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Part I1 

I\'. Lattice Markov fields 

To date in constructive field theory, two types of ultraviolet cutoffs 
have been used [32]: 

1) A smeared field, i.e., g(x) is replaced by $,(x) = \ h(x - y)$(y)dy, 

where h is some smooth positive approximation to the delta function; 
2) Box and sharp momentum cutoff, i.e., g(x) is replaced by the periodic 

field Q ~ , ~ ( X ) ,  which is obtained by approximating the Fourier integral 
defining g(x) by a finite Fourier sum. 

In  this section we wish to introduce a new cutoff method in which Rd 
(space-imaginary time) is replaced by a lattice and the Laplacian A in the 
Euclidean propagator is approximated by a finite difference operator. The 
effect of this approximation is to replace the measure (11.25) by a perturbed 
Gaussian measure in a finite number of variables, q,, . . . ,q,, each associated 
with a lattice point: 

where the P, are semibounded polynomials and B is a positive-definite 
N x N matrix with nonpositive off-diagonal entries. There are two main 
advantages to this approximation which play a key role in our proof of 
correlation inequalities ( 5  V): First, i t  is locality preserving in the sense 
that  U(g) is approximated by a sum C P,(q,) in which each term involves 
the field q, a t  only a single lattice point. Secondly, the Gaussian exponential 
e-1/2G~;  provides a direct analogy with the ferromagnetic Ising model. More-

over the field theory on the lattice satisfies the Markov property. 
Lattice cutoff fields have been previously discussed (but for time-zero 

Hamiltonian theories) by Wentzel [I151 and Schiff [87]. 
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IV.l. The Lattice Approximation. Although the lattice approximation 
for the free theory makes sense for a n  arbitrary number of dimensions, we 
shall take d = 2. Let 6 > 0 be the  spacing parameter for the lattice L,  = 
(n6 I n = (n,, n,) E Z2} in R2. Our definition of the lattice cutoff field $,(n) is 
motivated by the following observation of Nelson (private communication): 
If we view $(x) as  a continuum labelled (formal) family of Gaussian random 

variables, the  joint covariance "matrix", J i(z)$(g)dpo, is just the integral 

kernel of (-A + m2)-' (cf. (11.8)). Recall that  in the formula for  the joint 
density of a family of Gaussian random variables, 

(IV.2) f (q,, . . ., q,,.) 1 C [-'I2 exp 1-- (q1 - m) . C-'(q - m)1,= (2~)-'I2 	 -
2 

i t  is the inverse of the covariance matrix, Cjic = Cov (qj, q,), which appears 
in the exponent; here, m j  = E(q,) and I CI = det C. Thus, formally, the 
free field measure is e - ' ~ " + ~ " ~ d $  + m2). From where A is the operator (-A 
a formal point of view, -A is positive on-diagonal and negative infinitesi- 
mally off-diagonal, as is evident from the finite difference approximation 
to -A: 

(IV.3) (- Aaf)(%a)= a-2[4f -z.,-,=,f (nf6)1 

where we norm Z2 by I (nt,  n2) I = I n l  I + I n 2I SO that  the  sum over n' E Z2 
takes place over the 4 nearest neighbours of n .  

We now convert the above heuristic discussion to a precise one. Con-
sider the Fourier transform from 12(Z2) to L2([-x/6, x/6J2) defined by 

(IV.4) 	 h"(k) = -a 
z2 h(n)e-ik.nazne . 

2K 

If we regard A = (-A, + my as an  operator on 12(Z2) by means of (IV.3), 
then we see i t  is a convolution operator (Ah)(n) = C a(n - nf)h(n'), where 

m2+ 4 F 2  n = (0, 0) 
(IV.5) a )  = 	 n = ( F l ,  0), (0, + I )  

otherwise . 
Therefore, i ts  image Â  on L 2  is multiplication by (2z/S)CZ(k); by a simple 
computation, 

(IV.6) 	 (2n/6)B(k) = 6-'(4 - 2 cos (6k,) - 2 cos (6k2))+ m2- pa(k)' . 
We wish the  cutoff field $,(n) to  have covariance matrix 6-%-I; i.e., 
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where means tha t  the range of integration is I k, I 5 n/S. Accordingly we 

define the lattice cutoff field g,(n) in terms of the field d(x) of (11.22) by 
$An) = O(fs,n), where 

f, Jx) = ( 2 ~ ) - ~e i k . 1 x - n 6 )J. p(k)lps(k)d2k. 
Put  differently, we have the first of the  following definitions: 

Definitions. 

(9  
(IV.8) 9,(12) = ( 2 ~ ) ~ 'eciknd[a*(k)+ a(- k)]pa(k)-ld2k. 

r I.(ii) :g:(fi): = (zn)-r 1 e-iw ~ ~ ( 3 1Cr ( 5)a*(kf11).. . a*(kbl). 3 = 0  

a ( - k'3'11). . . a(-k'") IT,pa(kz)-'dk,. 
(iii) If g E Cr(R2),then d.(g) = G2ia(n)g(n6). 
(iv) If P is a polynomial and g E C r  we set U(g) = g(x) :P(p(x)): dso,, 

a s  in 3 11, and 

(IV. 9) U8(g) = Ena2:P(gI(n)):g(nS)oo . 
The basic convergence result is: 

THEOREMIV.l. Let P be a semibounded polynomial and  let g E C,"(R2) 
be nonnegative. Then, a s  6 -0, 

(1V.lOa) ddg) -d g )  , 
(IV.lob) Udg) -u(g) 9 

(1V.10~) exp ( - U.(g)) -exp ( - U(g)) 
where each of the above limits takes place i n  Lp(Q, dpo)for any p < 0 3 .  

The proof of the theorem depends on 

LEMMAIV.2. 
(i) F o r  each k E R2,ps(k)--t p(k) as  6 --t 0. 
(ii) If 1 k, 1 S z/6, p.(k)-I 5 (n/2)p(k)-l. 

Proof. From the definition (IV.6) we see that  (i) is trivial. Clearly, (ii) 
is a consequence of the  estimate 

which we prove as follows. Consider the C" function F(y) = 1- cos y -
2y2/n"n the interval [0, n]. Note that  F(0) = F ( n )  = 0, Fr(0)  = 0, and 
F"(0) > 0. Moreover Ff'(y) = cosy - 4/n2 has exactly one zero in [0, n]. 
Since F" must vanish between zeros of F' and since Fr(0) = 0, F' can 
vanish a t  most once in (0, n). Therefore F does not vanish in (0, n). But 
F(y)  > 0 for small y, and so F(y)  2 0. 
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By Lemma IV.2(ii), Theorem IV.1 is a consequence of an extended con-
ditioning convergence theorem (see the remark af ter  Theorem 11.23). We 
prefer a direct proof: 

Proof of Theorem IV.l. 
(a), (b) Since, for varying 6, the vectors U,(g) have a fixed finite 

number of particles, i t  is sufficient by (11.23) to prove L2-convergence. 
The L2-convergenceof the relevant kernels follows from Lemma IV.2 and 
the dominated convergence theorem. 

(c) By mimicking the proof of Theorem 11.10 that  ecr(" E L p  and by 
using the uniform bound of Lemma IV.2(ii), we see t ha t  exp ( - U,(g)) is 
uniformly bounded in Lp. 
The convergence thus  follows from (b), the estimate (II.24), and Hijlder's 
inequality. 

The lattice cutoff (smeared) Schwinger functions are defined by 

where hj E C,". As an  immediate consequence of Theorem IV.l, we deduce: 

COROLLARYIV.3. Let h,, ...,h, E C,"(R2). As 6 -+ 0, 

Sr,a(h,, ...,h,) -Sg(h,, ...,h,) . 
IV.2. Properties of the Lattice Theory. In  this section we investigate 

the properties of the lattice approximation, and in particular show that  the 
measure reduces to the form (IV.l). To this end, note that  in the expression 
(IV.12) for the lattice cutoff Schwinger function, only a finite number of 
Gaussian random variables are involved, namely the fields q, = $,(n)= 
$(fa,,) for n6 E A, - L, n A, where A = supp g u supp h, u supp h,. Thus 
by (IV.2) and the definition of the measure dpo, the numerator in (IV.12) 
reduces to a sum of terms of the form 

where N = I A, 1, the number of points in A,, and C is the N x N covariance 
matrix of the 9's. The same conclusion holds for the denominator of 
(IV.12), and, more generally, for any expectation 
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where F is a function on R'. 
Now we constructed the  lattice cutoff field so t h a t  its covariance matrix 

gives rise to an  operator C on l2 whose inverse C-' = 6 3  has particularly 
simple matrix elements (see (IV.5)). I n  fact, by (IV.5) and (IV.6), A €  M, 
and C E  K, where we define: 

Definitions. Let M, denote the class of positive invertible operators 
on l2 with nonpositive off-diagonal entries. Let K, = {C IC-' E M,}. 

These classes of infinite matrices have rather interesting properties 
some of which are established in Appendix A. I n  particular, Theorem A.2 
shows that  any finite submatrix of C EK, retains the property tha t  i ts  
inverse is a positive definite matrix with nonpositive off-diagonal entries. 
We summarize these facts about C: 

THEOREMIV.4. 
(i) The covariance matrix (IV.15) defines a bounded, positive, invertible 

operator C on 12(Z2). 
(ii) C-' = a2A has nonpositive of-diagonal matrix elements (see (IV.5)); 

i.e., C E K,. 
(iii) Let S be a finite subset of Z2 and  let D be the matrix (C,,,),,,,,,. 

Then D is  strictly positive-definite and D-' i s  a positive-definite matr ix  
with nonpositive of-diagonal entries. 

If for a fixed 6 > 0 we are dealing only with the lattice fields in a 
bounded region A, let us denote the (finite) covariance matrix of these 
fields by Cn (and similarly for  submatrices of the operator A). According 
to the above discussion, Theorem IV.4(iii) shows tha t  in expectations of 
the form (IV.14) the measure reduces to the form (IV.l) where B = (Cn)-' 
is a positive-definite matrix with nonpositive of-diagonal entries. Although 
this conclusion is sufficient for the purposes of the next section, we can go 
fur ther  in determining (Cn)-'. Of course, (Cn)-' # a2An; but, a s  we show 
in Theorem IV.7 below, 
(IV.16) a-z(cA)-l = An - B an 

where the matrix BaA is "concentrated on the boundary of A,". By this we 
mean the following: Given a set A c R2 with i ts  enclosed lattice points A,, 
we make these definitions: 

Dejinitions. 
(i) hixt= L,\A,. 
(ii) AFt = ( n 6 ~A, I m6 E A, if Im - n I = I}. 
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(iii) The boundary ah, = Aa\APt. 

(iv) PAis the projection in Z2(Z" onto sequences a such that  a, = 0 if 
n6 @ A. 

We say tha t  a n  operator B is concentrated on the set A if B = PABPA, 
and similarly for a matrix B,  where we identify PAwith its restriction to 
the finite-dimensional subspace of Z2 on which the matrix acts. I n  addition 
we identify CA with PACPA. 

The relation (IV.16) turns  out to be connected with the lattice Markov 
property (see Theorem IV.8 below) and will be useful in understanding the 
results of the following sections. The basic idea in the proof of (IV.16) is 
that  (CA)-I can be calculated from 

(IV.17) PCA= lim,,, PA(AR)-'PA. 
To prove (IV.17) we first note: 

LEMMAIV.5. F o r  some a > 0, C,,, = O(e-"I"-"'I). 

Proof. It is sufficient to  show tha t  C,, decreases exponentially in n, >0, 
uniformly in n,. From (IV.7) and the definition (IV.15), 

For fixed k,, p,(k)-Vs an  analytic function of k, in the strip -2n/6 < 
Re k, < 21116 except a t  the two zeros of p,(k) = 0, i.e., a t  k, = Fin(k2), 
where by an  elementary computation, K 2 6-I log (1 + m2a2). Therefore by 
the  Cauchy integral theorem, the integral in k, along the line segment [-n/6, 
n/6] is the same as  the integral along [(-n + ia)/6, (n + ia)/6] for any 
0 < a < K, since the integrals over the other two sides of the rectangle 
cancel by periodicity. Thus the integral over k, is O(e-""l), uniformly 
in k,. 17 

LEMMAIV.6. If A c R 2  is  a fixed bounded region then, a s  the regions R 
go to infiwity, (IV.17) holds. 

Proof. Define the  operator B = P,AP,, + P,,AP,, where 8' is the  
complement of R. Then we have A - B = AR@ AX'. From (IV.6) we note 
the  bounds m" A A 886-"+ m2, so t h a t  A, AX, AR' and B are bounded and 
the  first three have bounded inverses (all bounds uniform in R). Therefore 

(A - B)-' = (AR)-'@ (AR')-I. 
Assuming t h a t  A c R we have P,(AR)-I = 0 and so 

P,(A~)-~P,,= P,(A - B)-~P., = P,,(A-~+ (A - B)-~BA-~)P., 

= 6'C.l + 62P,,(AX)-'BCP,,. 
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But since A has matrix elements only between nearest neighbours, B is 
concentrated on the set R, = o7R, U o7Rl. From the previous lemma and the  
uniform bounds on (AR)-' and B we thus  conclude t ha t  

P,,(AR)-'P, = 6"" + O(exp[-a dist(R,, A)]) 

and (IV.17) follows. 

We then obtain this improvement of Theorem IV.4 (iii): 

THEOREMIV.7. If A c R 2is a bounded region, then (Cn)-' = a2(An- Ban), 
where BaAis a positive semi-definite matrix with nonnegative elements that 
i s  concentrated on the boundary ah,. 

Proof. Let M = 1 A,/ and N = I Rnl. We determine (CA)-' by formula 
(IV.2), i.e., as the matrix in the exponential of the density function for the 
Gaussian random variables on the  lattice A,: 

where 726, n'6 E A,. On the other hand by Lemma IV.6 we also have 

where we have again used (IV.2). Now suppose t ha t  for a fixed R 3A we 
integrate out the variables in R\A in the integral in (IV.19). Denote the 
resulting matrix in the Gaussian by A;, i.e., 

where qRstands for the  variables on R,. It is obvious from the definition 
(IV.20) tha t  A;Z is a positive definite matrix with 

(IV.21) inf o(Ai) 1inf o(AR). 
We claim tha t  the matrix BL = An - A$ is a positive semi-definite 

matrix with nonnegative elements tha t  is concentrated on the boundary ah,. 
Since we are assured by Lemma IV.6 tha t  the limit in (IV.19) exists for all 
n, n' in 6-'Aa, we see from (IV.18)-(IV.20) t ha t  these properties of B,", yield 
the theorem. The claim is proved by induction on the  number of variables 
in R\A. What is the effect of integrating out a single variable q in a Gaussian 
integral? If the terms involving q are of the form exp(-(c/2)q2 - q C a,q,), 
then integrating out q leaves a factor const. exp[l/2c(C a,q,)2]. Thus as 
each variable in R\A is integrated out, more couplings are introduced for the  
remaining variables. However, since AR couples only nearest neighbours, 
the variables in Ctare not coupled to the  variables in A;xt, and integrating 
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out variables in A;xt cannot affect the  terms involving variables in Apt. 
Clearly, then, B& is always concentrated on ah.. As for the sign of B&, 
note tha t  each integration modifies the positive-definite quadratic form in 
the remaining variables by subtracting a term of the form 1/2c(T;:~ , q , ) ~in 
which, we claim, all the coefficients are nonnegative. The reason is tha t  c is 
always positive, since by (IV.21) the  quadratic form remains positive-definite 
after each integration, and the  am'salways have the same sign, namely, 
negative. For, from the definition (IV.5) of AR, the couplings s t a r t  out 
nonpositive and each integration only decreases them. 

Example. To illustrate the theorem, we can explicitly calculate (CA)-I 
and BaAwhen d = 1. In one dimension, A = (-Ad + m2)has matrix elements 
A,,, = m2+ 26P E a, when n = n', A,,, = --ap2 - -al when n = n ' t  1, 
and A,,, = 0 otherwise. In  momentum space A is multiplication by , ~ . ( k ) ~= 

m2+ 2F2(1- cos k6). The matrix elements of the covariance operator, 
Cl,, = (zn)-l eik8(m-m' )5. p,(k)-Vk, can be evaluated by contour integration and 

we find 

where x is the  solution of alxL a,x + a, = 0 in 0 < x < 1, i.e., x = 

[(I+ ( m ~ ? / 2 ) ~ ) ~ ' ~- m6/2I2. Note t ha t  C,,, decreases exponentially with 
1 %  - n'l. 

Let A = (0, Ma] so tha t  Ad = {a, 26, a ,  Ma) and ah, = 16, Ma}. From 
the definition (IV.22) we can readily compute (Cn)-', and we obtain 

Thus we see tha t  6-'(CA)-' = An - Ban, where 

Remarks 1. The main point of Theorem IV.7 is tha t  even in a bounded 
region, the  measure still couples only nearest neighbours, except for the 
boundary variables. 
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2. The role of the  boundary matrix BaA is to  adjust  the  boundary 
condition associated with the  (finite difference) Laplacian. Thus, if to  the  
M = j Adj Gaussian random variables on the  lattice As we associate the  
measure const. e-'~2q"CA'-'qd~'fq, boundary conditions; we are taking "free" 
on the  other hand, i t  is heuristically reasonable t h a t  the  measure 
const. e(-'J2'"q.AAqd"q gives Dirichlet B.C. since the  effect of the  AAis toignore 
the  variables just outside A, in the  definition of the  finite difference approxi- 
mation t o  - A .  We return to  this question and the  related convergence 
theorem in $ IV.3. Similarly we expect t h a t  arbitrary B.C. may be obtained 
by an  appropriate choice of boundary matrix. 

3. The assertions about the  sign and semi-definiteness of B,, also follow 
from the  method of Appendix A (see the  remark after  Theorem A.2). The 
semi-definiteness, which can be expressed as %'(AA)-' S CA, is the  lattice 
version of the  positive-definiteness relationship between Dirichlet and free 
B.C. noted in $11. The significance of the  sign of BaAwill become clear in 
$ V when we show by correlation inequalities t h a t  the  free Schwinger func- 
tions are greater than the  Dirichlet Schwinger functions. 

4. The fact  t h a t  the  influence of the  variables in MXtcan be fel t  by 
the  variables in A only on dA is of course an  expression of the  Markov pro- 
perty of the  free field theory. I n  $ VII we re turn  to  this idea of boundary 
terms in our discussion of equilibrium equations. 

Finally, we discuss the  Markov property for the  lattice theory. In  the  
continuous case the  Markov property amounts to  a statement of the  fact  
t h a t  (-A + m" is a local operator (see the  proof of Proposition 11.3). In  
the  lattice case the  corresponding fac t  is t h a t  the  finite difference operator 
A = (-A, + m2) couples nearest neighbours only. An abstract discussion 
of the  lattice theory and i ts  Markov property proceeds just as in $ 11.1. I n  
fact  the  lattice theory is just  a sub-theory of the  continuous one: The single- 
particle Hilbert space N, consists of sequences a on the  lattice L, with inner 
product 

If we identify a with the  function f(x) = ~ ~ f ~ , ~ ( x )En we have an isometric 
imbedding N, cN. On the  associated Q-space, Q, -Q,,, the  Markov property 
takes the  usual form: We define e,, to be the  projection in N, onto sequences 
supported in R,, and E,, t o  be r(eR,). Then 

THEOREMIV.8. If R and  S are  closed disjoint regions in R" then 

(IV.24) ER,Es,= E a R , E s ,  . 



200 F. GUERRA, L. ROSEN, AND B. SIMON 

Proof 1. The proof of (IV.24) reduces to the corresponding single parti-
cle relation which we verify as in Proposition 11.3: For any a e Ran es,, we 
must show tha t  e,,a is supported on dR,, or equivalently t ha t  C n ( G ) n b n=0 
for all finite sequences b supported in Rpt. But 

where e,,Ab = Ab since A couples only nearest neighbours. 

Proof 2. ~ u ta more concrete version of (IV.24) is a t  hand (at  least for 
bounded regions) since the lattice approximation has provided a concrete 
representation of Q,. Thus if F is a function of the random variables qS on 
S,, the projection ER,Fis defined by the identity 

for all G e C,"(RlR"). But by Theorem IV.7, (CJ'-s)-l does not couple any of 
the  variables in RPt to  variables in S,. Therefore, upon integrating over 
dqs on the right hand side, we see tha t  ER,Fis a function only of the vari-
ables in dR,. 

As for the interacting theory, i t  is clear from (IV.13) tha t  the inter-
action does not destroy the Markov property since i t  does not couple different 
q's; i.e., the interaction is local: 

(IV.25) 

where the sum takes place over sites n8 e A, (A = supp g). 

I n  Theorem IV.8 we were of course considering the  lattice theory with 
free boundary conditions, i.e., the  covariance in the region A is given by CA 
where (CA)-' = P(AA- Ban), as in Theorem IV.7. However, i t  is obvious 
from the second proof of Theorem IV.8 tha t  the Markov property depends 
only on the nearest neighbour form of the  Gaussian density; hence the 
Markov property will hold for arbitrary boundary conditions; i.e., if the 
inverse of the covariance matrix has the form 8"AA - Bj,) where BjA is 
an  arbitrary matrix concentrated on ah,. Given the  lattice L,, these obser-
vations lead us to: 

Definition. In  two Euclidean space dimensions, the  polynomially inter-
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acting lattice Markov field theory with boundary condition {Ban} is defined in 
the  bounded region A c R2 by the  following measure for the  fields q, on the  
lattice As: 

here U,, is defined by (IV.25) in terms of the  given semi-bounded polynomials 
P,, N = /haI, and B is the  N x N positive definite matrix, B = 6"An - B,,) 
where An is the matrix of the  operator (IV.5) restricted to  haand BaAis 
concentrated on ah,. 

In  closing this section we remark t h a t  one can prove LKestimates (e.g., 
hypercontractivity, checkerboard = pegboard) for the  lattice theory, just 
a s  in 9 111. The hypercontractivity of projections is based on a calculation 
similar to  (IV.22). 

IV.3. Dirichlet Boundary Conditions. We now consider the  lattice 
theory with Dirichlet B.C. in more detail. Our main goal is to  verify the  
claim made in Remark 2 following Theorem IV.7 tha t  the lattice measure 
const. e'-'~"d'q~A"qdq on A.corresponds to  Dirichlet B.C. the  boundary of 
Throughout this discussion the region A will be fixed, and we shall gener- 
ally neglect attaching a subscript A to  A-dependent objects. 

As in the  continuum case the  Dirichlet field gf is obtained by "condition- 
ing on A;xt". Thus let P, be the projection orthogonal in N, (cf. (IV.23)) 
onto sequences supported in A:xt. We write gs(a) = x if a e 12(Z2) 
and we let e'"' be the  vector in I' with components e:) = ,,. 6 
 Then we have: 

Definition. On the  lattice L,, the  Dirichlet field in the  region A is given 

by 
(IV.27) gf(n) = gs((I- Ps)e(,)). 
Note tha t  if n8 @ A, then $P(n) - 0, and t h a t  if n6 e A, 

(IV.28) gf(n) = gs(n) - Erna2'gs(m) , 
where by the  Markov property the  vector a ' " '=  P,e'"' has nonzero components 
a t )only if m6 e a(A1), where h'=R2\A. The interaction U,D(g) is defined as in 
(IV.9) with the  replacement of g,(n) by $f(n). Notice tha t  since gf vanishes 

outside A, only the  values of g in A matter. 
First we verify t h a t  the  covariance matrix of the Dirichlet fields 



202 F. GUERRA, L. ROSEN, AND B. SIMON 

has boundary matrix BaA = 0: 

THEOREMIV.9. Fix 6 > 0 and A a bounded region i n  Rf Then as  
I Aa 1 X 1 A, 1 matrices, 

Proof. From the definitions (IV.29), (IV.27) and (IV.23) 

This equality holds true even if j6 @ A in which case the last expression 
vanishes; thus if k, 'i e A/6, 

since the sum over m is over m6 e a(A1),which is disjoint from A,. 

Secondly, we establish the convergence of the lattice Dirichlet theories 
(both "full" and "half") to the continuum Dirichlet theories in the same 
region. However, it is necessary to impose a regularity condition on A, as is 
shown by the following. 

Example. Let A, be the unit disk and let A, = A,\S where S is the line 
segment {(x,nx) 1 x > 0). Obviously (A,), = (A,), if 6 is rational, in which case 
the lattice Dirichlet theories agree for the two regions. On the other hand, 
there are elements in the one-particle space N of (11.6) which are supported 
in h,\A, so that the continuum Dirichlet theories differ for the two 
regions. 

Definition. Let A c R 2be open and bounded and let A' be its complement. 
We say A is regular if and only if any distribution f e N with support in A' 
is a limit (in N )  of elements in C,"(A1). 

Remark. By scaling and convolution i t  is easy to show that  A is regular 
if it is convex. 

We now state the convergence theorem for the full Dirichlet theory: 

THEOREMIV.lO. Let A be a n  open, bounded, regular region i n  R" Let 
g e C,"(R2)be nonnegative. Let $:($") denote the Dirichlet field on the lattice 
L, (respectively, continuum Dirichlet field), both i n  the region A, and let 
U,D(g) (resp. UD(g))be the corresponding interaction defined above (resp. in 
(11.63)) in terms of a fixed semibounded polynomial. Then, as  6 4 0, 
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where each of the above limits takes place in Lp(Q,dp,) for any  p < m. 

Remark. g need not have support in A; moreover only the values of g 
in A matter. Thus, for example, we can replace g with x,, the characteristic 
function of A. 

The proof of the theorem depends on 

LEMMAIV.ll. Let A be an open, bounded regular region in R2,and  let 
P be the orthogonal projectio~zin N onto tlze distributions with support i n  
A'. Then 

Remark. By the isometric imbedding of N, in N, we regard P, as  an 
operator on N; i.e., P, is the projection onto the subspace of N spanned by 

If,,, I @ A). 

Proof, Given g E C,"(R2),define g,(x) = 6' Eng(n6)fd,,(x). Then i t  is easy 
to see by Lemma IV.2 and the dominated convergence theorem tha t  g, -g 

and 

in N. Suppose tha t  g E C;(A'). Then g, E Ran Pa,  so tha t  by Bessel's ine-
quality 1 1  P,g - g 1 1  5 1 1  g, - g 1 1  -0 as  6 -0. Since A is regular, we conclude 
tha t  

(IV.34) P,g -g if g E Ran P . 
Now suppose tha t  g E N. Since the ball of radius (lgI (  in N is weakly 

compact we know tha t  {P,g} has a weakly convergent subsequence. Let f 
be any weak limit point of {P,g}. We claim tha t  to  prove (IV.32) i t  is suf-
ficient to  show tha t  f = Pg, for then Pdg-Pg weakly and hence strongly 
since P, and P are projections. To this end, let  h E C,"(A) be arbitrary. Since 
supph n a(At),=$, ((-a,+m2)h,, P,g),= 0. Thus by (IV.33), ((-a+m2)h, f),=
\a)f (x)dx= 0 so tha t  f E Ran P. Now let h be arbitrary in N. Then (h, f ) =  

(Ph, f )  = lim,(Ph, Pang)= (Ph, g) by (IV.34). We conclude tha t  f = Pg. 

Proof of Theorem IV.lO. 
(a), (b) By the general theory of conditioning (cf. § II.5), UD(g)= 

I'(I - P)U(g) and U,D(g) = r(1- P,) U,(g). Clearly L2-convergence follows 
from Theorem IV.l and Lemma IV. l l ,  and Lp-convergencefrom (11.23). 
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(c) By (11.24) we need only show tha t  sup / /  exp(- U,U(g))/ I p  is finite 
for each fixed p < a.But by Corollary 11.21, 

/ I  exp(- U,D(g))1 l p  5 / I  exp(- Udg)) / I p  
so tha t  the uniform L Pbound follows from the proof of Theorem IV.l. 

Theorems IV.9 and IV.10 together justify our conclusion t ha t  the choice 
of boundary matrix Ban = 0 gives Dirichlet B.C. 

The lattice cutoff (smeared) Schwinger functions with Dirichlet B.C. 
in the region A are defined by 

\#f (h,) ...# f(h,)epLf "n)dpo 
(IV.35) S,D,,(hl, ..,h,) = , 

where hi E C,"(R2). As an  immediate consequence of Theorem IV.10 we deduce: 

COROLLARYIV.12. Let A be an open, bounded, regular region in R2. 
Let h,, ...,h, E Cd(R9). As 6 -0, 

S,",,(h,, . .,h,) -S,D(h1, .. ,h,) . 
Finally, we note tha t  the half-Dirichlet lattice theory converges as  

6 -+ 0. We adopt the second point of view as explained in 811.6; i.e., we 
realize the noninteracting lattice Dirichlet theory in terms of the Dirichlet 
measure 

dp;,, = (2T)-~/21 AA 11/26~~(-1/2ld~s.~~qd~ 

where q, = #,(n), n = 1,2,  .. ,N, are the field variables in A. The (smeared) 
lattice cutoff Schwinger functions with half-Dirichlet B.C. are (cf.(II.91)) 

\ h(h,) . . . #,(h,)e-' d(xn)dp,D,d
(IV.36) ShHP6(hl,... ,  hT)= 

je-'d~*)d p:,, 

Here U,(X,) is defined by (IV.9), tha t  is, in terms of Wick powers :#,(n)': 
rather than :h(n)':,. Let P ( X )  = x:"a,Xr. By Lemma V.27 

where {i} = r!/j!( r  -2j)! 2j, and B,(n) =C,,, -C,"f (cf. (IV.15) and (IV.29)). 

It is convenient to regard the lattice cutoffs in B,(n) and $f(n) as  being in-
dependent of one another and so we write by (IV.37) 
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where U,,,(xA)= UB(xA)and g,(x) = B,(n) if x E A is in the lattice square 
centered a t  n6. By Theorem IV.lO, when 6' --+ 0 

in each Lp(Q,dpf),  p < 03. Moreover, exp(- U,,,,(xA))-exp(- V,)in LP, 
p < W .  In  addition, one can show by using the ideas of Lemma 11.37 and 
Theorem 11.38 tha t  this convergence is uniform in 6. Now let 6 -0. For 
x E A, g,(x) -6G(x) as defined in Lemma II.37(i), where the convergence 
takes place in Lp(A), p < W .  Thus by Theorem I1.38(iv), we have in each 
Lp(Q,dpf)  for p < 60, 

by (11.88). Moreover, e-''8 -e-'A in each Lp,p < =o . We have thus  verified: 

THEOREMIV.13. Let A be a n  open, regular, log-normal region i n  R2, 
and  let h,, .,h, E Ct(R2). As 6 -0 

S,X$(h,, ..., h,) -- S,HD(h,,..., h,) . 
IV.4. The lattice Theory a s  a n  Isilzg Ferromagnet. E. Nelson [69] has 

pointed out a useful interpretation of the lattice model which helps explain 
why we have been able to establish the correlation inequalities of the next 
section. Assume tha t  the boundary matrix BaAis nonnegative, as  we have 
proved i t  is in the case of free or Dirichlet B.C. Then the free part  of the 
measure (IV.26) can be written 

where we have made use of the fact  tha t  B,,, 5 0 if n f n'. Thus we see 
tha t  the free measure gives a Gibbs s ta te  for a set  of Gaussian spins with a 
ferromagnetic interaction Hamiltonian H= (112) Bnnlqnqn,.In  fact  by 
considering the entire array of spins, we conclude tha t  the free lattice theory 
i s  a n  infinite a r r ay  of Gaussian spilzs with lzearest neighbour Ising iater-
actions of ferromagnetic type. The extent to which the Gaussian model 
simulates the actual Ising model was discussed in 1952 by Berlin and Kac 

[41. 
With the interaction turned on ("perturbed Gaussian model") we have 

already noted tha t  the local interaction does not change the coupling be-
tween spin sites but  only the distribution of each uncoupled spin. An in-
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teracting latt ice Markov  field theory i s  t h u s  a n  a r r a y  of cont inuous s p i n s  
w i t h  ferromagnet ic  pa i r  interact ions  between sp ins .  

We warn the reader of a clash between the natural terminologies of 
field theory and statistical mechanics: What we have called Dirichlet B.C. 
(B,, = 0) corresponds in the Ising model picture of the lattice theory to  
what would be called "free B.C." in statistical mechanics. Our "free B.C." 
(BaA given by Theorem IV.7) are very different. It is useful to  bear this 
difference in mind when trying to  understand the monotonicity of the  
Dirichlet states ([69] and 8 V.4). 

V. Correlation inequalities 

In this section we wish to  prove and apply correlation inequalities of 
the type tha t  have been so useful in statistical mechanics [38], [85]. These 
inequalities have the  general form of a positivity statement: 

or a statement of positive correlation: 

(G-I1 and FKG) (AB) 2 (A)(B) . 
Here ( a )  denotes expectation on some space such tha t  (I)= 1, A and B a r e  
suitably chosen observables on this space, G-I and G-I1 refer to Griffiths' first 
and second inequalities respectively, and FKG refers to the inequalities of 
Fortuin-Kasteleyn-Ginibre [20]. The proof of G-I and G-I1 in our case (Theo- 
rems V.l-2, 7-9 below) uses ideas developed in a beautiful analysis of general 
Griffiths' inequalities by Ginibre [27]. 

In  the first subsection, motivated by the  form of the lattice approxi- 
mation of SIV, we prove inequalities for a class of measures on R" which 
we call "normally perturbed Gaussian measures of ferromagnetic type". It 
is then easy (5 V.2) to  obtain correlation inequalities for the P($)2 field theory. 
After discussing the possibilities for correlation inequalities involving Wick 
powers (8 V.3), we t u rn  to applications in § V.4. 

Perhaps the most significant consequence of the P($), correlation in- 
equalities to  date is Nelson's proof ([69] and see Theorem V.20 below) tha t  
if P is even and the coupling constant > 0 arbitrary, then the non-coinci- 
dent Schwinger functions with half-Dirichlet B.C. converge monotonically 
as  the volume cutoff is removed. By "non-coincident Schwinger functions" 
we mean the smeared Schwinger functions whose smearing functions have 
pairwise disjoint supports. 

V.1. G a u s s i a n  Measures of Ferromagnet ic  Type .  The form (IV.l) of the 
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measure in the lattice approximation leads us to a consideration of these 
measures on R": 

Definitions: A measure dp, = e-"*%id" where A is a positive definite 
matrix with nonpositive off-diagonal elements is called a Gaussian measure 
of ferromagnetic type. If F, ,  ..,,F, are bounded, continuous, positive func-
tions on R, the measure dp(x) = F,(x,) . . F,(x,)dp,(x) is called a normally 
perturbed Gaussian measure of ferromagnetic type, or, for short, a fer-
romagnetic measure. If each F, is an even function of s,, we say tha t  p is 
an even ferromagnetic measure. 

If Y is any of the above measures, we define the normalized expectation 
value of a function f on R" as 

Finally, if f satisfies f(x) 2 f(y) whenever xi 2 y, for i = 1, . a ,  n ,  we say 
tha t  f is an increasing function on R" and we write f 1. 

With these definitions, we are able to s ta te  the main results of this 
subsection: 

THEOREMV.1. If p is  a n  even ferromagnetic measure and j,, .. ,j, are  
nonnegative integers, then 

(sf'...x$), 2 0 .  

THEOREMV.2. If ,u i s  a n  even ferromagnetic measure and j,, ...,k, a r e  
nonnegative integers, then 

(xp'h ... X i m + k m ) ,  2 ... X$n),(5:~ .. . xin), . 
THEOREMV.3. Let p be any ferromagnetic measure. Then 

(fg), 2 (f)p(g)s 

iff and g are  continuous, polynomially bounded functions with f, g t .  

Remarks 1. H. Leff [59] has proved Theorems 1and 2 by explicit com-
putation under the special hypothesis tha t  F, = .. e = F, = 1,and the weaker 
condition on A tha t  A-' be positive definite with nonnegative elements. 

2. F. Spitzer (private communication) has also proved Theorem 3. 
3. These three theorems are of type G-I, G-11, and FKG respectively. 
4. The assumptions on the perturbing functions Fj can be weakened 

somewhat. For instance, Fj need not be bounded bu t  must merely be of 
order 2 and type less than any eigenvalue of A; i.e., Fj(x) = O(ea"" where 
a < min o(A). At  the end of this subsection we consider the extent to which 
we can relax the assumption t ha t  p be even in the first two theorems. 
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Typically the functions Fiare of the form e-Bpi where Pi(%)is a poly-
nomial. Since the earliest simplifications of Griffiths' work [36], [53], [26], 
the standard method of proving correlation inequalities has been to expand 
the exponential. In our case this does not work: first, the expansion generally 
does not converge and, secondly, the inequalities are not t rue  order by order 
in p. Instead we shall expand the of-diagonal part  of the Gaussian measure. 
Thus we take as  our base measure 

where A, is the diagonal part  of A, the matrix whose off-diagonal elements 
vanish and whose diagonal elements are the same as A's We also define, as 
the interpolation between dv and dp ,  

(v .3) dp'" = Fl(xl) ... F,(x,)e-"'"~"d"x 

where X e [O, 11and A:, = XA + (1 - X)A,. An important role is played by: 

LEMMAV.4. If p i s  a n  even ferromagnetic measure, then the function 
g(X) = 1x:l . xkdp") is  analytic i n  a circle with center a t  the origin and 

radius  greater than 1. 

Proof. Since A is invertible and positive definite, so are A, and thus  
Anif 0 S X -I1. It follows t ha t  g(X) is analytic in a complex neighbourhood 
of [0, 11. In  particular g is analytic about x = 0. Now the mthderivative 

since each aii 5 0 and each li:is even and positive. But an analytic function 
with nonnegative Taylor series a t  the  origin must have i ts  nearest singu-
larity on the positive real axis. Thus there is an E >0 such tha t  the Taylor 
series for g a t  0 converges if 1 X / < 1+ E .  

Proof of Theorem V.1. By the  lemma, g(1) = C,"g("'(O)/m! 2_ 0 . C] 
Remark. We owe to E. Lieb (private communication) the  observation 

t h a t  Theorem V.1 is actually equivalent to the usual statement of Griffiths' 
first inequality: For ferromagnetic spin systems, G-I asserts t h a t  the (un-
normalized) expectation 

(v.4) (of1 . o>)) ECi=+,of1 o> exp(C,,, Ji j(@)ogj)2 0 

provided the couplings are ferromagnetic; i.e., J,, = Jji5 0 for i # j. If 
we set  oi = sgn x,, then (V.4) implies 



p(#), EUCLIDEAN QUANTUM FIELD THEORY 209 

where R", {x 1 xi > 0) and J,j ( ~ )= ALiI xi I 1 xi I. 
Conversely, given the  ferromagnetic couplings Jii ( i  + j )  we can find a 

matrix A with A,? = Jijif i + j and A,, = a such t h a t  A is positive definite. 
Taking F,(x,) = 6(x, + 1) + 6(x, - 1) (or a limit of smooth approximations 
to  this function) we recover the  spin inequality from Theorem V.1. 

In  his general analysis of Griffiths' inequalities, Ginibre [27] isolates a 
condition (Q3) t h a t  the  measure and observables should satisfy to  yield 
correlation inequalities. In  our case (Q3) is just: 

LEMMAV.5. Let dv be the even measure (V.2) and let P,, . . ., P, be 
polynomials i n  x E Rn zuith nonnegative coeficients. Then for any choice of 
the plus or  minus signs, 

Proof. Clearly i t  is sufficient to  prove the  lemma if each Pi is a monomial 
of the  form x$ ... x>. Firs t  note t h a t  if n = 1, 

( v  6) \ ( s  - y)'(x + y)jdv(x)dv(y) 2 0 

for  all nonnegative integers i ,  j. For if i + j is odd the  integral vanishes 
by (x, y) - (-x, -y) symmetry. If i is odd, i t  vanishes by (x, y) -(y, x) 
symmetry. Thus the  integral can be non-zero only if i and j are both even, 
in which case the  integrand is positive. Since 

we conclude from (V.6) t h a t  

for any choice of + from each pair and any nonnegative integers i,, ..., i,. 
Finally, if n > 1we appeal to  the  product nature of the  measure dv and 

deduce (V.5) from (V.7) by repeated use of 

hl(~l)h2(~2)k hl(~l)h2(~2) 
1 

= -[hl(xl) + hl(YJ][hz(xz) F hz(Yz)]
2 

Proof of Theorem V.2. We must show t h a t  
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where x(jl= xi1 ...x5. By Lemma V.4, the  integral (V.8) can be evaluated 
by a power series expansion in the off-diagonal par t  of the Gaussian measure. 
But each term in this expansion 

is nonnegative by Lemma V.5. 

Finally, to prove Theorem V.3 we observe tha t  a ferromagnetic measure 
satisfies the FKG condition: 

LEMMAV.6. Let dp(x) = G(x)dXx be a ferromagnetic measure on R". 
Then 

Notation. Under the  ordering x >- y if xi 2 y,, i = 1, . .,n, R" is a dis-
tributive lattice with the operations V and A given by (x V y), = max(x,, y,) 
and (x A y), = min(x,, y,). 

Proof. By definition G(x) = F(x)e-"'A". Since F(x) = Fl(xl) ... F,(x,) 
F(x V y)F(x A y) = F(x)F(y). Moreover, 

since a,, 5 0 if i # j. C] 
Proof of Theorem V.3. By Lemma V.6 we see t ha t  the  theorem is just 

a continuum version of the  usual FKG inequality [20], [49]. To reduce the  
theorem to the case of a finite distributive lattice, we simply approximate 

(f >, by 

Then by FKG, (fg), 2 (f),(g),, and letting N-+  03 yields the  theorem. 

We conclude this subsection with a discussion of the  necessity of the  
condition t ha t  p be even in Theorems V.l  and V.2. This condition cannot 
be dropped completely as the following example shows: 

- - - -
Example. Consider the ferromagnetic measure dp(x) = e'-1~2'2~A5-"2, i.e.,' 

F,(x,) = e-"%, i = 1, .. , n. Setting m = -A-'h, we see tha t  



211 P($), EUCLIDEAN QUANTUM FIELD THEORY 

so t h a t  the  effect of the  linear perturbation is t o  change the  means but  not 
the  covariance of xi's. From the  joint characteristic function of the  xi's, 

we can read off the  various expectations of products of xi's. For example, 

and so on. Therefore, 

Now we know by Theorem A.l t h a t  A-' always has nonnegative entries; 
certainly by a specific choice of A we can arrange t h a t  A-' have strictly 
positive entries. Consequently the  r ight  side of (V.lO) is given by an  ex- 
pression of the  form c,L, where c, < 0. We conclude t h a t  G-I1 holds if 
all the  L, 5 0, bu t  fails if > 0 (see Remark 3 a f t e r  Theorem V.lO). 

On the  other hand, i t  is formally clear t h a t  Theorem V. l  will still hold 
if F even is replaced by the  assumption t h a t  

where G(x) is even and ct 2 0. From the  role of Lemma V.5, we see tha t  
Theorem V.2 is formally t rue  if in addition products o f F 9 s  satisfy 

(V.12) n;=, G i ( x j ) G i ( ~ i ) x kFi(xj)Fj(~j)= nj"=, nybl(Pki(x>+ Pk2(~))  

where G,(x,) is an  even function of x, and the  P,, are  polynomials in x E R" 
with nonnegative coefficient,^. Rather than attempting to characterize such 
F, (not to mention proving the convergence of the series!), we a re  content 
to notice tha t  one important class of F,'s satisfying (V. l l )  and (V.12) is 
the class 

P ' C Z  ' I + Y j C Z j ,(V.13) Fj(xj) = e- 33 

where Pj is an  even semibounded polynomial and Q, is a n  odd polynomial 
with nonnegative coefficients. Obviously (V.l l)  and (V.12) are  satisfied if 
we set G, = ecPi and expand the exponentials e". If in addition we require 
tha t  
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(V.14) deg Q j  < deg P j  

then we can prove the convergence of the series involved. For, a s  in the  
proof of Lemma V.4 ,  define 

for E [0, 11. By (V.14), f ( X )  is analytic in a neighbourhood of [0,11, and 
since i ts  derivatives a t  the origin are nonnegative by Theorem V.1, f (1)can 
be evaluated by a convergent power series about k = 0 and is thus  non-
negative. The argument for G-I1 is similar and we obtain: 

THEOREMV.7. Le t  p be a ferromagnetic measure o n  R" whose perturb-
i n g  funct ions are expoltentials of polynomials a s  described in (V.13) and  
(V.14). T h e n  we have the inequalities ( x ' j ) ) ,2_ 0 and ( ~ ( j + ~ ) ) ,2 (x ( f ' ) , (x (k ) ) , ,  
where jaltd k are n-tuples  of nonnegative integers. 

V.2.  Correlation Inequalities for Markov Fields. We now wish to prove 
correlation inequalities for two-dimensional interacting Markov fields. The 
reader will recognize tha t  in 9 V . l  we have already established the inequalities 
for interacting lattice Markov fields with general boundary conditions, and 
so in this section we simply invoke the approximation theorem of 9 IV. l .  The 
same methods yield corresponding correlation inequalities in one dimension; 
see Appendix B for alternate proofs of these results for the anharmonic 
oscillator which do not use the lattice approximation. 

For P a given semibounded polynomial and g E C;(R" we denote the  
expectation value with respect to the measure (11.25) by ( . ) , ,  and we define 
the Schwinger functions 

Sg(xl ,  - 7  x,) = ( ( ? ( X I )  (?(x,)), 

as  distributions. A distributional inequality such as Sg(x, ,x,) 2 0 means t ha t5Sg(x1 ,xl)fl(xl)f ,(xl)dx2 0 for all nonnegative f,, f ,  E C(R2) .  

THEOREMV.8.  Le t  the (semibounded) polynomial P ( X )  = P , ( X )  + XX 
where P ,  i s  even and X 5 0. T h e n  i f  x,, ...,xn E R2, 

Sg(x l ,"', x,) 2 0 . 
THEOREMV.~ .L e t P = P , + X X ,  P , e v e n , X 5 0 .  I f x l , . . . , x n + , ~ R 2 ,  

Sg(x1, . ' 1  x,+m) 2 Sg(x,i . . ' 9  xn)Sg(xn+lt . ' 9  xn+m) . 
THEOREMV.10. Le t  P be a n  arbi t rary  (semibounded) polynomial. Le t  

F and  G be contiltuous, polynomially bounded funct ions o n  Rv such that  

F ,  G , as  in Theorem V.3 .  I f  h,, ., h ,  E C,"(R2)are nonnegative, then  
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(F(#(hl), . . a ,  $(h,))G($(hJ .. .)), 2 (F(dh1) .)),(G($(hJ a ) ) ,  . 
Remarks 1. We have taken the  functions g and hj  in C," only for conve-

nience. By a limiting argument Theorems 8-10 extend t o  more general g and 
hj  (e.g., g the  characteristic function of a bounded region) and to a n y  l imi t  
point of the (.), as  g 41. 

2. On the  basis of Theorem V.7 one might expect tha t  in Theorems V.8 
and V.9 the  odd par t  of P could be arbitrary as  long as  the  coefficients were 
nonpositive. This is so for the  one-dimensional case without Wick ordering. 
The difficulty is t h a t  Wick ordering introduces lower degree powers of 
opposite sign (e.g., :03:= qi3- - 4 )  SO tha t  i t  is not possible to  prove Griffiths' 
inequalities for P ( O ) ~theories with cubic (or higher odd) terms. 

3. If P = P, + X Xwe see t h a t  the  odd (even) Schwinger functions are 
odd (even) in X by X- -X covariance. Thus for X > 0, 

(V.15a) (- l)"s,(xl, ...,x,) 2 0 , 
(V.15b) (- l)"+"[Sg(xl, a ,  x,+,) - Sg(xl, ...,~,)S,(X,+~,..,x,+,)l 2 0 . 

4. Although we have stated our theorems for the  case of "free" boundary 
conditions, correlation inequalities hold for general boundary conditions 
according to  the  discussion of $ IV.2. 

Proof of Theorems V.8 a n d  V.9. By the  convergence theorem (Corollary 
IV.3) i t  is sufficient to  prove the  inequalities in the  lattice approximation 
when g is replaced by $,. But  then each expectation involves only finitely 
many Gaussian variables (see IV.13) and the  corresponding measure is ferro-
magnetic by Theorem IV.4. Thus Theorems V.8-9 follow from Theorem 

Proof of Theorem V.lO. We may suppose t h a t  F a n d  G are bounded. For 
let H, be the  function HAv(x)= x if I x 1 S M, H,(x) = 0 otherwise. Then 
F(")- H , o  F is increasing ( 1 ) and if we can prove t h a t  (F("'G(")) 2-
(F("))(G(" ') ,  then the  inequality holds for F and G by limits. Now if F is 
bounded, then F, = F(#,(h,), ..., is(h,))--f F in each Lpas  6 -0. Thus we 
need only show t h a t  (F,G,) 2 (F,)(Ga) where the  expectations are in terms 
of the  lattice variables q,, ..., q ,  as  in (IV.13). This lat ter  inequality follows 
from Theorem V.3 and the  observation t h a t  F,(ql, ...,q , )  1 whenever 
F(X,,  . . ., X,) 1 since the  smearing functions hj  are nonnegative. 

V.3. Correlation Inequalitiesfor Wick Powers? Correlation inequalities 
involving Wick powers would be extremely useful. Our discussion of such 
inequalities is divided into three parts: 

a) Inequalities t h a t  hold; 
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b) inequalities t h a t  fail (but seem tempting); 
c) inequalities tha t  may hold (some conjectures). 

We regret  tha t  par t  a) is considerably shorter than parts  b) and c). 

a) Inequalities that hold: We have but  one result to  report here: 

THEOREMV.l l .  Consider the spatially cu t08  P(#), theory with P = 

P, + AX, A 5 0. Then 

where x,, . a ,  x,, y E RZ. 

Proof. Let  h be a nonnegative approximation t o  the  6function in C;(R2), 

and let #h(x)= 5~ ( y ) h ( x- y)dy. By Theorem V.9, 

(4h(~1) . # h ( ~ r r ) # h ( ~ 1 ) ~ h ( ~ 2 ) )2 (#h(xl). # h ( x r r ) ) ( ~ h ( ~ l ) # h ( ~ 2 ) ). 
Both sides remain non-singular for coincident arguments, in particular for 

y,, yz-+y. Since (A(B - (B))) 2 (A)(B - (B)) if (AB) 2 (A)(B), we 
have 

Letting h -+ 6 we have convergence in the  sense of distributions so t h a t  
(V.16) holds as a distributional inequality. 

b) Inequalities that fail: 

( i ) Singly Wick-ordered inequalities. We want  t o  show t h a t  the  
inequality 

is false for a cutoff ( Q ~ ) ~Markov theory. Rather than disprove the  inequality 
directly, we shall show t h a t  one of i ts  consequences is false. The following 
theorem answers a question raised in [ loll  and shows t h a t  #' [82] can be a 
misleading guide to  #*: 

THEOREMV.12. F i z  the bare mass m > 0 and  the cutof 1 > 0. Let E(X) 
112 

be the vacuum energy for the Hamiltonian H, = H, + h 1 :04(x):dx, and  
-112 

52, the vacuum vector. Then for X > 0 suficiently small, there i s  a n  eigen-
value i n  (E(x), E(A) + m) with a n  eigenvector 1,h satisfying (+, 4(2)52,) # 0. 

Remarks 1. One reason for expecting such a result is t h a t  in second order 
Rayleigh-Schrodinger theory the gap for a one-dimensional A :q4: oscillator 
is decreasing in X. 

2. A second source of intuition comes from the  Feynman perturbation 
series for the  two-point function in the Euclidean region. There is no first 
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order term and the second order term is positive (Fig. V.l(a)): 

1 
(a) (b) 

FIGURE The propagator in second order. V.1. 

Thus in perturbation theory, Sjnt(p = 0) 2 S,"on-int(p From the Kallen- = 0). 
Lehmann representation we conclude that  

Since l m d p= 1(the CCR hold!), m,,,. S m with equality possible only if dp = 
0 

6(p" m2)d,u" Of course there is a cancellation of a second order vacuum 
bubble (Fig. V.l(b)) in second order. Our calculation below follows this 
intuitive idea including the vacuum cancellation. 

3. It is easy to extend this result to an arbitrary space cutoff g E L1n 
L1+'(R),g 2 0, g + 0. 

4. Our proof illustrates the usefulness of Dirichlet states even for the 
study of H,. For i t  is hard to work directly with Hz because there is no 
excited eigenvalue about which to perturb: An approximate eigenpacket is 
not appropriate for a small k calculation. Of course the Dirichlet Hamiltonian 
H:, of $j11.6 has purely discrete spectrum. Thus we first prove the theorem 
for the Dirichlet Hamiltonian H," of (11.93) from which i t  follows for Hz. 

5 .  This result also shows that  for small coupling (4'),, m,,,, < m (see 
(v.22b)). 

Proof. We claim tha t  i t  is sufficient to prove that  for small k, H,D has 
an eigenvalue in the "gap" (ED(k), ED(k) + m), i.e., an eigenvalue ED@) + 
aED(k)  where AED(k) < m. For by Theorem V.24 below i t  follows tha t  H, 
has spectrum in (E(k), E(k)  + m). Since we know tha t  H, has only point 
spectrum in the "gap" (E(k), E(k)  + m) [32], we conclude that  there is an 
eigenvalue in the "gap" and that,  by Theorem V.14 below, a corresponding 
eigenvector is coupled by the field to the vacuum. 

It remains then to find a vector T~ orthogonal to Qp such that  

is positive. Define 
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where a*(O)is the zero momentum creation operator and H;= :pD(xy:ds. 
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Since Q; is even in 7, is orthogonal to QP. Moreover, since the perturba-
tion series for ED(X)is asymptotic in X [106], A@) is given, up to second 
order, by the XZ diagram of Fig. V.l and is thus  positive. • 

COROLLARYV.13. For  ($4)2,the inequality (V.17a) does not hold for a l l  
x,, x,, x e RZand  all  cutofs g e C$(R2). 

Proof. If i t  did, then by the arguments of 9 V.4 below we would have 

(V.17b) (O(xl)O(xz))g I(O(x~)O(xz))o. 
But this would imply by Theorem 11.17 tha t  

(ah,~(f)~-t(H(h)-E(h))O(f)ah) 2 (QO, $(f>e-tHO#(fN o )  
for any f 2 0 in C;(R) and any h 2 0 in L' n L1+'(R). Consequently for any 
$ with (@, $(f)Qh) f 01 

($, (H(h) - E(h))@)2 m 1 1  + 1 1 2  1 

contradicting Theorem V.12. 

Since we expect tha t  the  mass gap for ($'), will be monotone decreasing 
in the cutoff (cf. Theorem V.23) i t  is possible t ha t  the reverse of (V.17) holds. 
Nevertheless 

Example 1. For the (p4),theory, neither 

(V.17c) (dxl) .. 4(x4) : :) S (P(x1) .. P(x4))(: P4(x):) 

nor i ts  reverse holds for all x,, .. ,x,, x e R%nd all cutoffs g. For when g =0, 
(p(xl) .. $(x4):p4(x):) > 0 by explicit calculation so tha t  (V.17~)fails. On 
the  other hand, if the reverse of (V.17~)held then we would conclude tha t  

(P(x1) .. P(x4)), 5 (#(XI). . . O(x4))o . 
Taking the distance between x,, x, and x,, x4to infinity, we deduce (V.17b) 
by clustering, thereby contradicting Corollary V.17. 

( i i)  Doubly Wick-ordered inequalities. For simplicity of notation we 
discuss the one-dimensional theory. As we shall describe below we believe 
tha t  in a :q4: theory, 

(:q4(t): :q4(s):) 2 (:q4(t):)(:q4(s):) 

may hold. However 

Example 2. For all :q4: theories, neither 
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nor i t s  reverse holds. For in lowest order perturbation theory (first order) 
the  left  side is negative and the  right size is zero. On the other hand if t, = 

t 2 - +m and t, = .. = t, = s, the  left side goes to  (:qZ:)((: q4z)~)which strictly 
exceeds (:q2:)(:q4:)' (the limit of the  r ight side) in lowest order non-zero 
perturbation theory (second!). 

(iii) Triply Wick-ordered inequalities. One might hope t h a t  

(:q4(s): :q4(t): :q4(u):) 5 (:q4(s):)(:q4(t): :q4(u):) . 
Unfortunately this is false for the free field, and, if our conjectures (i) and 
(ii) below are  true, the  reverse also fails, as can be seen by clustering. 

c) Inequalities that may hold (some conjectures). 
( i ) Monotonicity of the energy. Since we know tha t  the vacuum 

energy El = E(x,) is monotone in 1 [42], i t  is natural  to  conjecture t h a t  E(g) 
is monotone in g. Such a result would follow easily from: 

Conjecture. In  a P(g), theory with P even and P(0) =0, (:P(#(x)) :),SO; 
i.e., for any f,  g 2 0 in Ct(R7, 

j dpo :P($(x)) : f(x)dx exp (- j g(s) :~ ( g ( x ) ):dx 2 o .) 
( i i )  Strong correlations on P(g). The fact  t h a t  the  energy per unit  

volume is monotone suggests t h a t  the regions in Q-space where :P(#(x)) : is 
very negative are correlated for different x's; i.e., 

Co~zjecture. I n  a P(+), theory with P even, 

(:P($(xl))::P(dx2)):), 2 (:P(dx1)):),(: P(#(%)) :)g 

(iii) Correlations on the correlationfunctiom. The preceding conjec-
tu re  suggests tha t  

Conjecture. I n  a P(p), theory with P even let U(f) = 1f (x) :P(p(x)):dx. 

For any f ,  g, h 2 0 in C,"(R2), 
(e-Z ( f ) e - L  ( A ) ) ,  2 (e-L ( / ) )g(e-L Ih ) ) ,  . 

This is our most significant conjecture since i t  is equivalent to  
( e - u ~ f ~ - ~c ~ ) - L  181)o (e -~( ~ 7 ) ) ~  ( e - ~  ( 8 ))o ( e -~( h ) - z  18)>0 

or 

(V.17d) (e -C(h ) )  f f 8  )= ( e -C lh ) )g  . 
(V.17d) together with a local Lp-estimatewould imply convergence of (e-C(h)), 
as g --,I. We expect tha t  this in t u r n  would lead to local LP-convergenceof 
the  states. 
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V.4. Applicat ions.  The traditional applications of Griffiths' inequalities 
for ferromagnets in statistical mechanics are of three types [38], [85]: 

(A) monotonic convergence of states in the  infinite volume limit; 
(B) monotonic behaviour of correlation lengths as  the  interaction is 

made more ferromagnetic; 
(C) persistence of phase transitions if an interaction is made more ferro- 

magnetic. 

This section is divided into three parts  (infinite volume limit of states, 
monotonicity of the  mass gap, and broken symmetry) as  we discuss the  
corresponding applications of Griffiths' inequalities t o  P($) field theories. 
For P ( P ) ~ ,  "more ferromagnetic" means t h a t  the coefficient of $"as been 
decreased, which amounts to a decrease in the bare mass.  Nelson's important 
application of Griffiths' inequalities to  the  monotone convergence of half- 
Dirichlet states is discussed briefly and we explain how monotonicity under 
a change in "local bare mass" is involved; for details we refer the  reader to  
Nelson's paper [69]. 

The FKG inequalities have also proved useful for P($),, having been 
exploited by Simon in the  proof of the  following results: 

THEOREMV.14 (Simon [103]). Let  P be a n  arbi t rary  semibounded poly- 
nomial .  

( i ) For nonnegative g E L1n L1+'(R), let Q, be the vacuum for H(g ) .  
T h e n  {g(f)Q, If 2 0, f E S(R)} i s  coupled to the first excited state of H ( g ) .  

( i i )  Consider a n  in f in i te  volume P(g), theory sat is fying Nelson's 
Ax ioms (A)-(I?)of 9 11.2, and assume that  the FKG inequalities hold ( they 
will if, in particular, the  theory is a limit of cutoff theories with free, half- 
Dirichlet, or Dirichlet B.C.). Let  H be the corresponding Hami l ton ian  and 
Q i t s  (unique) vacuum in the relativistic Hilbert space X = E,L2(Q) (cf. 
Theorem 11.7). T h e n  {E,(g(f)) If 2 0, f E C,"(R2)) i s  coupled to the first excited 
state of H. 

The statement t h a t  a se t  of vectors S is "coupled to  the first excited 
state" of a Hamiltonian H with ground s ta te  Q means t h a t  the  infimum of 
the  supports of the  spectral measures of H associated with the  vectors in S 
is equal to  E, = inf o ( H  {Q}?) [103]. I n  addition, if E, is an  eigenvalue then 
there is a $-E S such tha t  (Q,, IF )  f 0, where Ql is an eigenvector correspond- 
ing t o  El. It thus  follows from Theorem V.14 tha t  if the  polynomial P is 
even, then (a) there is a n  eigenvector Q, which is odd under the  symmetry 
g - -g, and (b) the  ra te  of fall-off of the  two-point Schwinger function 
precisely determines the gap A E  between El and the  vacuum energy E,: 
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COROLLARYV.15 [103]. Consider either the case (i) or  (ii) of Theorem 
V.14 and assume further that P is  even. Then the gap 

1A E  = -sup,,, lim,+., -In \ ~ ( s ,s; y, U)f (x, s)f (y, u - t)dxds dydu .,
I~ c ; ( R ~ )  t 

where i n  case (i) S stands for the Schwinger function defined i n  (II.38), i.e., 
with cutofffunction h(x, s) = g(x). 

(A) Infinite volume convergence of states 

By an analytic continuation argument using the  uniform bounds on the  
fields of [33], [42], Glimm and Spencer have shown [35] t h a t  the  convergence 
of the  non-coincident Schwinger functions in the  infinite volume limit implies 
the convergence of the Wightman functions or of the  C*-states of the  rela-
tivistic cutoff theory. We thus  focus our attention on the limit lim,,, S,(x,, 
. ., x,) where S, is the  Schwinger function with spatial cutoff x,. 

I n  the one-dimensional case, Griffiths' inequalities give more detailed 
information about the approach t o  infinite volume than the transfer matrix 
techniques of § 11.4: 

THEOREMV.16. Let dp, be thefree Markov measurefor d = 1a s  dejined 
i n  $11, and let P(q) = ~~',a,,q" where aZi2 0. As a ,  b - the Schwinger 
functions 

s,,b(t,? . . .? tv) = (q(t1) . . . q(tr))a,b 

decrease monotonically to a (nonnegative) infinite volume limit. 

Proof. By the first Griffiths' inequality (9 V.2 or Appendix B), S,,, >= 0, 
so tha t  convergence is established by the monotonicity statement. Consider 

fthe function f (b)=exp \ -La~ ( ~ ( s ) ) d sas  a function in Lp(Q, dp,) for p <a. 
It is easy to  see by the  Duhamel formula t h a t  f(b) is differentiable in b and 
tha t  f '(b) = -P(q(b))f (b). Therefore 

by the second Griffiths' inequality. Similarly S, is decreasing in a. 

In  the  two-dimensions1 case we are only in a position to  control Wick 
powers of degree 2 or less: 

LEMMAV.17. Consider the spatially cutoff Markov theory with inter-
action U = :Q(g)(g) : + p :qi2(h): + kg(f), where Q i s  a n  even polynomial, 
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f, g, h a r e  nonnegative functions i n  C$(R2), and  p ,  X a r e  real. If X 5 0, the 
Schwinger functions a r e  monotonically decreasing functions of p awd X. If 
X > 0, the even Schwinger functions a r e  decreasing i n  p and increasing i n  
X, whereas the odd Schwinger functions a r e  increasing i n  p and decreasing 
i n  X. 

Remark. The conclusion of the lemma can be summarized more succinctly 
in this way: By Remark 3 following Theorem V.10 we see t h a t  if X > 0, the 
odd (even) Schwinger functions are negative (positive). If we define the  
absolute value of the Schwinger function by, 

ISg(xl, . . .,xn) if X 5 0 or n even
1 SB(xl, ' ' ' 7 x,) 1 = 1 -Sg(xl, , x,) if r > 0 and n odd , 

then the lemma asserts tha t  I S, / is a decreasing function of p and an  in-
creasing function of I k /. 

Proof. Take k 5 0. The proof of monotonicity in p is analogous to  
t h a t  of Theorem V.16. One uses the  formula for derivatives of (A) = 

~e- 'd,u~/Se - ' . d ~ :  

which is valid for all A e LP,p < 03. Thus dS/dp is nonpositive by Theorem 
V.11. The case X > O  and the  monotonicity in X follow similarly from 
(V.15). 

As an  immediate consequence of the lemma, we obtain these two results: 

THEOREMV.18. F o r  the (G2),theory, the Schwinger functions converge 
monotonically downward to a n  inJinite volume limit. 

THEOREMV.19. Let E ( . )  be the expectation associated with any  Eucli-
dean jield theory arising as  a n  infinite volume limit of spatially cutof P(Q), 
theories, where P i s  even. Suppose that for al l  g e C$(R2) with 0 5 g 5 1, 
e - : " ( ~ ) :e L1;i.e., E(e-:""g)")<a. Then the Schwinger functions for the theory 
with expectation E,( - )  = E(.e-:+2(g):) l E ( e - . ~ ~ ( ~ ) ' )converge as  g -1. 

Remark. Presumably Theorem V.18 could be proved by direct calcula-
tion as  in the  gWamiltonian theory [82]. 

The above results are rather disappointing inasmuch as  they apply only 
to  quadratic interactions when d = 2. In  fact ,  as the  discussion of 5 V.3 
indicates, i t  is unlikely t h a t  any of the  free B.C. Schwinger functions con-
verge monotonically for :$?:, n 2 2. A t  this stage of knowledge, our 
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problem was t h a t  we did not understand the significance of boundary con- 
ditions, bu t  E. Nelson clarified the  situation in [69] by considering the  
Schwinger functions for half-Dirichlet B.C. His result is: 

THEOREMV.20A. (Nelson [69]). Consider the P(+), Markov field theory 
where P i s  even. Then the Schwinger functions S f Dwith half-Dirichlet B.C. 
on dA are monotonically increasing in A and the non-coincident Schwinger 
functions converge to a n  infinite volume l imi t  as A -- m. 

Remarks 1. As in (V.15) the  convergence also holds if there is a linear 
term in P: P = P,  + XX, P, even, x real. In  this case i t  is the  absolute value 
I S f DI which increases with A. 

2. For small coupling constant but  arbitrary semibounded P ,  Glimm and 
Spencer [35] have proved t h a t  the  "free" Schwinger functions, SA,converge 
a s  A--. W .  

Note t h a t  Nelson's convergence result is valid for arbitrary coupling 
constant. 

3. As in the  case with the  free B.C. result of Glimm and Spencer, the  
convergence of the  half-Dirichlet Schwinger functions should imply conver- 
gence of the  corresponding Wightman functions. See 11271 

4. The assumption of non-coincidence is used to  bound the sequence 
{ S f D }uniformly in A; the proof relies on (V.18) and the linear estimates of 

I331, [421. 
5. Since the  convergence of the  theorem holds for arbitrary regions 

(under the ordering of inclusion) i t  is easy t o  prove the  Euclidean invariance 
of the limiting Schwinger functions. 

6. Given Theorem V.20A i t  is not hard to  show t h a t  the limiting 
Schwinger functions are those associated with a Minkowski field theory 
satisfying all of the  Wightman axioms except possibly uniqueness of the  
vacuum. This follows by verifying a suitable set  of Osterwalder-Schrader 
axioms [74], [119]. The following alternate method should also be possible: 

Prove the  convergence of suitable Wightman functions which estab- 
lishes all of the  axioms except Lorentz invariance and the  spectral condition. 
Lorentz invariance follows from Euclidean invariance as in Nelson [67] and 
then the spectral condition follows from the positivity of the  Hamiltonian. 

For details we refer the reader to  Nelson's paper, bu t  we comment briefly 
here on the significance of half-Dirichlet B.C. It is critical t h a t  half-Dirichlet 
B.C. rather than Dirichlet B.C. are used; for then Wick ordering is defined 
with respect to  the free measure and as a result the  definition does not 



222 F. GUERRA, L. ROSEN, AND B. SIMON 

change as A is changed. The role of half-Dirichlet (as opposed to  free) B.C. 
is t o  decouple the  variables in A and i t s  complement so tha t  increasing A has 
the  effect of introducing more ferromagnetic bonds. To understand this 
statement consider the  lattice approximation of SIV. If A cA', a half-
Dirichlet expectation of fields in A is the  same as the expectation of these 
fields in A' bu t  with the  matrix An' in the  Gaussian replaced by An @ An'\A. 
The correct expectation in A' is then obtained by turning on the  neglected 
couplings in the matrix B = An' - An @ An",n. But B is nonpositive and so 
G-I1 implies tha t  the  expectation in A is less than the  expectation in A'. A 
similar argument fails for the  free B.C. expectations because in addition t o  
turning on the neglected couplings B we must replace Ban by Ban, and thus  
there is no consistent increase of ferromagnetic bonds. Incidentally, the  
fact  tha t  half-Dirichlet expectations are obtained from free B.C. expectations 
by adding the quadratic from GZij.BaAQin the  exponent, where Ban is non-
negative (Theorem IV.7), shows by G-I1 t h a t  

(V.18) S.YD(x1, . , xn) 5 Sn(x1, .. ., x,) . 
The significance of (V.18) for Theorem V.20A is t h a t  i t  provides the bound 
needed for convergence. 

This inequality, as well as the monotonicity of {SfD},can also be under-
stood on the  basis of a change of local bare mass. We sketch the  ideas: In  
the classical variational problem [8, p. 3981 the boundary condition 

is arranged through the  surface term in the  form to be minimized: 

Dirichlet B.C. correspond to  taking a --,rn . Analogously we expect tha t  SfD 
can be obtained from SAby 

From (V.19a) and Theorem V . l l  we again deduce the  inequality (V.18), while 
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from (V.19b) we see t h a t  SfD5 SEDif A cA' since less "infinite mass is 
turned on" when we consider the  larger region. 

For general even polynomials P we can say nothing about Dirichlet a s  
opposed t o  half-Dirichlet states since a change in A changes the  definition 
of the Wick ordering in the  interaction. However, when deg P = 4, we can 
control this change: 

THEOREMV.20B. Consider the P($), Markov field theory with P ( X )  = 

a x 4  + bX2+ c X  (a > 0, c 5 0). Then the Schwinger functions Sf with 
Dirichlet boundary conditions on ah are  monotonically increasing i n  A and 
the non-coincident Schwinger functions converge to a n  infinite volume l imit  
a s  A--, a. 

Remarks 1. As usual, c > 0 is allowed if we consider / Sf I. 
2. As in the  case of Theorem V.20A, the  limit Schwinger functions are 

the  Schwinger functions for a quantum field theory obeying all the Wight-
man axioms except possibly uniqueness of the  vacuum. 

3. At the  current stage of our knowledge, the  (i4),Dirichlet theory is of 
special interest, because i t  is only for this theory tha t  we have controlled both 
the  convergence of the  Schwinger functions and the  pressure (see 3 VI.l). 

Proof. As in Nelson's proof of Theorem V.20A, we need only prove t h a t  

(V.20a) Sf(xl,...,x,)~Sfi(x1,...,xn)i f A c A '  

and for boundedness t h a t  

(V.20b) ShD(x1, ., x,) -5Sn(x1, . .,x,) . 
We prove (V.20a); the  proof of (V.20b) is similar. Let  S,D,A'(xl, ., x,) denote 
the  Schwinger functions for a theory with a "free field" which is the  Dirichlet 
field in region A but  with an  interaction which is Wick ordered relative t o  
the  Dirichlet theory in A'. Obviously (V.20a) follows from 

(V.20~) SfJ" I- Sf ,  

and 

(V.20d) 5," s Sf,-+" . 
(V.20~)follows as in Nelson's proof; for example, in the  lattice approxima-
tion, we note t h a t  to  go from to  S i , ,  we add extra  (nearest neighbour) 
ferromagnetic couplings. To prove (V.20d), we need to  compute 

By the  special nature of P ,  Q has only a quadratic and a constant term. The 
quadratic term is, by (V.24) below, 
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~ [ ~ G A { ( X )- aGn(x)l : : D , A  

where 6GA(x)is given by (11.87). Thus, by Lemma II.37(V), Q has a quadratic 
term which is negative. Since 

($(XI).. . dx , )  exp (- \ Q ) )
s:,A1(xl,. . O ,  x,) = DgA 

ex^ (- 5 Q ) ) ~ . A  

9 

the  constant term in Q does not affect Si ,A ' .  By the  Griffiths inequalities 
(Theorem V.11), the quantity 

is monotone increasing in a ,  and we obtain (V.20d). 

( B )  Monotonicity of the mass gap 

The field theory analogue of the correlation length for ferromagnets is 
the  mass gap. For d = 1 we have: 

THEOREMV.21. Consider the P(@),Markov field theory for some fixed 
bare mass with interaction P(q) = x:a,,q2' (a,, > O ) ,  and with expectation 
and Schwinger functions as defined in Theorem V.16. Let AE(a,, .,a,,) 
be the diference between the first two eigenvalues for the anharmonic oscil-
lator Hamiltonian H = Ho + P(q). Then 

( i ) Sa,b(tl ,  , t r )is  a monotone decreasing function of each ai. 
( i i )  This monotonicity remains true for S = lima,b,, S,,,. 
(iii) AE(a,, ..., a,,) i s  a monotone increasing function of each ai. 

Proof. ( i ) The proof is similar to  t h a t  of Theorem V.16 since 

( i i )  Follows directly from (i). 
(iii) Let  Q"' and 8"' be the  first two eigenfunctions of H. By the  proof 

of Theorem 11.18, 

(V.21) (q(t)q(O)),,, = (qQ'O',e-t'H-E)qQ'O)) 

where E is the lowest eigenvalue of H. Since Q'O'(q)> 0 and Q")has a node 
only a t  the  origin, (Q"', qQ"') > 0 by a suitable normalization of Q"'; by 
symmetry (Q'O',qQ'O')= 0. Therefore from (V.21) 

AE(a,, ...,a,,) = -limt4, t-' log (q(t)q(O)),,, , 
and (iii) follows from (ii). 

Remark. While i t  is intuitively obvious t h a t  the gap is monotone in X 
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for  a (p2+ q2+ XQ')  oscillator, we know of no proof of this fact  in the 
literature. 

In the two dimensional case we can handle changes only in the quadratic 
term: 

THEOREMV.22. Consider the P($), theory with fixed spatial cutoff g ,  

where P is  even. Let AE2(g) be the gap i n  the spectrum of H2(g) = Ha -?-
:P($): ( g )  + x :4' : ( g )  above Ei0'(g) = inf o ( ~ , ( g ) ) .Then AE,(g) is an in- 
creasing function of X .  

Proof. An immediate consequence of Corollary V.15 and Lemma V.17. C] 

A similar argument using Theorem V.20B shows tha t  the gap for the 
Hamiltonian with Dirichlet B.C. decreases as the space cutoff goes to infinity: 

THEOREMV.23. Let P ( X )  = a x 4+ bX2; let H,D be the Hamiltonian with 
Dirichlet boundary conditions on the interval [-1/2, 1/21, as defined i n  
(11.93). Let AE,D be the gap between the two lowest eigenvalues of H?. Then 
AE,D is  a decreasing function of 1. 

Strictly speaking, this result depends on the monotonicity of SET, the 
Schwinger function for the rectangle [- 1/2, 1/21 x [ - t/2, t/2] with Dirichlet 
B.C. on the sides x, = +1/2 and free B.C. on the sides x2 = _+t/2. With the 
methods of $5  11.6 and IV.3 this monotonicity is proved in a similar fashion 
t o  tha t  of S,",,. The same idea and the inequality (V.20b) yields: 

THEOREMV.24. I f  P ( X )  = a x 4+bX2,  the gap AE,D for the Hamiltonian 
H,D and the gap AE, for the Hamiltonian H, = H(X,_,,,I , 2 1 )  are related by 

(V.22a) 	 AEI 5 AEP . 
Finally, we have an infinite volume result: 

THEOREMV.25. Let P be an even polynomial and let A E ( P )  be the gap 
i n  the spectrum of the Hamiltonian of the infinite volume theory described 
by Theorem V.20. Then A E ( P ( X )  + h X 2 )  is a non-decreasing function of X .  

Proof. The monotonicity of the cutoff two-point Schwinger function, 
a s  in Lemma V.17, extends to the infinite volume Schwinger function. The 
theorem thus  follows from Corollary V.15. 0 

Remarks 1. As in Theorem V.14 this result holds for any infinite 
volume P(#),theory satisfying Nelson's axioms and the FKG and Griffiths 
inequalities. 

2. Since A E ( P )  is interpreted as the physical mass, mph,we see tha t  
mphis an  increasing function of the coefficient of the quadratic term. 

3. Combining the ideas of Theorems V.23 and V.24 with Theorem V.12, 
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we see that  for A($'), with small X, 

(V.22b) mph$ mfh < m .  

A related question is whether mphis an increasing function of the bare 
mass m. An argument based on scaling indicates that  the answer is yes for 
small coupling constant (or large m). However, for general m and polyno-
mials P the answer is probably no, except for the case of 4': 

THEOREMV.26. Let H(g) be the P($), Hamiltonian with bare mass 
m > 0, spatial cut08 g, and P a n  even polynomial of degree 4 or less. Let 
AE(m, g, P )  be the gap i n  o(H(g)) above the ground state energy. Then 
AE(m, g, P )  is a n  increasing function of m. 

Proof. We wish to show that AE(m,, g, P )  5 AE(m,, g, P )  if m, < m,. 
Accordingly we consider the Hamiltonian 

where E,,, is chosen so that  inf o(H(g, h)) = 0. As h -+1, H(g, h) --t H,(g) in 
the usual sense, where in the Fock representation for the field 4, with mass 

m1 [821, 
H1(s) = HO(ml)+ :Pl(41): (s) - E,,, . 

In this Hamiltonian the Wick dots refer to ordering with respect to the 
vacuum for mass m, and hence P, +P. At  any rate, since the gap for H(g, h) 
increases as h increases by the argument of Theorem V.22, we conclude by 
lower semi-continuity of the spectrum that  AE(mo,g, P )  5 AE(m,, g, P,). 

So far the hypothesis about the degree of P has not entered, but i t  is 
needed for the final step, namely, 

(V.23) AE(m,, g, P,) 2 AE(m,, g, P). 
For according to the following lemma, P,(X) = P ( X )  - 6 c X V  const. where 
the constant c > 0, and we see tha t  the inequality (V.23) is just Theorem 
V.22. 

LEMMAV.27. For  s = 1, let [$"I, and [$"I1denote the Wick powers of the 
field i n  the Fock representations of mass m, and m, respectively (see 3 11.1 
for definitions). Then 

m 

where c = 1/4a1 [(mi + k2)-'/' - (mi + k2)-'/']dk, and 
-m 

{g)  is the number of 
ways of choosing j pairs from n objects, 
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Remarks 1. This lemma has already been noted by R. Baumel (private 
communication). 

2. The precise meaning of (V.24) is as  follows: i f f  E Cf(R), the smeared 
Wick powers [$"lo(f )  and [PIl(f )  are affiliated with the algebra Em generated 
by the fields. Thus we can represent the operator [$"],(f)on 3,, where i t  is 
given in terms of the [$"Il(f) by (V.24) on the domain, say, of smooth vectors 
with a finite number of particles. 

Proof. By simple combinatorics, ordinary powers are given in terms of 
Wick powers by (we omit ultraviolet cutoffs) 

where cr = 1 / 4 ~\ (mi + k2)-112dk,i = 0, 1. It is convenient to  write (V.25) as  
J 

a linear transformation in an  [n/2] + 1dimensional space: 

where 
+ 
$%= (4"l r2,1, [ZO = ([$nlo, [$"-210, ) 

and 

(V.27) 

Then i t  is clear that  

Remark. The combinatorial relations (V.26) and (V.27) make i t  clear 
why the formula for Wick powers in terms of ordinary powers has the  same 

4 

coefficients as (V.25) except for a (-l)j; for [F ] ,  = e-"oTnT. 

(C) Broken Symmetry 

Suppose tha t  the polynomial P ( X )  = P,(X) + XX, where P, is even and 
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X real. Let Ep( .)  denote the expectation for the theory obtained as an 
infinite valume limit of some spatially cutoff theory with polynomial P ,  say, 
for the sake of definiteness, the half-Dirichlet state (cf. Theorem V.20A). 

Since Ep is translation invariant we know that  Ep(#(f)) = c \ f(s)dr. We 
denote the constant c by E,($(O)). 

There are various meanings to the statement tha t  the 0- -4 symmetry 
is broken for a P,($) theory, for instance: 

(a) the spontaneous Bogoliubov parameter 

b(P,) -= lim2+,- EPe+2X(~(0)) # 0 ; 

(b) a,(Pe + XX) is not differentiable in h a t  X = 0. 
We expect that (a) and (b) are equivalent and occur if and only if Epis not 
ergodic, i.e., there is a non-unique vacuum. Thus our main result below 
(the persistence of broken symmetry under a decrease in the coefficient of 
X" is to be expected on the basis of Theorem V.22. 

According to Lemma V.17: 

THEOREMV.28. Let P be a n  even polynomial and let p ,  X be real. 
Then E,+,x~+2,(~(~))  and nonnegative if X is negative, and is odd i n  X 

I Ep+pX2+2.r(4(0))is a decreasing function of [J and a n  increasing function ( 
of 1x1. 

As a result we see that  b(P) exists. Moreover: 

THEOREM If P is a n  even polynomial, the spontaneous Bogoliubov V.29. 
parameter b(P) is nonnegative and b(P + pX2) is a decreasing function of 
p. Thus if P gives rise to a broken symmetry theory (i.e., b(P) +- 0) then so 
does P + pX" for any p < 0. 

Remark. The equivalence of (a) and (b) above for Pe(X) = a x 4+ bX2 
has been proved in [105]. 

V1. The basic objects of statistical mechanics 

In this section we shall study the pressure associated with an inter- 
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action polynomial P ,  and the entropy density associated with each of a class 
of states which we describe in § VI.2. The (free boundary condition) pressure, 
a,(P), which we discuss in 8 VI.l is not a new object. It is just the  Fock 
space energy per unit  volume which was shown to exist by Guerra [41] (see 
also [42], [43]). On the other hand, the entropy density s(f) is a new object 
which is not defined directly in terms of a Hamiltonian theory. It is natural 
to  ask if i t  is anything more than an object of academic interest. At  this 
point, we cannot give a definitive answer to this question bu t  the program 
which we outline in the next section (especially 9 VII.3) suggests t ha t  the  
entropy density will be an important object in future  developments of the  
P(g), theory. 

VI.l The Pressure. Throughout this section dp, will denote the  meas- 
ure for the non-interacting Markov field of mass m (free B.C.) and dpf: the  
measure for the non-interacting Markov field with Dirichlet B.C. in region 
A; P will denote a fixed semibounded, normalized (P(0) = 0) polynomial, 

UA= :P($(r)) :d2r,  U! = S A  :P(gD(z)):d9c (see (11.25) and (11.63)). 
A 

DeJinitions. The partition functions and pressures associated to a 
bounded, open region A are given by 

ZAf(P)= 1e-'.idpi , 

p, = / A I-' In ZA(P) , (free B.C. pressure) 

p2c= I A I-' In Z,D(P) , (Dirichlet B.C. pressure) 

where I A / is the volume of A. 

Remark. We use the term "pressure" even though we have no particular 
reason for thinking of I .dp, as a grand canonical ensemble as opposed to a 
canonical ensemble average. 

Our main goal is to prove t ha t  pA (resp. p-y) converges to  a limit 
a,(resp. a:) a s  A -rn (Fisher). We shall investigate the natural  conjecture 
t ha t  a, = a 2  in our forthcoming paper on boundary conditions. 

We first note some simple consequences of the  theory of conditioning 
(§ 11.5): 

LEMMAVI.l. (a) Fo r  any bounded open region A, 

1 S Z f S Z A .  

(b) If A, cA, a re  bounded open regions, then 
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(c) If A,, . a ,  A, are  disjoint open regions and A, U U A, cA, then 

II,",,Zfj 5 ZnD . 
(d) In Z,(P) and In Z,D(P) a re  convex functions of Pfor each fixed A. 

Proof. (a) Since P is normalized, U,Ddp: =0, so by Jensen's inequality, 

The bound Zf 5 Zi, follows from Lemma 11.20 and the  fact  t ha t  the Dirichlet 
theory is a conditioned theory (Theorem 11.28). 

(b) The Dirichlet theory in A, can be obtained from t h a t  in A, by con-
ditioning onto those functions orthogonal to the  functions with support in 
&\A,. Thus 2,:: 5 Z,Y, once again by Lemma 11.20. 

(c) By (b), Zflunz... 5 Zf. But, as A,, . ., A, are disjoint, d ~ ; , , ~..., 
factors (see Theorem 11.29) so t ha t  Z{ ,...,,, = Zf, . ..Z t .  

(d) follows from Holder's inequality. 

COROLLARYVI.2. Fo r  any bounded open region A, 

P,D 5 Pi, s a m  

where a, i s  the Foclc space energy per uni t  volume [42]. 

Proof. The first inequality follows from Lemma VI.l(a) and the second 
from Lemma 111.13. 

In  the  special case where the  A are rectangles, we can now take the  
thermodynamic limit. We write 1 x t a s  shorthand for the rectangle 
[-Liz, 1/21 x [-t/2, t/2]. 

THEOREMVI.3. (a) p,,, i s  monotone increasing i n  1 and t and 
lim,,,,, p,,, = a,, the Fock space energy per uni t  volume. 

(b) Fo r  each fixed 1 (resp. t) In Z i t  is superadditive i n  t (resp. 1), 
lim,,,,, pFxtexists and equals sup,,, pk, -= a: 2 0. 

(c) a: S a,. 
(d) a,(P) and a:(P) are  convex functions of P. 

Proof. (a) By the FKN formula (II.32), P,,, = (l/lt) In (SZ,, e-tHISZ,j; the 
monotonicity of this expression was proved in [42, Theorem 11. Since 
lim,,,p,,, = a, by the transfer matrix formula (II.38), i t  follows t h a t  
Iiml,t+, P L X ,  = a,. 

(b) The superadditivity follows directly from Lemma VI.l(c). By a 
standard argument using superadditivity lim,,,,, pf',, = sup,,,pk, ;  here we 
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use Corollary VI.2 to conclude t h a t  p?,, is bounded from above, and Lemma 
VI.l(a) to  conclude t ha t  i t  is bounded from below. 

(c) and (d) are obvious consequences of Lemma VI.l. 

At  this point, we can say the  following about convergence of p,, and 
p?, for the more general situation where A, - rn (van Hove) (see Appendix 
C or [85] for the  definition and notation concerning the  van Hove limit): 

LEMMAVI.4. Let A, -m (van Hove). Then 
7 

(a) limnPA, 5 a,; 
(b) l&, pf, h a:. 

Proof. (a) follows from Corollary VI.2. 
(b) Fix a. By Lemma VI.l(c) and the definition of N;(A) (Appendix C), 

Since a2N;(A,)/l A, 1 -1, we see t h a t  

lim pf, 2 P:,, .-
Since a is arbitrary and lirn,,, p?xa= a:, by Theorem IV.3, the result 
follows. 

By Lemmas VI.l and VI.4, if we could show t h a t  a, = a:, then i t  would 
follow t h a t  lirn pAn= lirn pf, = a, whenever A, -m (van Hove). We hope 
to show t h a t  a, = a! in a fu tu re  paper. For the present we note: 

THEOREMVI.5. Let A: 4 m (Fisher). Then 
-(a) lim,,, PA; - a,; 

(b) lim,,, p fh  = a:. 

Proof. (a) Choose the squares A, 2A; and the regions A',' cA,\AL in 
accordance with Theorem C.4. Let R, = A,\AL U A',' so t h a t  1 R, 111A, I -0 
by condition (c) of Theorem C.4. Fix0 <k <1. Then, by Holder's inequality, 

Now, for any a > 1and all sufficiently large n ,  

(VI.2) 1 A; U A',' 1 P , ~ , ~ ~ ( X - ' P )5 a-' 1 A; I p,, (ah-'P) + a-' I A',' I pA;l(a~- 'P), 

by Theorem 111.3 and the fact  that  d(AL, A;) -m. We combine (VI.1) and 
(VI.2), divide by 1 A, I, and take n -m through a subsequence so tha t  b = 
lim 1 A: I / /  A, I exists. By Theorem C.4, A',' -rn (Fisher) so that  A: -w (van 
Hove) by Proposition C.2. Hence by Theorem VI.3(a) and Lemma VI.4(a) 

a,(P) =( xa-'b lim p,, (ah-'P) + (1 - b)~a-'a,(aX-'P) .- n 
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Since P has been arbitrary in this argument, we see tha t  for arbitrary p = 

ah-' > 1,  

pa,(p-'P) 5 b lim-pAg(P)+ (1 - b)a,(P) . 
But by Theorem VI.3(d), a,@-'P) is continuous in p so we may set p = 1. 
Since by Theorem C.4(b), b > 0, -lim pAk(P) 2 a,(P). This, together with 
Lemma VI.4, proves (a). 

(b) Choose A, squares and Af in accordance with Theorem C.4. By 
Lemma VI.l(c), 

l h , I ~ ? , 5  /ALIpXk+ I h f I ~ f ~ .  

Passing to a subsequence so tha t  b - lim,,, 1 A; )/I A, / exists and using 
Lemma VI.4 and Proposition C.2, we obtain 

from which (b) follows. 

V1.2. States and Entropy. The basic objectives of constructive Eucli- 
dean field theory are to prove the existence of states associated to a given 
interaction and to study their properties. In  general, a state is given by 
some probability measure p on a Q-space. If the theory associated with p is 
non-trivial and translation invariant, then p cannot be absolutely continuous 
with respect to p,, the free field measure (i.e., cannot be of the form d p  = 

f dp, with f E L1(Q, dp,)) because the action of translations on L1(Q, dp,) is 
ergodic. This is a Euclidean version of Haag's theorem. On the other hand, 
there is no general principle to prevent the restriction of p to a local o-
algebra C, (henceforth p r En) from being absolutely continuous with respect 

to Po r 2,. 
In  theories with more than 2 space-time dimensions and deg P2 4, i t  is 

probably not possible for p 1 C, to be absolutely continuous with respect to 
p, 1C,, but in two dimensions we have the following indications tha t  such 
local absolute continuity does occur: 

(a) It holds for spatially cutoff theories. 
(b) It is true for the  exactly soluble linear and quadratic models. 
(c) It holds in perturbation theory. 
(d) Most importantly, i t  is suggested by the locally Fock property of the 

Hamiltonian theory [31]. 
Thus, we define: 

DeJinition. A state f is a family IfA) of functions on the free field Q-
space, labelled by bounded open A cR2, SO tha t  
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a) Each f, is 2,-measurable, almost everywhere nonnegative, in 
L1(Q, dp,), and normalized 

b) The system is compatible in the sense tha t  

EA(fn,) = fA if A cA' , 
where EA is the (free field) conditional expectation on 2,. 

We say the state is p-smooth for some fixed p > 1, if and only if, in 
addition, 

c) For each A and p e [I,p] 

Given a state f and any closed bounded set R we can define f, by f, = 

E, f, for any A 3 R. The similarity to the corresponding definition in statis- 
tical mechanics [85] is evident. There is one important difference. I n  statis- 
tical mechanics, it is easy to construct translation invariant states. That is 
not true in the field theory case; in fact, the only translation invariant states 
we know of in two dimensions are those associated with the exactly soluble 
theories and those associated [70] with small coupling P($),. Moreover, it is 
not even known that  the latter are p-smooth for any p > I! As usual, this 
difference from statistical mechanics is a relation of the fact  tha t  disjoint 
regions are not p,-independent. We emphasize that ,  a t  the current stage, 
our considerations in $9 VI.2, VI.3, VII.3 are a trifle abstract; however, we 
expect that  in the future  it will be proved that  all P(g), theories have 
associated p-smooth states. We also warn the reader of a difference in 
emphasis from considerations in $V.  The Schwinger functions are the 
moments of p and the question of convergence (and existence) of moments is 
distinct (for technical reasons) from convergence of measures. 

In  analogy with statistical mechanics [85] and information theory, we 
define: 

Definition. Let f be a p-smooth state. If A is a bounded (open or closed) 
region in R" the entropy off associated to A is given by 

(VI.3) sA(f) = -\ f A  InfAdp0 -
Q 

When f is fixed, we will often write S(A) in place of SA(f). 

THEOREMVI.6. The following inequalities hold: 
a) (boundedness) -= < S(A) S 0; 
b) (monotonicity) S(A') lS(A) if A c A'; 
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c) (weak subadditivity) if A,. a ,  A, are  disjoint regions 

s(Ur=1A,) 5 C:=,S(&) + In 1 1  n:=,fni111 . 
Proof. We make extensive use of 

(VI.4) -

and Jensen's inequality 

(VI.5) 

where p is a probability measure, f is a nonnegative L' function. 
( 4  BY (VI.5) 

while on the other hand by (VI.4), 

- fAI n f ~ d ~ o5 (1 -f~ )dpo= 0 . 
(b) Using the consistency condition on f with (VI.5), we see that  

(c) Let A = U t ,  A,. As in the  proof of (b), 

This last theorem is very similar to the results in the theory of entropy 
for classical and quantum continuous statistical mechanics [79]. The main 
difference lies in (c) and is once again due to the non-independence of disjoint 
regions. For, if dp, did factor (as it does in classical systems), then 

In \ f A 1  ' ' fA,dpO = In (1 fAldpo) ' ' (1 fAdpo)= 0 

would hold and subadditivity would follow. 

VI.3 Convergence of the Entropy per Unit Volume. In  order to control 
the limit of 1 A ]-ISA(f )  as  1 A 1 --. rn , we shall require the following weak 
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growth condition on IfA}: 
Definition. A p-smooth state f is called weakly tempered if there exist 

7 < 1, a > 0 and D so that  for all A with diameter d(A) 2 D, 

(VI.6) In I l f ~ 1 la 5 exp [ad(A)" . 
We expect tha t  the infinite volume P(4), states will actually satisfy a 

stronger growth condition: 

Definition. If there are an A > 0 and D so t h a t  for d(A) 2 D, 

(VI.7) In l l f A  115 Ad(A>2 

we call f tempered. 
For a "reasonable" set of A, d(A)Qan be replaced by 1 A 1 .  The use of 

d(A) is seen in: 

PROPOSITIONVI.7. I n  order that f be weakly tempered (resp. tempered) 
i t  i s  suficient that (VI.6) (resp. (VI.7)) hold for all discs A. 

Proof. Any A' can be put  inside a disc A of radius d(A'). By Lemma 11.6, 
EAtis a contraction on each Lp;hence 

In Ilfnl 1 1 %  = In 1 1  E A ~ ~ A )Ila 5 In Ilfn llc 
I- exp (2V~d(A')q)(resp. 4A d(A')" . 

Weak temperedness together with hypercontractivity (Theorem 111.3) 
allows us to control the "correction term" In 1 1  fAlfA, I l l  in the  weak subaddi-
tivity condition of Theorem VI.G(c): 

LEMMAVI.8. Let f be a p-smooth, weakly tempered state. Let d, > 0 
with d, - w and suppose that A,, A: a re  regions i n  R5atisfying 

(a) d(A,) S d,, d(Ah) ldm; 
(b) dist (A,, AX) 2 dz'for some 7' > 7 and all large n. 

Then limn+, In l l f ~ , f ~ ~ I I ~= 0 . 
Proof. By Theorem 111.3, 

(VI.8) In IIfn,fn; Ill 5 ln IIfn, 1119, + In [If*; IIp, 

with p, - 15 exp (-cd:') for  some c > 0 and all large n. For large n,  p, < 1, 

and so by (111.19) (11fA 1 1 ,  = O), 

(VI.9) 

By (VI.8), (VI.9) and (VI.6), 

In I 1  fA, fAb [ I 1  2 const. exp (2ad: - cd:') ---t 0 . 
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Our main result in this subsection is 

THEOREMVI.9. Let f be a translation invariant,  weakly tempered, p-
smooth state. Then whenever A, -+ m (Fisher) the following l imit  exists: 

and i s  independent of the particular Fisher sequence. The functional s ( f )  
i s  afine i n  f ;  i.e., i f  0 5 x 5 1, 

s(x.f + (1  - x)f ') = x s ( f )  + (1  - X)s( f ' ). 
Remarks 1. Unlike the situation in classical statistical mechanics [85], 

we have not yet proved the upper semi-continuity of s ( f ) .  
2. This result extends to dimensions d # 2. 
We shall prove Theorem VI.9 in a series of lemmas (VI.10 to VI.13) all 

of which hold under the hypothesis of the theorem. First using the Checker- 
board Theorem of § 111.2, we establish the existence of the limit (VI.lO) for 
squares. Then using Theorem C.4 and Lemma VI.8, we extend the result to 
arbitrary Fisher limits. 

LEMMA I f  A i s  a square of side a,  denote Sn( f )  by S(a).  Then VI.lO. 
lim,,, a-"(a) exists. 

Proof. Fix 7' E (7, 1) and for each 1, let d = 2" and i = I + 2d. Tempo-
rarily fix 1, d and 7. Given l', write 1' = n i  + x with 0 5 X < i and n an 
integer. As in Figure VI . l ,  the square of side 1' can be partially filled by n" 
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squares {hij}lsr.jsmof side i and each ;iijcontains a square Aij of side 1 sur- 
rounded by a border of width d. By the monotonicity and weak subadditivity 
of S ,  and the translation invariance off ,  

41') 5 S(U A , ~ )  5 n2S(1)+ In j n i , j f n i j d ~ r. 
By the Checkerboard Estimate (Theorem 111.12) 

where 

(VI.lla) P = (ezm"d l)/(ezmd - e-ml) 

so t h a t  

(VI.llb) P2- 15 exp (--el") 

for  large 1. Thus 

(VI. 12) (1')-"(1') 5 nz(l')-'S(1) + n2(l')-"n 1 1 f l X l  l l a 2  . 
-

As 1' -W ,  n2(1')-" 1-%o tha t  

Now by (VI.6), (VI.9), and (VI.ll) 

liml+, In Ilfl,, l l a z  -0 

and clearly ~" i - -~-1as 1 - . Thus by (VI.13) 

LEMMAVI.11. If A, --+ w (van Hove), then 
-
lim S(A,)/l A, I 5 s(f)  - lim S(a)/a2 . 

Proof. By mimicking the proof of (VI.12), we see t h a t  for fixed 1, i, 
and d: 

1 A, I-'S(A,) 5 1 Am l-'NY(Am)S(J) + I A, I-'NF(Am) I I f l x l  11 .~2  . 
Taking first n --, w and then 1 --, W ,  the result follows as  in the  proof of 
Lemma VI.lO. 17 

The proof of the  existence of the Fisher limit is clearly completed by: 

LEMMAVI.12. If A:, -4 w (Fisher), then -lim I A', 1-'S(Al) 2 s(f). 

Proof. Pick 7 ' ~  (7, I), squares A, and regions At  in accordance with 
Theorem C.4. By passing to a subsequence, we can suppose t h a t  I A; 111A, I 
has a limit b (necessarily 0 < b < 1) and t h a t  the -lim is the  same as  the  -lim 
for  the original sequence. By monotonicity and weak subadditivity 
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By Lemma VI.8, the last factor goes to zero as n--, w since d(Ab, h i )  2 
d(Ab)". Thus dividing (VI.14) by I A, I and letting n -m, we have: 

s(f )  5 b -lim I A; I-lS(Ab) + (1 - b) fiI A:' 1-'S(A:') (by Lemma VI.lO) 

5 b -lim I Ab I-lS(Ah) + (1 - b)s(f )  . (by Lemma VI.ll) 

Since b > 0, the result follows. 

All tha t  remains in the proof of Theorem VI.9 is: 

LEMMAVI.13. s(f )  i s  afine i n  f. 

Proof. As in the statistical mechanical case [85, p. 1801 one finds 

aSA(f + (1 - a)SA(f ') s &(af + (1 - a)f ') 
S a s A (f )  + (1 - a)SA(f') + In 2 

where the first inequality depends on the convexity of t In t and the second 
on the monotonicity of In t. Dividing by I A I and taking A -+ m (Fisher), 
we obtain the affine relation. 

VII. Equilibrium and variational equations 

The construction of infinite volume field theories in both the Hamiltonian 
and Euclidean formulations has proceeded by imposing spatial cutoffs which 
are then removed by appropriate limiting procedures. I t  is thus of particular 
interest to obtain an a pr ior i  characterization of what is meant by "an infinite 
volume P(g), field theory" in a way that  makes no mention of cutoffs. By 
doing this, one can hope to isolate those situations where the infinite volume 
theory is unique independent of the cutoff or removal procedures. 

In the Hamiltonian approach, this a priori  characterization has depended 
on the use of field equations [30], [81]. The question of uniqueness then has 
two aspects: the algebraic aspect and the representation aspect. That is, one 
can discuss separately the uniqueness question for time automorphisms and 
the uniqueness question for vacuum representations, i.e., invariant states 
with an induced positive energy. The Guenin-Segal argument can be viewed 
as a kind of uniqueness theorem for automorphisms with Fock initial condi-
tions. The difficult problem is then the characterization of vacuum repre-
sentations. While this has been accomplished for free theories ([91], [92], 
[114]), the method is sufficiently specialized to present no clue about how to 
approach the problem in general. 

In  this section, it is our goal to give a characterization of equilibrium 
states for a given interaction by following methods and ideas from modern 
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statistical mechanics [84], [12]-[15], [56], [86]. Let us emphasize a t  the  outset 
tha t  our results in this section are very incomplete and are  more an  indica- 
tion of the direction in which we feel the theory will go rather than a 
construction of the theory. The first difficulty in mimicking statistical 
mechanical ideas involves the non-independence of disjoint regions in the 
free theory, a difference we have already emphasized. For this reason, we 
occasionally consider one-dimensional theories where the  transfer matrix 
technique enables us to overcome this difficulty. The second difficulty in 
handling equilibrium equations is tha t  they do not specify the  state completely 
but must be supplemented by the right boundary conditions a t  infinity in 
order to rule out unphysical solutions. There is an  analogous situation in 
continuous classical statistical mechanics [86]-the need for supplementary 
boundary conditions in both cases is connected with the fact  tha t  the  basic 
quantities (fields or densities) can take unbounded values [12]. 

The organization of the  section is as follows. I n  § VII.1, we discuss 
equilibrium equations for a n  interaction polynomial P together with a bare 
mass, m. We also discuss the  transformation laws between pairs (P, m) and 
( p ,6%)which have equivalent equilibrium equations. I n  § VII.2, we show 
tha t  the DLR equations alone do not characterize even the  free theory, there- 
by demonstrating the  need for boundary conditions a t  infinity. I n  § VII.3, 
we obtain some partial information about the  Gibbs' variational principle; in 
particular, we uncover a striking connection between the one-dimensional 
(statistical mechanical) Euclidean theory and the associated (quantum) 
Hamiltonian theory; namely, the Rayleigh-Ritz (quantum) variational princi- 
ple and the  Gibbs (statistical mechanical) principle are  essentially identical. 

VII.1. DLR Equations. I n  their discussions of the statistical mechanics 
of lattice gases, Dobrushin [13]-[15] and Lanford-Ruelle [56] proposed a set 
of relations on a n  infinite volume state which intuitively express the fact  
tha t  the  state is an equilibrium state for a system with some given interac- 
tion a t  some fixed temperature. These relations are generally called equi- 
librium equations or DLR equations. Ruelle [86] has discussed their analogues 
for  classical continuous systems, and i t  is generally believed tha t  the  KMS 
boundary condition [45] is their analogue in quantum lattice systems. We 
now wish to discuss their analogue in Euclidean field theories viewed as 
classical statistical mechanics. The basic idea behind our version of the  DLR 
equations is this: the Markov property assures us tha t  a change in the  
interaction outside a bounded region, A, affects the s ta te  restricted to  A only 
by a multiplicative factor concentrated on the boundary. 
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For the present we fix the bare mass m and the semibounded polynomial 
P ,  although later in this subsection we shall discuss changes in m and P. 

As usual, UA = 1 :P($(x)):d2x where $ is the free Euclidean field of mass m 
A 

and : : the associated Wick ordering. We shall discuss Markov fields over 
9(R2) in the sense of Nelson [67] since there are no technical complications 
introduced by doing so. All such fields are essentially defined by measures 
on a fixed a-algebra, for example, in the realization of Q-space as 9', the a-
algebra of cylinder sets. If h is open, 2, is the a-algebra generated by the 
{$( f )  I supp f cA) and, if A is closed, EA = UA,,,,, E,,. Given a Markov field 

A ' 3 A  

measure ,E on &2, ,E r En will denote the restriction of ,E to 2,. Throughout, 
p, denotes the mass free field measure and EAits conditional expectation 
associated to C.,. Given a measure ,E over 9', EAdenotes its conditional 
expectations. 

Definition. Let ,E be the measure associated to a Markov field theory 
over 8(R". Let A be a bounded compact region in R2. We say that ,Z is A- 
Gibbsian for P (or, if we wish to emphasize the bare mass, for (P, m))if and 
only if 

( i ) ,E r XA is absolutely continuous with respect to p, r 2,; 
( i i)  For every bounded, 2,-measurable function A 

(VII.1) 

If ,E is A-Gibbsian for P for every compact A, we say that ,E is a n  infinite 
volume Gibbs state or a Gibbsian state for P. (VII.l) is called the DLR 
equation. 

Remarks 1. Because of the differences between field theory and statis- 
tical mechanics, (VII.l) has a slightly different form than the usual DLR 
equations. In fact, because of the strict locality of the interaction and the 
associated Markov property, (VII.1) is cleaner looking than its statistical 
mechanical analogue. In the first place, we can write EaAand EaAinstead 
of ERz ,A  and E R Z \ Abecause of the Markov property. In  the statistical mechan- 
ical case, this is not possible, although, if the interaction has range k ,  then 
a "boundary" of width k can be used in place of R2\h. In addition, because 
of the locality of U,it is not necessary to add an "external field" to UA. 

2. Because of condition (i), (VII.l) can be interpreted in the "almost 
everywhere" (with respect to ,E) sense and is independent of any concrete 
realization of Qspace. 

3. Since e L1(Q,dp,),  the denominator of the right side of (VII.l) is 
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finite almost everywhere. 
4. Since EaA(.)and Ea,(.e-UA)/EaA(e-'~)are both positivity preserving 

and take 1into 1, (VII.1) extends by continuity to any A which is 2,-meas-
urable and in L1(Q,d,E) and L1(Q,e-c~dpo) .  

We shall show that  suitable limits of spatially cutoff states with free, 
Dirichlet or half-Dirichlet B.C. are Gibbsian, but it is first important to 
develop some general properties of the DLR equations. Given a family of 

W
Markov field measures {p,):, we write p, r C, -p r Cn if and only if 

1Fdp. -1F d p  

for every bounded 2,-measurable function F. 

PROPOSITIONVII.l. Let p, be a sequence of MarkovJield measures which 
a r e  A-Gibbsian for some fixed compact A c R2. Suppose that p r 2, i s  

W
absolutely continuous with respect to poand that p, r C, -p r 2,. Then 
,U i s  A-Gibbsian. 

Proof. Given A, 2,-measurable and bounded, let &,(A) be the right side 
of (VII.l). By Remark 4 above, &,(A) is also bounded. To say that  a measure 
v (with v r C, absolutely continuous with respect to p,) is A-Gibbsian is 
equivalent to saying that  for every pair of bounded measurable functions A 
and B with A 2,-measurable and B Ca,-measurable

1ABdv = GA(A)Bdv.I 
This is clearly left invariant by the stated type of limit. 

THEOREMVII.2. Let A cR2be compact and let ,E be a Markov Jield 
measure with ,E r 2, absolutely continuous with respect to p,. Suppose that 

(VII. 2) d(P r CC,)= e-"A+a~d(~or CAI 
where +a, i s  a positive Ca,-measurable function i n  L1(Q,ecrAdp,). Then ,E 
i s  A-Gibbsian. Conversely, if F i s  A-Gibbsian, then d(,E r C,) has the form 
(VII.2) for some positive Ca,-measurable function, +an. 

Proof. Suppose that  d(,E r C,) has the form (VII.2) and that  v is a 
bounded Ca,-measurable function. Then 

1Ea,(A)Ean(e-'~)vdP= \ AE,,(e-"A)ve-'A~+k-~,dp, 
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by repeated use of the definitions of conditional expectation. Since v is 
arbitrary and both E,,(A)E,,(e-"A) and EaA(Ae-'A) are 2,,-measurable they 
are equal. Thus (VII.l) holds. 

Conversely, suppose tha t  ,E is A-Gibbsian. Then, by condition (i) of the  
definition, d(,5 r 2,) = f,d(p, r 2,) for some CA-measurable function f, E 

L1(Q,dpo). BY (VII.1) 

(VII.3a) 1 Ean(Ae-'A) fAd& = Ean(A)EaA(e-'")d,EI 
for any 2,-measurable A with both A and Ae-'A bounded. Suppose that  B 
is bounded and tha t  {q I B(q) # 0) c {q I UA(q)< C) for some c. Then A = 
Be+", can be substituted in (VII.3): 

(VII.4) 5 EaA(B)fAdpo = 1BEa~(e-"~)(f~e+"")dPc. 
Any positive B can be realized as a monotone limit of B's for which (VII.4) 
has been proved so that  (VII.4) holds for any B 2 0 and in particular for 
B = 1. Thus, Ea,(e-"A)(fAe+'A)d& = 1so that  (VII.4) extends to any B in5 
LW(Q,dp,). For this we conclude that  EaA(e-'~)(f,e+'A) is Ca,-measurable. 
For suppose not. Then, since {G E L1(Q,dp,) I C is C,,-measurable) is closed 
we can find B E  L" with BCdp, = 0 for all these C, but with 

Since this contradicts (VII.4), we conclude that  E,,(e-"A)f,e+"A and thus  
f,e+'A are 2,,-measurable. This proves (VII.2). 

COROLLARYVII.3. If ,E i s  A-Gibbsian, i t  i s  A'-Gibbsian for any A' cA. 

Proof. By Theorem VII.2, d(,E r C,) = fAd(por 2,) with fA = e-'A+aA. 
It follows tha t  d(,E r 2,,) = f,,d(p, r 2,) where 

By the locality of the interaction and the Markov property 

E,,(~-'A+~,) = ~ - ' . ' A ' E ~ , ( ~ - ' A \ A ' + ~ ~ )  
-- e-r~,EaA,(e-LA\~'+, , )  . 

Thus f,, is of the form (VII.2) with 

(VII.5) = EaA.(e-rh'\h'+a,). 
Remark. One can thus attempt to construct Gibbsian states by finding 
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+anl7  ..,+an,, . satisfying the consistency conditions (VII.5) for a sequence 
A, cA, c . .. with U b l  A, = R2. This is precisely the method used by 
Dobrushin [13], [14] in his proof of uniqueness of Gibbsian states for high 
temperature lattice gases. We have not been able to duplicate this argument 
in the P($), case. 

COROLLARYVII.4. Let ,E be the measure associated with a P(@),spatial 
cutoff g which equals 1on A. Then p i s  A-Gibbsian for P. More generally, 
if g r A = f ,  then 

E,,(A) = Ea,(Ae-L 'f')/EaA(e-L-'f)). 
Proof. Similar to the proof of Corollary VII.3. 

THEOREMVII.5. Suppose that g, i s  a sequence of cutoffs with g, 2 0 so 

that for any compact A, / g, -11, d2x-+0 as  n -+  rn . Suppose further thatSA 
the associated measures p, converge to a measure ,E i n  local weak L1sense 

(i.e., p, r CAZFr C,) with ,E r CAabsolutely continuous relative to po r 2,. 
Then /I-1 i s  Gibbsian for (P, m). 

Remarks 1. For free boundary conditions and for g, the characteristic 
function of a rectangle (-1,/2, 1,/2) x (- T,/2, T,/2), Newman [70] has proved 
the necessary convergence of measures for small coupling constant theories. 
His limiting states are thus  Gibbsian states. 

2. We emphasize once more our remark in 3 VI.2 tha t  convergence of 
moments and convergence of measures are not the same and that ,  a t  the 
present stage of knowledge, we have control over the infinite volume states 
(as opposed to moments) only in the small coupling case or for the exactly 
soluble models (deg P S 2). 

As a final corollary of Theorem VII.2, we can show that  (essentially by 
definition) every Gibbsian state is a local weak L' limit of spatially cutoff 
theories with some boundary conditions, where: 

Dejinition. Fix A compact in R%nd vaAa nonnegative C,,-measurable 

function with e-'Ava,dpo = 1. The measure e-L-Av,,dpois called the GibbsS 
state i n  region A with boundary condition van. 

THEOREMVII.6. An infinite volume state i s  a Gibbs state for P if and 
only if i t  i s  a limit ( in  local weak L1-sense) as  A -+ rn of Gibbs states i n  
region A with some boundary conditions. 

Proof. Such a limit of Gibbs states is Gibbsian by Proposition VII.l and 
Theorem VII.2. Conversely, if ,E is Gibbsian, d(P r C,) = e-"Ava,d(po r 2,). 
Letting dF, = ecrAv,,dp0, we see tha t  ,E, --t ,E in weak local L' sense, so ,D is 
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a limit of Gibbs states. 

Remarks 1. It should be noted tha t  in statistical mechanics, the  infinite 
volume Gibbsian states are, in general, only in the closed convex hull of the  
limits of finite volume Gibbs states. This difference is the reflection of the  
strict locality of UA. 

2. Theorem VII.6 is of limited interest since extremely general types of 
boundary conditions are allowed. It is to be expected tha t  only Gaussian vaA 
(although not necessarily with mean zero) will be needed to obtain all Gibb-
sian states, but this is a much more difficult question. 

Our next goal is,to prove tha t  limits of Dirichlet states or half-Dirichlet 
states obey DLR equations. This is not quite trivial, even in the non-inter-
acting theory since i t  requires our analysis of 3 11.6. 

LEMMAVII.7. Let A cA' with A compact and A' open. Let 9 be the 
measure on the CA-measurablefunctions induced by the free Euclidean field 
with Dirichlet boundary conditions on ah'. Then 9 i s  A-Gibbsian for P = 0, 
i.e,, 

E~A(A)= EaA(A) 

for any CA-measurableA. 

Proof. By Theorem 11.35, P r 2, is absolutely continuous with respect 
to p, r 2, and its Radon-Nikodym derivative is CaA-measurable. 

THEOREMVII.8. Any weak local L1-limit of Dirichlet or  half-Dirichlet 
states i s  Gibbsian. 

Proof. Consider first the half-Dirichlet state for region A'. Let E denote 
the expectation value for this state and E the expectation value for the free 
Dirichlet state in A'. If A is a compact set in A', then by mimicking the  
argument in Corollary VII.3, we see tha t  for any ?;,-measurable bounded 
function A, 

EaA(A)= Ea,(~e-' ~ ) l ~ ~ ~ ( e - 'A) . 
By Lemma VII.7, EaA(.) = EaA(.)when applied to CA-measurable functions, 
so E is A-Gibbsian. 

Similarly, if E'D,A')is the Dirichlet s ta te  for region A' and A is CA-meas-
urable and bounded, then 

(VII.6) E,',f,""(A) = E,,(A exp (- U~D~AO))/E,,(exp(- U.:D'"")) 

where 
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as in Theorem 11.40. By that theorem, exp (- UiDIA'))-*exp(- U,) as A'- m, 

the convergence being in any Lp(Q,dpo)(p < m). Thus, the right hand side 
of (VII.6) converges to the right hand side of (VII.l) pointwise a.e. 

From the point of view of the DLR equations, equilibrium states of a 
P($), field theory are labelled by a pair (m, P )  consisting of the bare mass m 
and the interaction polynomial P. This is to be compared with the field 
equation approach in which theories are labelled by a pair (mf, Q) consisting 
of the field equation mass and the field equation polynomial, determined by 
requiring that 

where Q has no quadratic term and i i is Wick ordering with respect to the 
physical vacuum 1321, [93]. To some extent, the choice of labelling is a theo-
logical question, but we prefer to characterize the theory by a pair (m, P )  
with the equivalence of certain pairs (m, P )  E ( 6 ,  F ) ,  as discussed below. 
In defense of this view, we note the following: 

( 1) The field equation mass is not the physical mass in general. For 
example, we have seen (V.22b) that for h :g4:,with small coupling constant 
h, mph< m. On the other hand, one finds that for h :g4::,,Q(X) = hX4with 

(VII.7) m: = m2+ 12h(: g2:)phys . 
Baumel [2]has proved that (:$~),,,,>O so that (VII.7) implies that mf >mph. 

( 2 ) I t  is the coefficients of P (together with m), rather than those of 
Q, which enter into the Feynman perturbation series. For example, consider 
a q4anharmonic oscillator. Define a,&) to be the ground state energy for 
the oscillator yielding a q(t) which obeys 

with m; fixed. Then a,@) is not given by the Rayleigh-Schroedinger series. 

As a final topic in this subsection, we turn to classifying the equivalence 
of DLR equations for certain pairs, (m, P ) .  Independently, Baumel [2] has 
found the same transformation law. Our results complement Baumel's in 
the sense that he discusses the (periodic) pressure and we discuss states. 

THEOREMVII.9. Let (m, P )  be given and let 6> O .  If P ( X )  =x;=,ajxi, 
define F by 

ljlZl(VII.8) P(X) = C;=,a jCn=, j! dn Xj-2n + l ( m 2- 62)x2znn!( j  - sn)! 2 
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(VII.9) 

Then a state is a n  (m, P )  infinite volume Gibbs state if and only if i t  is  a n  
(%, p )  infinite volume Gibbs state. 

Since this theorem asserts the equality of two conditional expectations, 
it is enough to prove that there is one state which is A-Gibbsian for (P, m) 
and (P, %). Thus Theorem VII.9 follows from a result which is of independent 
interest: 

THEOREMVII.lO. Let A be a regular region and let (P, m) and (% %) be 
given by (VII.8) and.(VII.9). Then the half-Dirichlet state (and Schwinger 
functions) i n  region A for interaction P with bare mass m agrees with the 
half-Dirichlet state i n  region Afor interaction P with bare mass &. 

Proof. Let d8=(2n)-l \ [p,(k, %)-' -~ ( k ,m)-2]d2k,where we have made 
explicit the dependence of ;, (as defined in equation (IV.6)) on m. Let P, be 
given by (VII.8) where d, replaces d. Explicit computation shows that the 
half-Dirichlet lattice states for (m, P )  and (%, P,) agree. Since d, --+ d as 
6 -0 and we can control the convergence of the half-Dirichlet lattice states 
(Theorem IV.13), the result follows. 

Remarks 1. In particular, this theorem implies equality of half-Dirich-
let magnetization and Bogoliubov parameters (cf. $ V.4) and thus relates the 
possibility of broken symmetry in the (m, P )  and (%, p )  theories. 

2. There is another relation between distinct pairs due to scaling (cf. 
[35]). If we make the bare mass explicit in the free field, then $(x,m) and 
$(AX,x-'rn) have identical covariance matrices. This implies not only a 
covariance of DLR equations, but also of states and Schwinger functions for 
free, Dirichlet, and half-Dirichlet B.C. 

3. R. Baumel [2] has made an interesting observation based on Remarks 
1 and 2. Consider P = a x 4+ bX2. If we ignore the constant term in P 
(which only affects the pressure and not the states), then (a, b; m2)is equiv-
alent to (a ,  6; @i", where 

(VII.10) 

g is a continuous monotone decreasing function of %%on (0, rn) going to -
as % --+ rn and to rn as % -0. Thus we can find % such that g = 0. By 
scaling we can take @i to m and a to a" = (m/%)'a. We conclude that the 
(a, b; m) theory has many equilibrium states if and only if the (Z, 0; m) theory 
has many equilibrium states. This emphasizes that the conventional wisdom 
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picture [I171 has some defects because it ignores Wick ordering. 
4. As pointed out by Baumel [2], the polynomial p given by 

P = P + f m  
with 

is more natural than P. Of course, the constant f, does not affect the states. 
Moreover, Baumel shows that the periodic pressures for P and $ agree (if the 
periodic pressures exist). 

VII.2. Spurious Solutions of the DLR Equations and Boundary Con- 
ditions a t  Injinity. I t  is a basic fact that the DLR equations of $ VII.1 are not 
sufficient to characterize "physical" states for the P(#), field theory. At the 
very least, they must be supplemented by a growth condition a t  infinity. 
Such a situation has appeared already in the classical statistical mechanics of 
continuous systems [12], [86]. We shall illustrate the phenomenon in a simple 
example and then propose a suitable boundary condition. 

For our example, we take a one-dimensional field on the half-line [O, m )  

with Dirichlet boundary conditions a t  t = 0 and we consider the case P = 0. 
The same method works for P linear or quadratic and in several dimensions. 
For the free field we have a covariance 

where 

(VII. l l a )  


and 


(VII.llb) h(t) = e-t . 

We shall attempt to choose a state {f,} with 

(VII.12) f r o , t i  = a(t)  ~ X P(P(t)q(t)) 
for suitable real valued functions a( t )  and P(t). Since f[,,,] is a function of 
the fields on the boundary, f will clearly obey the zero interaction DLR 
equations if we can choose a( t )  and P(t) so that the f[,,tl are normalized and 
consistent. The normalization condition is equivalent to 
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Consistency requires tha t  

E r o , t i f [ o , t , i  = f r o , t i  

whenever t' 2 t ,  where EL,,,]is the free field conditional expectation. By 
explicit computation 

E , O , t l f , O , t ~ l  = r( t ,  t') exp (W,  tt)q(t)) 
where 

6(t, t') = P(t')h(t')/h(t) 

and 

r(t ,  tt) = a( t t )  exp (',~(t')zh(t')~(t') - 1 6 ( t ,  t'ph(t)g(t)) . 
4 4 

Consistency and normalization then hold if and only if we choose a( t )  obeying 
(VII.13) and P(t) obeying P(t)h(t) = constant, i.e., P(t) = cet. We summarize 
by: 

PROPOSITION The state of the one-dimensional (Dirichlet) Jield VII. l l .  
on [0, m )  given by 

1
(VII.14) f i o . t ~= exP (-Tcz(ezt - 1)) exp (cetq(t)) 

i s  a normalized state obeying the zero interaction DLR equations for any c. 
Moreover 

1
(VII.15a) In Ilf[O.t l  l l ,  = -c2(p - w e z t- 1)
4 

and 

(VII.15b) 1)
4 

The formulae (VII.15) follow by explicit computation. They show tha t  
the states (VII.14) for c # 0 are not weakly tempered and tha t  they have 
entropy density -w .  The moral of Proposition VII . l l  is tha t  one must 
supplement the DLR equations with some growth condition a t  infinity if there 
is to be any hope for uniqueness theorems in the small coupling constant 
region. To illustrate tha t  uniqueness is possible under some growth condi- 
tions a t  infinity, we note the following rather weak result: 

PROPOSITION The only tempered state for the one-dimensional VII.12. 
(Dirichlet) Jield on [0, a)which satisfies the zero interaction DLR equations 
i s  the state given by fA = 1. 

Proof. Because of the Dirichlet boundary conditions and Theorem VII.2, 
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f L o , t l  must be of the form 

f ~ 0 , t l  = Jt4t 

where $, E L1[R, (2~)-'I2exp ((- q2)/2)dq]is nonnegative and Jtis the  canonical 
embedding of § 11.6. Consistency then says tha t  for t < t' 
(VII.16) exp [- (t' - t)H014,,= 4, , 
while temperedness says tha t  

(VII.17) / I  4t 112 5 exp (at) 7 

a t  least for t large. Let E, S E, 5 . . . be the  eigenvalues of Hawith corre-
sponding eigenfunctions +,, +,, . . Let an(t)= (+,, 4,). Then by (VII.16), 
an(t)= exp ((t - l)E,)an(l) so tha t  (VII.17) implies tha t  an(t)= 0 for  En> a 
and thus that  

4t = C,"=,cn ~ X P(tEn)+n . 
If 4t # 1, then we can suppose tha t  c, # 0 and N > 0. But, this would imply 
that  

(arg cX)+, = limt-- I CAT I- '  exp (-tE~,)$t 

is a.e. positive. Since (+,, +,) = 0 and +, is strictly positive, this is impos-
sible. 

Remarks 1. The same proof works for an  arbitrary P(q)  interaction 
but the proof depends critically on there being Dirichlet B.C. a t  one end, 
allowing us to use the transfer matrix formula (VII.16). 

2. We see tha t  the positivity off, must play a major role in studying 
uniqueness. For example, we feel tha t  by suitable use of positivity, one 
should be able to extend the  above result to the case where f is only known 
to be weakly tempered. 

The "right" boundary condition a t  infinity should be determined by the 
following properties: 

( 1) Any solution of the DLR equations with the boundary condition 
should satisfy the variational equality of the next section. 

(2) Any state satisfying the  boundary condition and the variational 
equality should obey the DLR equations. 

(3) For small coupling constant, there should be a unique solution of the 
DLR equations together with the boundary condition. 

We should like to suggest tha t  weak temperedness is the correct bound-
ary condition. The counterexample in Proposition VII . l l  says no weaker 
condition is possible. And, in the next section, we will reduce (1) above for 
weakly tempered states to a conjecture whose analogue is known to be t rue  
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in classical statistical mechanics. 

VII.3 Gibbs Variational Principle: Partial  Results. In statistical me- 
chanics, a variational principle for the entropy density [84] provides a very 
elegant characterization of the infinite volume equilibrium states associated 
with a given interaction [56]. I t  is our purpose in this subsection to introduce 
similar ideas in Euclidean field theory. While our results are far  from defini- 
tive, they strongly support the idea that a variational principle can be used 
to characterize infinite volume equilibrium states in Euclidean field theories. 

The Gibbs variational principle involves three quantities: The pressure, 
a,(P), which depends only on the interaction polynomial P ;  the entropy 
density, s(f), which depends only on the state {f,}; and the mean interaction, 
p(f, P) ,  which we shortly introduce and which depends on both the interac- 
tion polynomial and the state. A complete analysis of the Gibbs principle 
should involve demonstrating: 

(a) For all states f from some "acceptable" class C, 

s ( f )  - P(f, P )  5 a,(P) . 
This, we shall call the Gibbs variational inequality. 

(b) SUP,,e [s(f) - P(f, P)1 = am(P) 
which we shall call the Gibbs variational equality. 

(c) f E C is Gibbsian for P if and only if 

s ( f )  - P(f, P )  = a,(P) . 
We shall take C to be the class of translation invariant, weakly tempered 
states. 

The structure of this subsection is the following. After introducing the 
mean interaction p(f, P )  we shall prove the variational inequality for P(#)2. 
Next, we shall look a t  the one-dimensional case, where we shall be able to 
compute explicitly the entropy of the infinite volume state for an anharmonic 
oscillator. We shall use this computation to speculate about the situation in 
the P($), field theory. Finally, we shall indicate an approach linking the 
DLR equations to the variational equality. 

Dejinition. Given a @-smooth (@> 1)translation invariant state Ifn} 
and an interaction polynomial, P,  we define the mean interaction associated 
to the region A by 

The strict locality of the interaction makes the control of the infinite 
volume "limit" of p, especially easy: 
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PROPOSITIONVII.13. pA(f, P) is a number p(f, P) independent of A. 

Proof. Since A -UAis Lpcontinuous for p < .o (cf. Theorem II.10), 
fA, is in LP(q 5 13) and, by consistency, 

if A c  A', A -pAis clearly continuous. Moreover, if A, UA, = A and A, nA, = 

g, then 

I t  now follows easily that pAis independent of A. 

The following half of the Gibbs variational principle is now straight-
forward: 

THEOREMVII.14 (Gibbs variational inequality). For any semibounded 
interaction polynomial P ,  and any weakly tempered translation invariant 
state IfAl, 

4f)- ~ ( f ,P)r %(P) . 
Proof. By the concavity of In x and the normalization of the fA we have 

for any finite A: 

Taking A - .o (Fisher), we complete the proof. 

Except for the exactly solvable linear and quadratic interactions (where 
the variational equality can be verified by direct computation) we have 
nothing to report about the variational equality for two-dimensional theories. 
This is not surprising, since we know the existence of infinite volume states 
only for small coupling constant [70] and we do not even know weak tern-
peredness holds in that case. However, for the one-dimensional case, we can 
verify the variational equality directly by the use of transfer matrix ideas. 
Let QQ be the ground state for the Hamiltonian HQ= H, + :Q(q) :and let EQ 
be the ground state energy. Finally let f Q be the associated Euclidean state 
so that (cf. Theorem 11.18) 
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Explicit computation now yields 

THEOREMVII.15. For the one-dimensional Markov theory, we have: 
( i > p(fQ, P )  = (a,, :P(q) :  a,); 
( i i)  s(f = -(aQ, HoQQ); 
(iii) s(fQ)- p(fQ, Q) = a,(&) = -EQ. 


Proof. If a < c < b, then 


= (QQ,:P(q) :QQ)7 

which proves (i). By'a similar computation using (VII.18), we obtain 

The first term on the right can be dominated by 

Dividing by ( b  - a I and going to infinity, we see that 

s(f ') = (QQ,:Q :QQ) - EQ, 
and (ii) and (iii) follow immediately. 

We emphasize two things about these explicit computations. First, let 
us  translate the Gibbs inequality s( f Q)- p(f &, P )  S a,(P) to time zero 
expectations. Using Theorem VII.15 we see it is equivalent to 

Thus the Gibbs variational inequality for the states {f Q) is equivalent to the 
Rayleigh-Ritx variational inequality for the vectors {aQ}.I t  is also worth 
emphasizing the content of (ii); namely, entropy density i s  the Euclidean 
version of the free Hamiltonian expectation value. In the case of non-rela-
tivistic quantum mechanics, general results of this nature have been recently 
obtained by W. Crutchfield [9]. 

This suggests a variety of alternative pictures for the two-dimensional 
case. Let us mention one of them. By results of Glimm-Jaff e [33] and Spencer 
[97], we know that in certain infinite volume (Hamiltonian) limits, both 
(Q, T,""Q) and (Q, T,""Q) exist where T,"" is the free energy density and T,"" = 

:P(#(x)):. Let f be the associated Euclidean state. Then: 

Conjecture. s(f)  = -(a, ToooQ)and a,(P) = -(Q, ToOQ) where Too= 

T,"' + TjO. (Note: If we know that f is weakly tempered, it is easy to prove 
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tha t  p(f, P )  = (Q, TjOQ).)Moreover, one has the following Rayleigh-Ritz 
principle: the energy density associated with the interaction :P: for trans-
lation invariant locally Fock states of the Hamiltonian theory is minimized 
precisely by the infinite volume (Hamiltonian)states for the P(#), theory and 
the minimum value is -a,(P). Were such a variational principle established, 
it might become a valuable calculational tool. 

Finally, we wish to go part  way towards a proof that  every weakly 
tempered, translation invariant, Gibbsian state f for interaction P satisfies 
the  variational equality s(f) - p(f, P )  = a,(P). If f is A-Gibbsian then we 
claim tha t  

(VII. 19) fA  = e-"A faA/EaA(e-rh) 

where EaAis the free field conditional expectation. For by Theorem VII.2, 
f~= e-rh$aA from which it follows tha t  fan  = EaA(fh)= Eah(e-un)~aA.  

Now suppose we define the conditional parti t ion function 

.ZaA= Eah(CrA), 
the  conditional pressure, 

1
Pan = -I A I In gan 

and the boundary entropy, 

where .ZaAand Pa, are XaA-measurablefunctions. Then 

PROPOSITIONVII.16. Fo r  any Gibbsian state f ,  

Proof. By (VII.19) ln f A  = - UA+ Infan-Pan. Multiplying by - 1  Alp'fA 

and integrating, we obtain (VII.20). 

Thus to prove that  a given Gibbsian statef obeys the Gibbs variational 
equality we need only prove tha t  (i) the conditional pressure converges to 
the  pressure in a suitable sense, and (ii) the boundary entropy density 
vanishes. At present, we are unable to prove (i). As for (ii), we have 

THEOREMVII.17. Let f be a weakly tempered, translation invar iant  
state. Let An-+ a (Fisher). Then (111An()SaAn(f)-+ 0 a s  n -+ a. 

Proof. Let 7 < l  be the exponent in the weak temperedness condition onf. 
Choose 7' e (7, 1) and A; in accordance with Theorem C.3. By the monotoni-
city (Theorem VI.6b) and weak subadditivity of the entropy (Theorem V1.6~): 
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Sn,(f) 5 Sn;,vah,(f) 

5 s~;,(f) + San,(f + In I l f ~ ~ f a n ,Ill . 
By Lemma VI.8, 

since d(&, ah,)2 d(A,)Vf. Thus by Theorem VI.9, 

Since SaA,,(f) 5 0 (Theorem VI.Ga), we see that  the limit in question is 0. 

Appendix A. Positive definite matrices with nonpositive 
off-diagonal elements 

In  this appendix, we summarize a few properties of two classes of 
matrices: 

Definitions. 
( i ) M, will denote the family of n x n invertible positive definite 

matrices with nonpositive off-diagonal elements. 
( i i )  K, = {A I A-'E M,}. 
(iii) M, denotes the family of positive invertible operators on l2 with 

nonpositive off-diagonal elements. 
(iv) K, = (A 1 A- 'e M,} . 

THEOREMA.1. Any A EK, (n 5 m) has nonnegative off-diagonal ele-
ments. 

Proof. Since F = A-' is invertible, F 2 cI for some c > 0. Write F = 

D + B where B vanishes on the diagonal and D vanishes off the diagonal. 
Then D 2 cI and for any h e  [O, I], F (x)  = D + XB = XF+ (1 - X)D is 
greater than cI. It follows tha t  F(h)-' is analytic in a neighbourhood of 
[O, 11. But for k small, F(h,)-' = D-'CZ=, (-kBD-l),. Since B has only non-
positive elements and D-'only nonnegative elements, each matrix in the 
Neumann series above has only nonnegative elements. Thus each matrix 
element of F(x)-' is analytic in a neighbourhood of [0, 11and has positive 
Taylor series a t  X = 0. By a standard theorem in complex variables, the 
series converges a t  )L = 1, SO F-' = A has nonnegative off-diagonal ele-
ments. 0 

Remarks 1. This theorem is known as  the Stieltjes-Ostrowski theorem 
after the work [107], [75]. Ostrowski's proof also depends upon the conver-
gence of a Neumann series although his argument is more complicated. 
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2. Since (F-'),j = (const)(det F)'" \ x , ~ ~ e - ( ~ ~ ~ ' ) d ~ x ,this theorem is also a 

consequence of Theorem V.1, which, as  we have seen, is in turn a consequence 
of Griffiths' first inequality for f erromagnets. 

THEOREMA.2. Let A e  K, (n 5 m). Choose a subset, S ,  of m elements 
from {i( 1Ii < n + I}. Then the matrix As = {Aijjij,s i s  i n  K,. 

Proof. Since A is strictly positive definite and bounded, i t  follows that  
As is strictly positive definite and bounded so that  A;' exists and is positive 
definite. Corresponding to the decomposition of {iI 1Ii < n + 1) into S a n d  
its complement, we can write: 

The equations AsD + B E *  = 1 and A X E+ B F  = 0 imply tha t  A;' = D -
EF-'E *. But since A e K,, E has nonpositive elements and F e  M,-,. By 
Theorem A.1, F-' has nonnegative elements so that  EF-'E * has nonnegative 
elements. It follows tha t  the elements of A;' are less than the elements of 
D which are, by hypothesis, nonpositive off-diagonal. 

Remark. This proof also shows tha t  (AR1),-A;' is positive semi-definite 
with nonnegative elements (cf. Theorem IV.7). 

COROLLARYA.3. If A E  K,, and A,, = 1for all  i, then for any  i ,  j ,  k 

Aij 2 AikAkj. 
Proof. Explicit computation shows tha t  a positive definite matrix of the 

form 

(i 1 pi; 
has nonpositive off-diagonal elements if and only if a 2 bc, b 2 ac, c 2 ab. 

The corollary follows from Theorem A.2 upon taking S = {i,j,  k}. 

Appendix B. Correlation inequalities for the anharmonic oscillator: 

Alternate proofs 

In  this appendix, we wish to discuss alternate proofs of correlation in-
equalities for non-dimensional P($) theories, i.e., for the anharmonic oscillator 
(cf. (11.40)). Because q(t) without any smearing is an  LPfunction we can 
avoid the lattice approximation. I t  is also possible to demonstrate explicitly 
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that the usual ultraviolet cutoff, unlike the lattice cutoff, destroys the ferro-
magnetic property of the free theory. Since we have already given detailed 
proofs in Section V which establish the Griffiths inequalities for the an-
harmonic oscillator, we only sketch the ideas. On L2(R,dv) where dv(q) = 

~ - ' 1 ~ e - ~ ~ d q ,the harmonic oscillator Hamiltonian (m= 1) is Ho= 1/2(- (d2/dq2)+ 
2q(d/dq)). We denote its vacuum (the function 1) by Q,. 

1. Proof of G-I. This proof avoids all the ideas of Markov field theory. 
Let C be the cone of all +(q) of the form f(q) + qg(q) where f and g are 
positive even functions in LqR, dv) for all p < m. Then 

( i ) Q 0 € C ;  
( ii ) If h,, h, E C, 'then (h,, h,) 2 0; 
(iii) qC c C; 
(iv) If P ( X )  =CEOa,Xn with a,, >0 and a,,+, 5 0 for k = 0, ..,m -1, 

then ecP("CcC; 
( v )  e - t H ~ C ~ C ;  
(vi) e-t'Ho+P(q"CcC if P is of the form given in (iv). 

(i)-(iv) are easy to verify. (v) follows from Mehler's formula (11.80) and 
(vi) from (iv), (v) and the Trotter product formula. (i)-(iii) and (vi) imply 
that if H = Ho+ P(q), then 

which is the first Griffiths inequality. 

2. Proofs of G-I, I1 and FKG. Let t, < t, < .. < t, so that 

aij  - (q(ti)q(tj)) = l/2e-1ti-tj1 
obeys 

Using (B.l) it is easy to show by explicit computation that the inverse {bij} 
of {aij}is tri-diagonal with 

bll = 2D-' nj,,(1 - a;) , 
bii = 2D-'(1 - nj+i,i-l(1 - a;) , i = 2, - . - ,n - 1 ,  

b", = 20-' n,,,-,(1 - a;) 1 

bi,i,l = bi+l,t = -2D-'ai l-Ij,i(1 - a;) , i = 1, ..., m - 1 

where 
D = JJ;T:8(l - a;) 

and 
ai = exp (-ti,, + ti) < 1, 

and the products have j = 1, . ., n - 1. 
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We thus see explicitly that  b has negative off-diagonal elements. If we 
now approximate P(q(t))dt in a Feynman-Kac formula by 

with t j  = a + j(b - a)/n, we can prove the correlation inequalities by the 
method of 9 V without use of the lattice approximation. 

3. Space Smearing Destroys "Ferromagnetism". We claim tha t  if q(t) 

is replaced by qh(t)= h(t - s)q(s)ds the inverse of a correlation matrix 
(qh(t,)qh(tj))(i,  j= 1, . a ,  n) will not be negative off-diagonal, a t  least for h 
positive. For example if h(t) = e-"It' with a large, explicit computation shows 
tha t  

(Be 2) (9h(")ah(t>> < (qh(0)qh(t/2))(qh(t/2)qh(t)) . 
Thus, by Corollary A.3, no covariance matrix 

(qh(ti)qh(tj)) with tl = 0, t2= t/2, t3 = t ;  t,, .-,tmarbitrary 

can have an inverse with negative off-diagonal elements. 

4. Remarks 1. That the matrix b in the proof of 2 above is tri-diagonal 
is a reflection of the locality of -(d"dt" + 1. 

2. On an intuitive level, it  is easy to understand why space smearing 
destroys "ferromagnetism". Heuristically, ( - (d"dt2) + 1)6(t - t') has a posi-
tive infinity a t  t = t' and negative infinities a t  t = t' + t. It is thus positive 
on-diagonal and negative off-diagonal. Smearing in t tends to produce a t  
least a small region I t - t' ] < 6 of positivity. This region includes some off-
diagonal elements. 

Appendix C. Fisher convergence: Some technical results 

Here we want to recall the definition of convergence in the sense of 
Fisher and van Hove [85] and to prove a few related technical facts of a 
geometric nature. Although all the results extend to d dimensions, we 
restrict ourselves to d = 2. Given a E R", the lattice aZ2induces in a natural 
way a decomposition of Rqn to  closed squares with side a and centers in aZ2. 
Given A c R2bounded we let N;(A) be the number of such squares inside A 
and N,'(A) be the number of such squares which intersect A. I A ( is the 
volume of A and d(A) its diameter. Finally 

(c.1) V,(A) = j {xE R21 d(x, A) < a}/ . 
Definition. Let A, be a family of regions of R2 with I AmI -t 03. We 

say tha t  Am 0 3  in van Hove sense, if and only if for each a ERf,  
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N;(A,)/N,f(A,) --+ 1as n -m. Our notion of Fisher convergence is slightly 
weaker than Ruelle's: 

Definition. Let A, be a family of regions in R%ith ( A, ( -m. We say 
A, -m in Fisher sense if and only if there is an E > 0 and a function n on 
(0, E)with Iim,,, n(a) = 0 so that for each cr E (0, E), there is an N so tha t  

(C.2) vad(~,)(An)5 n(a) I A* I 
for all n > N. 

Clearly, I A1 S nd(A)%nd V,(A) 2 na2if A f $. Thus: 

PROPOSITIONC.1. If A, --* m (Fisher), then there a re  constants c,, c,, N 
such that for all n > N, 

c,d(AJ2 5 I A, I 5 ~2d(A,)~. 
I t  is also clear that a2N,f(A)2 I A I and tha t  a2(N,t(A)-N;(A)) S V,J;I.(A) 

so that: 

PROPOSITIONC.2. If A, --* m (Fisher), then A, -m (van Hove). 

The converse of this is false [85]; e.g., let A, be the rectangle of sides n 
and n2. In $ VII.3, we used the following: 

THEOREMC.3. Let A, -m (Fisher). Suppose 7' < 1 is  given. Then 
there exists A', cA, so that (Fig. C.l) 

(a) A: -w (Fisher); 
(b) IA ' , ( / Ih , I -+ la sn -m;  
(c) d(A',, ah,) 2 d(A,)o'. 

Proof. Let A: = {xE A, I d(x, ah,) 2 d(A,)"}. Since / A', I II A, I 5 I A', I + 
Vd,,,,~'(h,), (b) follows. (c) is trivial. Let E' = ~ / 2and nf(a)= 2n(2a). Given 
a ,  choose N so that n >N implies that (i) I A: 12 I A, 112, (ii) d(A,)" 5 ad(A,), 
and (iii) V2ad,A,,(hn)2 7r(2a) I A, I .  Then, if n > N, 

Vad,nh)(hk)5V#~,A,,(A;)5 V,~,A,)+~(A,,"(A~)2 Vz,dc~,)(hn>5 Zn(2a) 1 I . 
This proves (a). 



p($), EUCLIDEAN QUANTUM FIELD THEORY 259 

Finally in 3 VI we used: 

THEOREMC.4. Suppose h', -- rn (Fisher). Let 7' < 1 be given. Then 
we can find sets A; a n d  squares h, so that (Fig. C.2) 

(a) A; cA,, A',' c A,, A', n A',' = 0; 
(b) for  some c > 0 a n d  al l  suficientlg large n ,  c < I Ah 111A, I < (112); 
(c) (IALI + IA','1)/1A,I--l a s n - m ;  
(d) A',' -- m (Fisher); 
(e) d(Ah, h',') 2 d(Ah)" for  a l l  n .  

Proof. Choose any square A, of side 3d(Ah) and center in Ah. Let A',' = 

{xE h, I d(x, A',) 2 d(Ah)v1}. (a) and (e) a re  obvious. (b) follows from Proposi-
tion C.l and i ts  proof. (c) follows from 

IAkI + IA', 'IS IA,I 5 IAkI + IAXI +Vd,n;,v(AL) 

and the  fac t  t h a t  A ; - +  m (Fisher). Finally, to prove (d) we note t h a t  for 
all large n ,  c,d(h',) S d(A',') 5 c,d(hk) (c,, c, > 0) and t h a t  

V,(A',') 5 V,(h,) + v,Ld(n;,o,(~C) 

since ah',' cah, U {zI d(x, ah',) = d(AQ)"}. (d) follows by mimicking the  proof 
of Theorem C.3. 
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