines of technical 
development: 

1. Analysis of B. C. This appears in $$ 11.5, 11.6, and IV.3 and will be 
continued in a subsequent paper. 

2. Ferromagnetic properties. This line involves the lattice approxi- 
mation of 5 IV and the correlation inequalities of $ V and is independent of 
9 I11 and depends on $ 11.5 only through a simple convergence theorem. 

3. Convergence of the pressure. These results extend our earlier work 
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[41], [42], [43] on the convergence of the energy per unit volume and 
appear in $ VI.l which depends heavily on 5 11.5 but not on $3 111-V. 

4. Entropy and variational equations. This line appears in $3 VI.2, 
VI.3, and VII and depends heavily on the Lp-estimates of 5 111. 

We have not organized the paper with these four lines of development 
in sequential order but rather with two principles in mind: We wished to 
develop tho purely technical estimates first ($3 11.5-V.1), and we organized 
the remaining material in a way which we considered natural from the 
point of view of statistical mechanics. 

There is a connection between our discussion of the lattice approxi- 
mat~onand some recent work of Wilson [6], [55], [I181 on the renormaliza- 
tion group in statistical mechanics. Basic to our approach is that a field 
theory is well-approximated by Ising models. Basic to Wilson's approach 
is the idea that an Ising model can be well-approximated by field theories. 
These two statements are of course not identical. In fact, one can only 
hope to approximate discrete systems by continuous systems (Wilson's 
approach) when typical distances are large compared to a lattice spacing 
(i. e., near critical points) and rigorous results seem hard to obtain. On the 
other hand, one can always hope to approximate continuous systems by 
discrete systems (our approach). In any event, both approaches depend on 
a similarity of structure between Ising models and field theories. 

We regard the primary role of this paper to be that of establishing a 
basic framework and technique. It thus seems fitting to conclude this 
introduction with a list of open questions that strike us as important or 
natural. For a more complete explanation of the notation and context of 
these problems, the reader should consult the relevant sections of the 
text. 

The first two problems are Euclidean formulations of problems that 
exist for the relativistic Hamiltonian theory, but, because of the explicit 
form of the Euclidean vacuum, we expect that  they are more tractable: 

Problem 1. Prove local L P  estimates on the vacuum. Explicitly, for a 
given interaction polynomial P and regions A cA' cR2, let v,,,, be the 
(normalized) restriction of the Gibbs state in -2' to the region -2: v,,,, = 

E,[~-"A.]/ \ d poe -cA'. Prove tha t  for some fixed p > 1, I /  v,,,, 1 1 ,  is bounded 
independently of A'. Conjecture: log 1 1  v ,~ , ,~ ,= O(I h I ) .11,  

Such a bound would provide a new proof of the locally Fock property 
[32] of the infinite volume (Hamiltonian) states and would imply the 
existence of infinite volume, equal time, vacuum expectation values. 
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Problem 2. Prove local LP convergence of the Gibbs states; i.e., for 
converges in LPas A' -+ 00. 

For small coupling constant, Gli.mm and Spencer [35] have proved 
local convergence of the v,,,, in the sense that  the Schwinger functions 
(1.3) converge. For half-Dirichlet B. C. and even P ,  Nelson [69] has obtained 
this result using an extension of some of our ideas in 3 V. The small 
coupling result of Glimm and Spencer is the analogue of high remperature 
results in classical statistical mechanics. This suggests: 

Problem 3. Give an alternate proof of the Glimm-Spencer result 
using a Kirkwood-Salzburg [85] or Dobrushin [14] type of argument. 

In addition Glimm and Spencer prove that there is a positive mass gap 
in the small coupling regime. Such a result would follow from: 

Problem 4. Prove that  for small coupling constant the measure 

dv, = e-""dl*,/\ e-rAdpo is hypercontractive in the sense of 3 111, uniformly 

in A. 
The following mass gap result is suggested by a theorem of Lebowitz 

and Penrose [58] on the fall-off of the Ursell functions in a finite range 
Ising model a t  non-zero magnetic field: 

Problem 5. Let P be an even polynomial, and let A # 0. Prove the 
existence of a positive mass gap for the P ( X )  + AX theory. 

Again in analogy with high temperature results of classical statistical 
mechanics we propose (see 3 VII): 

Problem 6. Find suitable boundary conditions a t  infinity under which 
the DLR equations for a small coupling P($), theory have a unique solution. 

We know (cf. 3 VII.2) that without B. C. a t  00, the DLR equations 
have spurious solutions. The DLR equations are connected with the Gibbs 
variational principle for which we are able to establish only the inequality 
portion: 

Problem 7. For any P($), theory, prove the Gibbs variational equality: 

SUPi [s(f - p(f, PI1 = R ( P ) .  

Problem 8. Prove that the Gibbs variational equality and the DLR 
equations with suitable B. C. a t  03 provide equivalent characterizations of 
equilibrium states. 

We mention two problems involving correlation inequalities. The first 
would imply monotonicity of the Hamiltonian energy per unit volume (for 
further conjectures concerning Wick powers, see 9 V.3): 
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Problem 9. Let P be an even semibounded normalized polynomial 
(P(0) = 0). Prove that (:P(p(x)):) S 0 where ( a )  denotes expectation with 
respect to a P($), Gibbs state. 

Problem 10. Let P be an even semibounded polynomial. Prove (or 
disprove) triple correlation inequalities of GHS type [39]: 

(ABC) + 2(A)(B)<C) 5 (A)(BC) + (AB)(C) + (AC)(B) , 

where A, -73. C are products of fields of the form p(x,) . . - g(x,). 
As discussed in 9 VI.l the pressure should be independent of the type 

of B. C. used. 

Problem 11. Establish that  as A - w the pressure pl;' converges to 
a,, whatever the choice of B. C., a (e.g., periodic, Dirichlet, Neumann). 
This should imply tha t  the periodic (Dirichlet, Neumann) Hamiltonian 
energy per unit volume converges to -a,. 

Then there are questions involving the perturbation series. The 
Euclidean Markov framework is a natural one for discussing the Feynman 
series since formally the series arise from an expansion of the exponential 
in the Fe ynman-Kac-Nelson formula. This "derivation" of the Feynman 
series is close in spirit to the original Feynman idea and quite far from the 
usual Dyson interaction picture derivation [5]. 

Problem 12. Prove that in the infinite volume limit the Feynman series 
for the pressure (energy per unit volume, cf. [43]) and the Schwinger func- 
tions are asymptotic. 

Problem 13. Prove that the series of Problem 12 are Bore1 summable 

(~981, ~ 3 1 ) .  
Finally, there are the questions of phase transitions and dynamical 

instability. 

Problem 14. Establish the existence of "phase transitions" (cf. 3 V.4). 
Explicitly, prove that, for a fixed even P ,  the function 

is discontinuous in X a t  = 0 provided ,n is less than some critical value p0. 
Here denotes the expectation value for the Q($), theory in some 

infinite volume theory (e.g., the limit of Dirichlet B.C.). 
In the case of P($) = p4, we can formulate the following conjecture, 

in analogy with results for the Ising ferromagnet [25], [57] and on the 
basis of the "conventional wisdom" [117]. 
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Problem 15. Let P($) = P4. In the notation of Problem 14, prove that 
for X = 0 and p < p,, there are two pure equilibrium states (in the sense 
of Problem 8), which we denote by (.),, and otherwise (X + 0 or p > p,) 
there is a unique equilibrium state. If p < p,, 

Moreover, in the case p < pC and X = 0, the relativistic theory determined 
by an infinite volume limit (e.g., of free or Dirichlet states) does not have 
a mass gap, whereas in the pure theories determined by each of (.), there 
is a positive mass gap above a nondegenerate ground state energy. 

Note added (Spring, 1974). There has been considerable progress on 
some of the above problems. Dobrushin and Minlos [I191 have announced a 
series of results related to Problems 3, 6, 14 but details will have to wait 
until their full paper appears. In addition: 

Problems 1, 2. The p = 1, small coupling constant problems have been 
solved by Newman [70]. 

Problem 3. A presentation of the small coupling results using Kirkwood- 
Salzburg equations appears in the Erice lectures of Glimm, Jaffe, and 
Spencer [122]; see also [121]. 

Problem 4. The analogous result for anharmonic oscillators has been 
proved by Eckmann [I201 and J. Rosen [126]. 

Problem 5. There are several partial results: For X large, Spencer has 
proved a positive mass gap. For the case deg P = 4, Simon [I041 proved 
uniqueness of the vacuum and the present authors have proved the ex-

istence of a positive mass gap [124]. 

Problem 7 has been solved by the present authors [125]; see also [123]. 

Problem 10. For A = #(x,), B = p(x2),C = #(x,), and P ( X )  = a x 4 +  bX2- 
p X  (p  > 0), Simon and Griffiths [I051 have proved an inequality of GHS 
type. Newman (unpublished) has noted that for P ( X )  = a x 6- pX, a 
similar inequality must fail for some small a and p (see [127]). 

Problem 11has been solved by the present authors [125]. 

Problem 12 for the Schwinger functions has been solved by Dimock 

[lo]. 
Problem 13 has been partially solved by Eckmann, Magnen, and Seneor 

[128]. 
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11. Rlarkov fields 

In this section we develop the P(g), Euclidean Markov field theory 
following Nelson [66], [68] and we discuss its relation to the P(g), relativistic 
Ha~il tonian theory (see, e.g., [32]). The main point is that the Fock space 
7 for the relativistic Bose field in s space dimensions can be naturally 
imbedded as a constant "time" subspace in the Fock space % for the 
Euclidean Bose field in s + 1dimensions. The standard Q-space equivalence 
3cwL2(Q, dpo) then provides us with the probability space Q where the 
probabilistic concepts such as the Markov property can be formulated. For 
the relations among the various theories for P(g),, the reader should 
consult Fig. 1.1. 

In 3 11.1we review Nelson's construction of the free Markov field [68] 
on % w L2(Q, dp,) and we describe the imbedding of the free Hamiltonian 
theory. In 8 11.3 we directly construct the spatially cutoff P(g), Euclidean 
Markov model on the basis of Nelson's theory of multiplicative linear 
functionals (3 11.2). (Strictly speaking i t  is incorrect to call the cutoff 
theories "relativistic" and "Euclidean" since the cutoff destroys the 
invariance.) As indicated in Fig. 1.1, by controlling the infinite volume 
limit [35], [69] one can obtain a P(#),Euclidean Markov field theory without 
cutoffs, and thus a model for the Wightman axioms for relativistic fields 
by means of Nelson's Reconstruction Theorem [67]; see Theorem 11.8 
below.* This route completely bypasses the familiar constructs of the 
Hamiltonian theory [32] (Guenin-Segal construction, Cannon-Jaffe gene- 
rator, higher order estimates, etc.). 

Nevertheless, the connection between the two cutoff theories (Hamil- 
tonian and Markov) has its own interest. Even if one were interested solely 
in the Markov theories, the cutoff Hamiltonian theory would enter as a 
useful tool in the Markov theory. In 3 11.4 we shall see that the cutoff 

* In practice, the Markov property has not been verified for any P(p)z models; for the 
others, alternate procedures [35], [74] are  needed. 



130 F. GUERRA, L. ROSEN, AND B. SIMON 

Hamiltonian theory plays the role of a "transfer matrix" for the Markov 
theory, allowing the removal of the spatial cutoff in one coordinate. On 
the other hand the Markov theory can be interpreted as a (Euclidean 
invariant) path integral for the Hamiltonian theory whose usefulness is 
apparent [41], [42], [43] even without the Nelson Reconstruction Theorem. 
We feel that the Hamiltonian and Markov cutoff theories should be viewed 
as two facets of one single theory. For this reason we discuss their con- 
nection via the Feynman-Kac-Nelson formula in both directions: In § 11.3 
we "derive" the cutoff Hamiltonian P($),+,theory from the Markov theory, 
whereas in 11.4 we s tar t  from the Hamiltonian theory and use the Trotter 
product formula to arrive a t  the Markov theory. 

The cutoff theories with which we are concerned in $9 11.3 and 11.4 
have "free boundary conditions" a t  the boundary of the cutoff region. In 
$3 11.5 and 11.6 we introduce various methods of prescribing Dirichlet, 
"half-Dirichlet", and periodic boundary conditions, and we discuss some 
properties of the theories with these B. C. 

After the preparation of this section we received a preprint of Oster- 
walder and Schrader [74] which elucidates the connection between rela- 
tivistic and Euclidean field theories. Osterwalder and Schrader present a 
set of axioms for Euclidean Green's functions (= Schwinger functions) 
which are necessary and sufficient for the Schwinger functions to have 
analytic continuations whose boundary values define the Wightman dis- 
tributions of the relativistic theory. Their axioms differ from Nelson's 
axioms for a Euclidean Markov field theory (which we discuss in 11.2) in 
the following way: The Nelson-Symanzik (N-S) positivity condition (the 
condition on Schwinger functions that gives a positive probability measure 
and the Euclidean field structure) is replaced by a different positivity con- 
dition (see also Nakano [61]). Thus Euclidean fields and a "Euclidean 
spectral condition" (the Markov property in Nelson's axioms) do not appear 
in their framework. However, the Osterwalder-Schrader (0-S) positivity 
condition leads to the spectral condition on the relativistic fields via a 
simple and beautiful argument. I t  is easy to see that  the N-S positivity 
condition, the Markov property, and the Nelson reflection axiom imply 0-S 
positivity. Presumably there is a distinguished class of theories which 
possess N-S positivity and with that the probabilistic and statistical 
mechanics structures we study in this paper. This class probably includes 
all scalar Bose Lagrangian field theories. 

11.1. The Free Markov Field. Our construction of the free Markov 
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field in this subsection uses the abstract theory of Fock spaces [7] and the 
I'notation of Segal [go]. For a more complete discussion of this procedure 
of "second quantization" see [106]. Thus given a complex Hilbert space X 
(the "one-particle space"), one defines the Bose Fock space 3 = r ( X )  over 
X as follows: Let 3, = S(Xg"), the n-fold symmetric tensor product of 
X ,  and let I'(X) = C,",,@3,, the symmetric tensor algebra over X. Here 
Yo= C and the "vacuum" vector $ = (1, 0, 0, a ) .  For any operator A on 
X ,  the operators r (A) and dI'(A) are defined by r(A) [ 3, = A @ ... @ A 
anddI'(A) r 3, = A @ I @ . . .  @ I +  I @ A @ . . . @ I +  ... + I @ . . .  @A.  
More generally, if A: XI-X, one can define r(A): r (X , )  -I'(X,) in a 
similar way. 

To form the Q-space associated with X ,  one requires a distinguished 
complex conjugation C acting in X. This picks out a distinguished real 
subspace X, = {f e X / Cf = f }of X and an abelian algebra of unbounded 
field operators {Q(f )  I f  e X,} on I'(X). The fields g(f )  are defined in the 
standard way as follows: For f e X, the creation operator A*(f): 3,--+3,+, 
is given by 

where +,e 3,. The destruction operator A(f) is the adjoint of A*(f) and 
the field is defined by 

Let 9be the von Neumann algebra generated by {ei"f' I f  e X,). The 
basic Q-space result is that  3= r ( X )  is unitarily equivalent to L2(Q,dp) 
where 

(i) p is a probability measure; 
(ii) a, is associated to the function 1in LYQ, dp); 
(iii) 9goes into LW(Q,dp) with its natural action on L2(Q,dp). 

Q-space may be realized in several different ways: 
(1) as the underlying probability space of the "Gaussian stochastic 

process indexed by X," [24]; 
(2) as the underlying probability space of a Gaussian process over the 

dual of some distinguished subspace of X such as S(Rn)in case X is a Sobolev 
space on R" [24], [34]; 

(3) as the spectrum of the von Neumann algebra with the measure 
associated to the functional p(F(+(f,), . a ,  +(fit)))= (a,, F(g(f,), ...)a,) 
[291, [go], [1061; 

(4) as the infinite product Q=@6,(R, x-'12e-"idxi)in case X is separable. 
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If {gi}is a distinguished orthonormal basis in X ,  then ~(g,)"' . +(gk)"kQ,is 
represented by the function x:l x;k [go], [78]. 

What is critical is not the points of Q-space (which are not the same in 
all of the above realizations) but rather the measure and the measure 
algebra of measurable sets modulo sets of measure zero. In fact, (i)-(iii) 
uniquely determine the measure algebra and the measure p. Much of the 
theory can be devoloped by endowing 'X with the two norms, 1 1  A / I m  = 

operator norm of A, and 1 1  A 1 1 ,  = 1 1  AQ, 115, the norm of the vector A$ in 
3. One then obtains LP-norms by the Calder6n-Lions theory of abstract 
interpolation [78, 3 IX.41 or by the explicit formula 1 1  A 1 1 ,  = 1 1  1 A lpI2 llilp. 

To describe the free Euclidean Markov theory and its relation to the 
free relativistic HamiItonian theory we first construct suitable one-particle 
spaces and then second quantize. The final result will be an imbedding 
of the relativistic Fock space 3 as the "time" zero subspace of the larger 
Euclidean Fock space 91;the fields on 91may be regarded as having been 
analytically continued to imaginary time. The basis of the construction is 
the formula which relates Feynman perturbation theory and "old-fashioned" 
perturbation theory: For a > 0, 

The one-particle space F r F,,, for a free relativistic Bose field of mass 
m > 0 in s-space dimensions is defined as the (Sobolev) space of all distribu-
tions f on R-ith finite norm 

Throughout this paper we normalize the Fourier tranform from L2(R",d"x) 
to L2(R",d"x) by 

(11.5) f(k) = (2~)-~1 'cik.'f(x)dnx .I 
The one-particle space N = N,,, for the free Euclidean Markov field of 
mass m > 0 in d = s + 1 "space" dimensions is the Sobolev space of all 
distributions g on Rd with finite norm 

The distinguished complex conjugation on F and N is defined pointwise in -
x-space, i.e., Cf (x) = f (x), and the inner products are defined in the obvious 
way. 
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A comment is in order on our choice of inner product in N, which is 
given by 

i f f  and g are real. Here 

defines the Green's function for (-A +my, normalized so that (-A, + m2) 
x S(x - y) = 8(x - y). Because the abstract field g over a one-particle 
space X satisfies 

the free Markov field g(x), as constructed below, will satisfy 

The expression (11.8) is of course what results from continuing the time-
ordered vacuum expectation value of a product of two free relativistic 
fields to imaginary time, and this is what dictates our choice of inner 
product. 

The connection between F and N is provided by the formula (11.3). 
Thus, i f f  E Fwe define the distribution on Rd by 

where we have singled out the last coordinate of a point (x, t) in Rd. In 
momentum space 

and we state: 

PROPOSITION11.1. 
(i) j, i s  a n  isometry from F,,, to N,,,,,. 
(ii) The range F'"'of j, consists precisely of those elements of N with 

support i n  the hyperplane {(x,, . a ,  x,) I xd = o}. 
(iii) j $ j 7= e-la-'l' where ,!A is  the pseudo-diferential operator ,!A = 

(-A + m2)1/2. 

Proof. (i) and (iii) follow immediately from (11.3). As for (ii) we need 
only show that any element of N with support in the hyperplane x, = o 
has the form (11.9). But any distribution supported on the hyperplane has 
the form C:zOf r ( ~ ) 8 ( r ) ( ~ d- o) and from (11.6) we see that i t  is necessary 
that n = 0 in order that this distribution belong to N. 
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More generally we can naturally imbed F into the distributions in N 
with support on any given hyperplane of dimension s.  There is a useful 
way of rewriting (iii) that requires some additional notation: 

Def in i t ions .  Let e, = j0j: be the projection in Nd onto F'"'. More 
generally, if A is a closed region in Rd, let e, denote the projection in N 
onto the family of elements with support in A. 

Given an element ,8 of the (improper) Euclidean group E ( d ) ,  we denote 
the map g w gB(-)= g(p-'.) by U P .  In particular u ( z )represents translation 
by .r units in the last coordinate and r ,  represents reflection in the hyper- 
plane xd = 0. 

Then (ii) and (iii) of Proposition 11.1imply: 

PROPOSITION11.2. 

(i) r ,  leaves F'O)poin twise  i n v a r i a n t .  

(ii) 

(11.11) 
jo

Henceforth, we will usually identify F'O)and F by F = F'O' although,
j,*

for emphasis, we will sometimes reinsert factors of j, and j:. Thus (11.11) 
becomes e,u(a)e, = e-"Ip; also j, and e, FLO)/ are identified. 

The final property of the one-particle space that  we shall need is a 
precursor of Nelson's critical Markov property: 

PROPOSITION11.3. 

(i) I f  A a n d  B a r e  closed sets in Rd, t h e n  

In p a r t i c u l a r ,  i f  Ainta n d  B a r e  d i s j o i n t ,  t h e n  

(ii) O n l y  the  par t  of  8A "nearest" t o  B en ters  in (11.13) in the sense 
t h a t  i f  there  i s  a closed set A, such t h a t  8Al cA cA, w i t h  A, n B = 0, 
t h e n  

(11.14) eAeB= e,,,eB . 
(iii) L e t  A, B, a n d  C be closed sets in Rd such t h a t  B "separates" A 

a n d  C in the sense t h a t  there  i s  a closed set B, w i t h  A cB,,C n B, = 0,a n d  
8Bl cB c  B,. 
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FIGURE11.1 

T h e n  

(11.15) 	 eAeBec= eAe,. 

(iv) 	L e t  A, B, and  C be closed sets in Rdw i t h  dA cB and  C n (A\B)=0. 

FIGURE11.2 

T h e n  

(11.16) 	 eansec = e ~ e c. 
Proo f .  
(i) For any f e N i t  is sufficient to show that 

(11.17) supp eAeB f cJA U (A n B) 


for then e,A,,A,B,eAeB= eAeBand (11.12) follows since 


(11.18) e,eA = eAe, = e ,  if C c  A . 

Now supp eAeBf is clearly contained in A so that  (11.17) is equivalent to 

proving that  I eAeBf (x)g(x)dx=0 for all g E C," with supp g cA\(dAfU 


(An B)) = (A\B)int. But 
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where e,(-A + m2)g= (-A + m2)g since (-A + m2) is a local operator 
(i.e., differential rather than pseudo-differential). 

(ii) By (11.18) and (II.13), e,e, = eAe,,eB= e,e,,,e, = e,,,e,. 
(iii) By part (ii), e,e, = e,,,e,. Hence by (11.13) and (II.18), e,e,e, = 

e,e,,e, = e,e,. 

(iv) By (11.18) and (II.12), e,,,e, = e,,,eAe, = eAnBeaAJcAnoec.But by 
hypothesis, aA U (A n C) cA n B so that  e,,,e, = e,,,J ,,n,,e, = e,e,, again 
by (11.12). 

Remark. One important case of (II.15), namely 

if r < s < t also follows directly from part (iii) of Proposition 11.1. 

Notation. We now second quantize and let Y be the Fock space r ( F )  
and % the Fock space I'(N). We introduce the notation J, = r(j,), E, = 

r e ) ,  E = r e ) ,  Ug = r(ug), U(Z)= ~(u (T) ) ,Rt = I'(rt), F" = I'(F(")), 
and Ho= dI'(,u), the free Hamiltonian on Y. We denote the vacuum in Y 
by Qo,the vacuum in % by a,,and the fields (11.2) by $(f). We use the 
symbol $(f) both on Y (with f e F,) and on % (with f e N,,,), but when con-
fusion may arise we write #,(f) for the fields on y. The field $ on % is 
called the (d-dimension) free Euclidean Markov field of mass m. Then we 
have: 

THEOREM11.4 (Nelson). 
(i) J, is a n  isometric imbedding of .F into 9.The range of Jois the 

subspace Y'"' of % concentrated a t  x, = a. 

(ii) JOJ2= E,; Jo= U(a)J,; 
Jr* Jo = e-lr-olH~;EoU(z)Eo= Joe-l'IHoJ,* . 

(iii) R, leaves Yo'pointwise invariant.  
(iv) If A and B are  closed sets i n  Rd with Aintn B = 0,and if 4 E 

Ran EB,then 

(11.19) EA+= E,,+ . 
(v) If B separates A and  C i n  the sense of Fig. 11.1, then. 

(vi) If A, B, and  C are  sets a s  i n  Fig. 11.2, then 

Proof. A direct transcription of the first three propositions of this 
section. • 
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In terms of the Q-space for 9,Q E QLV, and the associated free 
Gaussian measure dpo on Q, (11.19) has a natural probabilistic interpreta- 
tion: By construction of Q-space, the measure algebra 2,d (or 2) on Q is 
the smallest a-algebra for which all the $(f) are measurable functions. 
Given a closed set  A c Rd we define 2, c 2 to be the smallest a-algebra for 
which the functions {$(f )  I suppf c A) are measurable. Consider a function 
u, measurable with respect to  2, which is positive or absolutely integrable. 
The conditional expectation E[u  I 2,] is the unique 2,-measurable function 
such that  

for all positive 2,-measurable v. The existence of such a function E[u j 2,] 
follows from the Radon-Nikodym Theorem [16]. 

If v e L2(Q, dpo) then a simple argument shows that v is 2,-measurable 
if and only if v e Ran E n .  It follows from (11.20) that  

Since EAis positivity preserving and takes 1into 1i t  extends by continuity 
to L1 and is equal to  the conditional expectation there. Henceforth we 
write EAf for the conditional expectation. 

COROLLARY If A and B are  closed sets i n  Rd 11.5 (Markov Property). 
with Aintn B = 0 and if u is measurable with respect to 2,, then 

Remark. In one dimension with A = (-m, 01 and B = [0, m) this 
property translates into the familiar Markov relation that  for questions 
about the future (u 2,-measurable), knowledge of the present (EaAu) is as 
good as knowledge of the entire past (EAu). 

For later use we note the following elementary properties of the 
imbedding operator J,, considered as a map from Lp(QF) to Lp(QLV), where 
Q, is the relativistic and Q, the Euclidean Q-space: 

LEMMA11.6. Consider the maps J,:Lp(QF)_* Lp(Q,) and J:: Lp(Q,) -+ 

Lp(Q,) where 15 p 5 m .  

(i) J, and J,* a re  positivity-preserving, take 1 into 1, and are  con- 
tractions on each Lp. 

(ii) J, and J,* a re  strongly continuous i n  a on each Lp, p < 00. 

Proof. 
(i) Since J, is the biquantization FG,) with j, a contraction from F to 
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N, these facts may be regarded as a consequence of Theorem 1of Nelson 

[681. 
(ii) Since J, = U(o)J, the continuity of J, and J,* follows from that of 

Vo). 
This completes our review of Nelson's construction of the free Markov 

field. In concluding, we answer the natural question concerning the con- 
nection between the free Markov field and the theory of unitary dilations 
of Foias-Sz.-Nagy [112]. Clearly the group U(o) is a dilation of the semi- 
group ectH0 on F. It is however not the minimal dilation. Rather, u(o) is 
the minimal dilation of e+, so that  U(o) is the second quantization of the 
minimal dilation. 

11.2. Nelson's Axioms for Euclidean Markov Fields. In this section 
we discuss Nelson's axiom for a Euclidean Markov field in d dimensions 

[67]. These axioms were essentially verified for the free field in the 
previous section and, as in the case of the Wightman axioms for re-
lativistic fields, the experience with the free field provides a good deal of 
insight into how to formulate the general axioms: 

Axiom A. There is a probability measure space (Q, 2, p) and a re-
presentation of the full Euclidean group E(d) by measure-preserving 
automorphisms TI of the measure algebra 2. Given u, v in L", ,El -+1 U(VOTp)dp is a measurable function on E(d). 

Axiom B. The translation subgroup of E(d) acts ergodically, i.e., the 
only translation invariant measurable functions are constants. 

Axiom C. For each f E Nd,, (the Sobolev space defined in (II.6)), there 
is a random variable ( = measurable function) $(f )  on (Q, 2). $(f )  is linear 
in f and real-valued if f is real-valued. If f, --+f in N,,,, then $(f,) -+ $(f )  
in measure. 

Axiom D. (Markov Property) For any closed region A cRd let  2, c 2 
be the smallest o-algebra with respect to which the random variables 
{#(f) / suppf cA) are measurable. Let A, B be closed sets in Rd such that  
Aintn B = 0.If u E L1(Q, dp) is 2,-measurable, then 

Axiom E. $(f)0TI = #(fop). 

To state the last axiom we require a theorem whose proof we defer: 

THEOREM11.7 (Nelson [67]). Let R q e  the hyperplane xd = 0 i n  
Rd (d = s + I), and let U(z) be the unitaries on L2(Q, 2, dp) induced by 
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translation by .r i n  the x, coordinate. Let X be the Hilbert space of 
functions i n  L2(Q,2, dp) which a re  2,8-measurable. Let E, denote the 
projection from L2  to 3C. Then there is a positive self-adjoint operator 
H o n  3C with 

EoU(.r)Eo= e-IrlH . 
Axiom F. Let 6, be the distribution 6(2) on R. There are fixed k and 

1so that for each f E S(R9, ( H  + l)-k I $(f @ 6,) 1 ( H  + I)-' is bounded. We 
write $(f O 6 0 )  = $o(f 1. 

Remarks 1. A theory satisfying Axioms A-F is called a (ergodic) 
Euclidean Markov field theory. A theory satisfying Axioms C and D is 
called a Markov field theory (more precisely, a Markov field over N,,,). 

2. The expectation of products of fields $(fl) . $(f,)dp, f jE S(Rd),S 
can be proved to exist if the f j  have disjoint support. It can be shown 
[65], [log] that there are functions S(xl, ..., x,) real analytic on 
Rnd\{(5,,...,5,) 1 xi = xj  some i # j) such that 

d f l )  .. $(f,)dp = 1S(x,, . , x.)f (x,) ..f (x,)dx, .. dx, . 
These are called the Schwinger functions. 

3. A rather different set of axioms in terms of the Euclidean Schwinger 
functions has recently been proposed by Osterwalder and Schrader [74] 
(see the note a t  the beginning of 5 11). 

4. It is interesting to compare the Nelson axioms with the Wightman 
axioms [log]. Axiom 0 of Wightman is the analogue of Axioms A, B, D; 
we discuss the analogy between the spectral condition and the Markov 
property below. Axiom I of Wightman corresponds to Axioms C and F, 
and Axiom I1 to Axiom E. Axiom I11 (Local Commutativity) is built into 
the general commutative framework of Markov theories. 

5. The Markov property is closely connected with the spectral condi-
tion for Wightman theories. First, the Markov property is critical for the 
proof of Theorem 11.7 which entails positivity of the energy. On a deeper 
level, it is the spectral condition which allows one to continue the Wight-
man functions from the Minkowski to the Euclidean region and it is the 
Markov property which allows one to continue in the other direction. 
There is one important distinction between the Markov and spectral 
properties. The spectral condition is a linear relation on individual Wight-
man functions, while the Markov property is a non-linear condition on the 
whole family of Schwinger functions, not readily expressed in terms of 
the Schwinger function. 
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6. As in the Wightman theory, one usually adds a cyclicity assump-
tion which here takes the form: 2 is the smallest a-algebra for which each 
$(f) is measurable. This can always be arranged by making 2 smaller, if 
necessary. 

The crucial point about Nelson's axioms is that they allow one to 
continue analytically to get  a Wightman field theory on the Hilbert space 
X = EoL"Q, dp): 

THEOREM11.8 (Nelson's Reconstruction Theorem [67]). Given a 
Euclidean Field Theory obeying Axioms A-F, then 

(i) For any f E S(Rd) 

defined a s  a quadratic form on Cw(H)cX, is  the form of a n  operator on 
Cw(H). 

(ii) Cw(H)is  left invariant  by @(f),so that, i n  particular, the vacuum 
for H ,  Q,, i s  contained i n  D(@(f,) .@(fa))for any f,, ...,f, E S(Rd). 

(iii) The distributions f,, . .,f, +(Q,,@(f,) .@(f,)Qo)a re  the Wight-
man distributions of a theory obeying the Wightman arcioms (0, I, 11, 111) 
of [log]. 

(iv) The analytic continuations of the Wightman functions to the 
Euclidean region of the forward tube a re  the Schwinger functions. 

Theorems 11.7 and 11.8 are proved in [67] (except for (i) and (ii) of 
Theorem 11.8 which depend only on Axiom F and are proved in [66]). 
However, since we shall use Theorem 11.7, let  us sketch its proof: 

Proof of Theorem 11.7. By Axiom A, U(a) is a weakly continuous 
unitary group and is thus strongly continuous. Let Po= EoU(a)Eo.Then 
Pois strongly continuous and P,* = P-, since U(a) is unitary. Clearly 
1 1  Po1 1  = 1. Next we claim that U,, the unitary associated with reflection 
in the hyperplane Rs, leaves X pointwise invariant. For by Proposition 
II.2(i), R,f = f for all f E Nd with suppf E R". Thus U,$(f )  U;' = #(f) for 
any such f. Since these $(f) generate the algebra 2,,, U,x,U;' = Xa for 
any A e 2,,. Thus Utvl = 71 for any 71e X ,  or, equivalently, U,E, = En. 
Since U;'U(a) U, = U(-a) we see that 

so that  Pois self-adjoint. Finally, let a ,  z> 0. Then for any u, v E X ,  
(U(- o)u, E0U(z)v)= (U(- a)u, U(.r)v) by the Markov property (Theorem 
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11.4(~)).Thus POP,= Po+,.I t  follows that Po= e-loHfor some self-adjoint 
operator H I 0. 

One approach to building up Markov field theories is to perturb a given 
Markov field, like the free Markov field, in a suitable way so that  the 
Markov property is preserved. Following Nelson [66]  we define: 

Defirzitio~z.Let (4, Q,X,p)be a Markov field theory. A multiplicative 
functional on (Q, 2, p) is a random variable G such that for every finite 
open cover {Aj};=,of Rd there exist G,; ..,G, satisfying: 

(i) Gj is ZAj-measurable; 
(ii) Gj > 0 a.e. and Gi e L1(Q,dp) for all j ;  
(iii) G = Gl. 

If Gdp = 1we say that G is normalized. 

THEOREM11.9 (announced in Nelson [ 6 6 ] ) .  If G i s  a normalized mul-
tiplicative functional, define the measure du = Gdp. Then ($, Q, 2, u) is a 
Markov field. 

In the case where the original theory is the free theory of 5 11.1 
( p  = p,), a proof of Theorem 11.9 can be based on Theorem II.4(vi). 
Formally, a multiplicative functional for the free field should be of the 
form 

G = exp (- [ ~ , ( x ) d ~ x )  

where H,(x) is some local density, for instance, a Wick polynomial in the 
free field. However, i t  is not possible to take HI(x) translation invariant 
because, by ergodicity, the only translation invariant multiplicative func-
tional is a constant. (This is the Euclidean version of Haag's Theorem.) 
At  this point we leave the general theory and turn to the construction of 
the cutoff P($), Markov theory where H,(x) is a spatially cutoff polynomial 
in the field. 

11.3. The Spatially Cutof P(Q), Markov Theory. The natural choice 
for the density HI(x) is a polynomial in the field. Throughout this paper, 
the polynomials P ( X )  that  we consider will be semibounded, even if we 
neglect to say so. Moreover, to avoid ultraviolet renormalization ques-
tions, we shall restrict ourselves to d = s + 1= 2 dimensions when 
dealing with the interacting theory. 

Definition. Let a*(k) be the Euclidean creation operator-valued dis-
tribution defined by 
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where A* is defined in ( I I . l ) ,  p = (- h + m2)'I2,and fVis the inverse Fourier 
transform of f .  

In terms of a*@) and its adjoint distribution a(k ) the Euclidean field 
(11.2) is given by the expression 

where p(k) = (k' + m2)"<We find i t  convenient to use the operators a ( f )  
and a*(g)which for real i ( x )and $(x) satisfy the commutation relations 

compared to the A*'s which satisfy 

[A ( f1, A*(s)l= ( f ,  g)'v 

Wick powers are defined by 

as a quadratic form on finite particle vectors with smooth components. 
As a direct analogue of the results for Wick polynomials over the one-

dimensional Fock space F = r(F,), we have the following theorem for the 
Q-space functions 

and e - r ( g ~  , where U(g)= x:"a,.U(')(g)is the Q-space function generated 

by the polynomial P ( X )  = C:: a T X T ,a,, > 0: 

THEOREM11.10. Assume that for some E > 0,  g belongs to the Sobolev 
space X-,+,(R2);i.e., 

(i) U("j(g)i s  a function in n,,, Lp(Q,dpo),and i f  p 1 2, 

(11.23) 1 1  u'" '(g>1 1 ,  S ( P  - 1)"'21 1  Ucn l (g )1 1 ,  . 
(ii) I f  g has support in some set A c R2which i s  either open or closed, 

then U("'(g)i s  Z,-measurable. 
(iii) If in addition g E L'(R2)and g 2 0 ,  then 
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(iv) For fixed m and g a s  i n  (iii), F(a,, . -,a,,) = e-"O) i s  analytic on 
C2;"+'= {zE CZm+'1 Re zzm> 0) i n  each L Pwith p < 00. 

Remarks 1. We shall generally identify U(g) with g(x):P $(x) :d2x; 
i.e., we omit the o,. 

J 
2. Since this theorem is closely related to the results for Wick poly-

nomials on the one-dimensional Fock space 3- (see, for instance 9 2 of [32] 
or 9 3 of [106]), we shall be content with a sketch of the proof. Roughly 
speaking, the estimates are the same because the extra dimension is com-
pensated for by the extra power of k in the denominator, i.e., dlk/p(k) -
d2k/p(k)2. 

3. The conditions on g are not optimal. Actually condition (11.22) is 
just a shade off the exact condition which involves logarithms (cf. Lemma 
A.l of [43]). Note tha t  (11.22) is satisfied if, for instance, g E Lq(R2)for 
1<q 5 2 [43], or if g has the form g(xl, x,) = f(xl)6(x2- a) where f E X-,(R1) 
with h < 112. 

The regularity condition in (iii), i.e., g E X-,+, nL1, is far  from optimal. 
In 9 I11 we shall see that  

1 1  e-u'glI l P  s exp (p-11 a.(pg(x))dzx) 

where a,@) is the energy per unit volume for the hP($), Hamiltonian 
theory [43]. Thus the bounds a,(h) S clh2and a,(h) S c,X1+Qf [43] imply 
that  (iii) holds under the weaker hypotheses g E L2f L1+,and g 2 0 (which 
are still not optimal). 

Proof. (i), (ii). In the standard way we introduce an ultraviolet 

cutoff field ~ ~ ( x )= h(x - y)$(y)dy with h E C,"(R". Then Wick powersS 
can be expressed in terms of ordinary powers and ULn1(g)= 1g(x):$;(x): dzxo, 

is seen to  be a function that  is X,,-measurable; here Ah = {x + y I x E A, 
y E supp h). By the arithmetic-geometric mean inequality and a number 
estimate, one can show that (11.22) implies that,  as h-6, ULn)(g)converges 
in L2 to UC")(g)and that  UC")(g)E L2. As in [106], the hypercontractivity 
of e-Nt,and the fact that  U'")(g)represents an n-particle vector in En imply 
that U'")(g)E np<,Lp. The actual L p  bound (11.23) uses Nelson's "best 
hypercontractive bound" [68] (see Theorem 111.1below). By shrinking the 
support of g a little (i.e., by approximating g with g, where supp g, c 
(supp g)int)we can deduce that  U'")(g) is XA-measurable. 
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(iii) That e-U(g) E L P  is just Nelson's classic result [63], [32] that ,  while 
U(g) may be unbounded below, i t  is large negative on sets of very small 
measure. The basic ingredients in the proof are  the estimate (p 2 2) 

and the fact tha t  the infinite Wick constant i d2k/(k2+ m2) is only 
logarithmically divergent. 

(iv) By (i) and (iii), U ( ~ ) E  n,,, L p  and for each p < m, F(a)  is 
uniformly LP-bounded for a in a compact subset of Ctm+'. The stated 
analyticity thus follows from Hijlder's inequality and the identity 

It now follows easily that: 

COROLLARY11.11. If P is  a semibounded polynomial and if g E 

L' n L'+'(R2), g 2 0, then exp (- 1g(x):P($(x)): d2x) i s  a multiplicative 
functional over the free Markov field. 

COROLLARY Let P be a semibounded polynomial and let g, be a 11.12. 
sequence of non-negative functions i n  L' nL1+'(R" such that sup 1 1  g, 11, < w 

and g, g i n  L1+"R"). Then i n  each Lp(Q, dpO) (p < m),-+ 

exp (- 1g,(x):~(p(x)): d'x) --+ (- 1~(x):P(@(x)): -~ X P  d2x) 

To prove Corollary 11.12 we have used 

We have thus justified: 

Definitions. Let P be a semibounded polynomial and g a non-negative 
function in L' n L1+'(R". The cutof P(#), Markov field theory with cutoff 
g is the theory whose field is the free Markov field but with measure 

dv, = e-"(gldPo 
e-G(g)dPo 

where U(g) = \ g(x):P(#(x)): d2xo,. 
The distributions 
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are called the Schwinger functions for the cutoff P(qi),Markov theory. 
Of course dv, is not Euclidean invariant but one can attempt to con- 

struct Euclidean invariant theories by taking g -1 and proving that  dv, con- 
verges to a new measure. In fact, one shows (see § V.4) that  the moments 
of these measures (i.e., the Schwinger functions) converge as g -1. 

We conclude this subsection by giving purely Markov proofs of the 
basic results for the spatially cutoff P(Q), Hamiltonian; namely, H(g) is 
semibounded and essentially self-adjoint on D(H,) n D(H,(g)), and E(g) = 

inf o(H(g)) is a simple eigenvalue. 
The Markov proof of essential self-adjointness retains the general 

features of the original Glimm-Jaffe-Rosen proofs [29], [80] and of the 
hypercontractive proofs [94], [I061 but is more streamlined for the follow- 
ing reasons. As we shall describe in the next section, Euclidean Q-space, 
Q,, can be viewed as a path space over the relativistic Q-space, Q,. Thus 
the Markov proof is like Rosen's proof except that there is no need to put 
in box and ultraviolet cutoffs in order to reduce to a system with a finite 
number of degrees of freedom for which ordinary path integrals can be 
constructed. Moreover, the argument to obtain the Hamiltonian in the 
proof of Theorem 11.7 eliminates the Q-space cutoffs and the Trotter 
product arguments of the hypercontractive proof. 

First we make more explicit the identification between the fields 4, 
on 3and the "constant time" fields on 9. Recall that we denote by Em the 
von Neumann algebra over 9generated by {ei"f) 1 f E N, f real}. We 
write Em, for the von Neumann algebra over 3generated by {eibF'f) I f  E F, 
f real}, and 9'0)for the von Neumann algebra over 9generated by 
{ei"jOf)I f E F ,  f real}. We emphasize that VE %, means that  V is bounded. 
The map QF(f) t+ ~ ( j ,  -f )  extends to a *-isomorphism a,: %, 

LEMMA11.13. Let f E Fbe real and let VE %,. 

(9 

(II.26a) Q d f )= J,"QO'of )Jo 

and 

(II.26b) V = J,*a,( V) J,,. 
(ii) Let A = R x [a, b] be a "time-slice" i n  Rf If o E [a, b], 

i.e., a,(V)Ran EAc Ran E A .  

(iii) E,,a,( V) = a,( V)E, = EOa,( V)E, = J,VJ,*. 



146 F. GUERRA, L. ROSEN, AND B. SIMON 

Proof. 
(i) It is clear from the definition (11.1) that for any single-particle 

operator j ,  J?(j)A*(f )  = A*(jf ) r c ) .  In particular, 

(11.28) JoA$(f) = A*(j,f )JO. 
Recalling that J;*J,= I (JoJ,* = E,), we obtain, upon operating on (11.28) 
with J,*and taking adjoints, A$(f) = J$Avof)J ,  where A" A or A*. 
From the definition (11.2) we deduce the desired relation for the fields and, 
by extension, the relation (II.26b). Since A" $ are unbounded the above 
argument requires some care with domains. All operator formulae hold 
when applied to finite particle vectors. Since these are analytic vectors 
for the fields, the relation (II.26a) extends to  exponentials ei+and thus 
to m. 

(ii) Ran E A  is generated by vectors in 97-of the form g, @, ... @, g, 
where g, E N with supp gi c A. If supp g c A, it is obvious that both A(g) 
and A*(g) take the span of such vectors into themselves, and this obser-
vation yields (11.27). 

(iii) This result follows from applying J, and J,* on the left and right 
in (II.26b) and using (11.27). 

Remarks 1. We usually write $(f, a )  for g(j,f )  = $(f @ 6,). 
2. The relation $,( f )  = J$$(f, a)J, clearly extends to Wick polynomials 

as well, i.e., 

Here is a sketch of the Markov proofs of the basic results cited above 
for the Hamiltonian 

on 3,where g E L1n L1+"R): 

Step 1. For any finite interval Ic R, let 

FI = exp (- S I  ds 1 dxg(r):~(g(x,8)):) . 
For t > 0 define the operator U, on 3- by 

(11.30) Ut = J 1 " F ( o , t , J o  . 
By Lemma II.G(i), Theorem II.lO(iii), and Holder's inequality, we see that 
U, is a bounded map from Lp(Q,) to L2(Qp)for any p > 2. In fact, by 
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Corollary 111.8, Ut is bounded from L 9 o  L 2  and even from L V o  LPt where 
p, > 2 depends on t > 0. At any rate {U,] is a family of bounded operators 
on Y. 

Step 2. By translation invariance of the free Markov field, Ut = 

Jt:,~,,t+,lJ,; therefore 

ut us = J,isF(s,t+sjEsF(o,siJOJo= Ut+, 

because the projection E,can be dropped by the Markov property (Theorem 
11.4(~)). By reflection invariance (Theorem II.4(iii)) 

by translation invariance. Finally, by Corollary 11.12, Lemma 11.6, and 
Hijlder's inequality, we see that  Ut is L 2  strongly continuous in t on 
vectors in LP, p > 2, and therefore, by continuity, on all of L<  Sum-
marizing, we have established that  U, is a strongly continuous, self-adjoint 
semigroup. Consequently, there is a semibounded self-adjoint operator H 
on Y such that Ut = e-tH. 

Step 3. To complete the proof of essential self-adjointness of H(g), 
we demonstrate that  there is a core 9for H, contained in D(Ho) nD(HI(g)), 
on which H = H(g) = Ho+ HI(g). First, note that for any function 
a(t) E Lm(R; Lm(Q)), 

as can be checked by differentiating with respect to t or by expanding the 
exponential. It follows by a limiting argument that 

~ ( 0 , t I- 1= -1: ( 5  Q(x):P($(x, s ) ) : d x ) ~ ~ ~ , . ~ d s  , 

and thus from (11. 30) that 

U, - = .J?Jo -5: J?(\ g(x):P($(x, s ) ) : d x ) ~ , ~ , . , ~ ~ d s  

By Theorem II.lO(ii) and the Markov property we are entitled to insert 
projections E, on either side of I g: P($): dx to conclude, by (II.29), that 

U, - J 2 J o =-

which, by Theorem II.4(ii), is just Duhamel's formula: 

(11.31) e-tH - e - t H ~  = - 5: e-(t-slHOB ,(g)e-"ds . 
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A priori, both sides of (11.31) are equal in L P  (p < 2) when applied to a 
function in L2, but, again using hypercontractivity, we obtain equality as 
operators on 3. 

Now we appeal to an argument of Semenov [95]: Let 9= e-H[L"(Q,)]. 
It is easy to see ([106, Lemma 2.151) that 9is a core for H a n d  by Hijlder's 
inequality that 9c n,,, L PcD(HI(g)). For + E 9 ,  define 

f(s, t) is strongly continuous on {(s, t) I 0 5 s S t) with f(0, 0) = HI(g)+. It 
follows that  as t -0, 

But since + E D(H), t-l(e-tH - l)Q --H+. Therefore by (IL.31), 

so that + E D(H,) and Ho+= (H- HI(g))+. Thus 

H 1 9cH(g) 1 D(Ho)n D(HI(g>) 

and the proof is complete. By following [loo] one can further prove that 
H(g) is essentially self-adjoint on Cm(H0). 

Step 4. As we indicated above, the semigroup e-tH(g) is hypercontrac- 
tive; moreover by simple Markov techniques, Simon [I021 has shown that 
e-tH(glis ergodic, or, equivalently positivity improving. The hyper-
contractivity and positivity preserving properties of e-tjf(gl imply the 
existence of an eigenvalue a t  E(g) = inf a(H(g)) by an argument of Gross 
[40]. I t  also follows by an infinite dimensional generalization of the Perron- 
Frobenius Theorem [30], [40] that Egis simple. Moreover, the associated 
eigenvector Q, satisfies (Q,, Q,) # 0. 

We have shown a t  the same time the following: 

THEOREM11.14 (Feynman-Kac-Nelson Formula). Under the above 
assumptions on P and g, we have any vectors u, v i n  3 and t > 0: 

(11.32) (u, e-KHoiH~'glk) I (J ) exp (- 1: ds 1 dxg(x):~(g(x, s)):)hvdpo .= 7 

As an immediate corollary of this formula, the fact that J, takes 52, 
into o,,and the Euclidean invariance of the free Markov field, we obtain 
the symmetry [66] which is the starting point of [41], [42], [43]: 

112
THEOREM11.15 (Nelson's Symmetry). Let H, = H, + 5 :P(p(z)): dx. 

-112 

Then (O,,e-tHIQ,) is a symmetric function of t and I .  
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This completes our discussion of the arrow that points from the cutoff 
P($), Markov theory to the cutoff P($), Hamiltonian theory in Fig. 1.1. 
In the next section we consider the reverse direction, obtaining a second 
proof of Theorem 11.14. 

11.4. The Feynman-Kac-Nelson Formula: A Second Proof. Formula 
(11.32) has much the structure of the usual Feynman-Kac formula [51]: 

The passage from points q to paths q(s) in (11.33) corresponds to the passage 
from qi,(x) to ~ ( x ,s) in (11. 32); and the integration dQ over paths corresponds 
to the integration dp, over Euclidean Q-space. Thus the Markov theory 
looks like path space over the Hamiltonian theory. This suggests that there 
should be an alternate proof of Theorem 11.14 starting with the Fock space 
Hamiltonian and using the Trotter product formula [62]. In fact, we 
prove a more general result that  involves the following thicket of 
notation: 

For i = 0,1, ..-,n let G, be a polynomially bounded function from 
Rmi--t R, and let  fJ1),. -,flmi)E F be real. Denote G,(p,(f?)), . -,qjF(flmi))) 
by Gi(OF) and Gi(qi(fil),s), .-.,qi(f,!"il, s)) by G,(qi, s). For i = 1, .- - ,n,  
define the Hamiltonian Hi = Ho-t- Vi, Vi = g,(x):P,($,(x)): dx, where Pi5 
is a semibounded polynomial and the cutoff gi E L1n L1+'(R). Then: 

THEOREM11.16 (General Feynman-Kac-Nelson Formula). Let u, v E 

Lp(QF)for some p > 2. For  t, L 0, . .., t, 2 0 

(u, G,(qi,)e-t~H~Gn-l(pF). .. e-tlHIGo(~,)v) 
(11.34) 

= 5 ~P~(J..U)DLoG,(r, S , ) ~ - ~ J ~ V  
si  

where s. = EL,ti, so= 0, and U = E:=,1 ds \ dxg,(x):P,(p(x, s)):. 
#i-1 

Proof. By a limiting argument, i t  is sufficient to prove (11.34) in the 
case where the Vi7sand G,'s are bounded, i.e., V,, ..-,V,, Go, . -,G, E %,. 
We denote the multiplication operator a,(V,) in %(")  by V,'") (see Lemma 
11.13). Then we prove 

The integrals ds V,'" make sense since V,!" is continuous in measure (seeS 
Lemma 11.6). So as  not to obscure a simple proof with notational compli-
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cations, we content ourselves with the case n = 1; i. e., we show 

(11.35) (u, Gle-t(Ho+v)Gov)= 1d p o ~ ) ~ ~ t ~ e - ~ ~ v ( 8 ) d 8 ~ i , 0 ) ~ o v. 
The relation (11.35) follows from the equation (6 = tlm) 

(11.36) (u, Gl(e-b"e-6H~)mGov)= 1d p o m ) G l t )exp (-C:=l6V(i")GP)Jov, 

for the left side of (11.36) is the Trotter product approximation to the left  
side of (II.35), and the right side of (11.36) clearly converges to the right 
side of (11.35) as m -m. 

To prove (11.36) we write the ithfactor e-" (reading from right to 
left) as J ~ ; ~ - ~ ~ ~ ~ " J ~ ,by Lemma II.l3(i); and we write the ithfactor e-"0 as 
J;J(,-,,, by Theorem II.4(ii). Since E, = J,J,*, the result is 

By the Markov property we may remove all of the E 's  in (11.37) to obtain 
the desired relation (11.36). 

Remarks 1. Related results and proofs appear in [I], 1191, [73], [97]. 
2. By using the hypercontractive bounds of the next section, one can 

prove the FKN formula for u,  v arbitrary in L2, provided that Go,G, are 
bounded. 

As we emphasized in the Introduction, the measure (11.25) associated 
with the cutoff P($), Markov field looks like a Gibbs' state in classical 
statistical mechanics. In statistical mechanics one can often take the space 
cutoff to infinity in one direction by finding a suitable "transfer matrix" 
(see e.g., [60]). The FKN formula shows us that  the semigroup ePHLg), 
generated by the spatially cutoff P(Q), Hamiltonian, is the transfer matrix 
for the cutoff P($), Markov theory. 

THEOREM11.17. For  g E L' n L1+'(R), let ~ ( g )= H(g) - E, be the 
spatially cutof P(Q),Hamiltonian, normalized so that inf o ( ~ ( g ) )= 0, and 
let Q, be i ts unique vacuum vector, normalized so that 1 1  Qg 1 1  = 1 and 
(Q,, QO)> 0. Let dv, be the measure associated with the P($), Markov 
theory with cutof h(x, s) = g(x)~,-,,,(s). For any fl, ...,f, E F and 
t, < t, < . . < t,, 

limt-., [ df , ,  t,) ... d f l ,  t1)dvt 
(11.38) 

= (Q,, #F(f,)e-(t12-tn-1)2(3)... gF(f2)e-(t~-tl)H(g)' P F ( ~ ~ ) Q ~ )  

P~oof.  By the FKN formula (II.34), 
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where we have simply multiplied numerator and denominator by the factor 
eZtE 8 .  Define ft(x) = ePt"on [O, m). Since I ft(x) I 5 1 and lim,,, f,(x) is 0 if 
x > 0 and 1 if z = 0, i t  follows from the functional calculus that 
lim,,,e-tGlO) = Po,the spectral projection of ~ ( g )for E = 0. In particular, 
ectk(g)R0 (a,, Ro)12,# 0 as t -m and so the right side of (11.39) converges 

to the right side of (11.38). However, i t  should be noted that  since the 
fields are unbounded, some care is needed. We write the numerator of 
the right side of (11.39) as 

where A = e-H("$s(fm) ... e - ( t ~ - t ~ ) H l g )A $,(fi)e-"". A is bounded on account 
of the bounds k+(fj) 2 ~ ( g )$- const. [33], 1421, and so we may take 
t - m .  I7 

Remarks. 1. By the higher order estimates of [81], A is bounded 
provided that t ,  5 t ,  5 .. 5 t ,  so that the theorem extends to this case. 
Alternatively one can prove this extension by invoking the Lp-convergence 
of e-t2(~Qofor all p < rn [106, p. 1731 and the fact that ePH(0)is bounded 
on each LP. 

2. Note that it is precisely the transfer matrix mechanism of statistical 
mechanics that is involved here: The positive nature of Tg= e-flO) 
("positivity improving") leads to the Perron-Frobenius result that the 
largest eigenvalue of Tgis unique and thus only the eigenvector R, corre-
sponding to this eigenvalue survives in the limit t -m. 

3. Alternatively, one can use the Lxconvergence of e-t""~o to prove 
local Lcconvergence of the measures dv,. For example, if G E 9n(o)for a 
fixed o,then, as s, t -m, 

1 Gdv, - 1Gdv, 1 / 1 1  G I!,  -0 

uniformly in G, for any p < m .  

4. By these methods, we can completely control the infinite volume 
limit for one-dimensional Markov fields: For d = 1, the free Markov field, 
which we denote by q(s), does not have to be smeared in s E R in order to 
give a family of well-defined Gaussian random variables with covariance 
(see (II.8)), 
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(II.40a) \ q(s)q(t)dp, = (1/2)e-"I . 
If P is a semibounded polynomial we define the P($)l Markov field theory 
with cutoff in the interval [- b, b] to be the theory with measure (as in II.25), 

As in Theorem 11.16, the Schwinger functions can be written for -b 5 
- a 5 t l S t 2 S  ... S t l L S a S b ,  

where Qo is the vacuum in the usual occupation number space 3 for the 
harmonic oscillator, and H = H -E where H = Ho+ P(q) is the Hamiltonian 
for the anharmonic oscillator and E is its ground state energy. Thus as 
the cutoff b -m we obtain by explicit cancellation the convergence 

(11.41) Sa(t,, . . -,t,) -(J-,Q, ~ ( t , )  . . . q(tl)e-!QaP(q(s))da~aQ) 

where Q is the vacuum vector for H. 

THEOREM11.18. Let P be a semibounded polynomial and consider the 
P(p),  Markov field theory with cut08 i n  the interval [-by b] defined by 
(11.40). As b -.m, the Schwinger functions converge a s  i n  (11.41). 

Remarks 1. For P(q) = hq4, h > 0 small, Symanzik has proved this 
result by means of Kirkwood-Salzburg integral equation methods [I l l ] .  

2. We shall give an alternate proof of the Convergence by means of 
correlation inequalities in 5 V.4 when P(q) = zz=,a,q2" with a, 2 0. 

11.5. Conditioned Theories. We begin this subsection by introducing 
the method of conditioning which provides a general mechanism for "setting 
certain degrees of freedom equal to zero". In particular, this method 
allows us to describe theories with Dirichlet boundary conditions and will 
prove useful in Sections IV.3 and VI.l. 

We fix s = 1and m >0 and we write N = N,,,. If M is a closed sub- 
space of N we let p, be the orthogonal projection onto M and P, = r(p,). 
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If M consists of vectors supported in a region A c R2, then in terms of the 
notation of 5 11.1, PA,= E,. 

Definition. The field $,(x) conditioned on M is given for any f e N by 

(11.42) p d f )  = $ ( P M ~ )• 

One should think of #,
 as "that part of the field associated with the 
degrees of freedom in M .  Corresponding to the decomposition N = 

M e  M L  we have the decompositions p = #,
 + #,I, 
 and % = %, @%,I. 
We also obtain the decompositions of Q-space, Q = Q, x QML, and of the 
free measure, dp, = where (Q,, dphM)) is the Q-space built dpkw)@ d,~; -~ ' ) ,  
over the fields p(f), f E M, and similarly for M'. In terms of conditional 
expectations this statement means the following: Let C, be the o-algebra 
generated by the fields p,(f), and let u e L1(Q, dpo). Then udp:" = 
E [ u  I C,L], which is a function of the "variables in M1", and similarly 1 udp:") _= E [ u  1 L,]. The full integral S udp, can be evaluated by 

5 udpo= 1 (S udp:")dphm) = E[E[u 1 P,,] 1 L,] , 

which is a complex number since by orthogonality these are the only 
functions which are both 2,- and C,I-measurable. We define Wick powers 
by the usual prescription for ordering A and A*: 

Here the "exponential" is defined for f E LZ(R" by 

(11.44) f (x)d2x= pfY(kl + . . . + k,) 

where f(k, + . . . + k,) is regarded as an element of the n-particle subspace 
and the n-fold tensor operator product p p  = PMr %,. If the reader 

prefers he may replace the Wick powers (11.43) by regularized Wick 
powers, 

where h e C,"(R", and then take the limit h--+aafterwards. By orthogonality 

and so we note the formula 
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In terms of the semibounded polynomial P and spatial cutoff g the condi-
tioned interaction is defined by 

Definition. The P(#), Markov field theory conditioned on M and with 
non-negative spatial cutoff g e L1f?L1+'(R" is the triple (#,, Q,, dvbW)) 
where dvkV)is the measure on Q, defined by 

In particular the (smeared) Schwinger functions for this conditioned 
theory are given by 

where hj  E C,"(R". Thus dvkV)is the measure obtained from dv, by writing 

$ = $, + and formally replacing $,VLby 0. The conditioned theory can 
be thought of as the theory obtained "when the degrees of freedom in 
ML are set equal to zero". 

Conditioned expectations can be rewritten in terms of the full theory 
as follows: 

LEMMA11.19. Given a theory conditioned or, M, we have i n  terms of 
the interaction U(g) for the (unconditioned) theory, 

and 

1 $(pATfh1) $(p,h.)e-P-w"g)dpo 
(11.49) SM, , (~I ,.. hm) = 

I e-P~r!g)dpO 

Proof. From the definition (II.43), or by integrating (11.45) with 
respect to dpkvl), 

so that 
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The identities (11.48) and (11.49) follow from (11.50) and the facts that 
UJv(g)is independent of the variables q"'"' in M L  and that  d p ,  = dpprl@ 
dlpf 11 

Since P J f u= E [uI X,,f],  (11.49) can be rewritten as 

Idpo
(11.51) SM,,(h1,..., h,) = 

I @ - E [ c ( g )PY1dPo 

It is because of (11.51) that we use the term "conditioned theory". The 
following inequality is basic: 

LEMMA11.20. Le t  M be a n y  subspace of N. Under the usual  assump-
t ions  o n  U(g) ,  

Proof.  By Jensen's inequality (otherwise known as the arithmetic-
geometric mean inequality), 

e-E['.!81 12.+11 1E[e-L-!81- I Z,$fl 9 

or, equivalently, 

(11.53) e - L  ,$f!" @ - L  !81dp;Xll . 
The lemma follows upon integrating (11.53). 

COROLLARY11.21. For  a n y  p < m ,  

(11.54) 1 1  e-Ld + f ! g )  [ Ip 1 1  ecr!O)lip . 
There is a natural extension of the notion of conditioning. Suppose 

we can realize Q as Q, x Q, in such a way that d p ,  factors into dpb" x dpAZ1. 
Given a random variable f on Q we can define f ,  on Q, by 

whenever f E L1(Q,dpo).  In particular, Lemma 11.20 and Corollary 11.21 
extend to such a situation which we will call generalized condit ioning.  
Given two free theories, we can ask when one can be obtained from the 
other by generalized conditioning. The answer is simple: 

PROPOSITION11.22. Le t  3 be a space of real-valued test funct ions o n  
Rd. Suppose tha t  $ and $, are  Gauss ian  r a n d o m  fields indexed by 3 w i t h  
means  0 and covariances S(x ,  y )  = ($(x)$(y) )  and  S,(x, y )  = ($,(x)$,(y)),. 
T h e n  a necessary and  su f ic ien t  condit ion tha t  the theory ($,, S,) m a y  be 



156 F. GUERRA, L. ROSEN, AND B. SIMON 

obtained from (9, S )  by generalized condit io~ingis  that S, = S - S, be a 
positive semi-definite operator on 3. 

Proof. If $, is obtained by generalized conditioning, then by (the 

generalization of ) Lemma 11.20, 1exp ( -$,( f ))dpA1)5 1exp ( -$(f ))dpo. 

Since 1exp (-$(f ))dpo= exp (112 ($( f )$(f ))) for Gaussian random fields, 

the positive semi-definiteness of S, follows. Conversely, if S, is positive 
semi-definite, we can, by standard methods [24, p. 3351, construct a Gaussian 
random field 4, on a space Q,. Let 0 = Q, x Q, with measure dji, = dpt '  x 
dpiz). Then $(f )  = $,(f) + $,(f) is clearly a Gaussian random field with 
covariance S and mean 0. 

Remark. Suppose II f 11, = ($( f )$(f))'I2 is a norm on 3 and that 3 is 
complete (we can always arrange this by taking a quotient and completing). 
Then we can find a unique positive self-adjoint operator A with 0 5 A 5 1 
so that ($,( f )$,( f )), = I I Af 11;. Then $,( f )  can be realized as $(Af )  and the 
interaction U, as r(A) U. We thus see that generalized conditioning extends 
conditioning precisely by replacing projections with arbitrary operators A 
with 0 5 A 5 1. 

Before turning to a class of examples, we note the following con-
vergence theorem: 

THEOREM11.23 (Conditioning Convergence Theorem). Let M, MI,M,, ... 
be subspaces of N with corresponding projections p, p,, p,, .. am? biquanti-

zations P, P,, .... Suppose that s-lim p, = p. Let U = 1:Q($(x)):g(z)dxo, 

i n  terms of the semibounded polynomial Q and standard space cutof g. 
Then 

and for any h,, ..,h, E C,"(R" , 

I n  particular, the Schwinger functions conditioned on M, converge to the 
Schwinger functions conditioned on M. 

Proof. Since p, -p, $(p,hj) -+$(phj) in LZ(Q,dy,) and hence by (11.23) 
in all Lq  with q < w . Similarly P, U--+P U  in Lq-norm with q < ... By 
Corollary 11.21 and Theorem 11.10 (iii) we have 1 1  e-P." 11, 5 1 1  e-P' 1 1 ,  < .. 
for each q < w . We conclude from the inequality (11.24) and Holder's 
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inequality that e-P," -+ e-P" in each Lq, q < w .  (11.55) and (11.56) follow 
immediately. • 

Remark. This theorem extends to generalized conditioning, in which 
case p, p,, p,, .. , are replaced by a, a,, a,, . , with 0 $ a, $ 1 and a = 
s-lim a,. In fact, for convergence, the condition 0 5 a, 5 1is not needed 
as long as a and all the a, are bounded. 

Example 1 (Dirichlet Boundary Conditions). Given an open region 
A c R2,there are a variety of procedures for introducing B.C. on 8A which 
differ from the free ones used thus far. In this paper we shall obtain 
Dirichlet B.C.by the following equivalent methods (see also [69]): 

(i) take as covariance operator (-AD, + m2)-', where -A",s the 
Laplacian with Dirichlet B.C.on dA; 

(ii) condition on AeXt(see Theorem 11.28); 
(iii) add a boundary interaction limo+. o 5 :$': (see (11.77) and (V.19)); 

a A 

(iv) require the boundary variable to vanish by inserting (formally) an 
appropriate 6 function (see Theorem 11.33); 

(v) in the lattice approximation of § IV, add a non-local quadratic 
interaction on the boundary (see Theorems IV.7 and IV.10). 

We begin by describing method (i) in terms of the standard theory of 
the Friedrichs extension (see, e.g., [64] :or [77, $3 VIII.6, X.31). We shall 
generally suppress subscripts A on A-dependent objects. The operator 
ADr -A: + mZ on LZ(RZ,dZx)is defined as the Friedrichs extension of 
the positive symmetric operator (-A + m2) r C,"(A). Let A = [(-A + 
my ) C,"(RZ)]-denote the self-adjoint extension with free boundary condi-
tions. The domain D(AD)is contained in the form domain &(-AD, + m2)r 
X+l(L1)which is defined as the closure of C,"(A) in the norm 

here (., - )  denotes the inner product on L2(R2,d2x). (Note that we are 
working with real-valued functions.) Similarly X+,(R2)is the closure of 
C,"(RZ)in the norm (11.57). We define X-,(R2) as the closure of C,"(R" in 
the norm obtained from the inner product 

and X-,(A) as the closure of C,"(A) in the norm obtained from the inner 
product 

(f ,  s>-I,* = (f ,  (AD>-Is). 
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Note that X-,(R2) is just the real part of N. In the scale of Hilbert 
spaces, 

X+,(A)c L2(A,d2x)c X-,(A) , 
X,,(A) are dual, and AD is just the LLvalued restriction of the duality 
map A^D from X+,(A) onto X-,(A) given by the Riesz Representation 
Theorem [77]. The same remark applies if A, AD,AD are replaced by 
R2,A, A^ respectively. If f ,  g E X+,(A)c3C+,(R2),then by the above de-
finition (f, ADg)= (f, Ag). Thus, if we associate an element ADgof X-,(A) 
with Ag in X-,(R2), we obtain the natural embedding 

The connection with the theory of conditioning is provided by 

LEMMA11.24. Let p be the projection i n  X-,(R2) onto the orthogonal 
complement of all those distributions i n  X-,(R" with support i n  A' = R"A. 
For  any h E X-,(A), 

(11.60) (-AD, + m2)-'h = ( - A  + m2)-'ph , 

Remark. In terms of our previous notation, p = I - e,,, which is not 
the same as e,. 

Proof. Let f E X-,(R2), g, E C,"(A), and h, = ADgn. Then since ( I  - p)f 
has support in A', ((I  - p)f, g,) = 0, so that 

(f, A-'~hn)= (f, phn)-i = ( ~ f ,A-'hn) = ( ~ f ,gn) = (f, gn) = (f ,  (AP)-'12n) . 
Thus (AD)-'h, = A-'ph, and (11.60) follows upon taking limits. 

COROLLARY11.25. Iff ,  g E 3C-,(A), then 

(11.61) (f1g>-l,n = ( ~ f ,P ~ ) - I. 
COROLLARY11.26. The norms 1 1  . and 1 1  - l l - l , A  defined by (11.58) 

satisfy I l  f Il-l,h 5 I l  f ll-1' 

By following our construction of the free Markov field in $11.1, we 
can construct a Gaussian random field gDover Xl(A) with covariance 

Given a non-negative function g E L' nL1+'(A)and a semibounded polynomial 
P, we can form the interaction 

which, by virtue of Corollary 11.26, has the same L P  properties as U(g) 
(cf. Theorem 11.10). Then 
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Def in i t ion .  T h e  f u l l  D i r i ch le t  P($), M a r k o v  field t h e o r y  w i t h  c u t o f g  
in t h e  r e g i o n  A is the theory with measure 

R e m a r k .  The f u l l  Dirichlet theory is to be distinguished from the h a l f  
Dirichlet theory which we define below in (11.91). 

If g = x,, the characteristic function of A, we write d v i ,  U," for 
dv,D, U D ( g ) ,and we call the theory the D i r i c h l e t  t h e o r y  in r e g i o n  A. We 
denote by X g  the o-algebra generated by the fields $D(f)with supp f c R. 
Since -A: is a local operator we obtain, as in Corollary 11.5: 

PROPOSITION11.27. T h e  D i r i c h l e t  t h e o r y  in t h e  r e g i o n  A i s  M a r k o v  in 
t h e  sense t h a t  i f  R i s  compac t  in A a n d  u i s  measurab le  w i t h  respect  to  
Xi,,, t h e n  

E[u12;) = E [ u ]  . 
The main point of this discussion is that the Dirichlet theory is a 

conditioned theory: 

THEOREM11.28. L e t  A be a n  o p e n ,  bounded set in R2a n d  let  M be t h e  
subspace o f  N orthogonal  t o  t h e  e l e m e n t s  o f  N suppor ted  in A'. T h e n  t h e  
P($), t h e o r y  w i t h  c u t o f  g cond i t ioned  o n  M i s  i d e n t i c a l  to  t h e  f u l l  
D i r i c h l e t  P($), t h e o r y  w i t h  cu to f  h = g ~ ,in t h e  r e g i o n  A. In p a r t i c u l a r ,  

w h e r e  f j  E X-,(A). 

Proo f .  It is sufficient to observe that by Corollary 11.25 the covariance 
matrices are the same for the corresponding free theories. 

There is another way of looking a t  Dirichlet B.C. which is very useful 
for comparison with other B.C. (cf. 1351). Let C be a simple closed curve 
in R2. C divides R y n t o  a bounded open region A and an unbounded open 
region x. Let B be the subspace of N with elements supported on C and 
let M be the subspace of N orthogonal to the elements supported in 
A' = RZ\A. By the Markov property, if f E N has support in A, then 
p M l f  = pBf ,  or p M f  = pBl f .  We conclude that: 

(i) I f f  and g have support in A, then 

( P B L ~ ,  P B ~ S )= ( P M ~ ,pag)  . 
(ii) I f f  has support in A and g has support in A', then 
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( ~ B l f ?~ B l g )= (p , f ,  g )  = 0 .  
We have thus proved: 

THEOREM11.29. L e t  C be a s i m p l e  closed curve  in RZa n d  let  A be the  
bounded o p e n  r e g i o n  i n t e r i o r  to  C. L e t  B be the subspace of  N sup-
ported o n  C ,  a n d  M the  subspace orthogoma1 t o  the  e lements  supported 
in A'. T h e n  the  field theory  condi t ioned o n  B1 factors i n t o  the  f o r m  
(QB1, QY x Q Y ~ ,dpbn' x d p F f l ' ) ,  where:  

(i) If x e A, t h e n  $B1(x)  i s  a f u n c t i o n  o n l y  of  the  variables  in QAn. 
(ii) T h e  set of  fields {QBl(x) I x e A) o n  dpY1') i s  iden t ica l  w i t h  the  

set of  Dir ichlet  fields o n  A. 
In par t icu lar ,  i f  g has  suppor t  in A, t h e n  the expectat ions  of  products of 
fields in A f o r  the  theory  condi t ioned o n  B l a r e  ident ical  t o  those of the  fu l l  
Dir ichlet  theory  in A. 

E x a m p l e  2 ( A d d i t i o n a l  Dir ich le t  Condi t ions ) .  Let A, and A, be two 
disjoint bounded open regions with piecewise smooth boundaries. Suppose 
that dA, and ah, have a part D in common, and let A be the interior of 
A, U A, U D. Then one obtains the Dirichlet state for A, U A, from the 
Dirichlet state for A by conditioning, i.e., by setting the field equal to  zero 
on D .  Furthermore, the Dirichlet state for A, U A, factors into a product 
of the Dirichlet states for A, and A,. By applying Lemma 11.20 we obtain 
inequalities of the form 

which will be used in 5 VI.l. 

E x a m p l e  3 ( L a t t i c e  A p p r o x i m a t i o n ) .  The lattice approximation of 
9 IV can be viewed as a conditioned theory in the generalized sense discussed 
in the remark after Theorem 11.23. 

Although we consider only the free and Dirichlet B.C. in detail in this 
paper, we wish to  give a brief discussion of other B.C. when d = 1(harmonic 
oscillator theory). The two-point correlation function for the case of free 
B.C. is given by the free Green's function of (II.40a), 

where we have set the mass m = 1. If we consider the theory on an 
interval [a,, a,] we can consider the classical B.C., 
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where 313% is the inward normal derivative and a is a parameter in the 
interval [-1, m): 

Example 4 (Classical B.C.; d = 1). The Green's function corresponding 
to the B.C. (11.67) on the interval [a,, a,] is given by 

(11.68) Go(%, Y) = GO($, Y) - RO(x, Y) 

where 

R,(x, Y) = c(a)A(x, Y) - d(a)B(x, Y) 9 

and 

with = eal-"z. In  particular, we obtain free B.C. when a = 0, Neumann 
B.C. when a = -1, and Dirichlet B.C. in the limit a -m. As in the cases 
of free and Dirichlet B.C., we can construct the free field with the B.C. 
"a" of (11.67) by taking the Green's function (11.68) as the basic covariance 
matrix. 

What is relevant for our purposes is tha t  the rank 2 integral operator 
R, is positive (negative) semi-definite when a is positive (negative). This 
follows from the observation tha t  R, is semi-definite (with the sign of c(o)) 
if and only if 

(11.69) I d(o) 1 s I 44 1 . 
More generally, i t  is not difficult to show that  

(11.70) R , , 6 R , ,  if a , S a , .  

This is the well-known monotonicity property of classical B.C. (see e.g., [8]). 
We emphasize tha t  this monotonicity (positive definiteness) is distinct from 
the monotonicity (pointwise positivity) discussed in the final remark of 
this subsection. 

Thus according to Proposition 11.22, the theory with B.C. "a," can be 
obtained by conditioning from the theory with B.C. "a," if a, 5 a,. In the 
passage from a, to  a, two degrees of freedom are set equal to zero. As an 
explicit example, free B.C. can be obtained by conditioning from Neumann 
B.C. since (with a, = 0, a, = 1) 
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G , ~- G~= Leczepy+ (ez + e-')(eY + ecY)

2 2(e2- 1) 

is positive definite. 

Example 5 (Periodic B.C.; d = 1). The free field with periodic B.C. 
on the interval [a,, a,] is defined using the periodic Green's function 

The difference 

will be semi-definite by the criterion (11.69) if and only if I d(o) -l / ( l -  A) I 5 
I c(a) I. This inequality is satisfied only for the extreme values a = -1 and 
m, and we conclude tha t  periodic B.C. are not comparable to "a" B.C. if 
-1< a < oo but  that  Dirichlet B.C. can be obtained by conditioning from 
periodic B.C. which can in turn  be obtained from Neumann B.C. Explicitly 
we have on [0, 11that  the differences 

and 

are positive definite. 
We can summarize the above state of affairs by the diagram: 

Free 
2/ ,,=o \2 
/ \ niriqhletN e u ~ an n  --------------A 

Periodic /'I 

where theory b) can be obtained from theory a) by conditioning on an 
n-dimensional subspace if an arrow labelled with the integer n points from 
theory a) to  theory b). 

Remarks 1. In fact, between the values a = -1 and a = m , there 
are a continuum of theories with B.C. (11.67) which can be obtained from 
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one another by conditioning on a 2-dimensional subspace. 
2. It is not a contradiction tha t  B.C. "a," can be obtained from B.C. 

"a," if a, < a, in one step by adding two degrees of freedom or in several 
steps by adding two degrees of freedom a t  each step. This merely expresses 
the fact  t ha t  a positive definite rank-two matrix can be writ ten as  a sum 
of positive definite rank-two matrices. 

3. We point out  t ha t  while Gp - Go is neither positive nor negative 
semi-definite, i t  is pointwise positive. 

4. In a fu tu re  paper we shall extend the  conditioning relations of 
Fig. 11.3 to  dimensions d > 1, and use these relations in studying the  
question of independence of the pressure on B.C. [125]. 

We now describe how the above B.C. for d = 1 can be obtained by 
means of boundary terms (method (iii)). Define q as the  positive closed 
quadratic form 

with domain Q(q) consisting of absolutely continuous functions on [a,, a,] 
with a derivative in L2[a,, a,] (see [52] or [77] for the basic theory of 
quadratic forms). Consider the following boundary forms 

All of these are small form perturbations of q and so we may define the 
positive closed forms with domains Q(q), 

The operator A, = -(d2/dsZ)+ 1 with B.C. (11.67) is the unique positive 
self-adjoint operator associated with q,; i.e., q,(g, f )  = (g, A, f )  for g c Q(q) 
and f E D(A,) c Q(q). The Dirichlet form q, is defined by monotone con- 
vergence: q, = lim,,, q,. Similarly we define 

The operator Ap = -(d2/dx2) + 1 with periodic B.C. is the operator corre- 
sponding to  q,; for the B.C. associated with q,,, are 
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which become f (a,) = f (a,) and (d f /dx)(a,) = (df /dx)(a,) in the limit a --. m. 

In addition we can arrange for antiperiodic B.C. by perturbing q by b,, 
or we can allow different B.C. a t  a, and a, by using different values of a a t  
a, and a, in the definition (II.73a). 

Note that this formulation in terms of quadratic forms explains the 
relations of Fig. 11.3. For q, is obviously increasing in a;  q, is not com- 
parable to any q, except q-, = q, and q, = q,, in terms of which we have 

qn;(f, f )  5 qP(ft f )  =< Q D ( ~ ,f )  . 
The latter inequality follows from 

qp,o(f, f = 42o(f, f )  - (g + l)b+(f, f )  . 
Note, moreover, tha t  q, differs from q, and q, by a rank-1 form (i.e., a 
multiple of b+), whereas any two q, differ by a rank-2 form (i.e., a multiple 
of b). 

There is a convenient representation for the operators A, and A,,, 
defined by the forms (11.74). We write B, B,, C for the formal operators 
associated with the forms (11.73); for example B has integral kernel 
B(x, y) = 6(x - al)6(y - a,) + 6(x - a2)6(y- a,). We define the generalized 
sum A 4-B of two (possibly formal) operators A and B as the operator 
defined by the sum of the corresponding forms a + b, provided a + b 
defines a unique operator. As referred to above, this will be the case if 
a + b is a densely defined, closed, semibounded form. By -(d"dx" + 1we 
mean the operator on L2[a,, a,] whose inverse has G,(x, y) as kernel. Then 

LEMMA11.30. For -1 2 a < m, 

Proof. The lemma follows from integration by parts and the fact tha t  
the free Green's function (11.66) satisfies the B.C. (aG/an) = G: For i t  is 
sufficient to verify (11.75) as a form equation on the core D(-(d2/dx2) + 1)= 

Ran Go. Thus let f, g E Ran Go. Then 
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by integration by parts. But since f E Ran Go, (af/an) = f ,  and (II.75a) 
follows. The proof of (II.75b) is identical. 

From the formal relation dpo(q)= const. e-'12!q,Aoq)dq, one expects tha t  

whenever t is a "reasonable" quadratic form and T is the (possibly formal) 
operator associated with t. For the case a t  hand, where t is a finite rank 
form-bounded perturbation of the basic form (II.72), i t  is easy to verify 
(11.76) by explicit evaluation of the Gaussian integrals. Combining Lemma 
11.30 and this identity, we deduce 

THEOREM11.31. The Green's function Go corresponding to the B.C. 
(11.67) on [a,, a,] is  given by 

I n  particular, the Dirichlet Green's function Go is obtained by letting 
a -+ 00 i n  (11.77). The periodic Green's function i s  given by 

As a result of this theorem we have: 

Method (iii). The one-dimensional Markov field theory with the various 
B.C. described above can be obtained from the theory with free B.C. by 
modifying the free measure with boundary terms as in (II.77), (11.78). 

Remark. When the Green's functions are represented in the form 
(11.77) we can obtain pointwise positivity relations among them on the 
basis of the correlation inequalities of 3 V.2. In particular G,(x, y) is a 
decreasing function of a. This monotonicity is distinct from the mono-
tonicity (positive-definiteness) of Fig. 11.3 but the two are consistent in the 
case of positive test  functions. 
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11.6. Dirichlet Boundary Conditions. In  this subsection we continue 
our analysis of Dirichlet B.C. First, we describe method (iv) for obtaining 
Dirichlet B.C. by the  insertion of an  appropriate "6-function" on the 
boundary. Secondly, we discuss "half-Dirichlet" states which differ from 
full Dirichlet states in tha t  the interaction is Wick-ordered relative to  dp, 
and not dpf.  Thirdly, we define the Dirichlet Hamiltonian and consider i t s  
relation to  the Euclidean Dirichlet theory. 

Consider first the case d =1. If we take the limit o+ an in (11.77) then 
formally we have 

where the constant can be explicitly evaluated as a finite function of 
I a, - a, I. What (11.79) says is tha t  the Dirichlet s ta te  can be obtained 
from the free theory by inserting 8-functions to  se t  the boundary variables 
to  zero. 

A rigorous formulation of (11.79) can be based on the observation tha t  
the operator eCHo smooths out 6(q:) 

Definition. For E > 0, define 

Remark. On LYR, dv) where dv(q) = jr-112e-q2dq,the  harmonic oscillator 
Hamiltonian Ho is (1/2)(- (d2/dq2) + 2q(d/dq)), the Hermite operator. 
Formally +,(q) = jr1/2(e-'H06)(q)so tha t  (11.80) is just Mehler's formula [106]. 

LEMMA11.32. Let E > 0. 

(i) IkE(q)dv(q)= 1 . 
(ii) 1 1  +, 11, = (1 - eZE)-'/'SO that 9 ,  E Lp(R, dv) for p Ian. 

(iii) If a > 0, e-"H~$r, = qE+". 

Proof. (i) and (ii) are elementary computations. That 1 1  9 ,  11, = 1is to  
be expected since eCHo is L1-norm preserving on positive functions. (iii) 
follows from the semigroup property for Mehler's formula. El 

Remark. That eCHo takes 6(q) into an L" vector is a reflection of the 
fact  t ha t  e -EH~  fails to take L1 into L" because of bad behaviour a t  infinity 
bu t  not a t  finite points. 

We now consider the free Markov field for d = 1 with covariance 
(II.40a) and we let  dp,D be the  measure for  the  theory with Dirichlet B.C. 
on [a,, a,] as defined in (11.62). Let J, be the isometric imbedding of Y = 

LYR, dv) into L2(Q, dp,) given by J,+ = $(q(t)). 
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THEOREM11.33. Let u be a funct ion  measurable w i th  respect to the 
variables q(t) w i th  t E [a,f E ,  a,  - E ]  where E > 0. T h e n  the Dirichlet state 
can be obtained f rom the free state by 

Proof. Both sides of (11.81) represent expectations of u with respect to 
Gaussian processes with mean zero. Since such expectations are completely 
determined by the expectation of q(s)q(t), i t  is sufficient to consider the 
case where u = q(s)q(t) with a ,  + E 5 t js ja,  - E ;  i.e., we need only 
prove that 

where we have used Theorem II.4(ii) to  rewrite the right side of (11.81). 
Denote the numerator and denominator of the right side of (11.82) by 
N,(s, t )  and D,. By Lemma II.32(iii), D, is independent of E and N,(s, t )  = 

N,,(s, t )  if 0 < E' < E with s, t E [a,- E ,  a ,  + E ] .  Let N(s ,  t )  be the symmetric 
function defined for s ,  t E (a,, a,) by piecing together the N,(s, t ) .  

Clearly, (11.82) follows if we can show tha t  for fixed t in (a,, a,), 

and that 

Now, on the one hand, if t js ,  

as s --. a,, and on the other hand, if s 5 t ,  

IN(s,  t)I S I/q+a2-t I I ' / / Q + ~ - ~ ~ / I  -0 

as s -a,. 
Next fix E and t E [a,+ E ,  a ,  - 61. If we let p = i [Ho ,  q] = ( l / i ) [ (d /dq)- q] 

we see that  i [Ho ,  p] = -q. Thus for t < s ,  

and 
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Thus for s > t, N(s, t) is C" in s and -(d2N/ds2) + N = 0. A similar result 
holds for s < t. Moreover, by (11.84) and its t > s analogue, we see that  
(dN/ds) has a discontinuity a t  s = t of magnitude 

This establishes (11.83) and the theorem. 

Remark. Since both sides of (11.82) can be explicitly computed, the 
left side as a Green's function and the right by Mehler's formula, (11.82) 
can also be proved by straightforward but tedious calculation. 

For d 2 2 a similar analysis yielding explicit formulae is possible for 
rectangular regions. For general regions we have the following result (we 
give the proof for R2, but  the same result holds for Rd): 

THEOREM11.34. Let A , c A  be bounded open regions i n  RZ with 
dist (A,, ah) > 0. Let Q,, be the Q-space associated to the fields i n  A,. Let 
dpAAl) be the restriction of the free measure to Q,, (obtained by integrating 
out the coordinates orthogonal to Q,, as in $11.5) and let dpb:Q be the 
restriction to Q,, of the free measure with Dirichlet B.C. on dA. Then 
dpAAl) and dpbtg are  equivalent measures; explicitly, 

dpbti: = FdpAAl) 

where FE Lw(Q,,, dpAA1)) and F-' E LP(QA,, dpbti) for some p > 1. Moreover, 
F is a Gaussian i n  the variables concentrated on ah,. 

The proof of the theorem is based on 

LEMMA11.35. Let A, be a bounded open region and A, a n  open (or 
closed) region disjoint from A, with dist (A,, A,) > 0. Define a = e,,e,,e,, 
on N. Then 

(i) a is  trace class; 

(ii) 1 1  a 1 1  < 1. 

Proof. (i) By Lemma III.5B, e,,e,, is Hilbert-Schmidt so tha t  a is 
trace class. 

(ii) This proof was suggested by E. Stein (private communication). 
Let p E C"(R2) with uniformly bounded derivatives so tha t  p - 1on A, and 
p r -1 on A,. By the standard theory of Sobolev spaces (see e.g. [78]), 
multiplication by p is a bounded operator on N. We show tha t  

from which the lemma clearly follows. Let f jE Ran eAj with / If j/ I  = 1and 

(f,, f2) 1 0. Then 
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llfl + f 2  II" I 1  l(f1 - f2) /I" I 1  / P I 2  llfl - f 2  / I 2  
and consequently 

2(fl, f2)(l + l l  P l l "  5 2(ll P 11" 1) 

from which (11.84) follows easily. 

Proof of Theorem 11.34. Let N1cN be the space of distributions with 
support in A, and let A, = RZ\A. Then for f ,  g E Nl, the measure dphAl)is 
determined by the covariance 

df )@(g)dl":"" = Cf, 9) 

while, by Corollary 11.25, the measure dp;::: is determined by 

where S = (1 - eAleAzeAl)l'~By the previous lemma, Sis positive, invertible 
and S2- 1is trace class. 

The theorem now follows from Shale's theorem 1961 on the unitary 
implementability of symplectic or Bogoliubov transformations (see also 
1221, 1911, 131). We give some details. Since a = 1- S q s  compact, S has 
a complete set of orthogonal eigenvectors in N,. Choose such a basis {f,) 
with (fi, fj) = (1/2)sij, Sfi = hif,. Note tha t  

and 

(II.85b) 

by Lemma 11.35. By (II.85), TI h: converges to a nonzero value, implying 
tha t  TI A;' < m. If we realize QAlas an infinite product of copies of R 
where +(f,) is multiplication by q,, then 

d,&J"l)= TI z-'/2e-q:dqi 

and 

Thus F is given by 

By an argument of Segal 1911, this latter product is convergent in each 
LP(QAl,dphAl)),and, since hi 5 1and hi' < w ,  FEL". By a remark of 
Klein 1541, F-'E Lp(QAl,dpiti)  for some p > 1. 

Finally we note tha t  in the product (11.86) the variables q, = $(f,) tha t  
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enter are concentrated on ah,, i.e., supp ficdAl.  For le t  Xi be an eigenvalue 
of S not equal to 1. Then f, = (1 - X:)-'crfi. But by the  Markov property 

SO t ha t  eaA,f, =f,. 17 
We wish next to distinguish between full-Dirichlet and half-Dirichlet 

states. To begin with, we emphasize t h a t  there exist two distinct useful 
realizations of the  Gaussian random field with covariance equal to the 
Green's function Gi(x, y) with Dirichlet B.C. on dA (see (II.58b)): 

1. From the conditioning point of view, gD(f) is realized as  a random 
variable on the free field Q-space. In  this way QD(f) and g(f) are different 
random variables (in fact ,  qjD(f) E g((1 - en.) f ) ;  cf. Theorem 11.28) bu t  
the underlying free measure dp, is the same. The interaction Uf:=1 :P(iD(x)): d b  (cf. (11.43)-(11.46)) is expressed in terms of qjD with the 

A 

Wick ordering defined with respect to the free measure. This is the 
"natural" Wick ordering for the Gaussian random field gD; for instance, 

2. In  the  second view one regards the field variables g(f) as fixed func- 
tions on some measure space Q; now there are two different measures dpo 
and dpi: such tha t  

and 

If we restrict ourselves to tes t  functions with support in A', a compact 
subset of A, then Theorem 11.34 tells us t ha t  such a picture is possible and 
t ha t  the realization of g(f) as  a measurable function is independent of the 
realization of Q-space. In  this view, U, and Uf: are distinct functions of 
the fields ~ ( f ) ;  i.e., U, (resp. Uf:) is defined in terms of Wick ordering with 
respect to  dp, (resp. dpi) .  We denote Wick powers with respect to dp: by 
:i)(x)':,,, or, if there is no confusion by :g(x)':,, or, in an  abuse of notation, 
by :gD(x)':, as in (11.63). The full Dirichlet s ta te  for the P(g), Markov field 

in region A is then given by the  measure (II.64), i.e., e - "~dp i / \  e-"idpi. 

In  this subsection we wish to consider the  s ta te  associated with the  
measure 
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Since the Dirichlet B.C. are imposed on the "free field measure" bu t  not 
"on the  Wick ordering", we shall call this s t a te  the  "half-Dirichlet" s ta te  
(see also 1691). At  first sight, half-Dirichlet states seem very unnatural. 
However, the choice of U, instead of Uf: ensures t ha t  the interaction in 
region A ' c  A does not change as  A changes. (This is perhaps clearest in 
the lattice approximation; cf. $ IV.3.) In any event, the choice of B.C. 
should be regarded as a convenience. The half-Dirichlet states have con-
venient monotonicity properties (cf. $ V.4) and are thus  "natural" in this 
sense. Of course, ultimately, one must show tha t  a choice of B.C. is just 
that-i.e., when A j m ,  the resulting theory is "an infinite volume P(g), 
theory". We tu rn  to  this question in sVII.1. 

As a preliminary to  proving t ha t  ecrA E LP(Q,dp i )  in spite of the Wick 
ordering being "wrong", we study some positivity properties of Green's 
functions. We first note: 

LEMMA11.36. Suppose f is contirtuous ort a closed set A c RZ and  
satisjies ( -A  + m2)f = 0 ort hint. 

(i) Iff 2 0 in A, then f takes i ts  maximum on dA. 
(ii) Iff 5 0 irt A, thert f takes i ts  minimum ort ah. 

Proof. In  case (i) (resp. case (ii)), Af 2 0 (resp. 5 0) and so f is sub-
harmonic (super harmonic). 

We call an  open region A normal if for each y E A, Gi(x, y) -+0 as 
x -d h .  This is t rue  for example, if A is the interior of a Jordan curve. 
For x # y, we define 

LEMMA11.37. Let A be a rtormal regiort. Thert: 

(i) 6G,(x) = lim,,, 6G,(x, y) exists if x E A. 
(ii) G:(x, y) 2 0 for all x # y. 
(iii) 6G,(x, y) 2 0 for all  x # y. 
(iv) Fo r  all x E A, 0 5 6G,(x) 5 sup, , , A  Go(x- y). 
(v) If A' 1A is  also normal, then 6G,,(x) S 6G,(x) for x E A. 

Proof. (i) Since for each y E A, ( -A,  + m2)6G, = 0 in the sense of 
distributions, 6G, is continuous as  x --. y by the  local regularity theorem 
[78] so t ha t  (i) holds. 

(ii) Fix y E A. By (i), lim,,, Gf: = lim,,, Go= + w so t h a t  G;(x, y) is 
positive for x near y. Let R = {x E A / G;(x, y) < 0). Since y @ R, R is an  
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open proper subset of A and G: satisfies the hypotheses of Lemma II.36(ii) 
in R ;  hence Gz(x, y) takes i t s  minimum in R when x E ah. But G:(x, y) = 0 
f o r x e a R s o t h a t R = $ .  

(iii) Similarly, since ( -A  + m2)6GA= 0 and 6GA2 0 for x E ah we see 
by the  previous lemma t h a t  (iii) holds. 

(iv) Follows from the maximum principle. 
(v) Note t h a t  6GAr- 6G, = -Gz, $ 0 if x E ah. I7 
In Lemma V.27 we shall derive an explicit formula relating Wick 

powers, when the ordering is defined relative to two different masses. 
This formula implies tha t  

where { 7 } = ?z!/(n - 2j)!j!zi. The coefficients in (II.88a) are singular as  

x -ah ,  bu t  by Lemma II.37(iv) and well-known properties of the modified 
Bessel function [23], we see t ha t  

(II.88b) 1 8GA(x)/ 5 const. 1 In (dist (x, ah)) 1 
for x near ah. Thus the singularities are not serious, as  the  following 
generalization of Theorem 11.10 shows: 

THEOREM11.38. Consider the polynomial i n  the fields 

where each g, E L'+'(R2) (or, more generally, g, E X1+,(R2)). 

(i) U(3)E Lp(Q,dpO)for all P < rn. 

(ii) Assume i n  addition that g,,(x) 2 0, g,, E L'(R2), and  that g, = g,,.h, 
where 

Then ecUG'E Lp(Q,dpO)for all p < m. 

(iii) Let {g'"'}be a sequence satisfying the above conditions such that 
for each r = 0, 1, ..,2n, g6"' -+g, i n  L1+; and  

suprn(5 gi" 1 /:"I I2n112n-Vd2X < co 
- -where h;") = g;m~,/g;;~. ~h~~ e- r !g :m) )  +e - ~(0) i n  each Lp(Q,dp,), where 

P <  00. 
(iv) Results (i)-(iii) above remain valid for the Dirichlet theory on a 



173 P($), EUCLIDEAN QUANTUM FIELD THEORY 

normal open region A cR2 where duo is  replaced by dp,D and  :$'(x): by the 
Dirichlet Wick powers :$'(x):~,,, and where we require supp g, cA. 

Proof. (i) As in the proof of Theorem II.lO(i), U(g) E L P  if and only if 

the norms 1 \ g,(x)Go(x- y)'g,(y)dxdy 1 are finite. The condition g. E L1+'(R2) 

suffices for this [43]. 
(ii) In the standard proof tha t  e-"(g)E LP [32], a key ingredient is a 

lower bound on the ultraviolet-cutoff polynomial 

where the constant c depends on g but  not on X. The condition (11.89) 
guarantees the same estimate in this case. For the polynomial U,(x) = 

Czoh,(x) :$I;(%): can be rewritten in terms of ordinary powers, U,(x) = 

C:lob,(x(x), x)$;(x), where the coefficient b, depends linearly on the h,(x) 
and is a polynomial of degree [(2n - 11;.x/ /s)/2] in the Wick constant The 
elementary estimate for polynomials 

xZn+ C::;'b,Xn 2 const. max, 1 b, /2"1'2"-" 

and (11.89) then yield the desired estimate of the form (11.90). 
(iii) The proof uses the inequality (11.24). 
(iv) The proof in the Dirichlet case is really a corollary of tha t  for free 

B.C. For the norms on g which arise, viz., \ / g,(x) / G?(x, y)' I g,(y) I dxdy, 
are obviously bounded since Gz 5 Go on LYA). 

We shall call a region A log-normal if i t  is normal and bounded, and if 
for any positive integer n ,  

\ 1 in (dist (x, ah)) 1 %  d2x< . 
A 

Clearly any reasonable region is log-normal. 

(1
A 	

COROLLARY11.39. Let A be a log-normal region a?& let UA= 

:P($(x)): d2x)o, where P is  a semibounded polynomial. Then 

(i) 	 UAE Lp(Q, dp?) for all p < m. 

(ii) e-uA E LP(Q, dpz) for all p < . 
Proof. Immediate from (11.88) and Theorem 11.38. 

We have thus justified for log-normal A: 

Definitions. The half-Dirichlet P(rj), Markov field theory in region A 
is the theory with measure 
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The half-Dirichlet Schwinger functions are defined by 

(11.91b) S2D(~1 ,...,x,) = ...@(x,)dv,HD 

for xi, ...,X, E A. 

I n  $ VII.l we shall need one more relation involving free and Dirichlet 
Wick ordering: 

THEOREM11.40. Let P be semibounded. If A c A' where A i s  open and  
A' normal, define . U f s A '  -- 1 : P ( $ ( x ) ) : d 2 x  Then as  A' --. m,  in the sense 
that dist (A, ah') --. m, we have e-"?'A' --+ e-"A i n  each Lp(Q,dp,), p < m .  

Proof. The convergence follows from Theorem II.38(iii). For by the  
inverse of (II.88a), U,D,n' - UA can be writ ten as  a sum of terms of the 
form I (8GA.(x))b:0(x):dx for suitable j,k. By Lemma II.37(iv), SG,,(x)-0 

A 
exponentially as  A' --. m, and the  result follows. 

We conclude this section with a brief discussion of the  P(rj), Dirichlet 
Hamiltonian. As always the  polynomial P is semibounded. The underlying 
Hilbert space is FD= r(l"0, m)), the  Fock space built over 12(0,m) (see 
5 11.1). The it"creation operator a*(i) acts by tensoring in the  it"basis 
vector e, of 1" i.e., if + E F,D, then a*(i)+ = ( n  + l)'/%e,8,+. Let q,, q,, .. 
denote the  q variables, i.e., 

For x E (-112, 1/2), define the  time-zero relativistic Dirichlet field 

(11.92) = (21)-'1"~of?lL)(~)q,, 

where fA2)(x)= p(k,)-'I2 sin k,x for n odd and fiz'(x) = p(k,)-'/' cos k,x for n 
even; here k, = n(n+ 1)/1and p(k) = (k2+ m2)'I2. 

Let h t ,  be the  diagonal operator on l2 with eigenvalues p(k,), n = 

0, 1, . . .. The free Hamiltonian HtL= dI'(ht,) with vacuum Q,. We define 
the  interacting Dirichlet Hamiltonian by 

The corresponding Euclidean theory is the  Dirichlet theory on the  
str ip A, = [-112, 1/21 x R. Let dpf  denote the  corresponding Dirichlet 
measure. We first observe: 

LEMMA11.41. If x, y E [ - 112, 1/21, then 



P($),EUCLIDEAN QUANTUM FIELD THEORY 175 

Proof. We need only show that  the left-hand side of (11.94) is the 
Dirichlet Green's function for -A + m' in the strip A,. But by the expan-
sion (11.92) and the relation (a,, q,q,Q,) = (1/2)ajk,the left side is 

It is a standard calculation to  check tha t  this is the Green's function 
Gi,. 

As in the case of free B.C. we can write a Feyman-Kac-Nelson formula 
relating the relativistic and Euclidean theories. We let Jt be the imbedding 
of FDas the "time" t subspace of LYQ, dpf). 

THEOREM11.42 (Dirichlet FKN Formula). For  u, v E FDalzd t > 0, 

(u,e-'"f V) = I-(J,u) exp (-I:ds 11"-11s d~ :P(+'(X, s ) ) : ) ~ ~ v d ~ f. 
We close with the warning that  the states employed by Glimm-Spencer 

[35]* to decouple regions are neither Dirichlet nor half-Dirichlet states. 
Given a region A, they consider the Gaussian process with covariance 

where A' = Ra/A. In particular ::,,is the same as ordinary Wick ordering 
when applied to  purely local objects like P(#(x)). The GS B.C. is more 
closely related to free B.C. than Dirichlet B.C. In fact, if A is EA-measurable 
and A cx,then 

In contrast to the situation in classical statistical mechanics, the free 
Markov measure is not a product measure with respect to  the decomposi-
tion of space into disjoint regions; i.e., random variables associated with 
disjoint regions are not independent. This is clear from the basic covariance 
relation I $(f)#(g)dp0= \ f(x)s(x - r ) s (~)dxdy 

where S is defined in (11.7). Since S is strictly positive and $(f)dp, = 0, 
J 

no two #(f),$(g) are independent if f, g 2 0. Nevertheless since S(x) goes 

* However, in [122Jhalf Divichlet etates are used. 
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exponentially to  zero as  ( x 1 -+ W, distant regions are "nearly independent". 
Our basic goal in this section is to  express this idea in terms of estimates 
which enable us  to  deal with the complications caused by non-independence. 

In  their study of the  infinite volume limit [31], Glimm and Jaffe relied 
critically on the  exponential decoupling of distant regions, a fact  they 
made precise in various ways. In  $111.1 we shall see t ha t  this exponential 
decoupling has an  elegant formulation in the  commutative world of 
Euclidean fields. The idea is simple to  describe: If u and v are independent 
random variables (=measurable functions), then I I  uv 1 1 ,  = I l  u 1 1 ,  I l  v 11,; for 
general random variables one can do no better than 1 1  uv 1 1 ,  5 I l  u l l , I l  v 11,. 
Distant regions are decoupled in the  sense tha t ,  if u is EA,-measurable and 
v is XA,-measurable, then 1 1  uv 1 1 ,  5 I l  u I I p I I  v 1 1 ,  where p and q may be taken 
exponentially close to  1as dist (A,, A,) goes to  infinity. One consequence of 
this decoupling is t h a t  the  projection onto a distant region is asymptotically 
constant; i.e. if u 2 0 is CAI-measurable and A, is a region disjoint from A,, 
then the  conditional expectation EA,u is nearly constant in the sense tha t  
1 1  EA,u l l z / l l  EA,u 1 1 ,  approaches 1exponentially as  dist (A,, A,) goes to  infinity. 

Our proofs of these estimates rely on the  basic hypercontractivity of 
second-quantized operators which has already played such an  important 
role in constructive quantum field theory. For this reason we consider the  
above properties of the  measure dp, to  comprise i ts  "hypercontractive 
nature". We s ta te  here Nelson's best possible hypercontractive estimate as  
we shall use it: 

THEOREM111.1(Nelson [68]). Let X and  X be real Hilbert spaces and  
let A be a contraction from X to X. Let 15 p S q 2 03. Then a necessary 
and  suficient condition for I'(A) to be a contraction from Lp(Qx) to Lq(Qx) 
i s  that 

(111.1) 	 I 1  A 1 1 2  5 (P - l)/(q - 1) . 
(Although Nelson proves the  necessity of (111.1) only when A = cI, the 

proof for general A is similar. For instance if (LII.1) is not satisfied, one 
can explicitly compute t ha t  1 1  I'(A)ea+(f)Qo ea+(f'Qo is unbounded forl l , / l l  11,  
large a and f with 1 1  Af l l / l l  f 1 1  M 1 1  A 11, where such an f is guaranteed by 
the  spectral theorem if A is self-adjoint. If A is not self-adjoint we obtain 
the same conclusion from the identity I'(A*A) = I'(A*)I'(A). It is worth 
pointing out t h a t  I'(A) either is a contraction or is unbounded.) 

In  $ 111.2 we describe a technique for dealing with products of func- 
tions associated with nearby disjoint regions ("sandwich" and "checker- 
board" lemmas). Finally in $111.3 we discuss the  connection between the  
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hypercontractive estimates of 5 111.1 and the  mass gap for the free field. 
Since we discuss the  hypercontractivity of the  free measure, we temporarily 
suspend our proviso t ha t  space-time is two-dimensional and we let  d denote 
the number of space-time dimensions. 

The Lp-estimates of this section are fundamental to many of the  
results of this paper. We have already used hypercontractivity in 
establishing the Feynman-Kac-Nelson formula of 5 11. The estimates of 
§ 111.2 help us to  control the thermodynamic limit in § VI. As we conjec- 
tured in the  Introduction, we believe t ha t  local LP-estimates ought to  lead 
to  local LP-convergence of the  cutoff measures (11.25) (see Theorem 11.17, 
Remark 2); however our techniques are not developed to  the  point of 
displaying the cancellations between numerator and denominator which 
must occur. 

111.1 Hypercontractive Estimates. Consider the semigroup ectHo, t 2 0, 
generated by the free Hamiltonian H,with mass m >0. According to Theorem 
111.1and Proposition II.l(iii), ectHo = I'(j$j,) is a contraction from Lp(Q,) 
to LQ(Q,) provided 1 1  ect"I2 5 (p  - l)/(q - I), i.e., if ecZmt 5 (p - l)/(q - 1). 
This is the  familiar hypercontractivity of ectHo stated in the sharpest 
possible form. Similarly, E,Eo= I'(jtj$ joj$) is a contraction from Lp(Q,) 
to  LQ(QN) if (111.1) is satisfied. Now suppose tha t  t > 0 and tha t  A, c 
{(x,, . . .,2,) I x, 2 t) and A, c {x, I0). By Theorem II.4(v) 

EA,EA,= EA,(E~EO)EA, 

so tha t  by Euclidean covariance we have: 

PROPOSITION111.2. Let A, and  A, be regions i n  Rd separated by 
parallel hyperplanes a distance r apa r t  (as in Fig. 111.1). If uuj i s  XAj-
measurable, then 

(111.2) I I  UlU2 Ill 5 I 1  Ul IIP, I I  u2 llP2 

provided 

(111.3) (pl - l)(p2- 1) 2 ecZmr. 
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Remarks 1. The proposition is an improvement on Holder's inequality 
which requires (p, - l)(p, - 1) 2 1. 

2. As discussed above, the  inequality (111.2) with p, and p, close to  1 
is an  expression of the  "nearv-independence of random variables in the two 
regions. Thus we speak of the  "exponential decoupling" of distant regions. 

We wish to strengthen Proposition 111.2 so tha t  the  right side of 
(111.3) decreases exponentially with the  actual distance between the regions. 
We shall prove: 

THEOREM111.3. Let A, and  A, be regions in Rd with dist (A,, A,) = 

r 2 1 There i s  a function e(r) = O(rd-'eZm') such that, if u j  i s  XAj-
measurable, then (111.2) holds provided 

Remarks. 1. Equivalently, we can formulate the  theorem by stating 
t ha t  the product of projections EA,EA,is a contraction from LP1 to  Lpi. 

2. Since the  usual L P  inequalities (Minkowski, Holder) and the  basic 
hypercontractivity theorem remain valid for conditional expectations, this 
estimate and the others of this section hold in terms of conditional expecta- 
tions. Thus, given a o-algebra C, generated by a subspace A of N, we 
have, under the hypotheses of the theorem, 

almost everywhere. 
3. We have restricted ourselves to the  case of large separation 

between the regions because i t  is for this case tha t  we use the  theorem 
(see 5 VI). However by techniques of E. Stein (private communication) i t  
is possible to prove the theorem for small r with 

e(r) 5 1- const. r 

as r -0 (see the proof of Lemma 11.35). 
4. The r-dependence of the decrease function e(r) is undoubtedly not 

the best possible. For instance, the  factor rd-'can probably be eliminated. 
On the basis of Proposition 111.2 i t  is tempting to  conjecture tha t  e(r) = 

e - 2 m ~  is possible. This is t rue  for convex regions bu t  false for general 
regions as  the following example (generalizing a suggestion of Nelson's) 
shows: 

Example. Let A, c R2 consist of the n lines x, = 0, x, = 2r, . . .,x, = 
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2(n - l ) r ,  and let  A, consist of the  n lines x, = r ,  ...,x, = (2n - 1)r. In  
terms of the function f E F to be determined below, we define u, = Cyrolf,, 
and u, = C:=,f,,-, where f, is shorthand for the translate jiVfof jof. 
Clearly u, E N is EAi-measurable for i = 1, 2. A simple calculation based 
on Proposition II.l(iii) yields 

and 

We choose f to be concentrated near the maximum of the self-adjoint 
operator e-5 with (f, f )  = 1 so t ha t  (f, e-"pf )  g e-am. Then (u,, u,) 2 
(2n - l)ec'" and (u,, u,) = (u,, u,) g n + O(ecPm). Consequently for large 
n and r we have 

and we conclude t ha t  1 1  e,,e,, II 2 2ecm'. Since the one-particle condition 
(111.1) is necessary for hypercontractivity we see t ha t  for general regions 
we cannot hope to  do better than e(r) = 4ec2"' in Theorem 111.3. However, 
a s  we point out before Lemma III.5B, we can take e(r) = const. ec2"' if one 
of the regions is bounded, where the constant depends linearly on the 
volume of the bounded region. 

5. For regions of special shape one can often do better than e-'"' a t  
infinity. For example, if A, and A, are concentric spheres of radius r , ,  r,, 
one can compute 1 1  e,,e,, 1 1  explicitly in terms of Bessel functions: for d = 2 
and r, fixed, one finds O((1ogr,)-le-"'2) behaviour as  r, --.m .  

6. If m = 0 there is no hypercontractivity between planar regions. 
But if d > 2 there can be hypercontractivity for some regions; e.g., if 
d = 3 and A,, A, are concentric spheres of radius r,,  r,, then 1 1  enlen, 1 1  = 

min (~1 ,r,)/max (~1 ,r2). 

As in the case of Proposition 111.2, Theorem 111.3 follows from Theorem 
111.1and the following single particle result: 

LEMMA111.4. Suppose f,(z) and  f,(x) in Ndhave support in regions A, 
and A, separated by a distance r. If r I1there i s  a constant c independent 
of r ,  A, and  A, such that 

(111.5) I (f,, f,) I 5 ~r (~ - l~ ' " "e-"'IIfl l l . l l f 2  1 1  
Remarks. 1. Estimates like (111.5) have been established for d = 1by 

Simon [99] and Osterwalder-Schrader [72]. 
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2. On the basis of the  above example we expect t h a t  (111.5) holds with 
the  replacement of ~ r ' ~ - ' ) i ~by 2. 

3. For mall r ,  (I(f1, f2)  I)/(llfll l .  l l f 2  l l )  2 1- const. r. 

Proof. Let A'") = {x I dist (x, A) 5 a). For j= 1, 2, choose C j  e C"(Rd) 
to  satisfy Cj = 1on Aj, supp Cj cA:.'/3), and 1 1  DNCj11, bounded independently 
of A,, A, where D" is any derivative of order a. For instance, take C j  = 

C*vj where C e C," is nonnegative with S C = 1and supp C c {x I I x I < 1/91, 
and where vj  is continuous with vj  = 1 on A:,'i9),v j  = 0 off A:,"/9), and 
1 1  v j  11, S 1. We regard Cj a s  a multiplication operator. Defining g j  = p-'fj, 
we have p-'Cjpgj = g j  so t h a t  

where A = p<,,~-~C,p,and the  inner product and norms on the left  are in 
N (see 11.6) and those on the  r ight  are the  ordinary Lebesgue ones. There-
fore to prove the  lemma i t  is sufficient to  estimate the  operator norm of A 
on L(Rd) by 

Now the commutator 

where (AC), (VC) represent multiplication by AC and VC; hence 

Since p-'V is a bounded operator and the supports of 8, and C2 are separated 
by a distance d - 113, the  estimate (111.6) is a consequence of the  following 
lemma. 

LEMMAIII.5A. Suppose 7, a n d  7, in L"(Rd) have supports separated 
by a distance r 2 1. Then there i s  a constant a independent of r such that 

where 1 1  . 1 1  i s  the operator norm on L2. 

Proof. An operator A with kernel a(x, y) can be estimated by 

since by Schwarz' inequality 
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Now in configuration space p-' is given by convolution with the kernel 
k(x) = (2n)-d/2(m/lx l)(d121-'~(d/21-1(m I x I) where K, is the modified Bessel func-

tion [23, p. 2881. It follows t ha t  for lx 1 2 1 there is a constant b such 
tha t  

Thus the  kernel of 7,7,p-9,, a(x, y) = ~,(x)k(x- y)v,(y), can be dominated by 

eI a(x, y) I 5 b I I  0, I I ,  I I  7, I I ,  I x - Y I - ' d - 1 ) ' 2  - m 2 - y l  

Theref ore 

and similarly for I a(x, y) I dx. The lemma now follows from (111.7).J 
This completes the proof of Theorem 111.3. In  the case where one of 

the  regions, say A,, is bounded, we can similarly estimate the Hilbert-
Schmidt norm, 

In  particular, we can choose e(r) = const. e-2m'; we also obtain: 

LEMMAIII.5B. Let A,, A, cRd have separation distance r 2 1 and  
suppose that A, is bounded. Then there is a constant c independent of 
A,, A,, r such that 

The single-particle estimate of Lemma 111.4, 1 1  eAleA,1 1 '  5 e(r), where 
r = dist (A,, A,) 2 1, clearly implies t ha t  

(111.8) I I  En,En,v 11;  5 e(r) I l  v 11; 
provided t ha t  (o,,v) = [ vdp. = 0. This observation leads to  the  asymptotic 

J 
constancy of the  projection onto a distant region: 

THEOREM111.6. Let A, and  A, be two regions in Rd with r = 

dist (A,, A,) 2 1, and  let u 2 0 be En,-measurable. Then 
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Remark. If u were constant then of course we would have 1 1  u 11, /11 u I l l =  
1 1  E A u  1 1 , / 1 1  E A u  1 1 ,  = 1. Thus the theorem expresses the fact tha t  the pro-
jection of u onto a distant region is almost constant, with the approach to 
a constant being exponential. 

Proof. We write u = 1 1  u 1 1 ,  + v where v l  w, since u 2 0. Since 

1 1  E A z u  111 = ( ~ 0 ,EA~u)= (WO,U) = 1 1  111, 

I I  E A , ~I I ;  = I l  u l l ?  + I I  E A , ~1 1 ;  5 I l  u l l ?  + e(r) I l  v lli 
= I l  u 1 1 :  + e(r)[ll u IIi - I l  u llT1 

by (111.8). Dividing by 1 1  u 11; yields the theorem. 

111.2 Sandwich and Checkerboard Estimates. As we saw in the previous 
section the product EAIEA,is increasingly hypercontractive as dist (A,, A,) 
increases. We next extend this result to: 

THEOREM111.7 ("Sandwich Estimate"). Consider four parallel hyper-
planes n,, a,, a,, n,in Rd a t  distances a ,  1, a ,  and denote the region between 
a, and a, by A. If u is XA-measurableand 

then there is a p 5 m such that 

Remark. Here 1 1  A I l P , ,  is the norm of the operator A as a map from 
Lp(Q)to Lq(Q), and q' is the index conjugate to q; i.e., q' - 1= l/(q - 1). 

Proof. By the Markov property, 

I I  E",uE",I l P A  = I I  En,E:,uE:,E=, I l P A  

2 I 1  E a 2 E z 2  lip,? I 1  E o l ~ E o 2llr.8 I 1  E x l E o l  118,q 

5 I I  EaluEo2Ilr.8 

if 

(111.9) (p - 1 )  - 1) = e m, (s - l)/(q - 1) = e-,"" , 
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by Proposition 111.2. But if vj  is ~u,-measurable, 

2 I l  u l l ,  SUP 1 1  I l , ,  5 1 1  1 1 ,
l l  v1 I t , ,  1 1  v2 Ils 

(by Hilder) 

(111.10) (rt/,6?' - l)(s/,6?' - 1) = ecZmz, 
again by Proposition 111.2. 

Eliminating r and s from (111.9) and (III.10), and solving the resulting 
quadratic equation yields 

(111.11) 2bc + b + c + [(b - c)' + 4(b + I)(C+ 1)e-~"~]'1~
P = 2(bc - eWZm1) 

where b = (p - l)eZma,c = (q' - l)eZma. C] 
As an immediate consequence we obtain the hypercontractivity of the 

semigroup eWtH'O)tha t  we used in 8 11.3: 

COROLLARY111.8. The semigroup defined i n  (II.30), Ut = J,*F,,,,,J0, is  
bounded from Lp(Q,,) to Lq(QF1)provided that (p - l)/(q - 1) > e-2"t. 

Proof. Note tha t  Ut = J,*E,F,o,t,EoJoand tha t  F,,,,,E n,,, L p  by 
Theorem 11.10 (iii). 

If we isolate the norm of e-tHH),1 1  ItII,,,, we obtain: 

COROLLARY111.9. Consider the P(g), Hamiltonian H(g) = Ho+ H,(g) 
with the standard hgpotheses ( P  semibounded and g E L1 + L1+'). Then for 
any  P > 2, 

provided t 2 m-' In P/(P - 2). 

Remark. We gave a Fock space proof of this estimate in [42] using the 
Stein Interpolation Theorem, while in [43] we proved a stronger result (at 
least for some p )  for general hypercontractive semigroups; namely, we 
showed tha t  the bound (111.12) holds for ,B > 1, provided t 2 4 In 3/m(p-1). 

Of course a sandwich theorem can also be stated for general regions in 
terms of the decrease function e(r); for example: 

THEOREM111.10. Suppose Rd is  expressed a s  the disjoint union 
A, U A, U A where 1 = dist (A,, A,) 2 1. If u is  E,-measurable and  
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then there is a p 5 such that 

1 1  E ~ 1 u E ~ 2l l P ,  5 1 1  l l f  

Remark. The index p is given by formula (111.11) with the replacement 
e - ' " L  e(1). 

In § VI, in our discussion of the thermodynamic limit for the entropy, 
we shall deal with the integrals of products of functions associated with 
adjacent rectangles. The following two estimates for such integrals are 
abstractions of methods used in [42]: 

LEMMA111.11. Consider a family of parallel hyperplanes nl, . , n,,,, 
with dist (T ,~ -~ ,nSj)= 1, dist ( z ,~ -~ ,n3j-1)= dist (TC,~,7t3j+l)= a ,  and let Aj be 
the region between n3j-1 and n3j for j = 1, . . ., n. Then if u j  is ZAj-
measurable, 

(111.13) I I  ~ 1 ~ 2. un Ill 5 IIyZlI I  u j  I I P  
where p = (eZma+ l)/(eZma- eCm1). 

Proof. Letting vj = I u j  I, we have by the Markov property, 

I I  u1 .. . un Ill = (a01 Vl  vnwo) 
= ( ~ 0 ,EalvlElr4.Elr4vZElr7. ~ n E a ~ , + ~ ~ o )  

5 I I  E a 3 j - Z ~ j E a 3 j + l  112,2 . 
Thus (111.13) follows from the Sandwich Estimate, Theorem 111.7. 

By induction we can extend this result to a d-dimensional array of 
rectangles: 

THEOREM111.12 (Checkerboard Estimate). For  each i = 1, a ,  d let 
{ T ~ ) ) ~ = ~ , . . . ~ ~ ~ + ~be a family of parallel hyperplanes with separation para-
meters a, and li as  i n  Lemma 111.11. Assume that these d families are 
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orthogonal to one another and let {A,} be the nl x . . x n, a r r ay  of hyper-
rectangles with sides of length l,, ...,1, formed by these planes. Then if 
u, is  C.,u-measurable, 

(111.14) I I  n,u, I l l  5 neI I  u, I l f , . . . ~ ,  

where p, = (eZmai+ l)/(ehai - e-m"). 

Next we prove the LP-estimate mentioned in Remark 3 following 
Theorem 11.10. Actually this estimate does not directly use hyper-
contractivity but  only the estimate [43], 

Here a , ( ~ )= -limg,, E(Xg)/l supp g I is the vacuum energy per unit 
volume for the P($), theory [41]. 

LEMMA111.13. Let g E L1n L1+'(R", P be a semibounded polynomial, 

and define U(g) = 1 :P($(x)):g(x)d2xoo. Then for p < 

(111.16) I I  e - r (g) ;~~ps exp (P-1 5 am(pg(x))d2x). 
Proof. We approximate g by nonnegative functions g, in L1n L1+'(R2) 

of the form 

gn(x) = C;:-,i hj(x l )~t j /n, i j+ l ) /n1(2?) 

such tha t  g,--+g in L1+' with sup llg, I l l  < w .  By Corollary 11.12 i t  is 
sufficient to prove (111.16) for such g,. 

But by Theorem 11.16, 
n21 1  e-crgn)1 1 ;  = (Qo,nj=-n2e-Hj/nQO) 

where Hj = Ho+ pH,(hj). Since 1 1  ecHj1 1  = e-"(phj), 
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= exp (\ am(pg.(x))d~) 

Remark. From the bounds a,(h) S C,h2 and am(h)5 Czkl+'1431, we 
see tha t  the Lemma, and thus Theorem 11.10, extend to the case Q E L" L1+e, 
g 2 0. 

We conclude this section with a note about a technical condition of 
Osterwalder and Schrader 1721. They isolated two properties of the ground 
state energy E(g) of a spatially cutoff Hamiltonian H(g) which would 
imply the convergence of E(g)/(suppg 1, the energy per unit volume. 
These two properties (called P and S) correspond to the monotonicity and 
subadditivity properties, respectively, which occur in statistical mechanics 
in the proof of the convergence of the entropy per unit volume (see $ VI). 
The subadditivity property S can be stated as follows: 

There is a decrease function p: 12, m) -R+ with lim,,, p(x) = 0 such 
that, for any finite set of intervals {Ii}in R with r = min dist (Ii, Ii) 2 2, we 
have 

where 0 S g,(x) S 1is supported in I$. 
Osterwalder and Schrader succeeded in proving (S) only for the 

analogue of the P($),theory where H, is replaced by the number operator 
N (by methods similar to our proof of Lemma 111.4). Although Guerra [41] 
subsequently gave a simple proof of the convergence of the energy per 
unit volume for P($),that avoided properties (P) and (S), we wish to point 
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out here that one can proceed to this result by proving (S) by means of 
the above estimates: Thus consider a set of intervals {I,) with r = 
min dist (I,, I j)  2 2. Define R, to be the rectangle with base I,and height 
T, and A, to be the rectangle formed by putting a border of width r/2 
around R,. 

Let g = Zg, and X, be the characteristic function of the interval [0, TI. 
By Feynman-Kac-Nelson, 

(111.17) -E(g) = limT,, T-1 In 1 1  e - L ' ( g % ~ )  111 . 
But by the argument of Lemma 111.11 

(111.18) 1 1  e-rlgx~) 5 Hi 1 1  e- r l g i ~ ~ )I l l  1 l p  
where p E p(r) = (emr+ l)/(emr- 1) is a decreasing function of r. 

Since In 1 1  f 1 I l l =  is convex in a E [0, 11 [17, p. 5241, 

for 15 p 5 q. Choosing q = p(2), we deduce from (111.18) and (111.19) that 

In 1 1  e-U(gX~)11, 2 a ( r )  xiIn 1 1  e-"(giX~) In 1 1  e-"lgiX~)11, + const. ecmr Ed I ~ P ( z )  
where a ( r )  = (q - p)/p(q - 1)<1. Therefore by (111.17) and Lemma 111.13, 

which is a stronger result than (S). 

111.3. Hypercontractivity and the Mass Gap. In this subsection we 
wish to point out that hypercontractivity of the measure (as proved for 
the free measure in § 111.1) implies a mass gap in the theory: 

THEOREM111.14. Let (#, Q, 2, p) be a Euclidean Markov jield theory 
satisfying Nelson's axioms of 8 11.2. Suppose that p is hypercontractive 
with respect to hyperplanes; i.e., if u, and  u, are  supported i n  regions A, 
and A, separated by parallel hyperplanes a distance r apart ,  then 1 1  u,u, / I ,  5 
11 u, I I p ,  1 1  u, II,, provided (p, - l)(p, - 1) 2 e-"1' for some constant m, >0. 
Then the Hamiltonian H (cf. Theorem 11.7) has a spectral gap AE above its 
vacuum energy satisfying AE 2 m, 

Remarks 1. By 1 1  u 1 1 ,  we mean, of course, [\1 u 1' d , ~ ] ' ~. 
2. It is sufficient to assume only a little bit of hypercontractivity; 

namely, for some r,, p,, p, with (p, - l)(p, - 1) < 1, we have 1 1  u,u, 11, d 
1 1  U, I I p ,  1 1  U, ] I p ,  whenever supp u, and supp u, are separated by hyperplanes a 
distance r, apart. For it follows that e-'oH is a contraction from Lpl(Q,) to 

Lpi(Q,) and, by convexity and the fact that e-tH is a contraction on L", 



188 F. GUERRA, L. ROSEN, A N D  B. SIMON 

that  e-"'aH is a contraction from Lpl to Lqwhere q = p,(p:/p,)". In this way 
we can recover the exponential hypercontractivity in the hypothesis of the 
theorem. 

3. Note the special significance of hypercontractivity for planar regions 
for the existence of a mass gap (see Remark 6 after Theorem 111.3). 

Proof. As in Theorem 11.7, let E, be the projection in L2(Q,dp) onto the 
"time-zero" Hilbert space X, let U(t) be the unitary operator giving trans-
lation in the "time" direction, and let Q = E,1 be the unique vacuum vector 

for H. Write (u) -= udp. Then the subspace {Q}' in X is spanned byS 
vectors of the form ?;r = u - (u), u E Ran E,. Thus the gap 

1A E  = -sup+_, lim,,, -
t log [(+, e-tHlk)/ll \ I 2 ]  

(111.20) 
- 1 (aU(t)u> - I (u) l 2  - -sup,,...., lim,,, - log

t ( I  u I" - I (u> l 2  . 
We wish to show that the ratio in (111.20) can be dominated by 

const. e-"lt. First we remark that it is sufficient to consider real u. For if 
u = v + iw where v and w are real, then the ratio is 

where we have used reflection invariance (Proposition II.2(i)) to eliminate 
the cross term i(v Uw) - i(w Uv). Secondly, we need only consider u 2 0 
so that (u) = 1 1  u (I,, for numerator and denominator in (111.20) are invariant 
under the translation u -+u  + c .  Now let p = 1+ e-"lt. By hyper-
contractivity and translation invariance 

(u U(t)u) 5 1 1  u / I p  1 1  U(t)u ] I P 8  = 1 1  u 11; 5 1 1  u l/ ;4 -2p"p  1 1  u ll:(p-l"p) 
by (111.19). Thus 

where x = (11u 1 1 2 / 1 1  u 2 1. Now it is easy to see that  the function f (x) is 
a decreasing function of x for x 2 1 and that  its maximum a t  x = 1 is 
2(p - l)/p. Therefore the ratio in (111.20) can be dominated by 2e-"lt x 
(1 + e-"lt)-'. This proves the theorem. 

Theorem 111.14 suggests that  it might be possible to show the existence 
of a mass gap by proving that the interacting measure dv, of (11.25) is 
hypercontractive, uniformly in g. This seems to be a difficult question 
whose appeal is diminished by the following example of Nelson's of a 
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semigroup with a mass gap that does not enjoy hypercontractive pro-
perties: 

Example. Consider the operator Pt  defined on LYM, dp), where M is 
a probability measure space, by 

It is easy to check that Pt  defines a self-adjoint semigroup whose generator 
has spectrum {0, m}. But clearly Pt does not improve L P  properties off. 




