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Abstract
We use the large deviation approach to sum rules pioneered by Gamboa, Nagel, and
Rouault to prove higher-order sum rules for orthogonal polynomials on the unit cir-
cle. In particular, we prove one half of a conjectured sum rule of Lukic in the case of
two singular points, one simple and one double. This is important because it is known
that the conjecture of Simon fails in exactly this case, so this article provides support
for the idea that Lukic’s replacement for Simon’s conjecture might be true.

1. Introduction
This article is a contribution to the theory of sum rules in the spectral theory of
orthogonal polynomials. The earliest such result is Szegő’s Theorem for orthogo-
nal polynomials on the unit circle (OPUC) in Verblunsky’s form (see [28]), on which
we will elaborate. The modern theory was initiated by Killip and Simon [14] for
orthogonal polynomials on the real line (OPRL) with considerable work by others
(see [5], [11], [15]–[19], [26]).

Here we will consider OPUC. Given a probability measure � on @D, one can
form the nonzero (in L2.@D; d�/) monic orthogonal polynomials ¹ˆnºMnD0, where
M DN � 1 if � has exactly N points in its support and M D1 if � has infinitely
many points in its support. In the case there are exactly N points, one defines ˆN to
be the unique degree N monic polynomial vanishing at all N points (so ˆN D 0 in
L2.@D; d�/). The recursion (aka Verblunsky) coefficients ¹˛j ºMjD0 are given by the
recursion relations, 0� j <M C 1:

ˆnC1.z/D zˆn.z/� ˛nˆ
�
n.z/I ˆ0 � 1I ˆ�n.z/D z

nˆn

�1
Nz

�
: (1.1)

ForN D1, ¹˛j º1jD0 2D
1 (see [21]) and forN <1, only ˛0; : : : ; ˛N�1 are defined

(since ˆk is only defined for k �N ) and ˛k 2D, k D 0; : : : ;N � 2, ˛N�1 2 @D.
Verblunsky’s Theorem states that there is a one-to-one correspondence, V , from

probability measures to Verblunsky coefficients with the above restrictions, that is,
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ran.V � measures with infinite support/D
Q1
jD0D and ran.V � n-point measures/DQn�2

jD0D� @D. Moreover, in the natural topologies V is a homeomorphism.
Szegő’s Theorem in Verblunsky form says that

H
�d�
2�

ˇ̌̌
�
�
D�

MX
nD0

log
�
1� j˛nj

2
�
; (1.2)

where H.�j�/ is the Kullback–Leibler (KL) divergence (i.e., ˙ the relative entropy,
depending on the sign convention for the relative entropy):

H.� j �/D

´R
log. d�

d�
/ d� if � is �-a.c.;

1 otherwise:
(1.3)

Equation (1.2) always holds although both sides may be C1. (The latter case is if,
for example,M <1, since in that case the nDM term in the sum is � log.0/D1.)
In particular, the condition that both sides are finite at the same time implies

1X
jD0

j˛j j
2 <1 ()

Z
log
�
w.�/

�d�
2�

>�1; (1.4)

with

d�.�/Dw.�/
d�

2�
C d�s; (1.5)

where d�s is singular with respect to d� . Simon [23] calls a result like (1.4) that gives
equivalence of spectral data and coefficient data a “spectral theory gem.” Result (1.4)
in particular implies the existence of measures with arbitrarily bad singular part mixed
in with absolutely continuous spectrum and with `2 decaying Verblunsky coefficients.

This article is devoted to higher-order sum rules of which the first is that of the
second author [21, Section 2.8]:

�

Z
.1� cos�/ log

�
w.�/

�d�
2�
D�

1

2
C
1

2

1X
nD�1

j˛nC1 � ˛nj
2

C

1X
nD0

�
� log

�
1� j˛nj

2
�
� j˛nj

2
�
; (1.6)

where ˛�1 ��1. This implies the gemZ
.1� cos�/ log

�
w.�/

�d�
2�

>�1 ()

1X
nD0

j˛nC1 � ˛nj
2C j˛nj

4<1: (1.7)
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In the same section, Simon conjectured (wrongly as we will see!) that for �1; : : : ; �k
distinct in Œ0; 2�/ and m1; : : : ;mk strictly positive integers we have thatZ kY

jD1

�
1� cos.� � �j /

�mj log
�
w.�/

�
d� >�1 (1.8)

if and only if

(S1)
kY
jD1

.S � ei�j /mj ˛ 2 `2 (1.9)

and

(S2) ˛ 2 `2mC2; mD max
jD1;:::;k

mj : (1.10)

In (1.9), S is the operator

.S˛/n D ˛nC1: (1.11)

Moreover, Simon and Zlatoš [26] proved this conjecture in the case
Pk
jD1mj D

2, that is, k � 2 and .m1;m2/D .2; 0/ or .1; 1/. For simplicity, the remainder of this
section will mainly discuss the case �1 D 0, �2 D � , although the next two sections
will revert to the general case. We will use the symbol .m1;m2/ to describe this case.

Lukic [17] found a counterexample to this conjecture for the .2; 1/ case. He found
an explicit example where (S1), (S2) hold butZ

.1� cos�/2.1C cos�/ log
�
w.�/

�d�
2�
D�1: (1.12)

To have any hope of an equivalence one needs more than (S1), (S2). Lukic made an
improved conjecture that replaced (S1), (S2) by

(L11) ˛ can be written ˛D ˇ.1/C � � � C ˇ.k/; (1.13)

(L12) .S � ei�j /mjˇ.j / 2 `2; (1.14)

(L13) ˇ.j / 2 `2mjC2: (1.15)

Lukic also proved a flawed gem, that is, an equivalence under an a priori con-
dition on the Verblunsky coefficients, that provides evidence for his conjecture. In
Section 9, we obtain some additional evidence for the correctness of the Lukic con-
jecture. In Section 2, we consider equivalent versions of Lukic’s conditions that are
directly expressible in terms of ˛ without reference to a decomposition as a sum. In
a sense, ˇ.j / is the part of ˛ localized near �j in Fourier space, so that for the .2; 1/
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case Lukic’s conditions are equivalent to (the (L2) conditions will appear in the next
section)

(L31) .S � 1/2.S C 1/˛ 2 `2; (1.16)

(L32) .S � 1/2˛ 2 `4; (1.17)

(L33) ˛ 2 `6: (1.18)

In this case, (L31)� (S1), (L33)� (S2), and (L32) is an extra condition. The precise
result we will prove in Section 9 is that the (L3/ conditions imply the finiteness of the
integral in (1.12) (at least when the ˛’s are real).

Recently, Gamboa, Nagel, and Rouault [8] (see also [9], [10]) discovered a new
approach to Szegő’s Theorem (and the Killip–Simon Theorem) using the theory of
large deviations (LD). We wrote a pedagogical presentation of some of these ideas
(see [3]). Our main goal in this article is to use large deviation methods to study
higher-order sum rules. We note that the authors of [9] discussed (1.6) using LD
methods although for technical reasons, they were unable to prove the actual sum
rules. Below we will assume that the reader is familiar with some of the basics of LD
theory either from books such as [4] and [6] or from our paper [3].

In Section 3, we prove a sum rule and gem where one side of the gem is the
integral in (1.8). In general, the other side of the gem will be a very complicated poly-
nomial in the ˛’s (with some non-polynomial terms of the form log.1� j˛j2/). This
leads to a new insight. The Lukic conjecture (if true) provides much more humane
conditions on the ˛’s than what one gets from the naive sum rule. We note that we
suspect that our sum rules are identical to the ones found by Denissov and Kupin
[5], who did not carry through the examples of Sections 4–9. Section 4 will use these
ideas to get the sum rule (1.6) in a new way.

In the last four sections, we make two simplifying assumptions:
(A1) when k D 2, �1 D 0, �2 D � (essentially �2 � �1 D � is what is important),

and we will also consider the symmetric situation where one has general k
points symmetrically arranged as the roots of unity with all mj D 1;

(A2) N̨j D ˛j for all j � 0.
These are mainly to make the sometimes involved calculations simpler. We have

no doubt that one can do the calculations without (A2) and suspect one can drop (A1),
although with some effort.

In Sections 5 and 6, we recover the Simon–Zlatoš gems (i.e., .1; 1/ and .2; 0/),
at least under the assumptions (A1)–(A2). One thing we will see in these sections
is that it is simpler to show that the conditions on Verblunsky coefficients imply the
measure condition than the converse, so in the last two sections we will settle for the
simpler half. In Section 7, we prove this one direction for k equally spaced points,
all with order 1, that is, we prove that

P1
nD1 j˛nCk � ˛nj

2 C j˛nj
4 <1)

R
.1 �
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cosk�/ log.w.�//d� > �1, and in Section 8, we discuss an arbitrarily high-order
single singular point under the hypothesis that ˛ 2 `4. The results in Sections 7 and 8
are not new but recover, using new methods, special cases of results of Golinskii and
Zlatoš [11]. In Section 9, we prove that for the .2; 1/ case under (A1)–(A2), the Lukic
conditions imply finiteness of the integral. Recall that this is a case where the Simon
conditions do not imply finiteness of the integral, so we regard this as strong evidence
for the Lukic conjecture.

We believe our main results in this article are the general sum rule and gem and
the realization that the Lukic conjecture is just about finding a simpler version of
the naive Verblunsky coefficient side. In addition, we show how to use LD methods to
recover the gems of Simon [23] and Simon and Zlatoš [26] and some results of Golin-
skii and Zlatoš [11]. Finally, we provide evidence for the general Lukic conjecture by
finding a situation where his conditions imply the finiteness of the relevant integral
and where Simon’s do not.1

2. The Lukic condition
In this section, we want to discuss some equivalent forms of the Lukic conditions
(L11–3). This and some of the analysis in later sections will require some discrete
hard analysis that we set up here. First, we will consider

(L21)
kY
jD1

.S � ei�j /mj ˛ 2 `2; (2.1)

(L22)
Y
j¤q

.S � ei�j /mj ˛ 2 `2mqC2; q D 1; : : : ; k: (2.2)

In some sense, (L22) says that in “� -space” ˛ is locally `2mqC2 near � D �q . Our
first result is the following.

THEOREM 2.1
(L11–3) () (L21–2).

Remark
The same argument shows that (S1–2) are equivalent to (2.1) and (2.2) but with 2mqC
2 replaced by 2maxmj C 2. This illustrates the difference between the Simon and
Lukic conditions.

1Building on the general sum rules of this article, J. Yan developed an algebraic machinery that allowed him to
obtain new examples where (one half of) the Lukic conjecture can be verified. We refer to [29] for details.
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The proof will depend on momentum space localization. We can view `q.N/

as a subspace of `q.Z/ and define P W `q.Z/! `q.N/ by restricting ¹anº1nD�1 to
¹anº

1
nD0. We can think of P either as a map between spaces which clearly has norm

1 or as a map of `q.Z/ to itself whose range is those a with an D 0 for all n < 0.
In the latter view, P is a projection of norm 1. We can extend S to `q.Z/ by setting
.Sa/n D anC1. This S is an invertible isometry (on `q.N/ it does not have a left
inverse).

S is unitary on `2.Z/ with spectrum all of @D, so, by the spectral theorem,
we can define F.S/ on `2.Z/ for any F 2 L1.D/ and then FC.S/ on `2.N/ by
a 7! PF.S/a. These are sometimes called Laurent and Toeplitz operators, respec-
tively. F.S/ is made most transparent by using Fourier transform, f 7! f #, mapping
L2.@D; d�

2�
/ to `2.Z/ by

f #
k D

Z 2�

0

e�ik�f .ei� /
d�

2�
: (2.3)

These are, of course, Fourier coefficients of f in the orthonormal basis of L2.@D;
d�
2�
/, ¹eik�º1

kD�1
, so we can define a 7! a[ from sequences to functions by defining

(with convergence in L2-sense)

a[.ei� /D

1X
kD�1

ake
ik� : (2.4)

Then .f #/[ D f .
If F is a trigonometric polynomial so that

F.ei� /D

MX
kD�M

F #
k e
ik� ;

then, for f 2L2,

.Ff /#k D

Z 2�

0

e�ik�
h MX
jD�M

F #
j e
ij�
i
f .ei� /

d�

2�

D

MX
jD�M

F #
j f

#
k�j I (2.5)

that is, F.S/ is convolution with F #. If F 2 C1.@D/, then, by a simple argument
(see [25, Section 6.3]), F #

k
decays faster than any inverse polynomial, so, in particular,

F # 2 `1. Taking limits in (2.5), we see that the formula still holds but withM replaced
by 1. Thus, since F # 2 `1, we see that as maps on `p.Z/ or `p.N/, a 7! F.S/a
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maps `p to itself, and since P maps `p.N/ to itself, we see that FC.S/ maps `p.N/
to itself.

PROPOSITION 2.2
a 7! F.S/a maps any `p.Z/ to itself and a 7! FC.S/a maps any `p.N/ to itself for
1� p <1 and any C1 function F on @D.

In particular, we can localize in � -space by picking a convenient partition of unity
on @D and writing aD

Pk
jD1 Jj .S/a.

COROLLARY 2.3
Let Q.z/ be a Laurent polynomial on C n ¹0º. Let F be a C1 function on @D so that
Q.z/ has no zeros in the support of F . Suppose that a lies in some `q . Let 1� p <1.
Then

Q.S/F.S/a 2 `p.Z/) F.S/a 2 `p.Z/; (2.6)

QC.S/FC.S/a 2 `
p.N/) FC.S/a 2 `

p.N/: (2.7)

Proof
Suppose first that we are dealing with the maps on `q.Z/. By the zero condition, it is
easy to find a C1 function, G, on @D so that G.z/Q.z/F.z/D F.z/ for all z 2 @D.
Thus, if Q.S/F.S/a 2 `p , then

F.S/aDG.S/Q.S/F.S/a 2 `p

since G.S/ maps `p to `p .
Now suppose that .an/ 2 `q.N/ and extend it to Z by an D 0 for n < 0. Since

F.S/ is convolution with a function of very rapid decay, F.S/a and Q.S/F.S/a
both have rapid decay to the left, and so since PQ.S/PF.S/a lies in `p.N/, we see
that Q.S/PF.S/a lies in `p.Z/. Since F.S/a has rapid decay on the left, Q.S/.1�
P /F.S/a lies in `p.Z/ and so Q.S/F.S/a lies in `p.Z/ as well. By the argument in
the first paragraph, F.S/a lies in `p.Z/, so PF.S/a lies in `p.N/.

Proof of Theorem 2.1
(L2 ) L1) Let ˛ obey L2. Pick ¹Jj ºkjD1, C1 functions on @D so that Jj � 0,Pk
jD1 Jj D 1, and Jj vanishes in the neighborhood of ¹�`º`¤j . Let ˇ.j / D PJj .S/˛.

(L11) follows from
Pk
jD1 Jj D 1. Since Jj .S/ commutes with any polynomial in S ,

by (2.1), h kY
jD1;j¤q

.S � ei�j /mj
i
.S � ei�q /mqˇ.q/ 2 `2 (2.8)
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(with a small argument to deal with the P operator), and so, by Corollary 2.3, (1.14)
holds. A similar argument shows that (2.2) implies (1.15).

(L1) L2) Suppose that ˛ obeys L1. Since polynomials in S map `p to itself,
(1.14))

Qk
jD1.S � e

i�j /mjˇ.q/ 2 `2, so by (1.13), we have (2.1). By (1.14), if
r ¤ q, then

Q
j¤q.S � e

i�j /mjˇ.r/ 2 `2 � `2mqC2. Also (1.15) implies
Q
j¤q.S �

ei�j /mjˇ.q/ 2 `2mqC2. Therefore, by (1.13), we get (2.2).

For comparison with Simon’s conjecture, the following version (which appeared
already in the last section) is useful. Let mD supj mj . Introduce the conditions:

(L31)
kY
jD1

.S � ei�j /mj ˛ 2 `2; (2.9)

(L32) for mq <m;
Y
j¤q

.S � ei�j /mj ˛ 2 `2mqC2; (2.10)

(L33) ˛ 2 `2mC2: (2.11)

THEOREM 2.4
(L11–3) () (L31–3).

Proof
Clearly, (2.11) implies (2.2) when mDmj , so (L31–3)) (L21–2)) (L11–3). On
the other hand, by Theorem 2.1, (L11–3) ) (L31–2) and trivially, (1.13) and
(1.15)) (2.11).

To find some equivalent forms of the Lukic conditions, it will be useful to have
the following.

THEOREM 2.5
For any sequence ˛ 2 `2.Z/ of finite support, we have that��.S � 1/˛��2

3
� 2

��.S � 1/2˛��
2
k˛k6: (2.12)

Remarks
(1) This is a discrete case of an inequality on derivatives due to Gagliardo [7] and

Nirenberg [20] (see also [24, Section 6.3] and [27]). Here S � 1 replaces d
dx

.
The general version (with essentially the same proof) is��.S � 1/˛��2

2k=p
�
2k � p

p

��.S � 1/2˛��
2k=.pC1/

k˛k2k=.p�1/

for k � 1, 1� p � k. The inequality (2.12) is pD 2, k D 3.
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(2) Once one has Theorem 2.5 then it is easy to show, by dominated convergence,
that ˛ 2 `6, .S � 1/2˛ 2 `2) .S � 1/˛ 2 `3 and that (2.12) holds even with-
out the condition on finite support of ˛.

(3) This result is in [26] and probably other places, but the proof is so simple that
we give it for the reader’s convenience.

(4) The inequality (2.17) below can be thought of as resulting from a summation
by parts.

Proof
Given ˛, define j˛j by j˛jn � j˛nj. We begin by noting that for a; b 2C, we have by
the triangle inequality that ˇ̌

jaj � jbj
ˇ̌
� ja� bj; (2.13)

so that if ˛ � ˇ () ˛n � ˇn for all n, thenˇ̌
.S � 1/j˛j

ˇ̌
�
ˇ̌
.S � 1/˛

ˇ̌
: (2.14)

Note next that the Leibniz rule takes the form (where .˛ˇ/n D ˛nˇn)

.S � 1/.ˇ�/D
�
.S � 1/ˇ

�
� C .Sˇ/

�
.S � 1/�

�
; (2.15)

so

.S � 1/.ˇ��/D
�
.S � 1/ˇ

�
�� C .Sˇ/

�
.S � 1/�

�
�

C .Sˇ/.S�/
�
.S � 1/�

�
: (2.16)

Choose ˇD ˛, � D .S � 1/ N̨ , � D j.S � 1/˛j and use the fact that a sum of .S � 1/�
is zero when � has finite support (because of telescoping) to see that if ˛ has finite
support, thenX

n

ˇ̌�
.S � 1/˛

�
n

ˇ̌3
�
X
n

jS˛jn
ˇ̌
.S � 1/2 N̨

ˇ̌
n

ˇ̌
.S � 1/˛

ˇ̌
n

C
X
n

jS˛jn
ˇ̌
S.S � 1/ N̨

ˇ̌
n

ˇ̌
.S � 1/2˛

ˇ̌
n
; (2.17)

where we used (2.14) to bound j.S � 1/j.S � 1/˛jj by j.S � 1/2˛j.
Hölder’s inequality and 1

6
C 1

3
C 1

2
D 1 says that the first sum on the right-

hand side is bounded by kS˛k6k.S � 1/˛k3k.S � 1/2 N̨ k2 D k˛k6k.S � 1/˛k3k.S �
1/2˛k2. The second sum has the same bound which shows that��.S � 1/˛��3

3
� 2k˛k6

��.S � 1/˛��
3

��.S � 1/2˛��
2
;

which implies (2.12).
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Let us focus on the case .�1; �2;m1;m2/D .0;�; 2; 1/, so we have

(L31) .S C 1/.S � 1/2˛ 2 `2; (2.18)

(L32) .S � 1/2˛ 2 `4; (2.19)

(L33) ˛ 2 `6: (2.20)

We note the following.

THEOREM 2.6
We have that (L31–3) for .�1; �2;m1;m2/D .0;�; 2; 1/ is equivalent to

(L41) .S C 1/.S � 1/2˛ 2 `2; (2.21)

(L42) .S � 1/˛ 2 `4; (2.22)

(L43) ˛ 2 `6: (2.23)

Moreover, one also has that if these conditions hold, then

.S2 � 1/˛ 2 `3: (2.24)

Remarks
(1) The proof shows that when (L31) and (L33) hold, then .S �1/˛ 2 `4 is equiv-

alent to .S � 1/kC1˛ 2 `4 for any k fixed k D 1; 2; : : : .
(2) The example ˛n D .nC 1/�1=5 obeys (L41–3) but does not have ˛ 2 `4.

Proof
Clearly, (L41–3)) (L31–3) since S � 1 maps `4 to itself. So suppose we have
(L31-3). Applying (2.12) to .S C 1/˛ and noting that ˛ 2 `6) .S C 1/˛ 2 `6, we
conclude that .S � 1/.S C 1/˛D .S2 � 1/˛ 2 `3 proving (2.24).

Since p > q) `q � `p , we see that .S2 � 1/˛ 2 `4. Thus,

.S2 � 1/˛ � .S � 1/2˛D 2.S � 1/˛ 2 `4: (2.25)

3. Sum rules
In this section, we will explain how to use LD methods to obtain sum rules for any
choice of ¹mj ºkjD1 and ¹�j ºkjD1 where one side is (1.8). The sum rules imply gems.
In fact, it will be easier to obtain the gems and we will prove them first as part of the
proof of sum rules. While we have not tried to prove it in general, we believe our sum
rules are the same as those of Denisov and Kupin [5] obtained using the method of
Nazarov, Peherstorfer, Volberg, and Yuditskii [19].
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We begin by finding matrix models whose large deviation principle (LDP) on the
spectral side involves (1.8) up to constants. Our basic random matrix measures will
have the form

Z�1N e�NQ.U/ dHN .U /; (3.1)

where ZN is a normalization factor, Q is a function of U of the form

Q.U /D Tr
�
V.U /

�
; (3.2)

where V is a Laurent polynomial

V.z/D

kX
`D�k

c`z
` (3.3)

(if ck ¤ 0 and/or c�k ¤ 0, then we say that k is the degree of Q or V ), and where
HN is the Haar measure (i.e., the circular unitary ensemble CUE.n/). Gamboa, Nagel,
and Rouault [8], [9] also discussed these models, especially the case V.ei� /D cos�
(discussed first, in a different context, by Gross and Witten [12] whose name the
above-mentioned authors assign to the model), but they do not prove sum rules or
gems for these models.

There is a huge literature on these matrix models, discussed for example in
[1, Section 2.7]. Much of the literature discusses perturbations of Gaussian unitary
ensemble rather than CUE but the results that we need extend to CUE, which is tech-
nically simpler because random unitary matrices, unlike random self-adjoint matrices,
are automatically uniformly bounded. A major result (see, e.g., [1, Section 2.6]) is that
the associated limit of empirical measures (also known as density of states), d	, obeys

V.ei� /D 2

Z
log
�
jei� � ei j

�
d	. /CC (3.4)

for some constant C (which when we start with 	 we will take to be zero).
Any fixed vector ' 2 Cn is a cyclic vector for almost every U 2 Un. Associated

to each such U is a probability measure � on @D which is an n-point measure with
masses at the eigenvalues of U and with weights equal to the square of the absolute
value of the components of ' in the corresponding eigenvectors. Thus picking ' (con-
ventionally to be ı1 D .1; 0; : : : ; 0/), we get a many-to-one correspondence between
a set of unitaries of full measure and all n-point spectral measures. Thus the mea-
sure in (3.1) induces a probability measure on n-point probability measures and so
on sets of Verblunsky coefficients. The unitaries U and U 0 correspond to the same
spectral measure if and only if there is a unitary W which has ' as an eigenvector
with U 0 DWUW �1. It is important to note that the spectral measure determines the
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eigenvalues of U and so Tr.U k/ for any k, so these traces are only functions of the
Verblunsky coefficients and we can compute the traces in any convenient representa-
tion of one of the unitaries associated to a given spectral measure.

The measure in (3.1) induces a measure PN on N -point measures (the spectral
measures, viewed as elements of MC;1.@D/), and the Verblunsky map drags that to a
measureePN on the set of N -point Verblunsky coefficients, that is, DN�1 � @D.

The measure in (3.1) induces another measure on the sequence of empirical mea-
sures LN D 1

N

PN
iD1 ı�i 2MC;1.@D/, where the 
i are the eigenvalues of U . Recall

that if V obeys (3.4), then LN converges almost surely as N !1 to 	 and by the
method of Ben Arous and Guionnet [2], the sequence LN obeys an LDP (in the usual
topology of weak convergence of probability measures) with speed N 2 and rate func-
tion at measure �, E.�/�E.	/, where E is the 2D Coulomb energy in external field
which is minimized at �D 	 (by (3.4)).

By the arguments in [3, Section 3], if the support of 	 is all of @D and 	 possesses
a density with respect to Lebesgue’s measure which is strictly positive d� -almost
everywhere, then one finds that the spectral measure obeys an LDP in MC;1.@D/

with speed N and rate function

I.�/DH.	 j �/; (3.5)

where H is given by (1.3). On the other hand, as discussed in [8] and [3], by the
continuity of the map V , the latter LDP induces an LDP on the infinite sequence of
Verblunsky coefficients, viewed as elements of DZC equipped with the product topol-
ogy, with rate function given in terms of I . By the uniqueness of the rate functions in
large deviations theory, if one has an expression for the rate function in terms of the
Verblunsky coefficients, then one gets a sum rule with the integral in (1.8) on one side
(up to constants due to the normalization of 	 and a

R
log.d�

d�
/ d	.�/-term).

We remark that the regularity assumptions stated above for 	 (namely, full sup-
port and almost-everywhere positive density) make it possible to mimic the proof in
[3, Section 3] and approximate the spectral measure throughout its support; to see
what goes wrong when there are gaps in the support of 	, it is enough to consider the
analogous problem for Hermitian matrices where @D is replaced by R. In that case,
there may be “stray eigenvalues” which are not controlled by the LDP for the empiri-
cal measure. We refer to [8] for a discussion of this issue, and [9] for a detailed proof
of the LDP for the spectral measure in the cases treated in this article.

In what follows, we will be interested in 	 of the form

	DZ�1�

kY
jD1

�
1� cos.� � �j /

�mj d�
2�
; (3.6)

which automatically satisfies the regularity assumption stated above.
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In computing (3.4) with that 	, the following is useful.

PROPOSITION 3.1
For any n 2 Z, n¤ 0, we have that

�

Z 2�

0

ein log jei � ei� j
d 

2�
D
ein�

2jnj
: (3.7)

If nD 0, then the integral is zero.

Proof
While this integral is in the tables, the proof is so simple that we give it here. Replacing
 by  � � , we can suppose that � D 0. By taking complex conjugates, we can
suppose that n� 0. Write ei D z and

log jz � 1j D
1

2
log jz � 1j2 D

1

2

�
log.1� z/C log.1� Nz/

�
:

Then note that for n < 0,I
@D

Nz�n log.1� Nz/
d Nz

Nz
D

I
@D

z�n�1 log.1� z/dz D 0

by the Cauchy integral theorem. By the Cauchy formula for Taylor coefficients and the
well-known series log.1�z/D�

P1
nD1

zn

n
, for n� 0 (since the series only converges

inside the disk, one needs to note that the integral over the unit circle is a limit of
integrals over slightly smaller circles),

1

2�i

I
@D

zn�1 log.1� z/dz D

´
0 if nD 0;

� 1
jnj

if n < 0:
(3.8)

Thus, for 	 of the form (3.6), V defined by (3.4) is a Laurent polynomial with no
constant term.

As a preliminary to the calculation of the Verblunsky coefficient side, we want
to make two comments about the sum rules and their relation to the rate function.
The first one regards the fact that rather than the integral in (1.8), the form of the rate
function on the measure side is H.	 j �/, which involves an additional term of the
form Z

log
� kY
jD1

�
1� cos.� � �j /

�mj � kY
jD1

�
1� cos.� � �j /

�mj d�
2�
:
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Computing this constant term is important in writing the sum rule. As an example,
rather than the left-hand side of (1.6), the LD calculation will give H.	 j �/ where

d	.�/D .1� cos�/
d�

2�
: (3.9)

Noting that
R
.1� cos�/ log.1� cos�/ d�

2�
D 1� log.2/ (which follows as in the proof

of Proposition 3.1; see [21, Section 2.8]), we can write (1.6) as

H.	 j �/D 1� log.2/C
1

2
j˛0j

2CRe.˛0/C
1

2

1X
nD0

j˛nC1 � ˛nj
2

C

1X
nD0

�
� log

�
1� j˛nj

2
�
� j˛nj

2
�
: (3.10)

The right-hand side has to vanish when the ˛n’s are the Verblunsky coefficients of the
measure 	 (since H.	 j 	/D 0). Let us confirm this not only as a check, but because
it will let us compute the constant in Section 4 when we only know the sum rule up
to a constant.

The Verblunsky coefficients for the 	 of (3.9) are not hard to compute (see [21,
Example 1.6.4, (1.6.14)]):

˛.0/n D�
1

nC 2
I nD 0; 1; : : : : (3.11)

Since
P1
nD0 j˛

.0/
n j

2 <1, we can cancel the 1
2
j˛nj

2 terms in the sums on the right-
hand side in (3.10) and see that when ˛D ˛.0/ the right-hand side is

1� log.2/C
�
�
1

2

�
�

1X
nD0

1

.nC 2/.nC 3/

� log
� 1Y
nD0

h
1�

� 1

nC 2

�2i�
: (3.12)

The sum telescopes since Œ.nC 2/.nC 3/��1 D .nC 2/�1 � .nC 3/�1 so the sum is
1=2 and 1� 1

2
� 1
2
D 0. To evaluate the infinite product, note Euler’s formula that

sin.�x/D �x
1Y
jD1

�
1�

x2

j 2

�
;

so

1Y
nD0

�
1�

1

.nC 2/2

�
D lim
x!1

sin.�x/

�.1� x2/
D�

1

2�

d

dx
sin.�x/

ˇ̌̌
xD1
D
1

2
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and thus the log term in (3.12) is � log.1=2/, which cancels the � log.2/. Thus, we
confirm that the expression in (3.12) is zero.

The other issue concerns a huge difference in getting sum rules once a V.�/ is
added to the mix. Recall that under the CUE.N / measure, that is, in the case V D 0,
the measure ePN 2MC;1.D

N�1 � @D/ on the Verblunsky coefficients has the prop-
erty that if j < N , then the Verblunsky coefficients .˛0; : : : ; ˛j / are independent of
.˛jC1; : : : ; ˛N�1/ so, with �j denoting the continuous projection from ¹˛kº1kD0 to

¹˛kº
j

kD0
, the rate function Ij of ��j .ePN / 2MC;1.D

jC1/ is easy to compute (see [3,
Section 2] for a discussion of ��j ). Since V.U / has cross terms between ˛k and ˛`
for suitable k � j and ` > j (in (1.6) the ˛jC1˛j terms), one no longer has indepen-
dence and the exact calculation of Ij involves the limiting distribution of ¹˛`º`>j . In
the case of (1.6), we want to show that I.˛/D F.˛0/C

P1
kD0G.˛k; ˛kC1/, whereG

has a 1
2
j˛kC1 � ˛kj

2 piece and a piece from the log.1� j˛kj2/C j˛kj2 term. Instead
of computing Ij exactly, we will show that (up to constants) jIj .˛0; : : : ; ˛j�1/ �Pj�2

kD0
G.˛k; ˛kC1/ � F.˛0/j � C j˛j j. Using this fact and Rakhmanov’s Theorem

(see [22, Chapter 9]) allows one to prove that I has the required form.
We begin the analysis of the general case with the following.

THEOREM 3.2
Let V be a Laurent polynomial of degree d , and let UN be an N �N unitary CMV
matrix. Then there exist N -independent polynomials F˙ and G, G depending on
d C 1 successive ˛j ’s and N̨j ’s and F˙ on d such variables so that

Tr
�
V.UN /

�
D F�.˛0; : : : ; ˛d�1/CFC.˛N�d ; : : : :˛N�1/

C

N�1�dX
jD0

G.˛j ; : : : ; ˛jCd /: (3.13)

Moreover, G.0; : : : ; 0/D 0.

Remarks
(1) The unitary, U , associated to any spectral measure � is multiplication by 
 on
L2.@D; d�/. To get a matrix related with that spectral measure associated to .1; 0;
: : : ; 0/, one needs to pick an orthonormal basis ¹ej º for this L2-space with e1 the
function 1. Simon [21, Chapter 4] discusses two natural bases for which the matrix
elements are explicit functions of the ˛’s and �. One choice is the set of orthonormal
polynomials for �. This yields the Geronimus–Gragg–Teplyaev (GGT) matrix. The
other is to orthonormalize ¹1; z; z�1; z2; z�2; : : : º which yields the Cantero–Moral–
Velázquez (CMV) matrix. One issue is that for general �, the orthonormal polynomi-
als may not be a basis so the naive GGT matrix may not be unitary; but for n-point
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measures, it is unitary. The CMV matrix is five-diagonal while the GGT matrix is a
Hessenberg matrix, that is, only one nonvanishing diagonal below the principal diag-
onal but, in general, all nonvanishing matrix elements above the diagonal. The proof
of this theorem will discuss the explicit form of the CMV matrix and (9.9) below the
explicit form of the GGT matrix.

(2) These polynomials have degree at most 2d . (The CMV matrix has matrix
elements that are products of exactly two, ˛, N̨ , and � so G written in terms of the
three variables is of homogeneous degree 2d if Tr.V .U //D Tr.U d /, but removing
the �’s produces lower degree terms even in this special case.)

(3) F˙;G are not unique. If H is any function of d successive ˛; N̨ pairs and8̂̂<̂
:̂
QF�.˛0; : : : ; ˛d�1/D F�.˛0; : : : ; ˛d�1/CH.˛0; : : : ; ˛d�1/;

QFC.˛N�d ; : : : ; ˛N�1/D FC.˛N�d ; : : : ; ˛N�1/CH.˛N�d ; : : : ; ˛N�1/;

QG.˛0; : : : ; ˛d /DG.˛0; : : : ; ˛d /�H.˛0; : : : ; ˛d�1/CH.˛1; : : : ; ˛d /;

(3.14)

then (3.13) holds for .G;F˙/ if and only if it holds for . QG; QF˙/.

Proof
Recall (see [21, Section 4.2]) the LM representation of the CMV matrix, C , which
we write when N is even. Define the 2� 2 matrices

‚.˛/D

	
N̨ �

� �˛



; �D

p
1� j˛j2: (3.15)

Let ‚j �‚.˛j /. Then

LD‚0˚‚2˚ � � � ˚‚N�2; (3.16)

MD 1˚‚1˚ � � � ˚‚N�3˚ ˛N�11 (3.17)

(L is a direct sum of N=2 2� 2 matrices, while M has 1� 1 matrices at the top and
bottom and .N=2�1/ 2�2 in between), and one has that C (i.e.. our parameterization
of U ) is given by

C DLM: (3.18)

We also write eLj ; j D 0; 2; : : : ;N for L with ‚0; : : : ;‚j�2;‚jC2; : : : ;‚N�2

replaced by zero (only ‚j remains in the direct sum), and similarly for eMj ; j D

�1; 1; : : : ;N � 1 (where ‚�1;‚N�1 are 1� 1 matrices). Thus we have that

LD eL0C eL2C � � � C eLN�2; MD eM�1C � � � C eMN�1: (3.19)
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We note that

eLk
eM` D eM`

eLk D 0 unless j`� kj D 1: (3.20)

ForN odd, there is a similar representation but now L has a 1�1matrix at the bottom
and M only a 1� 1 matrix at the top.

We will prove the theorem when V.z/D zd . For V.z/D z�d , the argument is
similar since replacing U by U � just interchanges L and M and replaces ˛j by N̨j
(since ‚.˛/� D‚. N̨ /). And for 0 < k < d , z˙k yields polynomials of the same form
(since functions of fewer variables can be viewed as having more variables; there will
be some lost G’s near the bottom, but they can be made part of FC). We show first
that we have the required function of exact degree 2d where it is a polynomial in ˛; N̨ ,
and � and then that each �j occurs as an even power, so that using �2j D 1�˛j N̨j we
get the result without any �’s. We write

.U d /jj D
X

k2;:::;k2d
k1Dk2dC1Dj

X
n1;:::;nd
m1;:::;md

eLn1Ik1;k2
eMm1Ik2;k3 � � �

eMmd Ik2d ;k2dC1 ; (3.21)

where a symbol like eLn1Ik1;k2 means the k1;k2 matrix element of the matrix eLn1 .
In (3.21), we sum n1; : : : ; nd , m1; : : : ;md from �1 to N � 1 running through even
and odd integers, respectively, and kq (q D 2; : : : ; 2d ) running from 0 to N � 1.
The only nonzero terms have jk2pC1 � npC1j � 1, jkqC1 � kqj � 1, jk2p �mpj � 1,
jnr �mr j � 1, jmr �nrC1j � 1, with further restrictions since, for example, jk2pC1�
npC1j � 1 is actually k2pC1 � npC1 D 0 or 1 and not �1.

This clearly writes Tr.U d / as a polynomial in ˛; N̨ ; � of homogeneous degree 2d .
For each j D 0; : : : ;N � d � 1, group together all where the smallest index of ˛; N̨ ; �
is j . It is easy to see that the resulting sum, call it Gj .˛j ; N̨j ; �j ; : : : ; �jC2d�1/, has
Gj independent of j and gives the G terms. The terms with ˛�1 (coming from ‚�1,
and hence ˛�1 D 1) we put into F�, and those whose smallest j so that j �N � d
we put into FC. It is easy to see that F� isN -independent and that theN -dependence
of FC comes only from translating the indices. Thus we have proved (3.13) except
we have some � dependence.

For each product in (3.21), the �p terms come from increasing some kq D p to
kqC1 D p C 1 or a decrease in the opposite direction and it is only through such �p
terms that such an increase or decrease can happen. Since k1 D k2dC1 D j and each
step only increases or decreases by a single step, for every �p going in one direction,
there must be one going in the other, so an even number in all.

To confirm the assertion thatG.0; : : : ; 0/D 0, we prove that no term in (3.21) can
only have �’s; that is, there must be at least one j with kj D kjC1. For if kjC1 D
kj ˙ 1, then it is easy to see that either kjC2 D kjC1 or with the same sign kjC2 D
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kjC1 ˙ 1, that is, one cannot change direction without an ˛ term. But to return to
where one started, one must change direction.

Remark
It is an interesting exercise to use the GGT representation (see [21, Section 4.1]) to
prove that the �’s only occur in even powers and that every term in G has at least one
power of ˛ or N̨ .

In the next theorem, we use MC1;1.@D/ to denote the subset of MC;1.@D/ con-
sisting of the probability measures of infinite support on @D, that is, not supported on
finitely many points.

THEOREM 3.3
Let V be a potential of the form (3.4) with measure 	 whose support is @D, and letG be
given by (3.13). Let I be the rate function from (3.5) on the measure side. Let �LıV W
MC;1.@D/!D

L mapping � to its first L Verblunsky coefficients. Let IL be the rate
function corresponding to the LDP for ��L.

ePN /, and write IL.�/ D IL.�L ı V�/.
There is a constant C independent of L and � so that if L> d and ˛ is the sequence
of Verblunsky coefficients of �, then for all such L and � 2MC1;1.@D/,

ˇ̌̌
IL.�/�

L�d�1X
jD0

G.˛j ; ˛jC1; : : : ; ˛jCd /C

L�1X
jD0

log
�
1� j˛j j

2
�ˇ̌̌
� C: (3.22)

Remarks
(1) Recall that V is the Verblunsky map taking measures to Verblunsky coefficient

sequences, defined in the Introduction. The mapping �L is the projection onto
the first L elements.

(2) Recall (see [3, Theorems 2.6, 2.7]) that ��L.ePN / obeys an LDP with speed N
and rate IL related to I by

I.�/D sup
L

�
IL.�/

�
; IL.�/D inf

¹�j�L.�/D�L.�/º
I.�/: (3.23)

Proof
By writing the induced measures on Verblunsky coefficients according to Killip and
Nenciu [13] (see [3, Theorem 4.2]) and e�N Tr.V.U // according to (3.13), we see that
for W �D

L and N >LC d C 1,

��L.
ePN /ŒW �D

R
��1
L
ŒW �

HN .˛0; : : : ; ˛N�1/
QN�2
jD0 d

2˛j d�N�1R
DN�2�@DHN .˛0; : : : ; ˛N�1/

QN�2
jD0 d

2˛j d�N�1
; (3.24)
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where ˛N�1 D ei�N�1 and

logHN .˛0; : : : ; ˛N�1/D�NF�.˛0; : : : ; ˛d�1/�NFC.˛N�d ; : : : ; ˛N�1/

�N

N�1�dX
jD0

G.˛j ; : : : ; ˛jCd /

C

N�2X
jD0

.N � 2� j / log
�
1� j˛j j

2
�
: (3.25)

For fixed L, the function eHN;L, obtained by dropping the F� term and all the
G.˛j ; : : : ; ˛j C d/ terms, where j DL� d; : : : ;L� 1, is a product of a function of
.˛0; : : : ; ˛L�1/ and a function of .˛L; : : : ; ˛N�1/. Since ��1L ŒW �DW �D

N�L�1 �

@D (up to a set of zeroePN measure), the integrals over .˛L; : : : ; ˛N�1/ in the numer-
ator and denominator of the modified (3.24) cancel. The modified formula defines a
probability measure

ePN;LŒW �D R
W
eHN;L.˛0; : : : ; ˛L�1/QL�1

jD0 d
2˛jR

DL
eHN;L.˛0; : : : ; ˛L�1/QL�1

jD0 d
2˛j

; (3.26)

where

log eHN;L.˛0; : : : ; ˛L�1/D�N L�1�dX
jD0

G.˛j ; : : : ; ˛jCd /

C

L�1X
jD0

.N � 2� j / log
�
1� j˛j j

2
�
: (3.27)

Since j˛j j � 1 and G, F�, and FC are polynomials, the dropped terms are bounded,
so that for some constant C1,

e�C1NePN;L.W /� ��L.ePN /.W /� eC1NePN;L.W /: (3.28)

By an elementary argument (see [3, Theorems 2.1, 2.2]), ePN;L obeys an LDP with
speed N and rate function

QIL.˛0; : : : ; ˛L�1/D

L�d�1X
jD0

G.˛j ; : : : ; ˛jCd /�

L�1X
jD0

log
�
1� j˛j j

2
�
C cL; (3.29)

where cL is such that min˛0;:::;˛L�1 QIL.˛0; : : : ; ˛L�1/ D 0 (forced by the condition
on the function G (different from our G here) in [3, Theorem 2.2]).
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With IL given by (3.23), we conclude by (3.28) thatˇ̌
IL.�/� QIL

�
˛0.�/; : : : ; ˛L�1.�/

�ˇ̌
� C1: (3.30)

Taking �0 D d�
2�

for which I.�0/D limIL.�0/ is finite and using G.0; : : : ; 0/D 0

and log.1�j˛j2/j˛D0 D 0, we conclude that cL is bounded asL!1 so sup cL � C2
is finite. Now (3.22) follows with C D C1CC2.

While not essential, the following lovely lemma of Nazarov, Peherstorfer, Vol-
berg, and Yuditskii [19, Lemma 3.1] will simplify some arguments.

PROPOSITION 3.4
LetG be a continuous function onk where�R

m is compact. Suppose that 0 2
and that G.0; : : : ; 0/D 0. Let 10 be the sequences x D .x1; x2; : : : / 21 so that
eventually xj D 0 (i.e., only finitely many xj ’s are nonzero). For x 210 , define

H.x/D

1X
jD0

G.xjC1; : : : ; xjCk/: (3.31)

Suppose that there is a C <1 so that for all x 210 ,H.x/��C . Then, there exist
continuous functions eG on k and � on k�1 so that

eG � 0 (3.32)

and

G.x1; : : : ; xk/D eG.x1; : : : ; xk/C �.x1; : : : ; xk�1/� �.x2; : : : ; xk/: (3.33)

Remark
The point, of course, is that if we add a constant to � so that �.0; : : : ; 0/D 0 (which
does not change (3.33)), then

H.x/D �.x1; : : : ; xk�1/C

1X
jD0

eG.xjC1; : : : ; xjCk/;
which assures that we can extend H to infinite sequences with a convergent sum or
else a sum that diverges to C1.

THEOREM 3.5 (Abstract gem)
Let V be a potential of the form (3.4), and let G be given by (3.13). Let .˛/ 2 D1,
let �D V�1.˛/ be the measure with those Verblunsky coefficients, and let 	 be the
measure obeying (3.6). Then
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lim
N!1

NX
jD0

�
G.˛j ; : : : ; ˛jCd /� log

�
1� j˛j j

2
��

(3.34)

exists and the limit is finite if and only if H.	 j �/ is finite.

We refer to the sum in (3.34) as the Verblunsky side of the gem.

Remark
Golinskii and Zlatoš [11, Theorem 3.3] have a general abstract gem derived by very
different means.

Proof
By the theory of projective limits (see [3, Theorem 2.7]), I.�/ D limL!1 IL.�/.
Thus by (3.22), if I.�/D1, then the limit in (3.34) exists and is1.

Assume now that I.�/ <1. We would like to use Proposition 3.4, but first we
need to restrict attention to a compact subset of the unit disk. Since I.�/ <1, the d�
weight of d� is almost-everywhere nonzero, so, by Rakhmanov’s Theorem (see [22,
Chapter 9]), ˛j .�/! 0 as j !1. Thus RD supj j˛j .�/j< 1. Let DR D ¹z j jzj �
Rº. This is compact so we can apply Proposition 3.4, (3.22), and I.�/� 0 for all � to
conclude that there is GR � 0 and �R so that

G.˛0; : : : ; ˛d /DGR.˛0; : : : ; ˛d /C �.˛0; : : : ; ˛d�1/� �.˛1; : : : ; ˛d /: (3.35)

G.0; : : : ; 0/D 0)GR.0; : : : ; 0/D 0, and, by adding a constant to � , we can suppose
that �.0; : : : ; 0/D 0.

The sum in (3.34) is thus

NX
jD0

�
GR.˛j ; : : : ; ˛jCd /� log

�
1� j˛j j

2
��

C �.˛0; : : : ; ˛d�1/� �.˛N�1; : : : ; ˛NCd /: (3.36)

Since ˛j ! 0, �.0; : : : ; 0/ D 0 and � is continuous, the last term goes to zero as
N !1. Since GR � 0, the sum has a limit (which may be C1). By (3.22) and
IL.�/! I.�/ <1, we see that the sum is bounded, and hence convergent.

Finally, we turn to the abstract sum rule. For any ˛ 2D1, define

S.˛/D F�.˛0; : : : ; ˛d�1/C the limit in (3.34): (3.37)

S may be infinite if the limit is.
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THEOREM 3.6 (Abstract sum rule)
Under the hypothesis of Theorem 3.5, for any � with infinite support

H.	 j �/D S
�
˛.�/

�
� S

�
˛.	/

�
: (3.38)

Remark
Basically, on the basis of (3.24), one expects that the rate function is S.˛.�//C c,
where c is a constant coming from the N th root of the denominator in (3.24). Given
that I.	/D 0, the constant has to be c D�S.˛.	//.

Proof
We begin with a formula like (3.26) but with two changes. First, rather than look at
��L.

fPN /ŒW � for a single W , we look at a ratio

��L.
fPN /ŒW �

��L.
fPN /ŒW1� (3.39)

for two open sets W;W1 in D
L so we need not concern ourselves with the normaliza-

tion integral over all of DL but can focus on small sets where we have control over
the ˛’s.

Second, we do not drop all of the monomials in those G terms for which ¹j1; : : : ;
jd º intersects both ¹0; : : : ;L � 1º and ¹L;L C 1; : : : º. We keep those monomials
which only have ˛L; ˛LC1; : : : . Thus the dropped terms all have a factor of some ˛j
with j 2 ¹L� d;L� d C 1; : : : ;L� 1º. What results is that one obtains (still usingePN;L for the probability with the, now slightly different, dropped terms)

e�cL.W;W1/N
ePN;L.W /ePN;L.W1/ � ��L.

ePN /ŒW �
��L.

ePN /ŒW1� � ecL.W;W1/N
ePN;L.W /ePN;L.W1/ ; (3.40)

where

cL.W;W1/DK
�

sup
˛2W

L�1X
jDL�d

j˛j j C sup
˛2W1

L�1X
jDL�d

j˛j j
�

for some constant K because the dropped terms, being polynomials that are not of
degree zero in all the ˛j ’s, are at least linear in some ˛j . Note also that because of
lower semicontinuity of IL, for any �0,

IL.�0/D lim
W

inf
�2W

IL.�/;

whereW runs over all open neighborhoods of �0 ordered by inverse inclusion. More-
over, because IL is continuous, one has that
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inf
�2W

IL.�/D� lim
N!1

1

N
logPN .W /:

Thus taking N !1 in (3.40) and shrinking the open sets to two measures, � and �,
we get from (3.37) thatˇ̌

IL.�/� IL.�/� SL
�
˛.�/

�
C SL

�
˛.�/

�ˇ̌
�K

� L�1X
jDL�d

ˇ̌
˛j .�/

ˇ̌
C

L�1X
jDL�d

ˇ̌
˛j .�/

ˇ̌�
; (3.41)

where SL is the sum in (3.34) when the infinite sum is replaced by the sum to L �
1� d .

When H.	 j �/D1 we have already proved (3.38), so suppose that H.	 j �/ <
1. Then the density of the absolutely continuous part of � with respect to d� is
almost-everywhere nonvanishing, and so, by Rakhmanov’s Theorem, ˛j .�/! 0.
Take � D 	 so also, ˛j .	/! 0. Thus, the right-hand side of (3.41) goes to zero and
we find that

H.	 j �/�H.	 j 	/D RHS of (3.38);

proving (3.38).

4. The .1; 0/ case
In this section, we consider the case of a single singularity of order 1 and recover the
sum rule of Simon (1.6). The calculations are so simple that we do not need to make
the simplifying assumption that N̨j D ˛j that we will make in the later sections.

The normalized empirical measure is

d	.�/D .1� cos�/
d�

2�
; (4.1)

so, by (3.4) and (3.7),

V.�/D 2

Z
.1� cos / log jei� � ei j

d 

2�

D�

Z
.ei C e�i / log jei� � ei j

d 

2�

D
1

2
.ei� C e�i� /D cos.�/ (4.2)

and

Tr
�
V.U /

�
D
1

2
Tr.U CU /: (4.3)
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In the CMV basis, Ujj D�˛j�1 N̨j , where ˛�1 ��1. Thus, the Verblunsky side
of the sum rule is

�
1

2

1X
jD0

.˛j�1 N̨j C N̨j�1˛j /�

1X
jD0

log
�
1� j˛j j

2
�
CC (4.4)

for a suitable constant C . In (4.4), the sum rule involves limits of finite N objects,
so here and below, sums should involve finite matrices and finite sums. But, as we
explained above, we are interested in the limits of such finite sums. So we will write
sums up to infinity indicating what one will get after taking N !1 at the end of the
calculation.

Since

1

2
j˛j � ˛j�1j

2 D
1

2
j˛j j

2C
1

2
j˛j�1j

2 �
1

2
˛j�1 N̨j �

1

2
N̨j�1˛j ;

we can rewrite (4.4) as (changed C )

1

2

1X
jD�1

j˛jC1 � ˛j j
2C

1X
jD0

�
� log

�
1� j˛j j

2
�
� j˛j j

2
�
CC: (4.5)

That in this form the constant is C D 1
2
� log.2/ follows from the requirement that

this vanish if ˛ D ˛.	/ and the calculations in Section 3 that (3.10) is zero. Thus,
we have an LD proof of (1.6). To get the gem (1.7), we need the M D 1 case of the
following.

PROPOSITION 4.1
For any ˛,

1X
jD0

h
� log

�
1� j˛j j

2
�
�

MX
mD1

j˛j j
2m

m

i
<1 (4.6)

if and only if

1X
jD0

j˛j j
2MC2 <1: (4.7)

Remark
Since

� log
�
1� j˛j2

�
D

1X
mD1

j˛j2m

m
(4.8)
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for any j˛j< 1, the summand in (4.6) is nonnegative, so the sum either converges or
diverges to C1.

Proof
By (4.8), we have that

j˛j2MC2

M C 1
�� log

�
1� j˛j2

�
�

MX
mD1

j˛j2m

m
(4.9)

�
j˛j2MC2

M C 1

� 1X
jD0

j˛j2j
�

� 2
j˛j2MC2

M C 1
if j˛j2 �

1

2
: (4.10)

By (4.9), we have that (4.6) ) (4.7). On the other hand, if (4.7) holds, then
j˛j j ! 0, so, for all large j , j˛j j2 � 1

2
and so we can apply (4.10) to the tail of the

sum in (4.6) and conclude that (4.7)) (4.6)

We thus have a quick proof of the gem of Simon [21, Section 2.8].

THEOREM 4.2
With w as in (1.5),

R 2�
0
.1� cos�/ logw.�/ d�

2�
>�1 if and only if

1X
jD0

j˛jC1 � ˛j j
2C j˛j j

4 <1: (4.11)

5. The .1; 1/ case
In terms of (1.8), this section will consider gems where the measure side isZ

.1C cos�/.1� cos�/ log
�
w.�/

�d�
2�
: (5.1)

To figure out the normalization, we note that

.1C cos�/.1� cos�/D 1� cos2 � D sin2 �

D�
1

4
.ei� � e�i� /2 D

1

2
.1� cos2�/: (5.2)

One can also figure this out by noting that the extreme sides of (5.2) are degree 2
Laurent polynomials in ei� vanishing at � D 0;� to second order with maximum 1

on @D. For later use, we note that the same argument shows that, for k D 1; 2; : : : ,



2882 BREUER, SIMON, and ZEITOUNI

k�1Y
jD0

h
1� cos

�
� �

2�j

k

�i
DKk

�
1� cos.k�/

�
(5.3)

for a constant Kk . Since
R

cos.k�/d� D 0, we see that the normalized d	 is

d	k.�/D .1� cosk�/
d�

2�
; (5.4)

so, by (3.4) and (3.7), we have that

Vk.�/D
1

k
cos.k�/: (5.5)

We discussed k D 1 in Section 4. We will discuss k D 2 in this section (thereby
recovering, using large deviations, a special case of a result of Simon and Zlatǒs [26,
Theorem 1.4]) and general k in Section 7. Thus in this section, we will prove the
following.

THEOREM 5.1
Let ˛ be real. Then Z

.1� cos2 �/ log
�
w.�/

�d�
2�

>�1 ()

1X
nD0

j˛nC2 � ˛nj
2C j˛nj

4 <1: (5.6)

Note that Tr.V .U //D 1
4

Tr.U 2CU�2/D 1
2

Tr.U 2/ if ˛ is real. For such ˛, the
CMV matrix has the form for j � 1 (see [21, (4.2.14)]):

Uj;j D�˛j˛j�1; U2j�1;2j D��2j�1˛2j�2;

U2j;2jC1 D �2j˛2jC1; U2j;2j�1 D �2j�1˛2j ;

U2jC1;2j D��2j˛2j�1:

(5.7)

There are also matrix elements that are off diagonal at distance 2 from the main diag-
onal, but if Uj;j˙2 ¤ 0, then Uj˙2;j D 0, so these terms do not contribute to Tr.U 2/
(this is also clear from the LM factorization and from the GGT representation). Thus

Tr.U 2/D bdyC
1X
jD1

ŒU 2j;j CUj;jC1UjC1;j CUj;j�1Uj�1;j �

D bdyC
1X
jD1

.˛2j˛
2
j�1 � 2�

2
j˛j�1˛jC1/; (5.8)
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where bdy is short for “boundary” and refers to some finite number of terms involving
small indices (and, later, when it appears with a finite sum, involving finitely many
terms involving large indices with the number of terms bounded as the upper index of
the sum changes).

Therefore, using �2j D 1 � ˛
2
j and G.˛j ; ˛jC1; ˛jC2/D ˛2jC1˛

2
j � 2�

2
jC1˛j �

˛jC2, we see after some algebraic manipulations that the Verblunsky side of the gem
(see (3.34)) is

bdyC I2C I4CL6; (5.9)

where

I2 D

1X
jD1

.˛2j � ˛j�1˛jC1/; (5.10)

I4 D

1X
jD1

	
1

2
˛2j˛

2
j�1C ˛j�1˛

2
j˛jC1C

1

2
˛4j



; (5.11)

L6 D

1X
jD0

� log.1� ˛2j /� ˛
2
j �

1

2
˛4j : (5.12)

We claim that, up to boundary terms,

I2 D
1

2

1X
jD1

.˛jC1 � ˛j�1/
2: (5.13)

Accepting this for a moment, we can show that the conditions of Simon and Lukic
(which agree in this case)

(S1) ˛jC1 � ˛j�1 2 `
2; (5.14)

(S2) ˛ 2 `4 (5.15)

imply the measure condition, that is (given the gem), that (S1–2)) I2 <1;I4 <

1;L6 <1 . For clearly, by (S1), (5.13)<1 and, by Hölder’s inequality, I4 is
bounded by Ck˛k44. Since k˛k6 � k˛k4 (on account of j˛j � 1), L6 is finite by
Proposition 4.1 with M D 2.

To see (5.13), define for `D 0; 1; 2; : : :

P` D

1X
jD0

˛j˛jC`: (5.16)
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PROPOSITION 5.2
Let T1 and T2 be two functions on sequences of real ˛’s which are boundary terms
plus a sum of the form (3.31), where G is a quadratic function of its variables (i.e., a
second-degree homogeneous polynomial). Suppose that for some L, Tr has no terms
of the form ˛j˛jC` with ` > L. Then up to boundary terms, each Tr is a linear
combination of ¹P`ºL`D0 and T1 D T2 up to boundary terms if they are the same linear
combinations.

Remarks
(1) This result is obvious. More subtle is the fact that “if” in the last sentence can

be replaced by “if and only if,” but we will not need that harder half of this.
(2) Again, what is being stated involves limits of finite sums. The equalities only

hold up to finite boundary terms. There are also boundary terms at the upper
limit, but those go to zero by Rakhmanov’s Theorem. One infinite sum con-
verges if and only if the other one does.

COROLLARY 5.3
We have that I2 of (5.10) is given by (5.13) up to constants.

Proof
The right-hand side of (5.10) is, up to boundary terms, P0 � P2. Expanding the
square, the right-hand side of (5.13) is 1

2
.P0 � 2P2CP0/DP0 �P2.

Proof of Theorem 5.1
We have already proved that (S1–2) imply that the integral in (5.6) is finite. So we
need to go in the opposite direction. Therefore, we suppose that the integral is finite.

By the abstract gems discussed in Section 3, we know that I2CI4CL6 is finite
(in that the cutoff sums are uniformly bounded) with I2 given by (5.13). In this form
I2 is positive and so is L6 as noted in the remark after Proposition 4.1. So we look at
I4, which we write up to boundary terms as

I4 D I41C I42; (5.17)

I41 D

1X
jD1

1

4
.˛j˛j�1C ˛j˛jC1/

2; (5.18)

I42 D

1X
jD1

1

2
.˛4j C ˛j�1˛

2
j˛jC1/: (5.19)
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By Hölder’s inequality,
PJ
jD1 j˛j�1˛

2
j˛jC1j �

PJC1
jD0 j˛j j

4, so up to boundary
terms, I42 is positive and thus I2 C I41 CL6 is finite. Since each term is positive,
they are all finite, that is, I2 <1 and I41 <1; I2 <1 is (S1).

We have that I2 <1 and j˛j j< 1)
P1
jD1 ˛

2
j .˛jC1 � ˛j�1/

2 <1. Note that
I41 <1means

P1
jD1 ˛

2
j .˛jC1C˛j�1/

2 <1. Since .xCy/2C.x�y/2 D 2.x2C
y2/, we conclude that

1X
jD1

˛2j .˛
2
jC1C ˛

2
j�1/ <1: (5.20)

Since j˛j�1˛2j˛jC1j �
1
2
.˛2j�1˛

2
j C ˛

2
j˛

2
jC1/, we see that

P1
jD1 j˛j�1˛

2
j˛jC1j <

1. All the other terms in I2 C I4 CL6 are positive, so all are finite. In particular,
1
2

P1
jD1 ˛

4
j <1 which is (S2).

In particular, we see that the proof from Lukic conditions to convergence of the
integral is much easier than the converse.

6. The .2; 0/ case
Our goal in this section is to prove the following.

THEOREM 6.1
Let � be as in (1.5), and assume that its Verblunsky sequence ˛ is real. ThenZ

.1� cos�/2 log
�
w.�/

�d�
2�

>�1 (6.1)

if and only if

(S1) .S � 1/2˛ 2 `2 (6.2)

and

(S2) ˛ 2 `6: (6.3)

Remarks
(1) In this case the Lukic and Simon conditions agree.
(2) This result, indeed without the reality restriction, is in Simon and Zlatǒs [26,

Theorem 1.4]. The main difference in our approach is the method of deriving
the sum rules. Once one has the sum rules the arguments are related, but we
feel our presentation is more transparent.

To begin, we need to normalize 	; that is, we will need to determine Z here so
that Z�1

R
.1� cos�/2w.�/ d�

2�
D 1. We will use
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2.1� cos�/D�.ei�=2 � e�i�=2/2; (6.4)

as one can see by expanding the square or by using 1� cos� D 2 sin2.�=2/. Thus

4.1� cos�/2 D .ei�=2 � e�i�=2/4

D 2 cos.2�/� 8 cos.�/C 6: (6.5)

Since
R

cos.k�/ d�
2�
D ık0, we see that

d	.�/D
h
1�

4

3
cos.�/C

1

3
cos.2�/

i
d�; (6.6)

so, by (3.4) and (3.7),

V.�/D�
1

6
cos.2�/C

4

3
cos.�/ (6.7)

and thus, when ˛ is real,

Q.U /� Tr
�
V.U /

�
D�

1

6
Tr.U 2/C

4

3
Tr.U /: (6.8)

We computed Tr.U / in (4.4) and Tr.U 2/ in (5.8). Thus the Verblunsky side of
the sum rule (see (3.34)) is

bdyC I2C I4CL6; (6.9)

where

I2 D

1X
nD1

�
˛2n �

4

3
˛nC1˛nC

1

3
˛n˛nC2

�
; (6.10)

I4 D

1X
nD1

�
1

2
˛4n �

1

6
˛2n�1˛

2
n �

1

3
˛n�1˛

2
n˛nC1

�
; (6.11)

L6 D

1X
nD0

� log.1� ˛2n/� ˛
2
n �

1

2
˛4n: (6.12)

In terms of the quantities P` of (5.16),

I2 DP0 �
4

3
P1C

1

3
P2 (6.13)

up to boundary terms. On the other hand, expanding the square, we see that up to
boundary terms X

n

.˛n�1 � 2˛nC ˛nC1/
2 D 6P0 � 8P1C 2P2 (6.14)
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since 1C 4C 1D 6 and 4C 4D 8. Thus, we see that up to boundary terms

I2 D
1

6

X
n

.˛n�1 � 2˛nC ˛nC1/
2 D

1

6

��.S � 1/2˛��2
2
: (6.15)

Proof of half of Theorem 6.1 that (6.1)) (S1), (S2)
Since 1

6
C 1
3
D 1

2
, up to boundary terms, I4 � 0 by Hölder’s inequality. By the abstract

sum rule, (6.1)) I2 C I4 C I6 is finite. Since each of these terms is positive (by
(6.15) and Proposition 4.1), each is individually finite. I2 <1) (S1) and, by Propo-
sition 4.1, L6 <1) (S2).

Proof of the other half of Theorem 6.1 that (S1), (S2)) (6.1)
Clearly, (S1)) I2 <1 and (S2))L6 <1 by Proposition 4.1, so we need only
control I4. Hölder lets one control

P
�
.1/
n �

.2/
n �

.3/
n �

.4/
n if k�.j /kpj <1 and 1

p1
C

1
p2
C 1
p3
C 1
p4
� 1. Since 4

6
< 1, we cannot just look at products of four ˛’s. However,

since 1
6
C 1

6
C 1

6
C 1

2
D 1, we can control products of three ˛’s and one .S � 1/2˛.

By the Gagliardo–Nirenberg inequality, (2.12), (S1) + (S2)) .S � 1/˛ 2 `3. Since
1
6
C 1

6
C 1

3
C 1

3
D 1, a product of two ˛’s and two .S � 1/˛’s is also summable. So

the goal is to write I4 as sums of these two terms. We write

I4 D bdyC I41C I42; (6.16)

12I41 D 4

1X
nD1

˛2n.˛
2
n � ˛nC1˛n�1/; (6.17)

12I42 D

1X
nD0

.˛2n � ˛
2
n�1/

2 (6.18)

D

1X
nD0

.˛n � ˛n�1/
2.˛nC ˛n�1/

2: (6.19)

The I42 term is a sum of products of two .S � 1/˛ terms and two ˛ terms, so by
the above, it is a convergent sum by (S1), (S2). Let 	n D ˛nC1 � ˛n so

˛nC1˛n�1 D .˛nC 	n/.˛n � 	n�1/ (6.20)

and thus

˛2n.˛
2
n � ˛nC1˛n�1/D ˛

2
n	n	n�1 � ˛

3
n.	n � 	n�1/: (6.21)

We have already seen that the sum in I42 is absolutely convergent. By (6.21), I41 is
a sum of .`6/2.`3/2 and .`6/3`2 terms and so a convergent sum. Thus I4 <1.
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7. The kth roots of unity case
Fix k 2 ¹1; 2; 3; : : : º. In this section, we consider the conditionsZ

.1� cosk�/ log
�
w.�/

�d�
2�

>�1; (7.1)

(S1) .Sk � 1/˛ 2 `2; (7.2)

(S2) ˛ 2 `4: (7.3)

By (5.3), this is the same as taking �j D
2.j�1/�

k
; j D 1; : : : ; k, so ¹ei�j ºkjD1

are the kth roots of unity. Of course, if ! D ei�2 is a primitive kth root of unity,
then Sk � 1D

Qk
jD1.S � !

j /, so (7.2) and (7.3) are precisely the Simon (DLukic)
conditions for this case. In this section, we will prove the following.

THEOREM 7.1
Suppose that ˛ obeys (S2). Then

(7.1) () (7.2):

In particular, (S1–2)) (7.1).

Remarks
(1) We need not assume that ˛ is real.
(2) This is a special case of a result of Golinskii and Zlatoš [11, Theorem 1.4].

The key input to proving this will be the following.

PROPOSITION 7.2
If Tr.U k/ is written in terms of ˛’s only, then the term quadratic in ˛ is

bdy� k
1X
nD0

˛n N̨nCk : (7.4)

Remark
This proof will rely on the CMV representation of unitaries. It is an interesting exer-
cise to give a different proof using the GGT representation and ideas of Section 9.

Proof
By (3.21), Tr.U k/ is a homogeneous polynomial of degree 2k in ˛, N̨ , and �. To be
left with quadratic terms after using �2 D 1 � N̨˛, we need products with 2k � 2�’s
and two of ˛ and/or N̨ .



LARGE DEVIATIONS AND THE LUKIC CONJECTURE 2889

As the end of the proof of Theorem 3.2 explains, one gets strings of increasing or
decreasing �’s and ˛ or N̨ at turnaround points. The 2k � 2�’s must occur in a string
of k � 1 increasing and a second string of k � 1 decreasing �’s. The form, (3.15), of
‚ shows that we get �˛ at the bottom turnaround and N̨ at the top turnaround, so
the only quadratic terms are .�˛n/

Qk�1
jD1 �nCj . N̨nCk/. Each diagonal matrix element

.Ck/jj has such a term for j D nC 1;nC 2; : : : ; nC k, so k in all, which yields
(7.4).

PROPOSITION 7.3
The quadratic term in the sum rule, (3.29), for (7.1) with j˛nj2 “borrowed” from
� log.1� j˛nj2/ is (up to a boundary term)

1

2

1X
nD0

j˛n � ˛nCkj
2: (7.5)

Proof
The normalized 	 is .1� cosk�/ d�

2�
, so by (5.5), the potential is 1

k
cosk� and Q is

1

2k

�
Tr.U k/C Tr.U

k
/
�
: (7.6)

Thus, since k in (7.4) cancels the k�1 in (7.6), the quadratic term including the bor-
rowed j˛nj2 is

bdyC
1

2

1X
nD0

�
j˛nj

2C j˛nCkj
2 � ˛n N̨nCk � N̨n˛nCk

�
; (7.7)

which is (7.5).

Proof of Proposition 7.3
The Verblunsky side of the sum rule associated to (7.1) has quadratic term (7.5) and
a remainder that is finite if ˛ 2 `4. Thus the equivalence is immediate.

8. Single kth-order singularity
We are interested here in measures which obeyZ

.1� cos�/k log
�
w.�/

�d�
2�

>�1: (8.1)

Here the Simon–Lukic conditions are
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(S1) .S � 1/k˛ 2 `2; (8.2)

(S2) ˛ 2 `2kC2: (8.3)

Our main goal is to prove the following.

THEOREM 8.1
Suppose that ˛ 2 `4. Then

(8.1) () (8.2):

Remark
This is a special case of a result of Golinskii and Zlatoš [11, Theorem 1.4].

To put this in perspective, we note that Lukic [18] proved the following.

THEOREM 8.2 ([18, Theorem 1.1])
Suppose that .S � 1/˛ 2 `2. Then

(8.1) () (8.3):

These two extreme cases are consistent with (8.1) () (S1–2) and suggest its
truth. The key to our proof will be to show that the quadratic term in the sum rule is
ckk.S � 1/

k˛k22 for an explicit ck . We have seen that c1 D 1
2

(4.5) and c2 D 1
6

(6.15).
The reader is invited to stop and try to figure out the general formula.

By (6.4), we have that

2k.1� cos�/k D .�1/k.ei�=2 � e�i�=2/2k

D

2kX
jD0

 
2k

j

!
.�1/j�kei.j�k/� : (8.4)

Thus the normalized 	 is

ck

2kX
jD0

 
2k

j

!
.�1/j�kei.j�k/�

d�

2�
; (8.5)

where

ck �
1�
2k
k

� D .kŠ/2

.2k/Š
: (8.6)
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Using the binomial expansion 0D .1� 1/2k , we have that 
2k

k

!
D�2

2kX
jDkC1

 
2k

j

!
.�1/j�k:

Therefore, we may rewrite (8.5) as

� 2ck

2kX
jDkC1

 
2k

j

!
.�1/j�k

�
1� cos

�
.j � k/�

��d�
2�
: (8.7)

It follows from (5.5) that

V.�/D�2ck

2kX
jDkC1

1

j � k

 
2k

j

!
.�1/j�k cos

�
.j � k/�

�
: (8.8)

Recalling that we need to borrow j˛nj2 from � log.1� j˛nj2/ and that the quadratic
term in Tr.U `C NU `/ equals �`

P1
nD0.˛n N̨nC`C N̨n˛nC`/ up to boundary terms, we

see that the quadratic term in the sum rule is

I2 DP0C 2ck

2kX
jDkC1

 
2k

j

!
.�1/j�kPj�k; (8.9)

where now, instead of (5.16),

P` D
1

2

1X
nD0

.˛n N̨nC`C N̨n˛nC`/: (8.10)

On the other hand,

��.S � 1/k˛��2
2
D

1X
nD0

ˇ̌̌̌ kX
jD0

 
k

j

!
.�1/j˛nCj

ˇ̌̌̌2

D bdyC
kX
jD0

 
k

j

!2
P0C 2

kX
`D1

�k�X̀
jD0

 
k

j

! 
k

`C j

!�
.�1/`P`;

(8.11)

where we use the fact that an ˛nCj1 N̨nCj2 term will contribute to P` if `D jj1 � j2j.

PROPOSITION 8.3
For any k D 0; 1; 2; : : : and `D 0; : : : ; k, we have that

k�X̀
jD0

 
k

j

! 
k

`C j

!
D

 
2k

kC `

!
: (8.12)
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Proof
To pick k � ` elements from among 2k numbered objects, we can pick j from the
first k and k � `� j from the second. Thus

k�X̀
jD0

 
k

j

! 
k

k � `� j

!
D

 
2k

k � `

!
: (8.13)

Since
�
p
q

�
D
�
p
p�q

�
, we have that

�
k

k�`�j

�
D
�
k
`Cj

�
and

�
2k
k�`

�
D
�
2k
kC`

�
. We thus get

(8.12).

Proof of Theorem 8.1
Picking j � k D ` in (8.9), we see that

I2 DP0C 2ck

kX
`D1

 
2k

kC `

!
.�1/`P`;

which by (8.11), (8.12), and (8.6) equals ckk.S � 1/k˛k22. When ˛ 2 `4, by Hölder’s
inequality, all terms in the sum rule but the quadratic are finite. So the Verblunsky
side of the sum rule is finite if and only if k.S � 1/k˛k22 <1. By the sum rule, we
conclude the result.

9. The .2; 1/ case
Our main result in this section is half the Lukic conjecture in the .2; 1/ case. Specifi-
cally, we have the following.

THEOREM 9.1
Let � be a probability measure on @D of the form (1.5) with real Verblunsky coeffi-
cients ¹˛j º1jD0 obeying (1.16)–(1.18). Then the integral on the left-hand side of (1.12)
is finite.

Remark
As noted, this is important because there are examples where Simon’s conditions (i.e.,
(1.16) and (1.18) without (1.17)) hold, but the integral in (1.12) is �1.

We will compute the sum rule guaranteed by Section 3 to say that I2CI4CI6C

L8 <1 () the integral in (1.12) is finite (see (9.29)–(9.34) for notation). Then
we will show that (1.16)–(1.18)) I2 <1;I4 <1;I6 <1;L8 <1. We start by
computing the potential, V , of (3.4) for the .2; 1/ case. As noted (see (5.2)), we have
that

cos2 � D
1

4
.ei� C e�i� /2 D

1

2
cos2� C

1

2
: (9.1)
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Similarly,

cos3 � D
1

8
.ei� C e�i� /3 D

1

4
cos3� C

3

4
cos�: (9.2)

Thus

P.�/D .1� cos�/2.1C cos�/

D .1� cos2 �/.1� cos�/

D 1� cos� � cos2 � C cos3 � (9.3)

D
1

2
�
1

4
cos� �

1

2
cos2� C

1

4
cos3� (9.4)

by (9.1)–(9.2). Thus, since
R

cosk� d�
2�
D ık0, the normalized d	 is

d	.�/D

	
1�

1

2
cos� � cos2� C

1

2
cos3�



d�

2�
: (9.5)

Using (3.4) and (3.7), we conclude that

V.�/D
1

2
cos� C

1

2
cos2� �

1

6
cos3� (9.6)

so that if ˛ is real, then

Tr
�
V.U /

�
D
1

2
Tr.U /C

1

2
Tr.U 2/�

1

6
Tr.U 3/: (9.7)

In earlier sections, we used the CMV matrix representation to compute Tr.U /
and Tr.U 2/. While initially we computed Tr.U 3/ in this way also, we realized the
calculations are simpler in the GGT matrix representation. (GGT and CMV represen-
tations are discussed in [21, Sections 4.1, 4.2].) This is given by

Gk` D h'k; z'`i: (9.8)

The explicit calculation is (see [21, (4.15)])

Gk` D

8̂̂<̂
:̂
�˛`˛k�1

Q`�1
jDk �j ; 0� k � `;

�`; k D `C 1;

0; k � `C 2:

(9.9)

In [21], this is calculated using hˆ�n;P i D kˆnk
2P.0/ if degP � n. An easier

alternative is to use the Szegő recursion (see [21, (1.5.25)]) and inverse Szegő recur-
sion (see [21, (1.5.46)])
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z'n.z/D �n'nC1.z/C N̨n'
�
n.z/; (9.10)

'�j .z/D �j�1'
�
j�1.z/� ˛j�1'j .z/; (9.11)

so

z'n.z/D �n'nC1.z/� N̨n˛n�1'n.z/C N̨n�n�1'
�
n�1.z/

D �n'nC1.z/� N̨n˛n�1'n.z/� N̨n�n�1˛n�2'n�1.z/

C N̨n�n�1�n�2'
�
n�2.z/; (9.12)

which upon iterating yields

z'n.z/D �n'nC1.z/C

nX
kD0

Gkn'k.z/ (9.13)

with G given by (9.9).
When dealing with the GGT representation, it can be an issue that ¹'nº1nD0 is not

a basis but the calculations need only be done for finite matrices where the orthogonal
polynomials are a basis (or one can use the extended GGT basis of [21, Section 4.1]
noting that diagonal matrix elements of G q in the extra basis elements are zero).

Define G .`/ to be the `th diagonal of G so (j; k D 0; : : : ; n� 1)

G
.�1/

jk
D �kık;j�1; (9.14)

G
.`/

jk
D� N̨k˛j�1

h k�1Y
mDj

�m

i
ık;jC`; `� 0; (9.15)

G D

n�1X
`D�1

G .`/: (9.16)

Of course, only G .`1/ � � �G .`q/ with
Pq
mD1 `m D 0 have nonzero main diagonal and

so if we expand G q using (9.16), then only those terms contribute to Tr.G q/, so

Tr.G q/D
X

`1;:::;`qPq
mD1

`mD0

Tr.G .`1/ � � �G .`q//: (9.17)

We can now understand why calculations are easier with the GGT rather than
CMV matrix. In (9.17), the sums start at `m D �1 while in the analogue for CMV,
we start at `m D�2, so at least for q not too large there are fewer terms with GGT.
Moreover, the form of (9.14)–(9.15) is covariant under translation along the diagonal
while the CMV matrix diagonals have an even-odd structure.
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For q D 1, we must have `1 D 0 and for q D 2, we have .`1; `2/D .0; 0/; .1;�1/
or .�1; 1/. Moreover, by cyclicity of the trace, the .1;�1/ and .�1; 1/ terms are equal,
that is, Tr.G 2/D Tr..G .0//2/C2Tr.G .1/G .�1//. We thus recover (4.4) and (5.9) when
˛ is real, that is, up to boundary terms

Tr.G /D I1;2 D�
1X
jD1

˛j˛j�1; (9.18)

Tr.G 2/D I2;2C I2;4; I2;2 D�2

1X
jD2

˛j˛j�2; (9.19)

I2;4 D

1X
jD2

˛2j˛
2
j�1C 2˛j˛

2
j�1˛j�2: (9.20)

For Tr.G 3/, we have up to cyclic permutations, .`1; `2; `3/ D .0; 0; 0/ (once),
.2;�1;�1/; .0; 1;�1/, .0;�1; 1/ (each three times). Thus up to boundary terms

Tr.G 3/D Tr
�
.G .0//3

�
C 3Tr

�
G .2/.G .�1//2

�
C 3Tr.G .0/G .1/G .�1//

C 3Tr.G .0/G .�1/G .1//; (9.21)

D I3;2C I3;4C I3;6; (9.22)

I3;2 D�3

1X
jD3

˛j˛j�3; (9.23)

I3;4 D 3

1X
jD3

˛j .˛
2
j�1C ˛

2
j�2/˛j�3

C 3

1X
jD2

˛j˛j�1.˛j˛j�2C ˛jC1˛j�1/; (9.24)

I3;6 D�

1X
jD1

˛3j˛
3
j�1 � 3

1X
jD3

˛j˛
2
j�1˛

2
j�2˛j�3

� 3

1X
jD2

˛2j˛
3
j�1˛j�2 � 3

1X
jD1

˛3j˛jC1˛
2
j�1: (9.25)

We also write

L�

1X
jD0

log.1� ˛2j /D IL;2C IL;4C IL;2CL8; (9.26)
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IL;2 D

1X
jD0

˛2j ; IL;4 D
1

2

1X
jD0

˛4j ; IL;6 D
1

3

1X
jD0

˛6j ; (9.27)

L8 D�

1X
jD0

�
log.1� ˛2j /� ˛

2
j �

1

2
˛4j �

1

3
˛6j

�
; (9.28)

so the coefficient side of the sum rule is I2C I4C I6CL8, where

I2 D IL;2C
1

2
I1;2C

1

2
I2;2 �

1

6
I3;2 (9.29)

D
1

2

X
j

Œ2˛2j � ˛j˛j�1 � 2˛j˛j�2C ˛j˛j�3�; (9.30)

I4 D IL;4C
1

2
I2;4 �

1

6
I3;4 (9.31)

D
1

2

X
j

Œ˛4j C ˛
2
j˛

2
j�1C 2˛j˛

2
j�1˛j�2 � ˛j˛

2
j�1˛j�3

� ˛j˛
2
j�2˛j�3 � ˛

2
j˛j�1˛j�2 � ˛j˛j�1˛

2
j�2�; (9.32)

I6 D IL;6 �
1

6
I3;6 (9.33)

D
1

2

X
j

�
2

3
˛6j C

1

3
˛3j˛

3
j�1C ˛j˛

2
j�1˛

2
j�2˛j�3

C ˛2j˛
3
j�1˛j�2C ˛j˛

3
j�1˛

2
j�2

�
; (9.34)

where we use the fact that adding a constant to all indices in a sum only changes the
sum by a boundary term.

We start with I2 by using Proposition 5.2. In terms of the Pj of (5.16), up to
boundary terms

I2 D
1

2
.2P0 �P1 � 2P2CP3/ (9.35)

by (9.30). On the other hand, by the same calculation that gave (9.3), .S � 1/2.S C
1/D S3 � S2 � S C 1, so�

.S � 1/2.S C 1/˛
�
j
D ˛jC3 � ˛jC2 � ˛jC1C ˛j : (9.36)

Thus X
j

�
.S � 1/2.S C 1/˛

�2
j
D 4P0 � 2P1 � 4P2C 2P3: (9.37)
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We conclude by Proposition 5.2 that up to boundary terms

I2 D
1

4

��.S � 1/2.S C 1/˛��2
2
; (9.38)

and thus

(1.16)) I2 <1: (9.39)

By Hölder’s inequality,

(1.18)) I6 <1: (9.40)

By Proposition 4.1,

(1.18))L8 <1: (9.41)

Thus, we need to focus on I4. Let ˇ� .S C 1/˛. By Theorem 2.6, we have that

� � .S � 1/ˇD .S2 � 1/˛ 2 `3: (9.42)

The following is the key first step.

PROPOSITION 9.2
(a) For any m1;m2;m3;m4, we have thatX

j

j˛jCm1˛jCm2�jCm3�jCm4 j<1: (9.43)

(b) For any m1;m2;m3;m4, we have thatX
j

ˇ̌
˛jCm1˛jCm2˛jCm3 Œ�jCm4C1 � �jCm4 �

ˇ̌
<1: (9.44)

(c) For any m1;m2;m3;m4, we have thatX
j

˛jCm1˛jCm2˛jCm3�jCm4 (9.45)

is conditionally convergent.

Remarks
(1) We only need conditional summability, so, since �j D ˛jC2 � ˛j , (c) implies

the conditional summability of the sum in (9.43) without the j � j. However, we
use (a) in the proof of (c).
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(2) To avoid having to worry about boundary terms at 0, we extend all sequences
to �1 by setting ˛n D 0 for n��1. This does not affect conditional conver-
gence of any sums. Since ˛ 2 `6, all of ˛;ˇ; � go to zero as n!˙1.

Proof of Proposition 9.2
(a) We have 1

6
C 1

6
C 1

3
C 1

3
D 1, so since ˛ 2 `6, � 2 `3, Hölder’s inequality implies

(9.43).
(b) We have 1

6
C 1
6
C 1
6
C 1
2
D 1, so since ˛ 2 `6; .S�1/� 2 `2, Hölder’s inequal-

ity implies (9.44).
(c) The intuition is simple. The continuum analogue is that if f is C 1 on R,

f .x/! 0 as jxj ! 1, then
R R2
�R1

f .x/3f 0.x/dx D 1
4

R R2
�R1

Œf 4�0.x/dx has a zero
limit. The sum in (9.45) is a discrete analogue so the key will be a summation by
parts.

Since we will be summing by parts, we need to know the appropriate discrete
Leibniz rule. Let p 2 Z n ¹0º and D D Sp � 1 so that .Da/n D anCp � an. Then�

D.ab/
�
n
D anCpbnCp � anbn

D an.Db/nC .Da/n.S
pb/n (9.46)

or D.ab/D a.Db/C .Da/Spb. By induction, one sees that

D.a.1/ � � �a.k//D

kX
jD1

a.1/ � � �a.j�1/.Da.j //Spa.jC1/ � � �Spa.k/: (9.47)

Consider the sum in (9.45) first if m1 Dm2 Dm3 Dm4 D 0. Let D D S2 � 1.
By (9.47),

D.˛4/D .D˛/.S2˛/3C ˛.D˛/.S2˛/2C ˛2.D˛/.S2˛/C ˛3.D˛/: (9.48)

Given two sequences � and 	, write �
:
D 	 to mean � � 	 2 `1. In (9.48), D˛D � , so

if we write S2˛D ˛C � , then the � term produces products of two ˛’s and two � ’s,
so in `1 by (a). Thus

D.˛4/
:
D 4.D˛/˛3 D 4�˛3: (9.49)

The conditional sum of D.˛4/ is finite and indeed zero since ˛ 2 `6 and

nX
�k

�
D.˛4/

�
j
D ˛4nC2C ˛

4
nC1 � ˛

4
�k � ˛

4
�kC1! 0:

Thus 4�˛3 is conditionally summable.
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Consider next the case m1 D m2 D 1, m3 D m4 D 0. By (9.47) and the same
argument that led to (9.49),

D
�
.S˛/2˛2

� :
D 2.S˛/2˛.D˛/C 2˛2.DS˛/S˛ (9.50)
:
D 2.S˛/2˛.D˛/C 2.S2˛/2.DS˛/S˛ (9.51)

since, as above, we can replace ˛ by S2˛ making an `1 error in the four-fold product.
Telescoping as in (9.49), we have that D..S˛/2˛2/ is conditionally summable.

Note that whether a sequence is conditionally summable or not does not change by
a translation of index, so we can replace .S2˛/2.DS˛/S˛ by .S˛/2˛.D˛/ and con-
clude that

D
�
.S˛/2˛2

�
� 4.S˛/2˛D˛ (9.52)

is conditionally summable and thus .S˛/2˛D˛ is conditionally summable, proving
the result when m1 Dm2 D 1, m3 Dm4 D 0.

Now consider general mj . Since .S � 1/� 2 `2, we can change m4 to any value
we want making an `1 change. Similarly, by shifting by multiples of two units, we can
change each ofm1;m2;m3 to 0 or 1. If they are all equal after this, setm4 to the com-
mon value and get conditional convergence by the case .0; 0; 0; 0/. If the first threem’s
have two equal and one unequal, set m4 to the unequal value and get either .1; 1; 0; 0/
or .0; 0; 1; 1/. We have handled the first, and by using the S2 � 1 trick, .0; 0; 1; 1/ is
the same as .0; 0;�1;�1/, and by covariance, that is the same as .1; 1; 0; 0/.

Next, we recall (see Theorem 2.6) the remarkable fact that if (1.16)C (1.18) hold,
then .S � 1/˛ 2 `4 () .S � 1/2˛ 2 `4!

Proof of Theorem 9.1
As we have seen, we need only show that I4 is conditionally convergent. We only used
(1.16)C (1.18) so far, but not (1.17) which we will use in the form .S � 1/˛ 2 `4.

We begin by noting that because of Proposition 9.2(c),
P
˛3j .˛jC1 � ˛j�1/ is

conditionally convergent. Using that index shifts modify sums only by boundary
terms, we conclude that X

j

.˛3j˛j�1 � ˛j˛
3
j�1/ (9.53)

is conditionally convergent. Since Œ..S � 1/˛/j�1�
4 D Œ˛j � ˛j�1�

4, using again that
index shifts do not affect conditional convergence and (9.53), we see that k.S �
1/˛k44 <1 implies that
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j

Œ2˛4j � 8˛
3
j˛j�1C 6˛

2
j˛

2
j�1� (9.54)

is conditionally convergent.
On the other hand, by Proposition 9.2(c), in (9.32) we can replace ˛j�2 by ˛j

and ˛j�3 by ˛j�1 without affecting conditional convergence. If we do that and use
(9.53) again, we see that I4 is a conditionally convergent sum plus

eI4 DX
j

Œ˛4j C 3˛
2
j˛

2
j�1 � 4˛

3
j˛j�1�: (9.55)

This is half the sum in (9.54), so (1.17) implies conditional convergence of the sum
in eI4.
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[18] , On higher-order Szegő theorems with a single critical point of arbitrary
order, Const. Approx. 44 (2016), 283–296. MR 3544001.
DOI 10.1007/s00365-015-9320-4. (2857, 2890)

[19] F. NAZAROV, F. PEHERSTORFER, A. VOLBERG, and P. YUDITSKII, On generalized sum
rules for Jacobi matrices, Int. Math. Res. Not. IMRN 2005, no. 3, 155–186.
MR 2130241. DOI 10.1155/IMRN.2005.155. (2857, 2866, 2876)

[20] L. NIRENBERG, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa
(3) 13 (1959), 115–162. MR 0109940. (2864)

[21] B. SIMON, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory,
Amer. Math. Soc. Colloq. Publ. 54, Amer. Math. Soc., Providence, 2005.
MR 2105088. (2857, 2858, 2870, 2871, 2872, 2874, 2881, 2882, 2893, 2894)

[22] , Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, Amer.
Math. Soc. Colloq. Publ. 54, Amer. Math. Soc., Providence, 2005. MR 2105089.
DOI 10.1090/coll/054.2/01. (2871, 2877)

http://www.ams.org/mathscinet-getitem?mr=3425894
https://doi.org/10.1016/j.jfa.2015.08.009
http://www.ams.org/mathscinet-getitem?mr=3612269
https://doi.org/10.1142/S2010326317500058
http://arxiv.org/abs/arXiv:1601.08135v2
http://www.ams.org/mathscinet-getitem?mr=2335688
https://doi.org/10.1007/s00365-006-0650-7
https://doi.org/10.1103/PhysRevD.21.446
http://www.ams.org/mathscinet-getitem?mr=2330626
https://doi.org/10.1002/cpa.20160
http://www.ams.org/mathscinet-getitem?mr=1999923
https://doi.org/10.4007/annals.2003.158.253
http://www.ams.org/mathscinet-getitem?mr=2053342
https://doi.org/10.1090/S0002-9939-03-07244-7
http://www.ams.org/mathscinet-getitem?mr=2013753
https://doi.org/10.1007/s00220-003-0924-3
http://www.ams.org/mathscinet-getitem?mr=3078277
https://doi.org/10.1007/s00365-013-9197-z
http://www.ams.org/mathscinet-getitem?mr=3544001
https://doi.org/10.1007/s00365-015-9320-4
http://www.ams.org/mathscinet-getitem?mr=2130241
https://doi.org/10.1155/IMRN.2005.155
http://www.ams.org/mathscinet-getitem?mr=0109940
http://www.ams.org/mathscinet-getitem?mr=2105088
http://www.ams.org/mathscinet-getitem?mr=2105089
https://doi.org/10.1090/coll/054.2/01


2902 BREUER, SIMON, and ZEITOUNI
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