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I. INTRODUCTION

Ideas and methods from statistical mechanics have had a considerable

impact on constructive field theory in the last few years. In particular,
Boson models can be realized as ferromagnetic spin systems and are thus
subject to the analysis available from the study of the Ising model. In this
paper we continue our program [29] of applying statistical mechanical
methods to the P(~2 Euclidean field theory by examining one of the
basic questions arising in statistical mechanics, namely, the role of boundary
conditions. For the most part we concentrate our attention on the « classical
B. C. » : free (F), Dirichlet (D), Neumann (N), and periodic (P) boundary
conditions.

Just as in statistical mechanics, we expect that the use of boundary
conditions in field theory will play fundamental role in the definition of
equilibrium states and in establishing the existence or nonexistence of
phase transitions. Such an analysis should involve more general B. C.
(i. e., analogues of « + B. C. ») than the classical ones studied here, and we
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233BOUNDARY CONDITIONS FOR THE EUCLIDEAN FIELD THEORY

shall have only a few naive remarks to make about these important ques-
tions (III.3). With statistical mechanics as a guide, we know, however,
that control of the classical B. C. will provide great flexibility in the study
of the thermodynamic limit. Certain operations and assertions are trivial
with one choice of B. C. and impossible or very difficult with other choices
of B. C. It then becomes important to decide which objects in the theory
are independent of the choice of B. C. in the thermodynamic limit. For
example, the pressure should depend on B. C. only through a surface
effect in finite volume and should be independent of the choice of B. C.
in the infinite volume limit. This independence (properly formulated
for P(~)2 in Theorem 1.2 below) is the main result of this paper.
Our approach to this specific problem has been largely influenced by

Robinson’s work in quantum statistical mechanics [51]. In his treatment
of (point) Bosons interacting via a repulsive potential the use of Neu-
mann B. C. is critical ; the technical tools he deploys are quadratic forms,
positive definiteness, sub-and superadditivity; his main application of the
result that the pressure is independent of B. C. is to the Gibbs Variational
Principle. All of these features are reflected in our work that follows.

Related results have also been obtained by Novikov [46] and Ginibre [15]
who consider the statistical mechanics of Bose hard core particles inter-
acting via an attractive potential. In their approach which employs the
Feynman-Kac formula, the use of Dirichlet B. C. is critical. We mention
also the results of Fisher and Ruelle on the existence of the thermodynamic
limit (with Dirichlet B. C.) for particles interacting via a stable, tempered
potential [54, § 3 . 5] ; and the results of Fisher and Lebowitz on the inde-
pendence of classical gas pressures on B. C. [10].
As in [29], we base our analysis of the theory on Nelson’s model

of the free Euclidean boson field in 2 dimensions [44] [29]. Let N = 
be the real Hilbert space with inner product

where Go is the Green’s function

and mo &#x3E; 0 is the bare mass. The free Euclidean field ~(~’) is the real
Gaussian random field indexed by f EN with mean zero and covariance (1.1).
We denote the underlying probability space by (Q, ~, so that, regard-
ing ~{~’) as a function on Q, we have

The Gaussian measure dpo is called the non-interacting measure with

Vol. XXV, n° 3 - 1976.



234 F. GUERRA, L. ROSEN AND B. SIMON

free (F) B. C., or for short, the « free measure ». To each closed (or open)
region A c 1R.2 we associate the sub-6-algebra 03A3 of 03A3 generated by
fields with supp f c A (see § II . .1).
Suppose for definiteness that A is a rectangle. According to a well-

established tradition, one tries to construct an interacting field theory
on A and then to pass to the thermodynamic limit A - 1R.2. In restricting
the non-interacting measure to E~ there is already a choice. In addition
to the measure 

with free B. C., one could choose the Gaussian measure whose con-
variance is given by (supp g g c A)

where G~ = ( - ~~ + mo) -1 is the Green’s function corresponding to
any self-adjoint B. C. « X » for A on aA. The classical choices mentioned
above would be X = D, N or P (for a more complete-discussion, see § III .1),
but in fact one could accept much more general B. C. than these (see § II. 1
and § II . 2).

In support of the basic philosophy of this paper that flexibility in the
choice of B. C. affords technical advantages, let us mention the key advan-
tages of each of the classical B. C.:

Free (F) B. C. This is the simplest B. C. with which to calculate since
one has a simple diagonal momentum space formula (1.2) for the covariance.
One disadvantage of F B. C. is that while the covariance operator is simple,
the inverse differential operator is not; in particular, the corresponding B. C.
on al1 is non-local (see [29, § V] and § II. 2 below).

Dirichlet (D) B. C. D B. C. give the technically simplest way of introducing
barriers between regions (see, in particular, the cluster expansion of [23 J ) :
G~ is dominated by Go, leading to simple estimates. A key advantage
of D B. C. may be seen from the lattice approximation where D B. C.
play the role of « free boundaries » in ferromagnetic spin systems. This
observation leads to monotonicity properties of the (half-) Dirichlet

Schwinger functions (e. g. Nelson’s Theorem [44] and relations with
other B. C. explained in § IX.2 below).

Periodic (P) B. C. The theory with P B. C. is « closest » to the infinite
volume theory in the sense that  is a constant, as is

It is easiest to implement transformations of the measure such as m2 ~ m’2
or -~ ~(x) + c with P B. C. (see Spencer [66] and § VII).
Neumann (N) B. C. The key advantage of N B. C. is that the partition
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235BOUNDARY CONDITIONS FOR THE P(!»2 EUCLIDEAN FIELD THEORY

function is submultiplicative in A, rather than supermultiplicative (as
with D B. C.). This property (of a « repulsion » between regions) leads
immediately to infinite volume estimates given a finite volume estimate
(see § III.2).

Central to this paper is the lattice

where a B. C. at the right end-point of a line dominates the B. C. at the
left endpoint. In terms of Green’s functions (considered as operators
on L~(A)) we have (see § III.1)

. (We prefer the notation Go to G~ and we usually omit superscripts F.)
By the theory of conditioning (see [29] and the review in § III .2) we imme-
diately obtain the corresponding inequalities for the pressures

Here the pressure x~ with X B. C. is defined in terms of the interaction
polynominal P by -

where with the subscripts X, A indicating that

the Wick subtractions are made with respect to the measure We
also consider the half-X pressures defined as in (1.4) except that the
interaction U~ is replaced by U~. Our main result is :

THEOREM 1.1. - For any semibounded polynomial P, the limits
= lim 03B1X and lim 03B1HX (X = D, N, or P) all exist and equal

lim an .

Remarks. 1. Using (1 . 3 b) we prove the equality of the 03B1X~ by « bra-
cketing » : first we show that oc~ = (;(00 (§ IV) and then that x~ = a (§ V).

2. It is easy to extend the statement that the pressure is independent
of B. C. to include ± B. C. (see § II. 3).

3. Existence of a~ is a result of Guerra [25].

Vol. XXV, n° 3 - 1976.



236 F. GUERRA, L. ROSEN AND B. SIMON

We also study the Schwinger functions, defined to be the moments of
the interacting measures : 

,..

and similarly for the half-X Schwinger functions S~ where U~ in (I. 5)
is replaced by U~. We are not able to draw the conclusions about the
Schwinger functions suggested by the lattice of Fig. I.1, but are able only
to relate D B. C. to the other B. C. For example if P is even except for a
linear term, n~ ____

and similarly without the H if in addition deg P - 4 (see § IX. 2). In view
of Nelson’s result that S~D is monotone increasing in A it is natural to
conjecture from Fig. I.1 that is monotone decreasing. We have not
been able to prove this, and, indeed, such a result cannot be true for all
values of the coupling constant if P(~)2 possesses a phase transition.
Our results on the independence (and existence) of SX = lim S~ on B. C.
fall far short of the corresponding results for the Ising model [36];
we have succeeded in showing only that SD = SP under certain circums-
tances (see § IX. 3).
Here is a brief guide to the organization of the paper : in § II we describe

a general class of Gaussian measures associated with the operator
which are suitable non-interacting measures for

Boson field theories. An essential regularity condition on the covariance
operator G of such a measure is that G  cGo as operators on L2(A).
In § III we explain how the theory of conditioning leads to the inequalities
of (1.3) and to sub- and superadditivity properties, and we give a new proof
of the « linear lower bound » using N B. C. In § 111.3 we show that the
method of images yields most of the bounds we require on the classical
Green’s functions. In § IV. 1 we formulate a general statement of the
vanishing influence of D B. C. as the boundary recedes to infinity and
thereby show in § IV . 2 that x~ = Among the applications we give
is a proof of the Gibbs Variational Equality for the entropy. § V contains
a proof that oc~ = a . In § VI we give an independent proof of the conver-
gence of a5 and we develop the machinery of periodic states. In § VII we
establish covariance properties of the pressure (under translations, scaling
and mass shifts) using the fact that the pressure is independent of B. C.
Then we determine the dependence of the pressure on the coefficients
of P (« dominant and subdominant coupling constants »). For instance we
establish that if deg P = 2n ’then as the dominant coupling constant
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237BOUNDARY CONDITIONS FOR THE P~(~~2 EUCLIDEAN FIELD THEORY

verifying our conjecture in [28]. In § VIII we complete the proof of Theo-
rem I.1 by showing that = 03B1X~. § IX.1 is devoted to a discussion of the
lattice theory and its convergence for classical B. C. The resulting correlation
inequalities and some consequences are outlined in § IX. 2 and § IX. 3.
Finally in the Appendix we extend the Checkerboard Theorem of [29]
to X B. C. and we explain its significance for the question of spatial
decoupling.
One interesting application of the ideas of this paper has been made

in [30] where we study the + field theory. By combin-
ing (i) Spencer’s [66] mass gap result for large with periodic B. C.,
(ii) the convergence of the Schwinger functions with Dirichlet B. C. for
all /1, (iii) the equality x~ = a) (Theorem 1.1), (iv) the inequality SD  SP,
and (v) the Lee-Yang Theorem [63], we show the Dirichlet 
theory has a mass gap if  ~ 0. The method of proof is based on a super-
harmonic continuation argument of Lebowitz and Penrose [37].
We close this section by discussing two possible sources of confusion

that may arise in reading this paper. Firstly, there is a discrepancy between
the B. C. terminology of field theory and statistical mechanics. What we
call free (F) B. C. does not correspond to « free boundaries » for the Ising
model (Actually, F B. C. might be called « free at 00 » since the covariance
operator is Go). Rather it is Dirichlet (D) B. C., often called « repulsive »
B. C., which corresponds to « free boundaries » for the Ising model. The
easiest way of understanding the meaning of D and N (« perfectly elastic »)
B. C. is to turn to the lattice approximation. As we explain in § IX. 1,
the formal expression (~, - A~) goes over in the lattice theory to a sum
over nearest neighbor spins

Dirichlet data are imposed on a line L by dropping the ferromagnetic
couplings qnqn’ across L and Neumann data by dropping the coupling
terms ( qn - qn,)2 across L.

Secondly, in this paper we shift freely between the passive and the active
pictures for the free Euclidean field, and so it might be useful to review the
distinction between these two pictures (see also [62] ). In the active (or
measure) picture we realize the free field theories corresponding to diffe-
rent B. C. X on 9A by choosing different Gaussian measures on E~ but
keeping the field fixed as a coordinate function, i. e., for each f E 

for q E Q, where it is standard to realize Q as the dual This has
been the point of view adopted throughout this section. Equivalently,
we may use the passive (or field) picture in which we hold the measure dpo
Vol. XXV, n° 3-1976.



238 F. GUERRA, L. ROSEN AND B. SIMON

(and the space Q) fixed but « change coordinates » by realizing the field as

where the field on the right is the coordinate function (1.6) and p~ is a
suitable operator on L2(A).

These realizations of the free theory with X B. C. or as

{03C6X, d 0} are equivalent ; in particular, the covariances are equal,

so that G~ = as operators on L2(A). We use the passive picture
mainly in sections II and IV.
The passive picture lends itself to the theory of conditioning whereas

the active picture is most convenient for the formulation of half-X B. C.
Although we have made frequent reference to HX B. C. above, it might
be helpful to make a few elementary remarks here. In the passive picture
there is no ambiguity about what is meant by Wick subtractions, e. g.,

However in the active picture we may define the subtractions with respect
to either or We denote Wick products in the former case with
subscripts A, X and in the latter case (« free Wick ordering ») with no
subscripts; e. g., 

--

and

The HX-theories are defined, in the active picture, with Gaussian

measure and with free Wick ordering. There is a simple relation between
the different Wick powers; explicitly [29]
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239BOUNDARY CONDITIONS FOR THE P(~)2 EUCLIDEAN FIELD THEORY

Finally we mention that we have developed a HD transfer matrix that
is based on realizing D B. C. in the « time » direction by placing Q-space
6-functions on the t = const. boundaries. We omit a discussion of this
topic from the present paper, but details may be found in [62]. This approach
can be used to prove the convergence of the HD Wightman functions.
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II. GAUSSIAN BOUNDARY CONDITIONS

The cutoff states we consider in this paper are of the special form
~’~~/Norm where the function U~ in the Gibbs factor differs
from the free B. C. interaction only in the Wick subtractions used. Our
goal in this section is to describe in detail the « unperturbed » measures ~
we will use. They will have no interaction in the sense that the Euclidean
field dJl) is still a Gaussian random field and, in a sense we make precise
below, they differ from d 0 only by a factor concentrated on the boundary
of A.

In § II.1, we describe the allowed covariances for dp and in § II.2 we
relate these convariances to the « classical theory » of boundary conditions
by showing the allowed convariances are precisely the Green’s functions
for a family of self-adjoint extensions of - A This section is then
the link with the further specialization of d  we shall make in the remainder
of the paper when we restrict to the four types of classical Green’s function.
In § II.3 we make some remarks about a class of B. C. which we expect
will play a major role in the discussion of broken symmetry [8].
We use freely the language of Gaussian stochastic processes which are

extensively discussed in Gelfand-Vilenkin [13] ] and Hida [31 ] ; see also
Segal [58], Dimock-Glimm [7] and Simon [62]. Throughout this section,
we fix a bare mass mo.

Warning. - With regard to a factor of 1 2 in defining Gaussian p ro-
cesses, [29] and [62] have different conventions. We follow [29].

Vol. XXV, n° 3 - 1976.



240 F. GUERRA, L. ROSEN AND B. SIMON

11.1. Covariances.

We begin by recalling some notation from [29]. N denotes the Hilbert
space obtained by completing in the norm, Go( f, f)1/2 where

and ( . , . ) is the L2 inner product. Since is continuously imbedded
in N, each element of N* = N can be viewed as a tempered distribution
and, in particular, each element has a support. Given a closed set C c p~2,
Ne is the (closed) subspace of N consisting of those elements of N with
support in denotes projection (in Go-inner product) onto Ne. If
A ci (~2 is open, we let ___ _ ,

The Markov property on the one particle space (the « pre-Markov »
property) implies that for f E 

Remark. If A is open; then one can show that e~ = e x where e~ is
the projection onto the closure of in N..

Finally, we recall that if - A~ is the Dirichlet Laplacian (Friedrichs
extension of - A Co as an operator on L2(A)) and

then (Corollary 11.25 of [29]) :

This extends to all f, g E N~.
Our first theorem will motivate our choice of definition of general

convariances :

THEOREM II.1. - Let

where F e for some p &#x3E; 1, F &#x3E; 0 and where Fd 0 = 1.
Suppose moreover, that F is Gaussian on the boundary in the sense that

where in is some orthonormal set in and for some A, A -1 _ 1 +  A

(all n). For g g E let 
-
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241BOUNDARY CONDITIONS FOR THE P~~~2 EUCLIDEAN FIELD THEORY

Then:

(a) there is a constant c with

for all f E 

where Q is a bounded, positive definite quadratic form on N~.
Proof - (a) Follows easily from Holder’s inequality and the fact that

random variables. To prove (b), we remark that (a) implies that G( . , . )
extends to Nx x Nx so that, by (II.3)

Now according to the breakup N = Nan 0 NA’ the measure d,uo factors
into d 0,~ ø and F is by hypothesis only a function of the
qan variables. 
Thus

by (II. 4). Similarly = = 0. Since Q(h, k) = G(h, k)
for h, k E Na~ defines a bounded quadratic form by (a), (II. 7) is proven. jjjj

In the above, Q is not an arbitrary bounded quadratic form since the
general theory of symplectic transformations [57] [60] assures us that the
operator A defined by Q(h g) = Ag) has A - 1 Hilbert-Schmidt
on Since this additional property does not hold e. g. for the Dirichlet
B. C. theory (Q = 0), we supress it in our general definition :

DEFINITION. - Let Q be a bounded positive-definite quadratic form
on Na~ and let 1 be a bounded linear functional on Then, the
{Q, 1 }-B. C. Gaussian field, 4J, is the Gaussian random process indexed
by with mean and covariance

that is (see Remark 2),

Vol. XXV, n° 3 - 1976.
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Remarks. - 1. The Gaussian process 03C6 can always be extended to a
process on N. -

2. The process indexed by can be realized in a standard way by
a measure dp on Cû(A)’ [13].
We shall generally realize the process in the active picture, thereby

emphasizing the measure d,u. In § IV, however, we shall employ the passive
picture (see the Introduction and [62] for the distinction between the active
and passive pictures) where the field 4&#x3E; corresponding to the covariance G
can be realized as:

In (II. 8), denotes the Dirichlet field, (p indicates direct sum (i. is
realized on a product space with a product measure; see Proposition 1.7
of [62]), and is the Gaussian process on Nan with mean t and
covariance Q.

EXAMPLE 1. - If 1 = 0, Q = Go Nan x Nan, then we obtain the free
B. C. field of [43].

EXAMPLE 2. - If 1 = 0, Q = 0, then we obtain the Dirichlet B. C. field
of [29].

Remark. It is no coincidence (see § II . 2) that in both cases above G
is a Green’s function for - A + mo on A x A.

Since we have not demanded that Q - 1 be Hilbert-Schmidt, we cannot
hope that Theorem II.1 have a strict converse but one does have the
following partial converse which makes precise the sense in which d/1
« differs from d 0 only on the boundary of A » :

THEOREM II.2. - Let A be a fixed open set in [R2 and let d/1 be a
{ Q, }-B. C. field. Let A’ be an open set with A’ a compact subset of A
(so, in particular, d(àA, A’) &#x3E; 0). Then :

(a) LA’ is absolutely continuous with respect to En,,
(b) LA’ = En,

where F is a Gaussian measurable w. r. t. 
This result generalizes Theorem II. 34 of [29] (the case = Q = 0)

and as in that case depends on the fact that is Hilbert-Schmidt

(Lemma 111.5 b of [29] given that en. - en-pn = We begin with
a lemma that is essentially equivalent to the combined Markov property
and (no interaction) DLR equations for 

LEMMA II. 3. - Let e# denote the orthogonal projection onto Nc in the
inner product G. Then for f E 

Annales de l’Institut Henri Poincaré - Section A



243BOUNDARY CONDITIONS FOR THE EUCLIDEAN FIELD THEORY

Remark. - We emphasize that in (11.9), eôA’ is a projection w. r. t. Go.
Proof - Since eôAf has support in A~11’, we need only prove that

for g E 

But

on account of the (pre-)Markov property for Go. And

again using the (pre-)Markov property. (II.10) follows. -
Remark. The lemma immediately implies the (pre-)Markov property

for A’ of the type considered but the proof extends for
any open A’. We thus have as a Corollary of the lemma.

THEOREM II.4. - The field theory has the Markov property.

P roo, f ’ of Theorem I I. 2. - We consider first the case 1 = 0. To prove (a),
we need only show that there are Hilbert-Schmidt operators Bi, B2 on N~
so that for f, gENA,

for we can then apply the theorem of Shale [60]. But

Now, let C be the operator on Nan whose quadratic form is Q. Let
Bi = BZ = Then B1, B2 are Hilbert-Schmidt (by
Lemma III . 5 b of [29]) and G has the required form.
To prove (b), we note that Lemma II.3 asserts that obeys the

no interaction DLR equations and so by Theorem VII.2 of [29],
= where F is 03A3~’-measurable. That F is a Gaussian

follows from Shale’s analysis.
We consider now the case 1 # 0. We first claim that there is an m E Nn.

so that = G(f, m) for all f E NA,. To assure the existence of such
an m, we need only show that I _ cG( f, f )1~2 for some fixed
constant c and all 1 E NA,. But by hypothesis c1G0(f, 1)1/2
for all f and by the above analysis Go( f, f )  for all 
The l ~ 0 measure, is absolutely continuous relative to the l ~ 0
measure, d,u, by the formula

For later purposes we will need Lp-properties of the factor F in
Theorem 11.2 (b). We have :

Vol. XXV, n° 3 - 1976.
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THEOREM II. 5. - Let A be the operator on N~, with quadratic form

(so A = BiB2 - B*1B1 = terms of the proof above).
Then :

(a) The factor F of Theorem II. 2 lies in all LP with p  1 + 03B1-10 where ao
is the largest eigenvalue of A. If ao  0, then FE L 00.

(b) For any p &#x3E; 1, there is a constant Cp so that whenever [ ) A 
and A &#x3E; 0:

Remark. This theorem remains true, by symmetry, if (F, A, d,uo) are
replaced by (F-1, - A, In particular in the case where A &#x3E;- 0 (e. g.
Neumann B. C.) so that ao( - A) - 0, F -1 is in L 00.

Proof - By the Shale theory (see e. g. § 1.6 of [62] ) F has the form :

where 03BBi are related to the eigenvalues 03B1i, of A, = (1 + and qI are

the corresponding eigencomponents. Note that the £; are bounded away
from zero since c &#x3E; - 1 by Lemma II.35 of [29].
d 0 has the form : rf)

Thus if 1 &#x3E; p(l - ~,0 2) = pao/(1 + ao) then each factor is in LP, and by
the Shale theory we need only prove that the formal expression for

Fpd 0  LA’ namely

is convergent (the convergence of this formal expression is the key to
justifying its use [37] [60] [34] [62]). For general A using the fact that 1 + A
is invertible it is standard to prove (II.11 b) convergent. If ao  0, then
F e L 00 since ~ : 1 and 

1 is convergent because A is trace class. We
concentrate on proving (II .11) in case A &#x3E; 0 following a trick of Klein [34].
Let f(x) = ( 1 + + x - px) for x E [0, Ctol Then f(0) = 1, f ’(o) = 0
and for 1 ~ p  1 + 03B1-10
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245BOUNDARY CONDITIONS FOR THE P(~)2 EUCLIDEAN FIELD THEORY

Thus the product in (II.11 b) is estimated by

so that C may be chosen in a universal ( p-dependent) manner. 

II.2. Connection with self-adjoint extensions.

The covariances G considered in the last section (see (II.6) and (II.7))
arise from self-adjoint extensions of - A satisfying certain regula-
rity properties corresponding to (11.6) and (II. 7). More precisely :

THEOREM II. 6. - Let G be a quadratic form on obeying (II.6) and
(II. 7). Then there is a self-adjoint extension H related to G
by 

-- . -

so that : 
" v " " ’ v.~ ~ vi , - --,

(i) 
(ii) Q(H) c Q(H~) where H~ is the self-adjoint operator on L2(A)

with (~ = Go( f, g) for 

Conversely given a self-adjoint extension H of - A obeying (0,
(ii) above, then G defined by (II.12) obeys (II.6) and (II. 7).

Remark. 2014 H~ is an extension of - A + mõ and is both mo and A depen-
dent.

Proof of the first haf of Theorem II. 6. Let G obey (II . 6, 7). Since
G( f, /) &#x3E; G~( f, f ) &#x3E; 0 if f # 0, there is an unbounded operator H
on L2(A) with (II. 12) holding. Since, by (II. 6) we have (H + ~)’~ ~C(H~)-1
we conclude by the theory of operator inequalities (Kato [33], p. 330;
see also § III .1 below) that Q(H~) =. Q(H) and (H + mo~ &#x3E;- c -1 Ho &#x3E;- c -1 mo
so (i) holds. Thus we need only prove that H extends - ~ ~ Let
g E and let T E then :
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Thus H extends - A and the first half of the theorem is

proven. 
’

For the second half of the theorem, we need :

LEMMA II . 7. Let == Q( - ~A) n 1. Let be the image
of under the isometry - A + mo from to N. Then Jf -1,A
is the closure in NA of (1 - 

Proof - By the theory of symmetric quadratic forms, Jf -l,A is the
closure of in the norm

The conclusion is thus clear. ~
Conclusion of the proof of Theorem II. 6. - Suppose H obeys (i), (ii),

that it extends - A C  (A) and that G is given by (II .12). By (ii), the
Hilbert space Q(H) with norm ( f, (H + m2) f )1 ~2 is imbedded in the Hilbert
space with norm ( f, (Ho) f )1~2. By the closed graph theorem the map
is continuous, so there is a C with

all f E Q(H). Thus C(H + m~) as forms so [#3, p. 330]

i. e. for f E L2(1~), G( f, f ) _ f ) proving (II . 6). Now, by (11.6),
G extends to the closure of L2(A) in N-norm and in particular we can
write for f E 

Letting Q(g, h) = G(g, h) for g, h E Na~ we see that the first term in (II. 13)
is Thus we need only prove that pn f ) = 
and that the cross terms vanish to conclude that (II.7) holds.
Now let g = pn f = (1 - Then, by Lemma II . 7, so

there exists h" E with ( - ~ + g in N-norm and hn - h
in ~+ 1, n norm. Thus:

so PAf) = /).
Finally we must show the cross terms vanish in (II .13). Since H extends

- A the quadratic form of H is an extension of that of - A~ so

H~-A~ as forms. Thus, (-A~+~)’’(H+~)’Bi.c.G~/)~G(~/),
all f E Nx. Now, let f E Ran PA; g E Ran ean. Then if h = f + Àg
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Since we have proven that G( f, f ) = G~(~,/) above, we conclude that
for -

This implies that G( f, g) = 0 completing the proof of (II. 7). ~
There are two natural questions associated with Theorem 11.6, namely :
1. For what class of B. C. and regions does G satisfy the bound (II. 6) ?
2. Is it possible to obtain an explicit expression for the B. C. on H in

terms of the boundary form Q of (II . 7) ?
We do not attempt to give a complete answer to these questions in this

paper, because we are not interested in all of the self-adjoint extensions
satisfying (11.6) and (II. 7) but only in the « classical » exten-

sions (D, N, P, F B. C.). Now G~ and GÀ = Go clearly satisfy the bound (II. 6)
for all A ; and in § III we verify that G~ (for A a rectangle) and G~ (for a
large class of regions A) satisfy (II. 6) and hence have the various properties
established here (e. g., (a) and (b) of Theorem II. 5).

In general the B. C. on H will be quite complicated and non-local. As
a specific example, we (formally) derive here the form of the F B. C.
(Example 1 in the previous section). Let A c [R2 be a region with suitably
regular boundary ðA and let GE(x, y) be the Green’s function for the exterior
Dirichlet problem, i. e.,

Let ~ ~n be the outward normal derivative on Then for x, E A’

since the right side of (II.15) clearly satisfies the defining equations (II.14)
for GE. Using the relation

where denotes the limit of f ( y’) as y’ in A’ approaches y on aA, we
thus obtain from (II.15)

But Go(x, y) is continuous in y as y crosses aA whereas 20142014 (x, y) suffers
a iump: ~

Vol. XXV, n° 3-1976. 17
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Therefore by (II.16) and (II.17)

where 7(x, . It follows that the F B. C. on a function f

in the range of G o[L 2 (A)] is

As an example of the nonlocal B. C. (II .18), let A be the half-plane
A = {(Xl’ x2) 0 }. Then, for 

where rx = ( - xl, x~), so that for X E A’

where 112 = ~p~ + Therefore

a non-local pseudo-differential operator.

II. 3. +, - Boundary Conditions.

In the previous two sections, we have examined the role of the covariance
operator G. In this section, we turn to the. « mean functional », 1, and, in
particular, define + and - B. C. For simplicity, we specialize to the case
where A is a circle, but our analysis applies to more general regions with
smooth boundary.

DEFINITION. - Let A be a circle and let ds = rd0 be the usual Lebesgue
measure on the boundary of A. Then field with Q = Go

= c is called the c B. C. theory.

Remark. - 1. We use the fact that any g E NðA is of the form f (8)~r
where = 6( ) I x - r).

2. Our results below would remain true if Q = 0 were taken.
With respect to obtaining pure states in a situation where broken
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symmetry occurs, so 0 in some pure states, there are three
conjectures :

(a) If we take c &#x3E;_ a &#x3E; 0 for all A, we obtain a pure state in the A - oo

limit for any fixed a.

(b) As in (a), we obtain a pure state so long as a &#x3E;_ 1£ where 1£ in some
interaction dependent constant, e. g.  (~ &#x3E; pure ~

(c) We must take c - oo as A - oo to get a pure state.

While we lean towards the first alternative (due to preliminary results
of J. Lebowitz (private communication)) we would like to make some ele-
mentary remarks about how quickly c can go to infinity with a reasonable
theory resulting. If c goes to infinity too fast, we expect sickness similar
to that in [29, § VII]. One criterion is clearly that when there is no inter-
action, we should recover the free field :

THEOREM II. 8. - Let be the Gaussian measure for the non-inter-
acting { Go, c(r) ~ - B. C. theory in the circle 1Br of radius r. If c(r)  
with B  mo, then as r - oo

for any f e 
’ ’ 

2n

Proof - Let lr be the linear form on = 

Jo /(9)rd9. We

need only prove that 0 as r - oo for each fixed f But
clearly

where R = supp f By Lemma III . 4 of [29], !! II  so

we need only prove that ~lr~N  eEr/2.-An elementary computation (see
Lemma 11.10, below) shows that in fact ~lr~N = 0(rl/2) as r - oo so

t!
A more restrictive criterion than that of Theorem II. 8 is natural in

view of the ideas of this paper concerning the independence of the pressure
on B. C.:

THEOREM II.9. - If c(r)  then for any P(~)2 theory :

the free B. C. pressure.

Proof can be explicitly written down in terms of d 0, namely :

Vol. XXV, n° 3 - 1976.
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where Z is the normalization factor

(II .19) follows easily if one notes that ( tr, f ) = ( tr, by the fact
that tr E Na~.

Now let 

We seek to prove that p(r, c(r), 1) - Î100 = lim p(r, 0, 1). By Holder’s
inequality one easily finds that 

r~ 00

and

Thus, if we can prove that for each fixed y,

we have

so our result follows from the continuity of 
Thus we need only prove (II.21), i. e. by (II.20), that

(Lemma II .10) and by hypothesis c(r) = 

(II.14) holds. II .

In the last two theorems we have used :

LEMMA II .10. - Let lr ~ N~r be defined by = r | f(03B8)d03B8. Then
00. 

Proof - We first note that -

where

where go is defined on (0, oo) by go( x )) = Go(x). It follows that lr = 
where is defined by - -
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It is not hard to show, using the fact that Go( is integrable at I x = 0
and falls off exponentially at infinity, that

so that ar = 0(1) as r - oo . Thus, by (II. 22) :

III. ESTIMATES ON CLASSICAL GREEN’S FUNCTIONS

Many of the estimates required in field theory models reduce to estimates
on the related Green’s functions, i. e. on the non-interacting two point
functions. This section is devoted to a detailed study of the classical Green’s
functions G~. In § III. 1 we define the operators ( - 4~ + m2~ with X B. C.
on 3A be means of quadratic forms. It turns out that one can read off many
of the pertinent properties of

from properties of the quadratic forms. For instance, one can immediately
deduce the inequalities of (1.3 a).
We begin § III . 2 by reviewing the theory of conditioning (see [29] [62] ).

Conditioning provides a powerful technique for deriving estimates in
Boson models. For example, the sub-and supermultiplicativity relations
of § III.2 are direct consequences of conditioning; conditioning enables
us to reduce the LP estimates for X B. C. to those of F B. C. (see § III.4);
our new proof of the linear lower bound using N B. C. follows from
conditioning (§ III. 2).

In § III. 3 we outline the method of images in the case where A is a rec-
tangle and we show how this method leads easily to a number of estimates
for G~ ; e. g. 

u -

Finally in § III. 5 we consider non-rectangular A and derive the inequality
(III. 1) for N B. C. for a large class of A.

111.1. Quadratic form domains for - A.

Let A be a bounded open region in f~2. We wish to define and analyze
the self-adjoint extensions - ð~ and - ~~ of - A corresponding
to Dirichlet and Neumann B. C. It is convenient to do so by means of
quadratic forms. In fact, in two dimensions (unlike the case in one dimen-
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sion), it is difficult to characterize the operator domains of - ~~ and
- ~~ directly, but the form domains are simple to work with. For a more
complete discussion of much of this material see [33] and [51].
We define the Dirichlet and Neumann forms by

with D(tD) = CÕ(A) and D(t~) = C 1 (A) ; here by C1(A) we mean the real
continously differentiable functions on the closure A of A which are
bounded together with their derivatives in the sup norm, and by CÕ(A)
we mean those functions vanishing in a neighborhood of ~A. Clearly,
t~ and t~ are positive and densely defined; moreover they are closeable
since the vector-valued operator V is closeable on CÕ(A) and C 1 (A). The
closures ~~ thus uniquely determine positive self-adjoint operators T~ by
means of

for all f E D(~) and g E D(T~) with D(~).
Formally, TX = 2014 0394X + m2 is the differential operator 2014 0394 + m2

with B. C.

and

But this statement cannot be taken literally since vectors in D(T~) are not
necessarily once differentiable in the usual sense. Thus while it happens
that (III. 2) may be interpreted in the ordinary sense when A is sufficiently
regular, the B. C. (III.3) may not (see, for example [39]). However for

f E C1(A), g E C2(A) n D(T~), we see from integration by parts in (111.1)
that

so that g must satisfy (III.3) and = (- A + in the usual sense.

We define G~ to be the operator (T~)-1, which is obviously bounded
by mo 2. We denote the (distribution) kernel of GX by GX(x, y), the so-
called Green’s function. If 3A is sufficiently smooth, it is a standard argu-
ment of elliptic partial differential equations that G~(x, y) is Coo in its

arguments for x ~ y [39].
It is also straightforward to treat the B. C.
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by means of quadratic forms, where o-(x) is a given real smooth function
on 3A. For the form b 

is relatively bounded with respect to t~ with relative bound 0 [51], and
so t03C3 = tN + b{7 uniquely determines a self-adjoint operator

corresponding to the B. C. (III.4).
Now consider two disjoint bounded open regions Al and A2 with

B = ~A~ n not necessarily empty. Let A = int u A~). In the
obvious way we regard t~l as a form on L 2(A) = E8 L2(A2) with

C L2{A2), and similarly for t~2. Clearly

since the domain of the form on the right includes functions with disconti-
nuities across B. Now (tl + + tn2 determines a unique
operator S, usually denoted by S = + T~2’ which, a priori, is a self-
adjoint extension of the usual sum T~2’ However T~1 3 T~2 is
obviously self-adjoint so that S = T~1 0 T~2’ Since the forms in (111.5)
are bounded from below, we may rewrite (III. 5) as t  tl + t~2 or in
operator notation as T~ ~ T~1 @ T~2 where these two inequalities by
definition mean the inclusion (III . 5). By [33, p. 330] these inequalities are
equivalent to

This is the basic inequality for Neumann B. C.
On the other hand for Dirichlet B. C.

since functions in the domain of the form on the right must vanish in a
neighborhood of B. Consequently,

If we now suppose that A2 = then we deduce from (III . 6) and
(III.7) that _

since G~2 = Go. There is an obvious monotonicity result for the J B. C.
of (111.4): namelv

if (J 2(X) for almost all x on aA. Clearly Neumann B. C. are given
= 0 and it is easy to prove that the Dirichlet form is obtained as the

monotone limit lim tg so that

if 0  a(x).
Vol. XXV, n° 3 - 1976.
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If we specialize to the case where A is a rectangle then we can introduce
periodic B. C. via the basic form t by taking D(t5) n C 1 (A) to consist of
those functions periodic in the sides of A. By the same considerations as
above we obtain

EXAMPLE. - If we restrict to 1 dimension, then we can give can explicit
demonstration of the inequality (III.6) (or, indeed, of any of the other
above inequalities) that shows clearly how an additional N B. C. introduces
an additional degree of freedom. Thus consider an interval A = (a, c),
and for a  b  c let Ai = (a, b) and A2 = (b, c). Then it is not hard to
verify that

with x and y interchanged if y _ x, and consequently that

where

Thus AG is a positive rank one operator, verifying (III. 6).

III.2. Conditioning Inequalities :
A new proof of the linear lower bound.

The theory of conditioning [29] [62] leads directly to the inequalities
of (1.3 b). For the reader’s convenience we begin by briefly reviewing this
theory. One can discuss conditioning either in the formalism of second
quantization or in terms of integration in Q-space. We shall choose the
latter setting.

Let and ~B be two Gaussian random processes (G. r. p.) indexed by
the same vector space V with zero means and covariances SA( f, g) and
SB(f, g) respectively. Denote the measure space for by QA, the Gaussian
measure by and the Hilbert space completion of V in the norm

tt - .f )1’2 by QB’ denote the corresponding objects
for By 

-

we mean the independent sum of and PB ; i. e. the G. r. p. ~ 4J, Q, dp, S &#x3E;
realized on Q = QA x QB with measure dp = d A x covariance
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S = SA + SB, and associated Hilbert space ~, the completion of V in the
norm ) ) f II == S( f f ) 1 ~2- Clearly, because of the relation

every f E Jf can be identified with a unique vector fA in (or similarly
with an fB in hence for f E ~, is well-defined as 
An important feature of the independence in the sum (III.12) is the

consistency with Wick ordering; for example,

Here, and throughout this section, it is understood that the subtractions
in the Wick powers of a field are made with respect to the associated
covariance, so that the subscripts S and SA in (111.14) are for emphasis
only. (III.14) follows from integrating the relation

and using the fact that : = ~o,r. As for (III .15) we can

verify it easily by means of the generating functional for Wick powers 

For the left side of (111.16) can be rewritten as

and (III. l5Y follows upon equating equal powers off
Turning the above discussion around slightly, we may suppose that

we begin with two G. r. p. ’s 4J and ~A, both indexed by V and with cova-
riances S and SA. If (III 13) is satisfied we can define SB = S - SA, construct
the associated G. r. p. 4JB’ and thereby realize 4J, ~A and 4JB simultaneously
on the measure space (Q, - (QA x QB, d/lA x where 
and (QB, are measure spaces for and 4JB’ Because of the relation
(III.14) we say that obtained from ~ by conditioning if the inequality
(111.13) holds. It is easy to see that (111.13) is also necessary in order for
there to be a relation like (111.14) [29, Prop. 11.22].
Vol. XXV, n° 3 - 1976.



256 F. GUERRA, L. ROSEN AND B. SIMON

The power of the theory of conditioning is best seen from the following
estimates. If P is a semibounded polynomial and gEL 1 + E([R2), it is a standard

argument to make sense of interactions like U == g(x)dx and

UA = ~ g(x)dx for suitable covariances S and SA (see e. g.

§ III.4). Assuming that this has been done, we simply wish to note here
that :

THEOREM III.1 Conditioning Comparison Theorem. If ~A is obtained
from ~ by conditioning, then for any p &#x3E; 1

and

Proof - We prove only (111.17). From (111.14) it follows that

so that by Jensen’s inequality

We then integrate with respect to jj~
By combining the Conditioning Comparison Theorem with the inequa-

lities (III. 6)-(III. 11) we immediately deduce a number of useful inequalities
among the partition functions

where

is defined in terms of a semibounded polynomial P in the field and a fixed
function g(x) &#x3E;_ 0. The Wick subtractions in (III.19) are with respect
to In this section we simply assume that the Z~ are finite; in § III .4
we return to this point.
Suppose we consider the G. r. p. ~ ~ Q, S ) with covariance operator

of (III.6), where Ai n A2 and A = int (Ai u A2). As explained
after (III.12) this G. r. p. can be realized as the independent sum

where the G. r. p. 4&#x3E; j has covariance 
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From (III.15) we deduce by standard arguments that

Therefore

Now according to (III. 6), the G. r. p. 4J with covariance G~ is obtained
from 03C6 by conditioning so that by the Conditioning Comparison Theorem
and (III.21),

This is the basic submultiplicativity relation for Neumann B. C.
By similar reasoning, the following relations are all immediate conse-

quences of (III . 7)-(III. 11):

Among the class of B. C. we are considering, then, Dirichlet B. C. are
« minimal » and Neumann B. C. « maximal ». The minimality property
of Dirichlet B. C. actually holds for a more general class of B. C.: if - ~B
is any self-adjoint extension of - A such that - ~B &#x3E; 0,
then by a general theorem concerning the Friedrichs extension (see, e. g.,
[33, P. 331])

hence

An interesting consequence of the submultiplicativity property (III.22)
of Neumann B. C. is a new proof of the « linear lower bound » [19] [61] ]
[20] [42] [28] : various estimates proved for a finite volume lead « for free »
to the corresponding infinite volume estimates. For, example, the following
two estimates are statements of the linear lower bound :

1. Let EX be the ground state energy for the P(~2 Hamiltonian HX
with B. C. X = D, P, F or N on [ - 1/2, 1/2]. If E~ is bounded from below
uniformly, say for 1 E [1, 2], then Ex/t is bounded from below uniformly
for  e [1, oo).

2. Consider the pressure x~ defined in (1.4) for X = D, P, F or N.
If 111 is a unit square and A is a union of unit squares, then
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The second result follows immediately from the estimates (III. 8), (III .11),
(III. 17) and the submultiplicativity property (111.22), after one has carved
up A into a union of unit squares with N B. C. on their boundaries.
The first result follows from the standard formula

where Z~ = here is the free measure with X B. C. on the

strip [ - 1/2, 1/2] x R and U"t is the interaction in the region
[- 1/2, 1/2] x [ - t/2, t/2] with d Xl-Wick subtractions. For as above

with + t2 + ... where Ii E [1, 2] ; and the result follows from (111.28).
The hypothesis that E~ is bounded fdr 1 E [1, 2] may be verified as in § III.4.

Later in this paper we indicate two other approaches to the above
results which are not quite as clean as the use of N B. C. The first in § VII. 4
uses hypercontractivity as in Nelson [42], and Guerra-Rosen-Simon [28].
The second in the Appendix is based on the Checkerboard Theorem.

Similar considerations based on the submultiplicativity (III.23) of
Dirichlet B. C. give a bound in the other direction, e. g.,

if A is a union of unit squares and A 1 a unit square. Of course, for P(~)2
a bound in this directions follows more directly from Jensen’s inequality.

III.3. Method of images.

When A c jR2 is a rectangle, the method of images provides a convenient
representation for the Green’s functions G~. Suppose, without loss of
generality, that A is the rectangle ( - li /2, ll/2) x ( - t2/2, t2/2). For n E ~2,
define the « reflection » operators p~ on (~2 by

Then, according to the method of images, for X = D, N, P,

where SD - - 1, 1, and n | I = n1 | I + It is clear that
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the right side of (III.29) equals G~ : for there is only one term (n = 0)
with a singularity in A so that ( - Ax + y) = 5(x 2014 y) and
the B. C. are obviously satisfied since, for X = N say, the right side, viewed
as a function of x, y E 1R2, is even with respect to reflections in the sides
of A and hence has a vanishing normal derivative on 3A.

In Wick-reordering formulas (see (1.8)) we encounter the functions

When A is a rectangle, we see from (III.29) that is well-defined and

These image formulas lead both to pointwise bounds on G~ and ~G~
(Lemmas III.2 and III.3) and to operator bounds (Theorem III.4 and
Lemma III . 5). Let denote ordinary Euclidean distance for
X = D, N, F and periodic distance for X = P, i. e., x - y Ip = min x - 
The first lemma asserts that G~(x, y) has essentially the same small and
large behavior as Go(x, y) :

LEMMA III.2. - Assume that Ib 12 ¿ 1, and B &#x3E; 0. Then for X = N,
P, D there are constants a and b independent of A such that for 

Remark. In the case X = D, the inequality (III . 31 ) was established
in [29] for arbitrary open A by showing that

Proof. - (X = N only) Positivity of G~ is obvious from (III. 29) since
Go(x) &#x3E; 0. For the small distance bound (III. 31 a) we write

Since Go(x) is monotone decreasing in x ) , the first term in (III. 32) is
bounded by 9Go(! ~ - ~ !) = 0 (log x - y ~ -1). Because of the asymptotic
behavior of Go

the remainder term R(x, y) is clearly bounded uniformly in x, y, and A.
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The long distance behavior (III. 31 b) follows from (III.33) and an
elementary computation. Note that the asymptotic behavior of G~ is not
quite as good as that of Go since if one side of A, say tl, is small then a large
number (~ ! x - y of images will each contribute a term of the order

) to 

LEMME III.3. - Assume that 11, 12 ~ 1.

(i) For X = N, P, ~G~(x) &#x3E; 0.

(ii ) Suppose X = D, N. Let r = dist (x, lA). For r  1/2

and for r &#x3E; 1/2

where the constants a and b are independent of A.
(iii) 6G5 is a constant which satisfies

for some constant d independent of A.

Remark. In [29] it was noted that for general A, 6G£ is negative and
satisfies (III.34).

Proof. (i) is obvious from (III. 30).
(ii) follows from (III.30) and the known small and large x behaviour

of Go(x),

(iii) clearly 5G~ = ~ n2t2) I ) is exponentially small as

claimed. ~~
We may view G~(x, y) as the kernel of an integral operator (denoted G~)

applied to functions with support in A, belonging to, say, L2(A) or

N = 1(f~2). Interpreting (III . 29) as an operator equation, we have

where p~ f(x) = is a unitary operator on L2(~2) or

on N. With this notation

The formula (III. 35) leads at once to an operator inequality for G~ :

THEOREM III.4. - Suppose A is a rectangle and X = D, N or P. Then
for some constant c = c~ we have on L2(A) x L2(A)
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Remarks. 1. By the inequalities of § III. 1 we know that

so that the important case of (III. 37) is for X = N. In § III. 5 we show
how to extend (III.37) for X = N to a class of non-rectangular regions.

2. The constant c~ that we find diverges as I - 0. This is true for
the best constant; see Lemma III.12.

Proof - Let f E L2(A), denote the inner product on L2 by ( . , . ) and
on N by ~ . , . ~ and let e~ be the projection in N onto elements with
support in A. Then by (III.35)

since PXne = enPXn where An But by Lemma III.5 b
= 0(e"’"’"’’-) where dn = dist (A, An). Since  00

and Pn is unitary, we obtain ~2014

By similar reasoning applied to (III . 36) we obtain :

LEMMA III. 5. - Let A’ be a compact subset of A with r = dist (A’, &#x3E; 0.
Define the operator AX = on N by

Then Ax is Hilbert-Schmidt and for r &#x3E;_ 1,

where the constant a does not depend on A or A’.

Proof As in the previous theorem (A~ = { x E A’ ~ ),
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But by Lemma III.58 of [29],

where dn = dist (A, An) and the constant c(r) is independent of r for r &#x3E; 1.
This implies (III.39). ~

Remark. - By the Markov property [29, Prop. II. 3], = 

for n ~ 0 ; hence the trace class norm

and we see that AX is actually trace class with bounds on ~ AX IITR similar
to (III.39).
We conclude this subsection by applying the general theory of § II. 1

to compare the measures X = F, D, N, P. The following estimates
are useful when working in the active picture (as we do, for example, in § V).
In general, the measures are not mutually absolutely continuous (see
Remark 2 below). However, if the closure of A’ is a compact subset of A
then, according to Theorem III.4 and Theorem II.2

where is a Gaussian measurable with respect to In fact,
by Theorem II. 5, we can assert more about Fx on the basis of the ope-
rator AX of (III. 38) which satisfies, for 

In the case of N B. C., AN &#x3E; 0, so that FN E LP for all p  1 + where x~
is the largest eigenvalue of AN and in addition E L 00 (by the Remark
following Theorem II. 5). In the case of D B. C., 0, so that the situation
is reversed in the sense that LP for all p  - where ao is the
smallest eigenvalue of AD and in addition F DEL 00. This result was already
obtained in [29, Theorem II. 34]. In the case of P B. C., AP is neither positive
nor negative so that the conclusions about FP are that FP E LP for all

p  1 + and that Fp 1 E LP for all p  - 1/aP where ao and aP are
the maximum and minimum eigenvalues of AP.

Finally, by Theorem 11.5 (b), we can write down an implicit bound
on the LP norms of F x. We state the results only for the case X = N :

THEOREM III.6. - Let A’ be a compact subset of A.

(a) and are equivalent measures; explicitly,
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where E L 00 and for all p  1 + 1/ao where 03B1N0 is
the maximum eigenvalue of the operator AN of (III. 38).

(b) Let p &#x3E; 1 be given. Then ~FN~p is bounded independently of A’
and A provided that

for some constant c independent of A’, A.

Proof - Part (a) is just Theorem II.5 (a) while part (b) is just
Theorem II. 5 (b) combined with the estimate (III.39). ~

Remarks. 1. It is instructive to examine the assertion of the theorem
in one dimension where everything can be explicitly computed. For simpli-
city take A = (0, oo), A’ = [r, oo) c A, and mo = 1. As calculated in

f 29, Theorem II . 311

where q(t) denotes the field at « time » t. We see that in one dimension d~
and are equivalent without the necessity of restricting to A’.
Upon restricting to A’, the Radon-Nikodym derivative

is given by

by Mehler’s formula (see e. g., [64]). Clearly, 
p  1 + e2r. Finally, we can compute the operator AN and we find that
AN d it maximum eigenvalue ao is e - 2r, confirming the condi-
tion p  1 + 

2. In contrast to the one-dimensional result, and 
are not absolutely continuous in general if dist (A’, aA) = 0 in two or
more dimensions. For example, let A be the half-plane 
and A’ c A the rectangle A’ = { 0  xi  1, 0  x2  1} so

that W and aA have a common segment L={x~x~=0,0x~l}.
By the method of images, if x, y E L, then G~(x, y) = 2Go(x, y). Therefore
the operator A defined by (I, ~Gng~ _ ~ £ (I + A)g ~ equals I if supp f, gEL.
Clearly A is not a Hilbert-Schmidt operator since there is a denumerable
infinity of { with supp fn c= L and  fn, fm&#x3E; = 03B4n,m. Consequently [60],

~~, is not absolutely continuous with respect to 

III.4. LP properties of the interaction.

The estimates for the classical Green’s functions of the previous two
sections and the theory of conditioning lead at once to LP properties of the
interaction. To begin with:
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LEMMA I II . 7. - For any E &#x3E; 0, let g E L 1 + E(A) where A c ~2 is a rec-
tangle. There is a constant a (independent of A, g and p) such that for
any p  oo and X = F, D, N, P,

where . denotes the LP(Q, norm of : 4Jr(g) : Wick substrac-
tions).

Remarks. 2014 1. The same estimate holds if the Wick substractions are
made with respect to Y # X (see §VII.4).

2. For F and D B. C. A may be any open set while for N B. C. A may
be fairly general (as described in § III. 5).

3. Results such as (III .41) or (III. 45) below may of course be formulated
in the passive as well as the active picture.

Proof - It is sufficient to prove (III.41) for X = F. For by (111.37)
the theory with covariance G~ may be obtained by conditioning from the
theory with covariance cGo so that by the Conditioning Comparison
Theorem (Theorem III.1)

where the superscript cF indicates that the covariance in the measure
(and in the Wick ordering) is cGo. Now by hypercontractivity (see [44] )
forp&#x3E;2

For p  2J! : so that (III . 41 ) reduces to showing
that

This estimate is standard:

where (1 + 8)’ is the dual Holder index to 1 + E and

so that q = (1 + 8)/28. Finally by the Hausdorn-Young Inequality (assum-
ing qr &#x3E;_ 2) 

.. _...._ . _.

proving, (III.42). II
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As remarked in (1.8), a change in Wick ordering introduces lower order
terms according to the formula

Our control of 6Gg in Lemma III. 3 leads to :

LEMMA III . $.. For any E &#x3E; 0, let where A c R2 is a

rectangle, and define 6U = : There is a constant b

(independent of A, g and p) such that for any p  oo, and X = D, N, P

where d = dist (supp g, vA).
Remark. By Lemma II.37 of [29] we can prove (III.44) for X = D

if A is any open set in ~2.

Proof. - Applying the previous lemma to (III.43), we get

for any q &#x3E; 1. Choosing q  1 + s and applying Holder’s inequality,
we note that

where x is the characteristic function of supp g and ~ ~ = ~ ~ 2014 (1 + E) -1.
By is bounded and for large d

Next let P be a semibounded polynomial and consider the interaction

LEMMA III. 9. - Let A be a rectangle, X = F, D, P, or N and let p  oo .

There is a constant b independent of A such that

Proof - By the theory of conditioning the left side of (III.45) as a
function of X is greatest for X = N in which case submultiplicativity
immediately gives the correct volume dependence. Thus we need only
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show that ~ ~ ~~’~  oo for A a unit square. As in the proof of
Lemma III.7, Theorems III.4 and 111.1 imply that

If we make the change of variable ~ = c -1 ~2 ~, then we see that

where the right side is expressed in terms of the usual free field with

Ù A = JA : dx where the polynomial P(~ ) = That (III.46)
is finite is perhaps the most celebrated estimate in P(~)2 theories. II

Remark. - As we show in § VII.4, the estimate (111.45) continues to hold
even if the Wick subtractions in the interaction are made with respect

III.5. Bounds on G~ for more general regions.

In this section, we wish to examine when the inequality

hold as an operator inequality on L2(A). This inequality and its compa-
nion inequality Go  G~, which holds by the theory of conditioning
(see § III.2), are basic to our discussion of general covariance operators
(see § 11.1, in particular (II.6)). In Theorem III.4 we have already esta-
blished (III.47) for the case of rectangular A by using the method of images.
In our field theory applications, the case of rectangles will suffice, but since
the question of (111.47) for general A is raised by our considerations, we
shall make a slight detour to prove it for a larger class of regions than rec-
tangles. We do this in two ways. First we shall prove (III.47) for two
additional classes of regions, namely isosceles right triangles and circles.
Then we shall prove a principle which allows us to extend (III.47) from
one region to another.

LEMMA III.10. 2014 (111.47) holds for isosceles right triangles.

Proof - Let A be the triangle and let R be reflection in the line contain-
ing the hypothenuse of the triangle. Let A be the square obtained by taking
the closure of A u R[A]. Then

from which one easily concludes that

for any f E L2(A). Since (IIL47) holds for Ã, it holds for A. II
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THEOREM 111.11. - (111.47) holds for any circle.

Proof. Without loss of generality take mo = 1 and A = { x |  R } .
By standard calculations Go and G~ have expansion in terms of Bessel
functions and polar coordinates

where (resp are symmetric and given for r  r’ by :

For normalization and properties of the Bessel functions of imaginary
argument, see [7, p. 375]. Given a real-valued function f E write

00

f (r, 0) = 03A3 yI(8) f (r) where yl(03B8) = 1 if t = 0, -J2 cos (18) if t &#x3E; 0 and

-J2 sin 1  0. Then, letting f (x), f’(y)Go(x, y)dxdy = ( f, f )o we see
that (III.47) follows if we can prove that

for some constant c independent of 1. Let hi be the function defined by :

Then, since

from :

Now hi obeys ( - A + 1)h1 = 0 away from r = R, so an integration by parts
shows that
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since = R -1. Thus, (III . 51) is equivalent to a bound

independent of (with R fixed).
Now for t &#x3E;_ 1 [1]

But 0 and = RKI/2(t - 1) - Kl-2 so that

Similarly

so that

(III. 53) implies (III. 52) and hence the lemma. jjjj
The reader may have noticed from (II.52) that as the radius R of the

circle shrinks to zero, our bound on the constant c in (III.47) diverges.
In fact, the worst behavior is on the 1 = 0 subspace for

so that the constant c diverges as 1/R2 In R-1. This is not coincidental

LEMMA III.12. - Fix mo and B &#x3E; 0. Then there exists a constant b
independent of A so that if (III.47) holds on L2(A) then the constant c
must be larger than b A 1£ - 1.

Proof - Let x be the characteristic function of A. Since x is an eigen-
function for 8~ with eigenvalue 0,

On the other hand, by the standard argument in Lemma III. 7,

where 6 is defined by 1 + 5 = (1 - 8/2) - 1 (assuming E  2). ~
We now turn to a general method of obtaining new regions for which

(III.47) holds from old regions for which it holds.

DEFINITION. - Two open regions, A and C, in 1R2 are said to be strongly
C2 diffeomorphic if and only if there exists a C2 diffeomorphism, F : R - R2,
so that

(1) F[A] = C ;
(2) The norm of the Jacobian matrix dF(x) and the norm of its inverse

are bounded uniformly in x ; x E [R2 ;
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(3) The Jacobian J(x) = det (dF(x)) has a gradient which is uniformly
bounded in x ; x E f~2.

Remark. - « Strongly C2 diffeomorphic » is an equivalence relation. It
is symmetric since det (d(F -1 )(x)) = J(x) - ~ and I is bounded from
below by condition 2.

THEOREM III.13. - If two open regions are strongly CZ diffeomorphic,
then (III .47) either holds for both or fails for both of them.

Remarks. - 1. The idea of the proof is to use F to relate the Laplace
operators on A and C. One might expect that a condition would be needed
implying that dF(x) takes normals to the boundary of A into normals to
the boundary of C if x is a boundary point of A. Such a condition is not
needed essentially because the condition (III.47) is a form statement and
the description of the form associated to - 0~ makes no mention of nor-
mal derivatives

2. The global conditions on F- are quite natural given our proof. -We
expect that if A is compact, a C2-diffeomorphism of a neighborhood of A
into a neighborhood of C will extend to a strong C2 diffeomorphism but
since this section is something of an aside, we do not examine this question.

Proof. Let the regions be A and C and let F be a strong C2 diffeomor-
phism taking A into C. Suppose that C obeys condition (III .47). Consider
the map U : d2x) ~ L2(lR, d2x) given by:

where J(x) = det (dF(x)). Then U is unitary on L2(~2, d2x) and also maps
L2(C, d2x) onto L2(A, d2x) unitarily. Define a quadratic form a on

L 2(~2, d2x) with form domain and a quadratic form a~ on L2(C, d2x)
with form domain C 1 (C) by the formula :

and similarly for a~ (in which case f and g have support in C). By passing
to the closure of these forms we obtain operators A and A~ which clearly
obey :

(The forms are closable since they are unitarily equivalent to closable
forms.) Let Ko (resp. K~) be the integral kernel of the inverse of (A + mo)
(resp. A~ + mo). Because of the relations (the last is by hypothesis)
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it suffices to prove that :

By the theory of quadratic forms [33], this in turn follows from the inequa-
lities : 

By (III. 54) :

where B( y) = dF(F-1(y)) and D(y) = ( y)) -1 (~J)(F -1 ( y)). (III . 55 a, b)
now follow easily from the bounds in the definition of a strong C2 diffeo-
morphism. 

EXAMPLE 3. - Linear homomorphisms are strong C2-diffeomorphisms
so we conclude that (III.47) holds for any triangle and for any ellipse.

THEOREM III.14. - Suppose that A is a star shaped region with C2
boundary. Then A is strongly C2-diffeomorphic to a disc, and in particular,
(III.47) holds for A.

Proof - By translation, we can suppose that A is star shaped relative
to zero. Thus there is a C2 periodic function g on [0, 2~] so that in polar
coordinates : 

. , , m I ,~, ’B

Let a = min = max g(0). Let x be a Coo, monotone non-increasing

function on [0, 0o which is 1 on 0, - ) and 0 on 2a 00 ). Let # be a Coo
monotone non-decreasing function which is 0 on (0, 2b) and 1 on (3b, oo).
Define F by :

Then F is C2, invertible (since f ( . , 8) is strictly monotone for each fixed 0)
and is linear outside a compact and hence a strong C2-diffeomorphism.
Clearly, F takes A into the disc {(r, 0) r  1 }. II
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EXAMPLE 4. - Lest the reader think that (III.47) holds for all A, we
note that the constant in (III .47) diverges as r - 0 for the disc of radius r.
Thus, (III. 47) fails for an infinite union of disjoint discs of smaller and smaller
radii. It is fairly clear that (III.47) will still fail if we join the discs together
by narrow corridors and thus we expect that (III.47) fails for the interior
of a suitable Jordan curve. We conjecture that (III.47) holds for the inte-
rior of any sufficiently smooth Jordan curve.

I V . THE DIRICHLET PRESSURE

In this section, we prove the equality a ~ - and discuss several of

its applications including the proof of the Gibbs variational equality (this
application was sketched in [26]). Most of our work on Dirichlet B. C. has
been in an « active » picture in which the field is the same as the free field
(namely the « coordinate » functions on but the measure on

changes. In this section, we will work mainly in the passive picture
in which the measure dpo on is fixed but a Dirichlet field

~D( f ) = replaces the coordinate functions when Dirichlet B. C.
. are introduced. In the passive picture, the sole change in going from an

to 03B1D is the change 03C6 ~ 03C6D and moreover the two interactions exp ( - U)
and exp ( - U~) are realized on the same space so that we can try to control
their difference directly. Such control will occur By comparison,
we note that in the active picture in going from an to x~ the dual change
of Wick ordering and of measure are involved. A proof based on controll-
ing these changes is possible ; the basic ideas occur in § V below where
we do, in fact, use the active picture to prove x~ = rioo’
A third proof involving the realization of Dirichlet B. C. in a transfer

matrix formalism is possible and our version of this proof can be found
in [62]. The main advantage of this latter proof is that it provides a transfer
matrix formalism for Half Dirichlet Schwinger functions. The proof we
present here is simpler than that in [62] for two reasons : the method of
§ IV. 1 is a simpler way of removing the Dirichlet « surfaces » than that
of « ð-functions in Q-space » and secondly no Wick reordering is necessary.

IV 1 The principle of not feeling the boundary.

We use a passive picture so that ~~( f ) = PA = 1 - Given
A c A, we define

We recall that rm(N) is the set of all homogeneous polynomials of degree m
in the fields. The basic method for « eliminating » Dirichlet B. C. will be
the following « Principle of Not Feeling the Boundary ».
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THEOREM I V.I. - Let « A » be a sequence of compact regions whose
volumes approach infinity and for each A, let A be another region with
Aci A and

n

Let n be fixed and for each A let B E E9 FJN) with

Then:

goes to zero as I A I - oo .

In the proof of Theorem IV. 1, we need the following two Lemmas :

LEMMA IV.2A. -II VA - U~ ~‘~~ I I2  const. ! A for suitable
a &#x3E; 0 and all A, A with A c A, d(A, ~A) &#x3E; 1 and 1.

Proof - Write ~(x) as a sum of independent fields

according to the passive interpretation of the theory in § II.1. Then :

so

where S(D,Ã») is the two point function for ~°’~).
Now [29]:

all x, = d(A, aA) &#x3E;_ 1. Moreover for k &#x3E; 0

Thus:
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LEMMA IV. 2 B. - Let be a probability measure and define

dv~ = where for each A c &#x3E; 0 satisfies

and

for some q &#x3E; 1 and constants a and b. Then, there is a constant c, inde-

pendent of A so that for any g and any A with ) I A &#x3E; 1 :

is the LP-norm with p = 

Proof 2014 Let ! A I’ be the index dual to ) A I, i. e. A I’ = ( 1 - 1 A 1-1)-1.
Define 0(A) by :

Then, by Holder’s inequality :

Now

so that

Thus, by the assumed bounds 

By Holder’s inequality once again :

. Proof OJ Î Theorem IV.1. 2014 Using I eX - e-Y I ~ -I 1 x - (~ + 
find that : 

2
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the « linear lower bound » lip  and Jensen’s inequality,
one sees that f~ and f~ obey the hypothesis of

Lemma IV. 2 B. Thus:

The conclusion of the theorem that R~ -~ 0 follows from (IV. 4) and the
estimates : 

- _ _

(IV. 5 a, b) follow from the hypothesis, Lemma IV. 2 A and Nelson’s best
hypercontractive estimates [44]. ~
For later purposes, we also need a one-dimensional version of Theo-

rem IV. 1 whose proof is identical to the one above if one passes to a
« mixed » picture in which the space Dirichlet B. C. are actively realized
and the time ones are passively realized:

THEOREM IV. 3. - Let Vt = U~ where A = ( - t/2, 1/2) x ( - t/2, t/2)
and A = ( - t/2, 1/2) x ~. Let = where A = ( - 1/2, 1/2) x ( - t/2, t/2)
and A = ( - 1/2, 1/2) x ( - t’/2, t’/2). Let tk - oo with tk &#x3E; ? c 

n

(oc &#x3E; 0). Let n be fixed with Bk E @ rm(N). Suppose that
w=0

Let V = V VD - Then :

where dill is the Gaussian measure for the field with Dirichlet B. C. on

x = ± /2.
Remark. While we employ the Principle of Not Feeling the Boundary

only to prove equality of the pressures, we expect that it can also be used
to prove the equality of certain kinds of states in the infinite volume limit.
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Let Hg be the transfer matrix for the free measure with Dirichlet B. C.

on (- 1/2, 1/2)  R, and let Vp = l/2-l/2 : P( 4» : dx with Dirichlet Wick
_ I12

ordering on ( - 1/2, 1/2) x R and let Hp = Hg + Vp (see [62] for detailed
definitions). We will prove that 03B1~ = 03B1D~ by proving that 03B1Dl,t - - EP/l
as t - oo (EP = inf spec (HP)) and then that - 03B1~ as 1 - 00.

Our proof begins by noting some consequences of conditioning. First
lim 03B1Dl,t exists and lim (lim = lim 03B1Dl,t ~ 03B1D~ exist by subadditivity.
t-+oo 

’ I --~ oo ’ ’ 

,

Let 03B1X,Yl,t denote the pressure in region ( - 1/2, 1/2) x ( - t/2, t/2) with X B. C.
in the I-direction and Y in the t-direction. By conditioning

while by the standard transfer matrix argument [19], [27], [29]

Thus

Moreover subadditivity of l03B1D,Fl,t in I then implies subadditivity of - Ep
and so the existence of lim - (IV. 6) then implies that

THEOREM IV . 4. - lim 03B1Dl,t = - EP/l.

Proof - Throughout this proof we fix Dirichlet B. C. on [2014 1/2, 1/2]
by means of the active picture ; d l will denote the corresponding free
measure with D B. C. on the strip [- 1/2, 1/2] x R. On the other hand,
D B. C. in the t-direction will be imposed in a passive way, i. e. with a new
field vanishing at + t’/2.

Let t’ = t + t 1 ~2. Define the « pressures »

~/2 /*s/2

where U? = 11/2 s/2 : P(03C6(D,t’)) : (x)d2x with the D B. C. always at

± t’/2. Then by the Principle of Not Feeling the Boundary (Theorem IV. 3
with B~ = 1)
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and clearly

By (IV. 9) and (IV. 7), lim lim Lt so the theorem follows if we can prove
that

We write U~ = U~ + Wf+ + where Wf+ are the parts of the
interaction between times [t/2, t’/2] and [ - t’/2, - t/2] respectively. Then
by Jensen’s inequality

Thus to prove (IV 10) we need only show that

Let W, ~ Ut be the same objects as U~ except that the field 
is replaced by the field ql (Wick subtractions in both cases are with respect
to We claim that in (IV .11) we can replace W~ ~ by W, ~ without
changing the value of the integral. For d l factors as dJlD Q where 
is the Gaussian measure associated with D B. C. on the sides of
[ - 1/2, 1/2] x [- t’/2, t’/2], and § decomposes as an independent sum
cjJ = 4JD + so that

Hence

Having replaced by in (IV. .11), we can next replace U~ by Ut
without changing the value of the limit ; this is an elementary consequence
of the Principle of Not Feeling the Boundary (Theorem IV. 3). In this
way we reduce the proof of the theorem of a statement involving only free
interactions, namely :

Consider (IV. 12) in the case W~+. Since W~, + lives at times after t and
e - Ut at times before t, we can write

where J1t is the embedding of the time zero field onto the plane
03C0 = {  x, s ) s = t }. (IV. 13) is just an expression of the Markov pro-
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perty. Using the Schwarz inequality and reflection symmetry in the plane 03C0
we have :

, ,. ~ i ~ v , m

where Ut is the reflection of Ut in the plane x. Thus by the Feynman-Kac
formula the 1. h, s. of (IV 12) is bounded by (H = HP)

we see that this last quantity indeed goes to zero and thus (IV 12) is pro-
ven. II
We can now prove the basic equality of the pressures:

THEOREM IV 5.

Proof - Since we already know that lim aDt exists and we have Theo-
rem IV. 4, we need only prove that 

t1-+00 ’ 
’

Given 1, let l’ = 1 + 11/2 and place Dirichlet data on x = + [’ /2 by the
passive method. Consider

By mimicking the proof of Theorem IV. 4 (thinking, in the spirit of Nelson’s
symmetry, of 1 as the « time » direction) one finds that :

where Et is the free B. C. energy. But by the Schwarz inequality :

Thus, for any t

Taking t to oo,

The opposite inequality is a consequence of conditioning. ~jj
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IV.3. Application 1 : convergence of - 

The quantity - EI in lim - is defined with sharp cutoffs.

Elsewhere [28], [29], we have considered the question (raised first by Oster-

waldcr-Schrader [47]) of showing that - -+ for a

sequence of g approaching 1 in a suitable sense. A bound on the lim sup
is fairly easy because of the « improved linear lower bound » [28] :

The opposite inequality is harder and our previous results have required
the g’s to have compact (increasing) supports. The problem is that we had
no effective mechanism for showing that making g small outside some set
does not decrease the binding. Dirichlet B. C. turns to be perfect for that
(see (IV 14) below). We have :

THEOREM IV. 7. - Let P be normalized, i. e. P(0) = 0. Let gn be a sequence
of non-negative functions and In a sequence of intervals so that :

Then lim - ~ gn ~22 =

Proof - Let hn = gnxn where xn is the characteristic function of In.
From (ii) - (iv), one easily concludes that

Let

Let E( g) = inf spec H( g) and ED( g) = inf spec HD( g). By translation
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invariance, we can suppose In = (- lJ2) and we write for

He(g). Now, by the improved linear lower bound :

Now, since P is normalized,  cÀ 2 so the first integral is bounded

by c which is 0(1 by (iv ). By convexity

so the second integral is ! In plus an error bounded by

which is by (iii ). Thus:

Now by conditioning,

By mimicking our convexity arguments in [28] and using critically = B1~
one sees that

From this we conclude that

IV.4. Application 2 : Van Hove convergence of the pressure.

In [29], w6 proved Fisher convergence of the free pressure aA to aoo as
~1 ~ oo (Fisher) and reduced the stronger Van Hove convergence as
A - oo (Van Hove) to proving that aoo = a. Since the argument is so
simple, we sketch it here now that it can be completed.

DEFINITION. - For fixed a, is the number of squares of side a
with vertices at that intersect A and N;(A) is the number of such
squares contained in A. We say that n ~ oo (Van Hove) if ! |n|I - 00
and for each a, 1 as n - 00.
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THEOREM IV. 8. - If An  oo (Van Hove), then

Proof - Without loss suppose that P is normalized. By the improved
linear lower bound,  On the other hand, by conditioning

so that

since 1. Taking a ~ oo,

IV.5. Application 3 : the Gibbs variational equality.

In [29], we defined the entropy of weakly tempered states and proved
that (Gibbs variational inequality) :

but left open the Gibbs variational equality

In the above, s(p) is the mean entropy lim A and U is the mean

interaction ; see [29] for precise definitions. Here we will prove (IV.15 b).
A sketch of the main ideas has appeared already in [26]. Below, we use
notation from [29] freely (see especially § VI, VII of [29]).

THEOREM IV. 9. - The Gibbs variational equality (IV 15 b) holds.

Proof For each a we will construct a state pa with

so that

(IV 15 a) and (IV 17) imply (IV 15 b).
Fix a, and for i E ~2, let CI be the square with center ia and side a. Let 

be the Dirichlet field in Ci in a passive picture and define ei by ~iD~( f ) = 
Let p be the projection (in N) onto the distributions supported on

aCi. Then
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Corresponding to the breakup (IV . 18), Q space factors in the form

Consider the measure on Q which is a product measure with respect to
the decomposition (IV. 19)

where

In the above, Lp (resp. EJ is the E-algebra of measurable sets on Qp(resp. QJ,
is the Dirichlet interaction on Ci and

which is i independent. The state pa defined by ,u is easily seen to be tempered
(if A c 7~ 2 is finite and A = Ci, then the corresponding density f~ is

iEA

given by fd 0 = X and periodic under space translations. If we
iEA

define pa by: 
-

then p is a translation invariant and tempered. We will verify (IV. 16)
for pa. Since - x In x is concave we have :

Thus if we can show that lim exists then Since

our proof of convergence of entropy easily extends to periodic states since
there is a checkerboard estimate for such states (see Appendix):

{Remark: one can actually prove equality in (IV.21) and then obtain equa-
lity in (IV .16)). Now, since pa is a product measure

so
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Since  is periodic :

(IV. 21-23) imply (IV. 16) and so complete the proof. II

V. THE NEUMANN PRESSURE

In this subsection we prove that et~ = The inequality &#x3E; a~
follows from the theory of conditioning (see (II.24)) and so this section
will be devoted to showing the reverse inequality

Note that by a standard argument based on subadditivity (see (III.22))
we already know the existence of the limit x~ = lim a~. However, in the

A- w

course of establishing (V.1) we shall give an independent proof of the exis-
tence of lim a~. It is also possible to give a proof of (V .1) in the passive

A .

picture that is parallel to the corresponding proof for Dirichlet B. C. in
§ IV . 2.

Let A be a rectangle which we assume goes to oo in a suitably regular

FIG. V.l.
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way (say in the sense of Fisher [29, App. C]) and let R c A be the rectangle
whose sides are a distance r = | A |~ from à A. Here ~ E (0, 1/2) is a fixed
small constant. Our proof of (V. 1) consists of three steps (each step is up
to an error which vanishes as A -~ 

1. STRIP REMOVAL

We dominate oc~ by the « pressure » with interaction in R and mea-

sure with Neumann B. C. on àA, i. e.

where

2. CHANGE OF WICK ORDERING

We bound by defined by

where UR = Jp P(03C6(x)) : dx .
3. CHANGE OF MEASURE

Finally we dominate aRN,n by aR.
In the following lemmas ~j denotes various constants which go to zero

as A ~ oo and which also depend on other fixed constants (;1., p ...).

LEMMA V.I. - Let 03BB &#x3E; I be given. Then

Proo, f - By Holder’s inequality (1/~ + 1/À’ = 1)

Now by the subadditivity of Neumann B. C. (see (III.27)), we see that the
last factor in (V . 4) is of the order Hence upon taking logarithms
and dividing by I A I,
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since ~ ! A 1"+ ll2 and since is uniformly bounded in A I, by
subadditivity. ~

LEMMA V. 2.

Proof - Let ðU = U~ - UR and define

so that UN,R = 1 UR + 1 W. By the Schwarz inequality
2 2

Now by Jensen’s inequality and (V. 5)

Upon substituting into (V. 6) we obtain

or

To estimate  ~U ~ we note that by submultiplicativity and the bounds
(III.34) on the coefficients in 5U,

whereas by Jensen’s inequality and (111.34) there is a constant C such
that

We may thus apply Lemma IV . 2 B to deduce that

by Lemma III. 8, where 2 n is the degree of the interaction. This last bound

clearly goes to zero as A I - ~. II
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LEMMA V. 3. 2014 Fix p’ &#x3E; 1. Then

Proof - Let p be the conjugate index to p’, and choose A sufficiently
large so that (III.40) is satisfied with R = A’. Then by Theorem III.6
FN = LR has LP norm bounded independently of A).
Therefore by Holder’s inequality 

.

Combining the previous three lemmas, we see that for any J1 &#x3E; 1,

Letting I A I - oo we deduce that

and taking  ~ 1 we obtain (V. .1) since the convex function is conti-
nuous in J1. Summarizing:

THEOREM V. 4.

Remark. - Together with the result ai = a of § IV, and the basic
conditioning inequalities (1.3 b), this theorem establishes the equality
a~ = Ctoo of Theorem 1.1.

VI. THE PERIODIC PRESSURE

In this section we shall examine the pressure and, to a lesser extent, the
states associated with using a periodic Laplacian in a box

(See Hoegh-Krohn [32] for related results). In the first subsection, we will
use the theory of conditioning and the equality 0153~ = 0153~ = which we
have already proven (sections IV, V) to provide quick proofs of the conver-
gence to a, of the periodic pressure and a pressure with mixed boundary
conditions: periodic in space and free in time. By using transfer matrix
techniques, we will be able to relate the latter to the convergence of a perio-
dic Hamiltonian ground state energy per unit volume. We will then iden-
tify this energy with the quantity Ev used by Glimm-Jaffe [19]. In the second
subsection, we develop a transfer matrix formalism for a situation with
periodic B. C. in time. We emphasize at the outset that Nelson’s symmetry
for periodic B. C. has a somewhat subtle form (see (VI.lt)). As an appli-
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cation of this transfer piatrix-Nelson symmetry formalism, we provide
an alternate proof of th~ convergence of the periodic pressure. A second
application to the proof of ~-bounds for periodic Hamiltonians (as proved
by Glimm-Jaffe [19]) appears in our paper [30].

’ 

VI. I. Convergence of the periodic pressure.

We have already defined the periodic pressure and proved that

From the convergence of as l,t - oo to the common limit we

immediately have : ,

THEOREM VI. 1.2014 lim rxf exists and equals 03B1~.
In the next subsection, we develop a transfer matrix formalism which

allows us to interpret a limit of pressures in a direction with periodic B. C.
in terms of a ground state energy. It is technically somewhat simpler to
deal with free B. C. in the direction of transfer in the transfer matrix and
so we introduce the mixed pressures:

DEFINITION. - 03B1P,Fl,t is the pressure associated with the « free » measure
i whose covariance is given by the periodic Green’s function in the

infinite strip ( - 1/2, 1/2) x R with interaction in region ( - 1/2, 1/2) x ( - t/2, t/2)
with Wick ordering.

Since we are dealing with full pressures and not half-pressures (i. e. the
interaction is Wick ordered) we still have the conditioning inequa-
lities :

so that

THEOREM VI. 2 A.

Remark. By the same argument all 16 objects 03B1X,Yl,t have the same
limit.
We next want to identify li m ( - as Et, the ground state energy

of a periodic B. C. Hamiltonian Hr. The situation is similar to that for the
Dirichlet theory discussed in § VIII .1 of [62]. The key fact is that the perio-
dic Green’s function Gr(x, t ; y, s) in the strip (- t/2, 1/2) x R is easily
seen to have an eigenfunction expansion :
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where

= (kn + mo) 1 ~2 and where

Let jFP be the Fock space, r(t2), over t2, let qn be the corresponding Q-space
coordinates and let be the diagonal matrix on t2 with nth eigenvalue

Let

and

Let

where : : is Wick ordering with respect to the vacuum Qo in Finally,
let

Then

THEOREM VI. 3.

Sketch of Proo, f. As in the Dirichlet case, one uses the Green’s func-
tion expansion (VI.1) to prove that is a path measure for and
the theorem is then proven by developing a suitable FKN formula, II

Let EP - inf By the standard transfer matrix arguments [l7], [19]
(see also [29], [62]),

Thus Theorem VI. 2 A can be restated:

THEOREM VI. 2 B. 

Finally, we wish to restate Theorem VI. 2 B in terms of the periodic
Hamiltonian Hv introduced by Glimm and Jaffe (see e. g. [18]). Their
periodic Hamiltonian which is an operator on the usual free field Fock
space differs from ours but in a rather simple way. We recall their defini-
tion :
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DEFINITION. - Let ~ be the Fock space r(L2(~)). For given V, let
Zv = (2x/V)Z and for k E R, let kv be the lattice point closest to k, i. e.

kv E 7Lv and - x/V  k - kv  x/V. Let

Remark. - In [l8], in the description of the factor kVx in eikVx is written
as kx but kvx is clearly intended (see [17]).

Let ~ be the subspace consisting of functions piecewise constant
in such a way that f (k) = Then since L2 = Jt e ~1 we can write

(see e. g. § 1.1 of [62] ). Since ~ ^-_~ t2 we have a natural isomorphism

THEOREM VI. 4. - Let V = t. Then :

(a) Under the decomposition (VI. 5) :

(b) Under the isomorphism (VI. 6)

In particular,

Proof - (a) is Theorem 1.3.4 of [18]
(b) holds by direct computation. 
Thus Hy and Hf are related by Hv = Hf @ I + I Q dr(B) with an expli-

cit B &#x3E; mo. Not only do we have Ev = Ef but § bounds for Hv and Hf
are easily seen to be equivalent.
On account of Ev = Ef we have :

THEOREM VI.2C.-If Ev is the energy of the Glimm-Jaffe periodic
Hamiltonian [1 7], [18], then
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VI.2. Traces and periodic states.

In this subsection we shall develop a transfer matrix formalism for

periodic states (related to that of Hoegh-Krohn [32] ) in which the main
formula reads : .

where = + Wt with Wt differing from HPI,l by Wick reordering
terms (which are t-dependent). (VI. 7) is similar to formulas in statistical
mechanics in the sense that it is well known that periodic B. C. in the direc-
tion of transfer lead to traces but dissimilar in the occurence of normaliza-

tion factor in the denominator. This occurs because the free measure is

not counting measure as in classical statistical mechanics but has periodic
couplings built into it and into its normalization. In applications this
normalization factor is something of a nuisance but not hard to control
since we can compute it explicitly.
Our proof of (VI. 7) begins with :

LEMMA VI. 5. - (a) For any I  oo, has compact resolvent and

Tr  oo for any t &#x3E; 0.

( ) b For any V ob ey in g 1 2 + V &#x3E; const., H --_ Ho,~ ~ P + V has compact
resolvent and Tr (e - rH)  oo for all t &#x3E; 0.

m

Proof - (a) The eigenvalues are ..., nm 
= for each m

i= 1

tuple nl, ..., nm, with n 1  n2  ...  nm. Since the eigenvectors are

complete and only finitely many E are less than any preassigned
constant C, has compact resolvent. To prove Tr  oo we must

show Le-tEn  oo but

so since  oo, the product converges (all the above manipulations
are justified by this convergence). For later reference we note the final
result of the above:
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(where we have taken the degeneracy of into account by taking the
product from - oo to oo).

(b ) This is a standard perturbation argument based on the minimax

principle (c. f. [5]). Since H &#x3E; - + C we have, e. g.

Next we identify the periodic Green’s function using traces:

LEMMA VI. 6. - Let 4Jr be given by (VI. 2, 3). Let s ; y, cr) be
the periodic Green’s function for ( - 1/2, 1/2) x ( - t/2, t/2). Then as dis-
tributions :

Proof - By the expansions (VI.1) and (VI. 3) and the images formula
for GPt in terms of G~ both sides of (VI. 9) have expansions in terms of
the functions /~. We need only show that the coefficients are equal. This
is the equality of a periodic Green’s function in one dimension and a one
dimensional trace formula. One proves such a formula by a similar method
to that used for Dirichlet B. C. in one dimension (see [29], § II.6 or [62],
§ VII. 2). t)

THEOREM VI. 7. - Let = : P(§(x)) l,tdx where : is Wick

ordering with respect to Gr.t (as opposed to as in (VI. 4)). And let
HHP be the same object but with free (Go) Wick ordering. Then :

with Norm = Tr (exp ( - 
Proof - By the usual (Trotter product formula) proof of Feynman-

Kac formulae [40], we need only prove that

with So = t 1 + t/2, S 1 = t2 - t1, ..., = ~n - Sn = t/2 - ~n. By
Lemma VI.6, (VI.I0) holds in the special case where n ’= 2 and

= f2(Y) = y. Thus (VI.10) holds when the f’s are polynomials since
both sides have an expansion as a sun over pairings (Wick’s theorem).
The case of general f now follows by a standard limiting argument. II
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Letting HHP = + we note that Nelson’s symmetry does not
take the form Tr = Tr (e - ~HH P ) but rather :

As an illustration of the use of the transfer matrix formalism and the

Nelson symmetry (VI.11) in particular, we give an alternate proof that

03B1Pl,t converges (although this method does not prove the limit is and we

will control the periodic surface pressure. Actually we will only prove that
the half-Periodic pressure converges, but this is sufficient since making
the dependence on the coefficients of P(X) = a2nX2n + ... ao, explicit:

on account of Wick reordering ([29], § V). The coefficients ci t - 0 expo-
nentially as 1, t - oo (see § III. 3). Using the convexity of 03B1HPl,t in the am
it is easy to prove that convergence of the 03B1HPl,t implies convergence of the
Ctf t and that the difference is 0(exp ( - min (cl, ct))).
Thus we shall prove the existence of the iterated limit :

LEMMA VI. 8. - If A is a self-adjoint operator with e~’~ trace class for
each t &#x3E; 0, then t -1 In [tr is monotone decreasing and

Proof. Since e-A is trace class, A has compact resolvent and eigen-
values Eo  E1  ... with a corresponding complete set of eigenvectors.
Thus

converges monotonically downwards to m = multiplicity of Eo. Thus

converges monotonically downwards to - Eo. jjj
In the first place, Lemma VI. 8 and the transfer matrix formalism, Theo-

rem VI. 7, imply that

where EHP - inf spec Now we use Nelson’s symmetry (VI.11) and
Lemma VI. 8. (It) - ln (LHS of (VI. 11)) is monotone decreasing in 1, thus
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lim (lt)-1 ln (RHS of (VI. 11)) is monotone decreasing in 1. By Lemma VI. 8
and (VI. 8) this quantity is

Thus lim ai exists. But since

the second term on the right of (VI. 14) has a limit (zero, in fact) as t - 00

so lim - t- 1EHPl exists and thus the limit (VI. 12) exists. II
The above proof actually shows:

THEOREM VI. 9.

Remark. 2014 Since EP ~ - 0(~-~ Ef + t also converges to

Proo6 2014 The proof of Lemma VI.8 actually shows that

is monotone decreasing in t and non-negative. Thus t - Tr + t -1 lEHPt
is monotone decreasing in 1 and non-negative. Using (VI. 11) and taking t
to infinity, we conclude that :

is monotone increasing in 1 and positive. Since the second term converges
to zero, the limit - exists and is non-positive. ~

This result raises two natural questions:
1. Is the approach of Erp + to zero exponential as it is in

the small coupling free B. C. case [37] ?
2. Since represents a « surface energy » and tori have no surfaces,

is ~~P - ~ ? In any event since 0, we have ~~ ~ so that

(as is to be expected) the pressure theorem does not continue to surface
pressures.

VII. COUPLING CONSTANT DEPENDENCE
OF THE PRESSURE

The pressure fXoo is a function of a coefficients a2n -1, ~ ~ ~ , ao of
2n

P(X) = I and of the « bare » mass mo. We shall write ..., ao ; mo),
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mo), or (when mo is fixed) to indicate this dependence. There
are several general properties of a that are easy to establish :

THEOREM VII.1 [29]. - (a) + bo) = bo

P~oo, f (a) - (c) can be established for finite volume and then hold
in the limit. (a) is direct, (b) follows by Holder’s inequality and (c) comes
from the fact that

if P(0) = 0 and from Jensen’s inequality :

We begin by establishing three covariance properties of a under
(i) scaling,

(ii ) translation of the field, and,
(iii) Wick reordering.

All have been used before in the study theories: (i) first by Glimm,
Jaffe and Spencer [24], (ii) by Spencer [66] and (iii) by Baumel [2] (and sub-
sequently by the present authors [29] and by Glimm-Jaffe [22]).
We shall then obtain some information about a(P ; mo) for fixed mo

as some coefficients of P get large. In § VII.4, we obtain bounds on the beha-
vior of as the subdominant couplings  2n) goes to infinity
with a2n held fixed and strictly positive. These bounds are useful in obtain-
ing best constants in : ~ : bounds [11, part II]. In § VII.3, we obtain a
lower bound on as A - oo of the form

where n = deg P/2. Since an upper bound of the same form is already
known [28], this determines the qualitative nature of the large A behavior.

In the discussions of this section, it is convenient to use the fact that Ctoo
is independent of boundary conditions and also the convergence of the lattice
approximation in squares with any boundary condition s. We use these
results freely even though some of them are not established until § VIII
and § IX.

VII 1 Translation and scaling covariance.

In many ways, it is the polynomial P(X) + - m2X2 which enters natu-
rally in studying the pressure. This can be seen in the periodic lattice approxi-
mation where the partition function is 
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with

where A is a square whose side is a multiple of 6. 
"

THEOREM VII. 2 (Essentially in Spencer [66]). - Let c be any real cons-
tant. Let P be a semibounded polynomial and define Q by

i. e.,

Then

We first note the lemma:

LEMMA VII. 2 A. - Define the linear maps T~ and W b on the space of
polynomials by ’"

Remark. T~ is of course translation and Wb is Wick ordering or reorder-
ing. In particular, this lemma implies that Hn is the nth Hermite function)

Proof. 2014 This follows by direct calculation done most elegantly by using
00

the generating function f03B1(x) ’ 03B1nHn(x)/n! = exp 1 03B12). jjt
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Proof of Theorem VII . 2. - By (VII.3):P(q+c): i = P : (q + c) ;
using the fact that [(qn + c) - (qm + = (qn - qm)2 we see that

It follows from VII.1 that

Taking 6 - 0, taking logarithms, and then taking A to infinity, we obtain
(VII. 2). ~

Remark. The proof shows that for finite A, a~(Q ; mo) = mo).
It is fairly evident that the finite volume result does not hold for Dirichlet
or free pressures. It does however, also hold for Neumann pressures, i. e.

since the gradient part of the Neumann action is of the form :E(qn - qm)2
for a suitable sum (see § IX.1).

THEOREM VII. 3 (Essentially in Glimm, Jaffe, Spencer [24] ). - For any A
positive and any semibounded polynomial P :

Proof. 2014 Making the mo dependent of the free Euclidean field with
free B. C. explicit, we have that

 ~’ ’x; Y ~ 

It follows that ,1,mo) and mo) are « isomorphic » Gaussian
processes. Thus

(VII. 4) follows. M
Theorems VII.1 and VII. 3 allow us to obtain some information about

the mo dependence of mo) for fixed P.

THEOREM VII.4. - Let P be fixed and normalized (P(0) = 0). Then
mo) is monotone decreasing as a function of mo and convex

as a function of mo.
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Proof - By scaling covariance :

Let = 1) and g(,1,) = f (~,-1). Then f is convex and since P is
normalized f’(0) = 0 (see [28] ) so f "(~,), f’(~,) &#x3E; 0. It follows that

~)=-~’~~)~0andthat~~)=~-~~-’)+2~-’/~-~~0. ~
We know that f (~,) ~ À2 for £ small and we shall prove in § VII . 3 that

/(/L) - 03BB)n(n = .deg PJ. Thus for m o large, mo) - mi) 2 and
for mo small mo) - ( - In mo)n. This suggests that it should be pos-
sible to improve the monotonicity of mo) to monotonicity of

mo). We in fact, know this:

THEOREM VII. 5. - (a) For fixed P, mo) is monotone decreasing
in mo.

(b ) For fixed mo and P, ~, -1 a ~(~,P ; mo) is monotone increasing in A.

Proof. - (b) follows from (a) by scaling (as in Theorem VII.10) so we
need only prove (a). To prove (a) suppose that mo  mi. Then for any
p, (p2 +  (p2 + Thus if Go(x, y ; m2) is the covariance for
the free field of mass m2, Go(f, f ; mi)  Go( f, f ; The theory of condi-
tioning thus applies (see § III .2) and implies that

Remarks. - 1. That conditioning applies under change in bare mass
has been noted independently by Frohlich [12].

2. Alternatively, (b) follows from convexity in ,1, and then (a) from (b)
via scaling.

VII.2. Wick reordering.

The imput mass mo enters in the free measure d 0 but also in the meaning
of : : in : P(4)(x)) : . One expects that a change in mo can therefore be
compensated by changes in P that take into account both effects of mo.
On the level of DLR equations, we did this in [29] and simultaneous to our
work Baumel [2] discussed the same question for a ~ (which he did not
know at the time was the same as To derive Baumel’s result we must
as a preliminary compute mo) when P = aX2. From a Fock space
point of view, this computation is found in [9], [49], [52] but we give here
a purely Euclidean computation exploiting the fact r:J.00 can be computed
with any boundary conditions.

THEOREM VII.6.
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Remark. - Note explicity that r:J.00 ~ 0(a2~ for a small and 0(a In a) for
a large.

Proo, f. We compute a~ with Periodic B. C. with

For each n E Z, let qn be a complex valued Gaussian random variable with
mean zero and joint covariance given by

Let Z2+ = { M =  n1, n2 &#x3E; | n1 &#x3E; 0 or n1 = 0; n2 &#x3E; 0 }. For n E Z2+, let

xn = ~(~ + ~-") ~ ~ = ~(~ - ~-~)- Let ye = 0 and Xo = Thus,

the x’s and y’s are independent Gaussian random variables and

Since the covariance G~(x, y) has the expansion

the field can be represented in terms of the Gaussian process defined
above via

From this realization we see that

Now, since xn and yn here variance 1/2, : x~ : = ~ 2014 1/2. Moreover,

since the xn’s and y’s are independent is a product of inte-
grals of the form 

We conclude that
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so

As 1 - oo, the sum converges to an integral and so

The main Wick reordering theorem is :
N

THEOREM VII. 7 (essentially due to Baumel [2]). Let = 03A3ajXj
~=o

be a semibounded polynomial and let m, m be given positive numbers. Let

Then

where

Remark. - Thus, by Theorem VII.1, m) = in) with P = P - f~.
Note that when we quoted this result in [29] we made a sign orror.

Proof. Let at be the periodic pressure in ( - 1/2, 1/2) x ( - 1/2, 1/2). Let

and let P be given by (VII. 8) with d replaced by d1. We shall first prove that

for some constant which depends on m and in but not on P.
For pass to the lattice approximation and use (VII.1). Then
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where is defined by (VII. 8) with d replaced by and is the diffe-
rence of the finite covariances of the periodic lattice fields with the masses m,
in (evaluated at a point). Making the m dependence of E (P) and Z(P)
explicit we conclude that

where is P independent. (VII. 11) follows by taking 5 to zero and this
argument : note that - d and that by convexity of In ~Z~,a in coupling
constants the In are locally Lipschitz uniformly in 03B4 in coupling
constant (see § VIII.1). Since

has a limit fi. This establishes (VII. 11).
Now take 1 to oo and mimic the argument above. (VII. 9) results where f~

is a still to be determined constant. But taking P = 0 in (VII. 9) we see that

and (VII.10) then follows from (VII. 6). jt)

VII.3. Behavior of as ~, -~ 00.

Fix P and mo. Let be mo). In [28], we showed using methods
of Nelson [42] that for /), large:

We conjectured at the time that there should be a lower bound

although all we could prove was that x~(/).)/~ -~ oo (using an argument
from [64]).

In the spring of 1973, R. Baumel (unpublished) communicated to us
an idea for proving a bound of the form (VII .13) in the case n = 2 (deg P = 4).
Baumel’s basic idea was to perform a variational calculation using a Gaus-
sian « ground state vector » with mass and mean as parameters and to
exploit covariance properties. In addition his method required control
over an object related to the pressure. Baumel was unable to control this
object, nor can we. Subsequently, Baumel [2] and we independently found
a partially alternate proof of (VII. 13). For the reader’s convenience we
now sketch this proof of Baumel’s as an illustration of the use of covariance
properties.

It will turn out to be easier to prove (VII.13) when n is odd than when
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it is even. To describe the idea, let P(X) = X2n with n odd. Change mo
the bare mass to m by Wick reordering and let P(X) = X2n + ... + à
be the corresponding polynomial of Theorem VII. 7. Then by Theo-
rems VII. 1 and VII. 7 :

Putting in the explicit values for ã and f~ we see that for any ,1, m

Since - ( - l)n = 1 (n is odd ! ), we see upon letting tn2 - that

for large A and (VII. 13) follows. We thus have:

THEOREM VII. 8. - If P(X) = a2nX2n + ... + ao with a2n &#x3E; 0 and n

odd, then:

Proof - As above, one finds that:

and the result follows by taking t!
To illustrate our method for proving (VII. 13) in case n is even, we consider

the case P(X) = X4. We first use the covariance of Theorem VII. 2 to note

that r:J.00(ÀX4; mo) = r:J.oo(,1,(X + c)4 + o + 1 2 m20c2 ; mo). We now Wick
reorder and obtain the inequality 

2

Since - 3 + 6 - 1 = 2 &#x3E; 0 if we take c - 1 In () and then 2 = 03BBm20,
we see that 

47E B~/

We systematize the following :

THEOREM VII.9 (Baumel [2]). Let P be a polynomial of degree 2n.
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Let y~ = " ~f H~(x) where H~~(x) is the 2~ th Hermite polynomial.
Then ..- . ~.~ .~ .~ ~~~ ~~~ ~~...

Remarks. - 1. Since

2. Even if n is odd this result improves Theorem VII. 8 since

Proo, f. 2014 As above translate by c2 - y In ) with y to be determi-
ned, let m2 - ~,mo, and identify the /L)" term using Lemma VII. 2 A as

Choosing y so that y2n = - (VII .14) results. II

Remarks. - 1. Basically what we see by our arguments in this section
is that the À(1n ~,)n bound on a is obtainable from the Gibbs variational
principle with Gaussian states (with non-zero mean allowed). Such a cal-
culation via explicit computation in the Gibbs principle has been done
independently by P. Sodano [65]. Coleman [4] has used a similar idea (by
using a Rayleigh-Ritz principle) in his work on the Sine-Gordon equation.

2. By hypercontractivity arguments [28], this À(1n ~,)n bound on the beha-
vior for is also the large À behavior of - E~ for any and also for

VII.4. Bounds on subdominant couplings.

In this section we determine the dependence of the pressure on the sub-
dominant couplings. The resulting estimates are useful in controlling the
half-X pressures (see § VIII). The interaction that we consider is of the
form

where R and A are rectangles with R c A and the subdominant couplings
g(x) = ( go(X), ... , are measurable functions on R.
To describe the behavior of as the gj get large, define
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where c~ = (ao, ..., a2n _ 1 ), and define the functional

Our basic estimate is then:

THEOREM VII. 10. - Let g(x) _ ..., be measurable
functions on R where R c A are both rectangles in 1R2 and the sides of R
have length greater than 1. Let X = F, D, N, P. Then there is a constant b
independent of R, A, g and X such that

Remarks. - 1. The leading g-independent term in may be

replaced by any fixed semibounded polynomial of degree 2n and the proof
of (VII.17) remains valid.

2. When X = F, D. one can remove the restriction that the sides of R
be greater than 1 as well as the restriction that R and A be rectangles.

There are three significant reductions in the proof of Theorem VII.10:
1. It is sufficient to prove the theorem for X = F. The reason is the

same as that used in the proof of Lemma III.9: by conditioning the left
side of (VII. 17) is greatest for X = N ; but by the inequality G~  cGo
of Theorem III.4, we can in turn dominate the left side a similar expres-
sion involving F B. C. but where the powers : 4&#x3E;j : of the field have been
replaced by c~~2 ; 4&#x3E;j : .

2. It is sufficient to consider the case where the gix) are constant. For
the FKN formula and locality easily imply that (see, e. g., Theorem 1.7
of [28])

where Ctoo(ao, ..., a2n_ 1) is the infinite volume pressure corresponding to
the polynomial P(~) - ~2n + G~2n- 1~2n- 1 + ... ao. Thus (VII .17) follows
from (VII. 18) once we show that

3. Note that the inequalities (VII. 17)-(VII. 19) all display the « linear »
dependence on the volume. The last reduction is that it suffices to prove
a finite volume analogue of (VII.19) without care for the correct volume
dependence. That is, we need only show that for finite there is a constant b,
(possibly dependent on 1) such that the pressure in the square

satisfies
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The justification for this simplification goes back to Nelson’s proof [42]
of the linear lower bound as elaborated on in [27], [28]. For by the arguments
of [27], [28] it follows that for any /L &#x3E; 1 there is an 1 &#x3E; oo such that

where by (and we denote the dependence of the pressure
on the interaction polynomial.
As we have already mentioned in § III. 2, we give in this paper two other

methods of obtaining the correct volume dependence in estimates such
as (VII.17). The first in § III. 2 uses the submultiplicativity property of
Neumann B. C. ; the third in the Appendix is based on the Checkerboard
Estimate, which may be regarded as an abstraction of the hypercontractive
ideas involved in proving (VII. 21).
We now begin the proof of the inequality (VII. 20) which just amounts

to squeezing the original NGS semiboundedness proof [41], [16], [59] a
little harder. We introduce the ultraviolet cutoff by defining

and

where ~03BA(k) is the characteristic function of the set ( k I I k I ~ K ) and

03BA(x) ° 1 (203C0)2 ~e-ikx~03BA(k)dk. Let S denote the square of side define

the ultraviolet cutoff interaction

where P(~) - ~2n + ~n-i~’’ 1 + ... + ao. Then:

LEMMA VII.11. 2014 There is a constant d1 independent of yc and a such
that

Proof. - Undoing the Wick ordering, we write

where K) is linear in the and a polynomial of degree d = [n - ~/2]
in the Wick constant

Explicitly (see, e. g., [29, Lemma V.27])
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where a2n = 1 and the are combinatorial factors. Now a polynomial
of the form (VII. 23) is bounded below by

1

since the minimum of ~" + occurs at const. ~"’~ and has a value
-const. 

Using Hölder’s inequality in the form

we estimate b~ by

where we have used the arithmetic-geometric mean inequality in the form

Inequalities (VII. 24) and (VII. 26) yield the lemma. ~
The next lemma is a standard part of the semiboundedness argument

and so we omit the proof (see Lemma 111.7 for a closely related proof) :

LEMMA VII. 12. - Assume that for s &#x3E; 0 and let

Then there are positive constants d2 and a such that for any p  o0

If we set

then we obtain this elementary corollary:

COROLLARY VII.13. - There are constants d3 and a &#x3E; 0 (independent
of K, a, and p) such that
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Proof. - By the Lemma

since | ar  pn |2n/(2n-r). II
We are now in a position to prove Theorem VII. 10. It is convenient

to do so using a Duhamel expansion, following Glimm and Jaffe [20] [21].
The Duhamel or perturbation expansion for is obtained by iterating

with a sequence of cutoffs 0  xl  x2  .... This gives

where so = 1, 1 
= 0, 03B4Sj = 8 j - 1 - 8 j’ and the integration variables Sj

are ordered by s0 ~ s1 &#x3E; ... &#x3E; sm + 1. The expansion (VII. 29) clearly
converges pointwise in Q space, and by the majorization obtained below,
it therefore converges in each LP(Q), p  oo.

Proof of Theorem VII. 10. - We choose the sequence x J = .

By (VII. 22)

so that

On the other hand by (VII. 28)

- by (VII. 25). Inserting the estimates (VII. 30-31) into (VII. 29) we obtain
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where y = 1 + n - 1. The first sum S1 is clearly bounded and so to prove
(VII.20) it remains to show that

1

Let x = In (2d36) + d4. For m &#x3E;_ mo = the sum over m is
bounded independently of x :

For the first part of the sum we make the crude estimate

Hence S2 is bounded as claimed; this implies (VII. 20) and so by the reduc-
tions noted after the statement of the theorem, the proof of the theorem is
complete. II
As a special case of the above estimates, we note :

COROLLARY VII. 14. - Let be the pressure corresponding to the
polynomial + + ... + ao. Then

Proof - The upper bound follows from (VII.20) and (VII.21). The
lower bound is trivial since by Jensen’s inequality

VIII. THE HALF-X PRESSURES

Let UY(A) denote the interaction JA :Y,Ad2x with Wick sub-

tractions with respect to Define

and so obtain 16 « pressures » as X, Y = F, D, N, P. We have thus far
considered the 4 diagonal objects and proven the equality of the
limits as A - oo, say as a sequence of squares. In this section we shall
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prove the convergence of the remaining twelve to the same limit. We are
primarily interested in the objects with Y = F in which we speak of the
Half-X pressure but our methods handle all cases so we include all 12.

The importance of Half-Dirichlet B. C. was first noted by Nelson [44]
because of the convenience of Wick ordering not changing as A changes.
And we have used Half-Periodic states in our own work [30]. We remark
that an earlier more complex proof of ours that lim - appears
in [62].
The proof of our main result on these general pressures appears in

§ VIII. 2. The basic idea is that since UY(A) and UX(A) only differ appre-
ciably near the boundary, I a~~y - I should be of order 1 A -1~2. Our
proof of a weaker fact is based on some elementary convexity arguments
to be found in § VIII.1. We are indebted to Robert Isreal for bringing
our attention to these bounds in a different context.

VIII 1 Convexity and Lipschitz bounds.

Recall that by Holder’s inequality x~) is a convex function of the

coupling constant ~.

THEOREM VIII.1. - Let f be a bounded convex function on the unit
ball of a Banach space, X. Let C = sup 1 Then for any x, y E X

Proof. - Let z = x + 211 1 x - y 11-1(y - x). Then II [ z II ~ II x II + 1 2 1
so z is in the domain of definition of g Since

convexity assures us that :

so that

By symmetry in x, y the result follows. 

VIII.2. Control of the half-X pressure.

We begin by stating the main theorem of this paper :

THEOREM VIII. 2. - For any fixed semibounded polynomial, the sixteen
limits lim exist and are equal, where A is taken to 00 through a
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sequence of rectangles whose sides independently go to infinity and
where X, Y = F, D, N, P.

Remark. - This theorem complements our result for the pressure
with ± B. C. (Theorem II . 9).
We henceforth fix P(~~ = a2nç2n + ... + ao, where a2n &#x3E; 0. Define

the four functionals of 2n - 1 functions g = ( go, ... , g2n - 2) on A :

where

where the Wick ordering in (VIII. 2) is with .respect to Of course, the

reason that the functionals are of interest is that there are gi depending
on P, A, X, and Y such that

By the explicit formula (1.8) for Wick reordering each gi(x) has the form

where the b~ are constants and 6G is a difference of Green’s functions,

in the notation of § III. 3. Let r = dist (x, aA) and let = length of the
smallest side of A, which we assume satisfies t &#x3E;_ 1. Then by Lemma III. 3,
each gt(x) satisfies for some N

Proof of Theorem VIII 2. - Since we have already proved that lim 
exists independently of X (see the Remark after Theorem V. 4), it is enough
to show that

if I &#x3E; L. for some constants C and In. Define the norm
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By Theorem VII. 10, there is a constant b such that

It follows from (VIII. 3) that there is an 10 such that ~ I g ~ 1/2 if 1 &#x3E;_ to.
By Holder’s inequality is a convex function of the gi’s. According
to Theorem VIII.1, if 1 2 10 then

By a simple calculation using the estimates (VIII.3) we see that
III const. This establishes (VIII. 4) and the theorem. II

IX. CORRELATION INEQUALITIES

IX.I. Ferromagnetism for general B. C.

Intuitively, one can understand the ferromagnetic nature of boson field
theories from the formal expression for the Gaussian measure (with X B. C.
in a region A) 

r- -,

For - A is positive « on-diagonal » and negative « infinitesimally off
diagonal ». Different choices of B. C. do not affect this property (even at
the boundary of A). In this subsection we make these remarks rigorous by
extending the lattice approximation for X = F, D (see [29] ) to X = P
and N. The correlation inequalities of [29] then extend to general B. C. as
we explain in the following subsection.
Throughout this section we specialize to the case where A is a rectangle,

say ( - i/2, 11/2) x ( - ~/2, ~/2). Our notation is as in [29]: ~ &#x3E; 0 is the

spacing parameter for the lattice La == { M5! ~ = (n 1, n2) E 7~ 2 ~ , Aa --- A n La
denotes the set of lattice points within A, and aA~ denotes the points in Aa
which have nearest neighbors outside Aa. With each site n6 E La we associate
a field variable qn taking values in R. For convenience we assume that 11
and l2 are odd multiples of b so that in particular the sides of A lie midway
between lattice points.
We now explain how to write down the lattice measures corresponding

to (IX. .1) with various B. C. X. The following expressions ((IX. 2) to (IX. 4))
are to be regarded as formal definitions and the accompanying comments
as heuristics. The actual justification of these definitions consists of the
proof of convergence of the lattice approximation which will occupy the
remainder of this section. If we consider F B. C. on the infinite lattice La,
the lattice measure (see [29, § IV]) is (formally)
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where the infinite matrix A ~ is defined by

Here we have normed Z2 by I n = |n1| + I n21 so that the sum in (IX. 2)
takes place over nearest neighbors. More explicitly,

Note that A~ is negative off-diagonal, i. e., it is « ferromagnetic ».
Upon restricting to the lattice Aa and imposing B. C. X = D, N,

P, F, we obtain the well-defined lattice measures as follows. For
Dirichlet B. C. the spins outside A are set equal to 0 ; from (IX. 2 b) we have

where, in a abuse of notation, we write n E A to denote n03B4 E Aa. Thus AD is
just the restriction of A~ to A~ x A~; and

where the const. is always chosen so that has measure 1 ; i. e.

const. = (27c)’~ ! I 1 ~2 where N is the number of lattice points in A~ and
j A~ ~ = det A~. More generally, if L is a line segment (parallel to the xi
or x2 axis and passing midway between lattice points) we can impose
Dirichlet B. C. on L by « cutting the bonds » across L, i. e. by dropping the
terms in (IX. 2 b) across L. For example, the infinite matrix A~ E9 An-
corresponding to Dirichlet B. C. on aA (A’ = 1R2BÄ) would be defined by

To obtain Neumann B. C. on aA we drop the coupling terms ( qn - qn)2
across lA since this simulates zero normal derivative. Thus
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restricting to A~ gives

or more explicitly

where the diagonal matrix B~ is concentrated on with entries

To obtain periodic B. C. on aA we simply introduce couplings 
between boundary fields at opposite edges and this yields the matrix
on A~ x na

where

Here is the periodic distance on 712

The matrix A~ for free B. C, is the most difficult to write down since, as
explained in [29],

Nevertheless (see [29]), AÀ still has the form

above BÀ is a nonnegative matrix concentrated on If there is no
confusion we shall suppress the subscript A on A~ and C~ = (A~) - 1.

In summary, the free (normalized) lattice measures

are all ferromagnetic in the sense that A~ has nonpositive off-diagonal
entries. The interacting (normalized) lattice measures corresponding to
the polynomial P are defined by

where

Here the subscripts X, A indicate that the Wick subtractions are made
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with respect to The half-X (HX) interacting measures are similarly
defined except that free Wick ordering is used:

The justification of the definition of as the lattice measure with
X B. C. consists of showing that, as 6 - 0, this measure converges in an
appropriate sense to the continuum measure dv~. To discuss this question,
we first provide different explicit expressions for the covariance matrices
C~ = (A~)"~; the first uses images and the second X-momentum space.
For free B. C. on La the covariance is by construction (see [29])

where

and T~ is the square [ - 7:/~ 7r/J)~.
For k E ~2, let nr be the analogue of the « reflection » operator pr of

§111.3; i. e., = (( - k~ y/b), ( - 1)k2Cn2 - k212/~)) and
k212I a)- Then in analogy with (III . 29) we have :

LEMME IX .1. - For X = P, N,

Remarks. 2014 1. A similar formula holds for X = D provided it is arranged
that aA lies on lattice points, i. e. 11 and t2 are chosen to be even rather than
odd multiples of 6.

2. The convergence of the sum (IX. 9) is obvious from Lemma IX. 8
below.

Proof. - Denote the right side of (IX. 9) by Gm". We regard G;n as an
infinite matrix indexed by ~2. Because of our assumption regarding the
positioning of A with respect to L~, it is easy to see that GN is even with
respect to reflections in the sides of A, i. e. G~ = is the reflection
of m6 in a side of A. Similarly GP is invariant under translations by the
sides of A, i. e. Gmn = for any k E ~2.
To verify (IX. 9) for X = N we must check that for m6 and M5 E A,
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Now if m6 © Amr = Amr (where we have omitted the subscript 00

on so that the sum in (IX. 10) equals

since Amr = 0 if r ~ A and since E Aa only when k = 0 in which case
= n. When m03B4 E the left side of (IX. 10) equals

by the definition of AD. The last two sums on the right cancel since = G~
for those m’ which are the nearest neighbors of m outside A~ and since BN
is diagonal. The first sum on the right is just as above. Thus we have
checked (IX. 10). 

’

The case of periodic B. C. is similar. If m6 E we have

since the last two sums cancel by the periodicity of GP. ~
The second formula for C~ is based on the standard eigenfunction

expansion for the Green’s functions G~. The operator - ap + mõ has

wave numbers k E x with associated eigenvalues

J1(k)2 = k2 + mo and eigenfunctions fPk(x) = (l1l2)-1/2eik.x. The operator

( - + mo~ has wave numbers x2014Z with associated
li l2

eigenvalues J1(k)2 and eigenfunctions (i~)’ ~~~i)~~2) where

Note that g]~ = ± g~’ k~ so that there is a redundancy in our labelling but
this is compensated for by the normalization 

~lj/2-lj/2 (g(j)kj)2dxj = 1 2 
if 

Similarly, the operator 4D + m2 has wave numbers k e TD’ = TN with
eigenvalues jJ(k)2 and eigenfunctions where
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Note that ~ = 0 so that strictly speaking TD should not include wave
numbers with zero components. With the above notation we have the
standard formula for the Green’s function

where the eigenfunctions satisfy the completeness relation

In order to write down the lattice version of (IX. 11) we introduce lattice
nomentum space defined by

Then it is straightforward to verify that the functions {03B4fXk(m03B4)
satisfy the completeness relation

for e A. For example, in the case X = P, (IX. 12 b) reads

where Ii = (2/L, + 1)6. Then :

LEMMA IX. 2. - For X = P, N

Remark. - As in the case of Lemma IX . 1, a similar formula holds
for X = D provided we arrange that the sides of A pass through lattice
points so that C~ = 0 on SA.

Proof. - Denote the right side of (IX. 13) by Gmn. We regard as

an infinite matrix indexed by ~L2. Because of our assumption regarding
the positioning of  with respect to L03B4 and by the definition of it is

easy to see that Gmn is even with respect to reflection in the sides of A
and is invariant under translations by the sides of A. In particular,
if mb E aAa and rn’b is a neighboring site not in A, then
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and

where m" is the site in line with m and m’ at the opposite edge of 

To verify (IX. 13) we must check that for n6 E A,

By (IX. 4), if then (AF = A~)

We claim that (IX. 16) also holds if m6 E aAa. For by (IX. 4 a) and (IX. 14 a)

The argument is similar for X = P.

Inserting the expression (IX. 13) for in (IX. 16) we must show that

for then by (IX. 12 b) we deduce (IX. 15). By definition f X is (up to normaliza-
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tion) a product h1(k1xl)h2(k2x2) where = e‘e, sin fJ, or cos ~. Each

such function hj satisfies

since (IX. 18) is obviously true for e~~ and hence for sin 8 and cos 0 by
taking real and imaginary parts. (In fact, the trigonometric functions are
the only C2 functions satisfying (IX. 18).) Consequently, the left side

of (IX. 17) equals

by the definition (IX. 8). This concludes the proof of (IX. 13). ~
The (smeared) lattice Schwinger functions S~ are defined in terms of

the measure (IX. 5) by

where and

Before entering into the proof of the convergence of S~ as 5 -~ 0
we should like to review briefly the case of F B. C. since the proof in [29]
is rather sketchy. We essentially follow the discussion in [62], expanding
on the proof of part b) of Theorem VIII. 5 of [62] which is incomplete.
The first step consists of rewriting (IX. 19) in terms of the continuum

measure To do so we realize qn as ~( f~,n~ where is defined in (IX. 7) ;
this gives.

where

and

The equality of (IX. 19) and (IX. 20) follows from the equality ofcovanances

The key step now is to show that for suitable g
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as 6 - 0. The convergence of the Schwinger functions follows from
(IX. 21) by a standard argument : we have

By imitating the standard semiboundedness proof we can show that
d 0) uniformly in a for any p  00. Hence (IX . 21) and

(IX. 22) imply that e - U" ~~ -~ in any LP and so, by Holder’s inequality,
the Schwinger functions (IX. 20) converge.
We return to the proof of (IX. 21). By hypercontractivity it is sufficient

to prove (IX. 21) for p = 2. An explicit computation gives

where

and

where xa is the characteristic function of Ts = [- 03C0/03B4, 03C0/03B4]2. Let 03B4 be
the restriction of 03B4 to Ta, i. e.

Then under fairly mild conditions on g, - g(k) in L2 as 6 - 0:

LEMMA IX. 3. - Suppose that g(x) is continuous a. e., and that for some
function h ~ L1 n L2,

for all 03B4 &#x3E; 0, where is the point in L03B4 closest to x. Then 0,
-~ g(k) in L 2.

Remark. - The case g = XA used in (IX. 22) satisfies the conditions
of the lemma, as do the g’s that enter for HX B. C. (see below).
Proof

by the Lebesgue dominated convergence theorem. Thus L2 convergence
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follows from weak L2 convergence. Let f E Co and denote its inverse
Fourier transform by 1 Then for sufficiently small b

by the dominated convergence theorem. ~
We now easily deduce (IX. 21) :

LEMMA IX. 4. - For any g satisfying the hypotheses of Lemma IX. 3,
: ~~(g) : -~ : ~r(g) : in any Lp(Q, p  oo, 0.

Proof - It is sufficient to show that the right side of (IX. 23) converges
to zero. We first note that we may replace ga by ga. For on Ta [29,
Lemma IV. 2]

Therefore

for any a &#x3E; 0, where we have used the standard inequality (see, e. g., [28] )

We estimate the integral on the right side of (IX. 25) by

where we have used the periodicity with periods 203C0 03B4 of 
Having replaced 03B4 by 03B4 in (IX . 23) we dominate the resulting expression

bv
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The first term goes to zero because of (IX. 24), (IX. 26) and the previous
Lemma; the second term goes to zero by the dominated convergence
theorem together with the pointwise convergence - J1(k). tjj

This completes our review of the lattice convergence for free B. C. For
X = P or N exactly the same proof goes through with the replacements

We now amplify somewhat on this remark :
We rewrite the lattice theory in terms of the continuum theory by

realizing

where

It is then easy to check from (IX. .11) and (IX. 13) that the covariances agree

v

Therefore

where

etc.

As in the case X = F the key step is to show that : ~~a ~r(g) : i - 
in This reduces to showing the convergence to zero of

where for g with support in A

and ga (k) = From (IX. 12 b) we have as usual a Parseval’s

identity _ -
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and the proof that (IX . 28) ~ 0 is virtually identical to the case X = F.
In conclusion :

THEOREM IX . 5. - Let X = P or N. Suppose = 1, ..., r.

As 5 -~ 0, the lattice Schwinger functions S~,a(h 1, ..., hr) of (IX .19)
converge to the continuum Schwinger functions

Remarks. 1. Since we are assuming that the sides of A are odd mult-
tiples of 5, we mean that 6 - 0 through a sequence 03B4j = 1/(2j + 1), say.

2. The method used in proving Theorem IX. 5 also applies to Diri-
chlet B. C. provided we position the lattice so that the sides of A pass
through lattice points (see the remark after Lemma IX. 2). Thus in the case
of rectangles we have a somewhat simpler proof of the convergence of S~
than the proof given in [29] for more general regions.
We conclude this subsection with a proof of the convergence of the

HX Schwinger functions for X = P, N. These are defined as in (IX. 19)
or (IX. 27) except that the interaction is Wick ordered with respect to the
free covariance :

The convergence proof amounts to a corollary of Theorem IX. 5 since we
can rewrite free Wick-ordered powers in terms of X-Wick ordered

powers [29] : (Notational warning: in the symbol 6G for a difference of
Green’s functions, the 6 has nothing to do with the lattice spacing 6 !)

and

where
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and

Thus, the effect of Free Wick ordering is just to modify the spatial cutoff
function XA by factors of (or in the lattice case). These
factors are most easily controlled by means of the image formulas (III. 30)
and (IX. 9). As we have already noted in § III the singularities involved
are only logarithmic in the « distance » of x E A to the boundary aA,

Explicitly, we have:

LEMMA IX. 6. - For xeA, is bounded uniformly in 6 for
r &#x3E; 1 and satisfies for r  1

where the constant a is independent of 6. Moreover, 0,

Postponing the proof of Lemma IX. 6 we see upon examination of the
proof of Theorem IX. 5 that the HX Schwinger functions also converge.
For by (IX . 29 b), (IX. 31) and the subdominant coupling estimates of
§ VIII, E for all p  oo, uniformly in 6. The key step (IX. 21)
now takes the form

where and h(x) = By Lemma IX . 6
and the method of Lemma IX. 3 it is clear that - h in L2 and so
(IX. 33) holds as before. This yields :

THEOREM IX. 7. - Let and let X = P or N. As 6 - 0 the
half X lattice Schwinger functions ..., hr) converge to the conti-
nuum Schwinger functions ..., 

-

The main step in proving Lemma IX. 6 consists of showing that each
of the terms in the images sum (IX. 9) has the expected behavior :

LEMMA IX. 8. - Let r = max ( nl [ 6, [ 6). There are positive
constants a, b and c independent of 03B4 such that

and

Proof. - Suppose without loss of generality that I n2 I . For each
k2 E [- x/6, x/6], we regard f(k1) = as an analytic function of kl.
From the definition (IX. 8) we see that f(k1) is analytic in a strip! Im k1 
where K is determined by
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if y E [ - x, x] so that

It follows that

where cl = min where x - (4 + m2003B42)1/2 = max 03B403BD. Note

that the constants cl, c’1 are independent of 6 as 6 - 0.

Using Cauchy’s Theorem we shift the integral over ki in the definition
of GO,ð to the line where c2  c~ is a positive constant to be
determined :

The integrals along the lines Re k1 = + x/6 cancel because of the periodi-
city of etk 1 and 
Now

by (IX. 36) and the fact that there is some c3 &#x3E; 0 (independent of 5) such
that 2 (cosh x - 1)  for 0  x _ clxo. We now choose c2 sufficiently
small so that 03~  1/10. Then

We thus obtain the estimate
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It is obvious from (IX. 37) that = for large r, whereas
for small r (say r  mo) we have

This completes the proof of the lemma. ~

Proof of Lemma IX. 6. - By (IX. 9) we exhibit ~Ga as an absolutely
convergent sum

By an argument we have used already in § III, we see from (IX. 38) that
« nearest » images of n6 contribute at most a logarithmic singularity (by
(IX. 31)) while the other images contribute a rapidly convergent sum by
virtue of (IX. 32). Consequently,

where

Trivial geometric considerations show that r~ &#x3E; r/2 so that (IX. 39)
implies (IX. 31).
As for the pointwise convergence (IX. 32), it is sufficient to show conver-

gence for each term in (IX. 38) :

Setting z = x - P7x we may suppose that 0 and hence that 0
for sufficiently small 6. Integration by parts with respect to ki gives

and

The integrand in (IX. 40) is bounded by an integrable function independent
of 03B4 and converges pointwise to the integrand in (IX. 41) as 6 - 0. Hence

by the Lebesgue dominated convergence theorem GO,ð([Z]ð) - Go(z)
as 6 - 0. t) 

’
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Remark. - It is not hard to see that the lattice approximation also
converges with mixed B. C., i. e. one of F, D, N or P on opposite edges and
another of F, D, N or P on the other two edges.

IX.2. Inequalities on Schwinger functions.

In the previous section we showed that
a) the X and HX P(4))2 lattice theories are ferromagnetic;
b) as the lattice spacing -~ 0, the lattice Schwinger functions converge

to the continuum Schwinger functions. Consequently, by the methods
of [29] [63] and the correlation inequalities of the Ising model (see e. g.,
[14] [35]) we immediately have the standard correlation inequalities for
(f = F, D, N, P, HD, HN, HP : .

i) Griffiths inequalities. - If P(x) = Pe(x) - ,ux where Pe is even and
fl &#x3E; 0, then

and

ii) FKG inequalities. If P is an arbitrary (semibounded) polynomial
and if F and G are increasing functions of the fields (see [29]) then

where ~ . ~~ denotes expectation with respect to the interacting
measure in A with 6 B. C.

iii) GHS and Lebowitz inequalities. If = + where
a &#x3E; 0 and  &#x3E; 0. Then the truncated three point function

Remarks. - 1. If the infinite volume limit is known to exist then the
above inequalities transfert to the infinite volume theory (see [53] for

more details).
2. For = + the Lee-Yang Theorem also holds for

all of the above B. C. cr (see [62]). For instance the ground state energies
of the various Hamiltonians are real analytic in p &#x3E; 0 and have

analytic continuations to the region Re  &#x3E; 0 (this result uses the Remark
at the end of the previous subsection).

3. Any other multilinear inequality proved for F or D B. C. extends
to these B. C. cr, e. g., Neuman’s new inequality [45] and the inequality
U6  0 [3] [48] [67].
What about the lattice of Fig. 1.1 ? It is natural to conjecture that the
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Schwinger functions for different B. C. are related as in Fig. I .1, especially
since in the non-interacting case such relations are true by (1.3 a) (the S~
are just sums of products of the G~ ! ). However, we have been able to relate
only DB. C. to the other three B. C. Explicitly, it is clear from (IX. 4) that F,
N and P B. C. are « more ferromagnetic » than D B. C. so that by the second
Griffiths inequality (P(x) = Pe(x) - p &#x3E; 0)

However the relations between F and N B. C. or between P and N B. C.
are not so simple. For instance, from (IX. 4) we have

where the matrix B~ 2014 B~ has both positive and negative elements. In
order to show that dominates SA it is clear from the discussion around
formula (IX. 3 b) that we must prove an inequality like

where the expectations are infinite lattice expectations that interpolate
between F B. C. and N B. C. across aA, qn is a boundary spin in A, q~, a
nearest neighbor outside A, and is a product of spins inside A. The
inequality (IX. 43) is plausible since the site n is « closer » than n’ to the spin
sites inside A ; however, intuitive considerations indicate that the Wick
wells in the interaction polynomial invalidate an inequality such as (IX. 43).

In the special case where deg P  4 the analogue of (IX. 42) without
the H holds since we can control the change in Wick ordering. Explicitly
by (IX. 29 a) .

where

by (1.3 a). Using the /J2 : correlation inequality of Theorem V. 11 of [29]
we deduce that

We state these results as :

THEOREM IX. 9. - Let P(x) = Pe(x) - /~x where Pe is even and J1 &#x3E; 0.
Then for X = F, N or P, S~  If in addition, deg P  4, then also

S~.
As we remarked in the Introduction it is very tempting to conjecture

on the basis of the lattice Fig. 1.1 that, since S~D is monotone increasing
in A [44] [29] for P = Pe - ,ux, is monotone decreasing in A. Indeed
suppose one considers the non-interacting case where S~ = S~ is a sum
of products of G~. Then it is immediate from the images formula (III.29)
that y) (and hence S~) is monotone decreasing as 1~ -~ oo. (Ironically,
the decrease of G~ is more transparent from the images formula than the
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increase of G~!). However, a proof of this decrease for the interacting
theory involves proving an inequality like (IX . 43) which seems false in

general. Certainly, if possesses a phase transition, then could

not decrease for all values of the coupling constants or else the infinite
volume theory would always have a positive mass gap since the theory
infinite in one direction has a transfer matrix with discrete spectrum and

unique vacuum. These remarks (and Theorem IX. 9) serve to support our
assertion in the Introduction that a Dirichlet barrier is most compatible
with the ferromagnetic nature of boson field theories.

IX.3. On the identity of certain states.

We have seen that the pressure is independent of a wide variety of

boundary conditions. In certain regions of the space of coupling constants,
one expects that the infinite volume Schwinger functions will also be inde-

pendent of boundary condition. For example if P(X) = aX4 + bx2 - /~X
with  ~ 0, we have the analogue of a classical ferromagnet in non-zero
external field and such statistical mechanical systems are known to have

only one equilibrium state [36] [55]. We note however, that even in the
lattice approximation, it is not completely clear how one should go about
extending the above results since they depend on the fact that the spins
take values in a bounded set.
We have two results to report here. The first relies on the B. C.-indepen-

dence of the pressure : ,

THEOREM IX. 10. - Let P(X) = Q(X) - Fix Q an even polynomial
and mo. Suppose that, for some open interval (a, b) c R, there is an M &#x3E; 0

so that both the Half-Dirichlet and free B. C. transfer matrices for the

Q - JiX theory (a  b) in ( - 1/2, 1/2) have a mass gap mX with
M for all l &#x3E; 1. Suppose the free B. C. Schwinger functions have

an infinite volume limit for a  b. Then for all such p, the Half-Diri-

chlet and free B. C. Schwinger functions agree.

Proof. - Let ..., xn ; ~u) denote the truncated n point Schwinger
function for the infinite volume theory with X-B. C. where X is F
of HD. Let denote the pressure for the Q - ~cX theory. It is a result
of Dimock [6] that is C°~ for a  b and

The necessary bounds that Dimock requires follow in this case by the

~-bounds in Frohlich’s form [1 1 ]. As a result we have
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We can suppose  ~ 0 without loss of generality by /» - ( - ,u, - 4»
covariance. Let us prove that

by induction on n. For n = 1, this equality is just (IX. 44). By the Griffiths
inequality (IX. 42) - n~

and, so if we know that = for n  m then Since their
integrals are equal by (IX. 44), they must be equal. As a result (IX. 45)
for n  m implies it for n = m. (IX. 45) thus holds by induction. jjjj

COROLLARY IX .11. - Let Q(X) = aX4 + bX 2 ; a &#x3E; 0. Suppose
(i) The free B. C. transfer matrix for the Q(~)2 theory in (- 1/2, 1/2)

has a mass gap M &#x3E; 0 for 1 &#x3E; 1;
(ii) The free B. C. infinite volume theory for Q - exists and is trans-

lation invariant for all ,u E (a, b).
Then for p e (a, b) the free B. C., HD and D theories agree.
Proof - Let us prove the free and HD theories agree. The argument

of the D and HD theories follows by mimicking the argument in
Theorem IX. 10 and in this proof. By the GHS inequalities, = 0)
and mHD(u = 0) (see [63]). By the GKS inequalities

(see [29] ). Therefore and mr(,u) are uniformly bounded away from 0
for all ,u. jjjj

Remarks. 1. In the above theorem and corollary we can replace F B. C.
by HP or HN B. C.

2. Under hypothesis (i) of the corollary we can conclude S~ and Sn D
agree for all /~.
Our second general result is the elementary:

THEOREM IX. 12. - Suppose that the infinite volume P( /»2 Schwinger
functions SP exists for periodic B. C. with P(X) = aX4 + bX2 - ,uX for a,
,u fixed and b in some interval (a, Suppose that the infinite volume
Schwinger functions SP are continuous in b for b E (a, j6). Then, for b E (a, /3),
the half-periodic B. C. infinite volume Schwinger functions SHP exist and
equal SP.

Proo, f.’ Let b) denote the X-B. C. Schwinger functions for the
aX4 + bX2 - ,uX theory in (- 1/2, 1/2) x (- t/2, t/2). By our discussion
in § VI, SHP(x ; b) = + where 0 as t, t -~ oo. Moreover,

b) is monotone decreasing as b increases by the : § :~ correlation
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inequality [29] and the convergence of the lattice approximation with P
and HP B. C. Since cl,t - 0 as 1, t - oo we see that for any a:

Thus continuity of SP implies existence of the limit lim SHP and the
equality SP. ~

Note added in proo, f : While this paper was in press, a number of results _

have appeared which are related to the main themes of this paper.
We mention the following two :

1. J. Glimm, A. Jaffe and T. Spencer have established the existence of

phase transitions for ~2 and have used I B. C. to study the detailed
properties of these phases (Commun. Math. Phys., t. 45, 1975, p. 203-

216, and Ann. Phys., to appear).
2. J. Frohlich and B. Simon (Princeton preprint) have studied the problem

of the identity of states and have improved the results of § IX. 3. They
also prove that equality holds in the Gibbs Variational Principle for
all states constructed so far for P(~)2.
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APPENDIX

CHECKERBOARD ESTIMATES
AND SPATIAL DECOUPLING

In [29] we established the Checkerboard estimate for the case of F. B. C. and used it to
control the decoupling of spatially distant regions. In this Appendix we shall extend the
Checkerboard estimate to the other B. C. X = D, N, P considered in this paper, and we
shall indicate its usefulness in obtaining estimates with the « correct » volume dependence.
In § IV. 5 we have already used the Checkerboard estimate for P B. C. to ensure the conver-
gence of the mean entropy for periodic states. The statement of the estimate is this :

THEOREM A .1 (Checkerboard estimate~. - Let X = F, D, N, P. Let A = u Aj be a rectan-
gular array of adjacent translates A~ of a rectangle At. Then if Uj is measurable,

where p  oo is independent of the number of rectangles A~.
Remark. - We denote the norms on LP(Q, by 11~’x and the associated one

particle space by N~ with inner product

For free B. C. the Checkerboard estimate is an immediate consequence of the hyper-
contractivity of e-tHo (see [29]), whereas for general B. C. a more involved argument is
required (as in [29, § III.1]). Our basic estimate on the Green’s function is (III.31) whose
long distance part is, for I x - y Ix 2:: 1, say,

where the constant b is independent of A if the sides of A have length greater than 1. Here
j x - y Ix denotes ordinary Euclidean distance for X = F, D, N and periodic distance
for X = P (see Lemma III.2).

First we note that the analogue of Lemma 111.4 of [29] holds :

LEMMA A. 2. - Let fi and f2 in N~ have supports separated by an X-distance r. Then

where e(r) = aar for some a &#x3E; 0, 0  a  1.

Remarks. - 1. The method of proof shows that a may be taken to be for

any G &#x3E; O.
2. The proof below is merely sketched since it follows that of [29, Lemma III.4] whose

proof in turn is based on a method du~ to Osterwalder and Schrader [47].

Proof - It is sufficient to prove the lemma for r &#x3E;_ 1. Let ’j E satisfy ’j = 1
on supp fj and 03B6j = 0 just off supp fj so that the regions j = A n supp ’j are separated
by an X-distance greater than r - 1. Then
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by « commuting » ~2 and - A + mo. We perform a similar operation with ~1 and insert
characteristic functions of A :

Letting r~ = we see from (A. 2) and the proof of Lemma III. 5 A of [29] that, as an
operator on L2(A), 

.. - ~ ,.

A similar bound holds for the other terms such as Finally by a qua-
dratic form argument it is easy to see that V( G~)1/2 is a bounded operator so that

and this proves the lemma.
By Nelson’s « Best » hypercontractive Theorem [43], we obtain as in [29] :

COROLLARY A. 3. - Let At and A2 be regions in A separated by an X-distance r. If u~
is (LA i’ measurable and if 

_

then

Proof of Theorem A .1. - Assume first that A is an N x 1 « strip » of rectangles ~1~ of
dimension a x b. Decompose A = Ri u R2 into two subsets obtained by taking alternate A)s
in Ri and the other A~s in R2. Similarly decompose each of Ri and RZ into two subsets a
distance a apart. If this process is repeated until the sets reduce to the basic constituents A p
it is clear that at the nth step the two subsets of a decomposition are a distance dn = (2"-1 _ 1 )a
apart. 

’

Consider the cases X = D or N and apply Corollary A. 3 at each decomposition with
Pi = P2. For n = 1 we have

where qi 1 = 2. At the nth decomposition we obtain Lqn norms, where, by (A.3),
qn/ qn - 1 = 1 + That is, 

n

Clearly, since e(d;)  oo, q" is bounded independently of n, and so the theorem is

i=2

established in this particular case. For X = P this argument must be slightly modified
since it is the periodic distance which is involved, but we reach the same conclusion.

Finally suppose that A is an N x M array. First apply the above argument where the

elementary constituents are taken to be the N 1 x M strips and then apply the same argu-
ment to each of these strips.

Remark. - For the purposes of this section it is interesting to note that an exponential
decrease function e(r) is not required; in fact, e(r) = 0(r’’) for some e &#x3E; 0 would be sufficient.

The usefulness of the Checkerboard estimate lies in the fact that it allows a factorization

over disjoint spatial regions even though such regions are not strictly independent. As
an illustration, we shall give the third proof in this paper of the « linear lower bound »;
this proof is an alternative to the proof using N B. C. in § III.2 and a partial alternative
to the method of § VII.4 using hypercontractivity (the Checkerboard estimate may be

regarded as an abstraction of hypercontractivity). The same technique gives an alternative
proof of the subdominant coupling estimates of § VII. 4. For related material involving P(/&#x3E;h
estimates see also Dimock and Glimm [7].
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THEOREM A. 4. - If A is a rectangle, = 

Remark. - We make our usual assumption that the sides of A have length greater than 1.
IAI

In fact, for simplicity of exposition we shall assume that A where the Ai are
unit squares. ,=i i

Proof - Although this linear lower bound follows at once from (A . .1) and the lower
bound upon setting uJ = exp ( - U~), we wish to give a proof from first principles. The
basic idea is to make a Duhamel expansion in each At and to use the Checkerboard estimate
to « decouple » these expansions. With X ~ F B. C. some care is required in introducing
an ultraviolet cutoff in such a way as to ensure that UX,03BA remains 03A3-measurable. It is
possible to do so, for example, by using a cutoff function hx(x) with compact support in
x-space (rather than the function 03BA(x) used in 9 VII. 4 which had compact support in
momentum space) and by introducing an additional spatial cutoff in the integral over x.
We refrain from writing out the details but shall prove the theorem only for F B. C. in

which case the definitions of § VII. 4 are appropriate. Thus let U A, = : P(4)) :,

We perform a Duhamel expansion (VII. 29) in each A~ (see the proof of Theorem VII. 10
above) :

where m = (ml, ..., = mi + ... + represents integration with res-

pect to the | m | I variables s11 ~ ... ~ s1m1 ; ... ; &#x3E; ... &#x3E; and 6s§ = sij-1 - sij.
If we choose Kj = then as in (VII. 30) we have by the semiboundedness of 

By the Checkerboard estimate (since the ultraviolet cutoff introduces a slight overlap,
we first apply Holder’s inequality)

where p is independent of By Hölder’s inequality and the smallness of the tail 
(see VII. 28) : 

10 J

Vol. XXV, n° 3 - 1976.



332 F. GUERRA, L. ROSEN AND B. SIMON

where c3, c4 are positive constants. Applying the estimates (A. 5) and (A. 7) to (A. 4) we
obtain an expansion which factors :
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