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1. Introduction
Let e ⊂ C be a compact, not finite set. For any continuous, complex-valued func-
tion, f , on e, let

‖f‖e = sup
z∈e

|f(z)|. (1.1)

The Chebyshev polynomial, Tn, of e is the (it turns out unique) degree n monic
polynomial that minimizes ‖P‖e over all degree n monic polynomials, P . We define

tn = ‖Tn‖e. (1.2)
This paper continues our study [3, 4] of tn and Tn, especially their asymptotics
as n → ∞. We let C(e) denote the logarithmic capacity of e (see [18, Sect. 3.6] or
[1, 7, 10, 11, 16] for the basics of potential theory).

Szegő [22] proved for all compact e ⊂ C and all n that
tn ≥ C(e)n, (1.3)

while Schiefermayr [17] proved if e ⊂ R, then
tn ≥ 2C(e)n. (1.4)

This paper had its genesis in a question asked us by J. P. Solovej about which
e have equality in (1.3) or (1.4). After we found the solution described below, we
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found that for e ⊂ R the question was answered by Totik [25] using, in part,
ideas of Peherstorfer [15] (related ideas appear earlier in Sodin–Yuditskii [20]).
Moreover, for a special set of domains in C, it was answered implicitly (without
proof) in Totik [26]. We feel it appropriate to publish our proofs because [26] is
neither explicit nor comprehensive and mainly because our proofs are different
and, we feel, illuminating. In addition, the sets fn which we introduce in Section
3 may be useful in the future. Here are our two main results:

Theorem 1.1 (Totik [25]). Let e ⊂ R. Fix n. Then tn = 2C(e)n if and only if
there is a polynomial, P, of degree n so that

e = P−1([−2, 2]). (1.5)

Remarks. 1. We emphasize that in (1.5), we mean that any z ∈ C with P (z) ∈
[−2, 2] has z ∈ e (as well as P (e) = [−2, 2]) not just for z ∈ R.

2. It is easy to see that Tn is then a multiple of P .
3. In particular, if t1 = 2C(e) and e ⊂ R, then e is an interval and equality

holds in (1.4) for all n. We note that Totik [27, Theorem 3] has a stronger related
result. He proves that if limn→∞‖Tn‖e/C(e)n = 2 for some e ⊂ R, then e is an
interval.

4. Totik mentions that the ideas in the result and proof are mainly in Pe-
herstorfer [15]. The sets for which equality holds in (1.4) are precisely the sets that
Peherstorfer called T -sets and which Sodin–Yuditskii [20] call n-regular sets. They
are precisely the spectra of the period n Jacobi matrices which we called period-n
sets in [3].

Theorem 1.2. Let e ⊂ C. Fix n. Then tn = C(e)n if and only if there is a
polynomial, P, of degree n with

O∂(e) = P−1(∂D) (1.6)
where O∂ is the outer boundary and D the open unit disk.

Remarks. 1. If e is compact, then C \ e has exactly one unbounded component,
e♯. Its boundary is O∂(e). We call C \ e♯ the interior of O∂(e) and e♯ the exterior
of O∂(e).

2. We’ll state several equivalent forms of this theorem in Sect. 3 below.
3. When e is a finite union of analytic Jordan curves lying exterior to each

other, this result is stated in passing and without proof in Totik [26]. In that case,
O∂(e) = e so Totik doesn’t mention outer boundaries.

4. Polynomial inverse images of ∂D are called lemniscates (see [21]). We’ll say
more about their structure in Section 3, but we note that generically they are a
union of at most deg(P ) disjoint mutually exterior analytic Jordan curves and in
general, a union of at most deg(P ) piecewise analytic Jordan curves with disjoint
interiors but with possible intersections at finitely many points.

5. It is easy to see that Tn is a multiple of P .
6. In particular, t1 = C(e) if and only if O∂(e) is a circle.
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It follows from these theorems that if tn has equality in (1.3) (resp. e ⊂ R
and tn has equality in (1.4)), then for any k = 1, 2, . . . , tnk also has equality in
(1.3) (resp. (1.4)) (by using a suitable scaling of P k). We want to note that this
can be proven directly:

Theorem 1.3. If tn has equality in (1.3), then so does tnk for k = 1, 2, . . .

Proof. Since (Tn)
k is monic, tnk = ‖Tnk‖e ≤ ‖(Tn)

k‖e = tkn = C(e)nk if tn has
equality in (1.3). By Szegő’s lower bound, we see that tnk = C(e)nk. �

Theorem 1.4. If e ⊂ R and tn has equality in (1.4), then so does tnk for k =
1, 2, . . .

Proof. We can’t use (Tn)
k since that only leads to tnk ≤ 2kC(e)nk. The key is

to realize that z 7→ zk is the kth Chebyshev polynomial for {z | |z| ≤ tn}, so we
replace z 7→ zk by the kth Chebyshev polynomial, Sk, for gn ≡ [−tn, tn]. Since
C([−tn, tn]) = tn/2 and equality in (1.4) holds for all n for intervals, we have that
‖Sk‖gn = 2(tn/2)

k. Since Sk ◦Tn is a monic polynomial of degree kn, we have that

tnk ≤ ‖Sk ◦ Tn‖e ≤ ‖Sk‖gn
= 2(2C(e)n/2)k = 2C(e)kn

so, as in the last proof, tnk = 2C(e)kn. �

We prove Theorem 1.1 in Sect. 2, Theorem 1.2 in Sect. 3, consider when the
upper bound we found in [3] is optimal in Sect. 4 and discuss related problems
in Sects. 5 and 6. JSC and MZ would like to thank Fiona Harrison and Elena
Mantovan for the hospitality of Caltech where much of this work was done. We
are delighted to dedicate this paper to the memory of Boris Pavlov. One of us (BS)
in particular owes Boris a tremendous debt for having sent him talented under-
graduates that Boris mentored in St. Petersburg (Kiselev) and Aukland (Killip)
who then did doctoral studies at Caltech.

2. The Real Case
In this section, we’ll prove Theorem 1.1. Both it and Theorem 1.2 rely on the
following simple fact.

Proposition 2.1. Let e ⊂ g be two compact subsets of C with positive capacity
and let ρg (resp. ρe) be the potential theoretic equilibrium measure for g (resp. e).
Then C(e) = C(g) if and only if supp(ρg) ⊂ e.

Remark. Section 4 has another proof of this; see Proposition 4.1.

Proof. Let E(µ) be the logarithmic potential energy of a finite positive measure,
i.e.,

E(µ) =
¨

log(|x− y|−1) dµ(x)dµ(y) (2.1)
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so that ρg is the unique probability measure minimizing E(µ) among all probability
measures with supp(µ) ⊂ g. Since C(e) = e−E(ρe), we have that

C(e) = C(g) ⇐⇒ E(ρe) = E(ρg) ⇐⇒ ρe = ρg (2.2)
for, since ρe is a trial measure for the g potential minimum problem and the
minimizer is unique, we have that E(ρe) ≥ E(ρg) with equality if and only if
ρe = ρg.

If ρe = ρg, since supp(ρe) ⊂ e, we see that supp(ρg) ⊂ e. Conversely, if
supp(ρg) ⊂ e, then ρg is a trial measure for the e potential problem and so the
minimizer since it is the minimizer for the larger minimization problem. It follows
that ρe = ρg so, by (2.2), C(e) = C(g). �

Recall that, given e ⊂ R, in [3], we defined
en = T−1

n ([−tn, tn]) (2.3)
and proved that

e ⊂ en ⊂ R (2.4)
and

tn = 2C(en)
n. (2.5)

It is also easy to see [3, (2.9)] that if

∆n(z) =
2Tn(z)

tn
(2.6)

then the potential theoretic Green’s function for en is given by

Gen(z) =
1

n
log

∣∣∣∣∣∣∆n(z)

2
+

√(
∆n(z)

2

)2

− 1

∣∣∣∣∣∣ . (2.7)

This can be shown to imply that the equilibrium measure for en is [3, Theorem 2.3]

dρen(x) =
|∆′

n(x)|
πn
√

4−∆n(x)2
χen(x) dx (2.8)

where χen is the characteristic function of en. Since ∆n is a polynomial, ∆′
n is

non-vanishing on en except for a possible finite set in en (which one can specify
precisely but we don’t need to). We have the following:

Lemma 2.2.
supp(ρen) = en. (2.9)

Proof of Theorem 1.1. Since e ⊂ en, by Proposition 2.1, we have that
C(e) = C(en) ⇐⇒ en = supp(ρen) ⊂ e ⇐⇒ e = en. (2.10)

On the one hand, by (2.5), tn = 2C(e)n ⇒ C(e) = C(en) ⇒ e = en ⇒ e =
∆−1

n ([−2, 2]) so (1.5) holds with P = ∆n. On the other hand, if (1.5) holds, it is
easy to see that Tn = cP and then that en = e, so by (2.5), we get equality in
(1.4). �
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The above proof is only a slight variant of the proof in Totik [25]. We include
it mainly to set the stage for the next section.

3. The Complex Case
In this section, we will prove Theorem 1.2. The key to the proof is to define
a complex analog of the sets en. We believe that these sets, fn, will be useful
elsewhere and are the most important idea in this paper. Given a compact set
e ⊂ C and its Chebyshev polynomial, Tn, we define

fn = {z | |Tn(z)| ≤ tn} = T−1
n

(
{z | |z| ≤ tn}

)
. (3.1)

Theorem 3.1. (a)
e ⊂ fn; (3.2)

(b)
‖Tn‖e = tn = C(fn)

n. (3.3)

Remarks. 1. These are analogs of (2.4) and (2.5).
2. They immediately imply (1.3) (not that Szegő’s proof [19, Theorem 4.3.7]

is very hard) since (3.2)⇒ C(fn) ≥ C(e).

Proof. (a) is trivial.
(b) Let h be defined on C by

h(z) =

{
0, if |Tn(z)| ≤ tn,
1
n log

(
|Tn(z)|

tn

)
, if |Tn(z)| ≥ tn.

(3.4)

Then h is continuous on C and harmonic on C \ fn and near infinity has the
asymptotics

h(z) = log |z| − 1
n log(tn) + o(1). (3.5)

From the first term and h(z) = 0 on fn, we see that h is the Green’s function,
Gfn , for fn. By the realization of the capacity in the asymptotics of the Green’s
function [18, (3.7.4) & (3.7.6)] and (3.5), we see that

C(fn) = t1/nn

which is (3.3). �

The proof of (b) just depended on the form of fn and not that, a priori, Tn

is a Chebyshev polynomial. We thus can prove (see also [16, Theorem 5.2.5]):

Theorem 3.2. Let P be a degree n polynomial with
P (z) = czn + · · · (3.6)

and let
Sα = {z | |P (z)| ≤ α} (3.7)

for some α > 0. Then
C(Sα) = (α/|c|)1/n (3.8)
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and for Sα, we have Tn = c−1P . In particular, Sα obeys
‖Tn‖Sα

= C(Sα)
n (3.9)

Proof. As in the proof of Theorem 3.1, outside of Sα, the Green’s function is
1
n log(|P (z)|/α), whose asymptotics at infinity is log(|z|) + 1

n log(|c|/α) + o(1) so
(3.8) holds.

Note that Q = c−1P is a monic polynomial with ‖Q‖Sα = C(Sα)
n. By

Szegő’s lower bound, ‖Q‖Sα ≤ tn which implies that Q = Tn by the minimum and
uniqueness properties of Tn. �

Clearly,
∂Sα = {z | |P (z)| = α} ≡ Lα. (3.10)

This is a lemniscate [21]; |P | is C1 away from the zeros of P and, using the
Cauchy–Riemann equations, it is easy to see that if P (z0) 6= 0 then ∇|P |(z0) =
0 ⇔ P ′(z0) = 0. Hence the critical values of |P | are precisely those α for which
there is a z0 with P ′(z0) = 0 and |P (z0)| = α. At non-critical values, Lα is thus
a union of disjoint, mutually exterior, analytic Jordan curves. For α small, the
number of curves is exactly the number of distinct zeros of P . As α increases,
the number of components changes exactly as α reaches a critical value, α0, at
which point the number of components decreases by the number of critical points
(counting multiplicity) on Lα0 . At such values, the closure of the components of
the non-critical points are piecewise analytic Jordan curves with disjoint interiors
and with corners at the critical points. For α large, Lα is a single analytic Jordan
curve.

We call Sα, which is the union of the insides of the Jordan curves in Lα, a
solid lemniscate. It is easy to describe the equilibrium measure of such sets.

Theorem 3.3. Fix a degree n polynomial P and α > 0. Then
(a)

dρ ≡ 1

2πin

P ′(z)

P (z)
dz � Lα (3.11)

is a probability measure;
(b) On Lα, we have that

P ′(z)

P (z)
dz =

∣∣∣∣P ′(z)

P (z)

∣∣∣∣ |dz|; (3.12)

(c)

dρ =
1

2πn

d

|dz|
Arg(P (z))|dz| � Lα; (3.13)

(d) The measure in (3.11) is the equilibrium measure of Sα;
(e) supp(dρ) = Lα.

Remarks. 1. The symbol dz on a curve needs an orientation. We’ll specify this
orientation in the proof. Basically, it is counter-clockwise around Sα.
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2. The proof shows that each Jordan curve in Lα has ρ measure k/n, where
k is the number of zeros of P (counting multiplicity) inside that curve.

3. One can also prove the critical (d) by using the formula for the Green’s
function and by evaluating the normal derivative of log(|P |) on Lα.

Proof. (a), (b), and (c). Since P has no zeros on Lα, we can locally define an
analytic function W (z) = log(P (z)) on each Jordan curve in Lα. Its derivative is
P ′(z)/P (z) irrespective of which branch of log that we take. Moreover, if locally
P (z) = αeiθ(z) on each such curve and if we parameterize the curve by arc length,
γ(s), with the curve oriented so that Sα is to the curve’s left, then, for z1 and z0
nearby points with zj = γ(sj) where s1 > s0, we have that θ1 ≡ θ(z1) > θ(z0) = θ0.
This is easy to see using the Cauchy–Riemann equations for log(P (z)) and the
fact that its real part increases in the direction outwards from Sα. Moreover, if
dθ(γ(s))/ds vanishes at s = s0, since ReW (z) is constant on γ we conclude that
W ′(z0) = 0 ⇒ P ′(z0) = 0. Thus dθ/ds is strictly positive except at the critical
points which implies that θ is strictly increasing on γ.

Clearly,
ˆ z1

z0

P ′(z)

P (z)
dz = log

(
P (z1)

P (z0)

)
= log

(
αeiθ1

αeiθ0

)
= i(θ1 − θ0),

proving that the measure in (3.11) is a positive measure. By the argument principle,
n times the integral over Lα is the number of zeros in Sα, so, the measure has
total mass 1. This proves (a) and the formula for P ′/P in terms of θ′ proves (c).
The positivity of the measure in (a) proves (b).

(d) Fix w ∈ C \ Sα. Let Γ be a single Jordan curve in Lα and R its interior.
Then log(z − w) is analytic in a neighborhood of R, so, by the residue calculus
and the definition of dρ, if

P (z) = c
n∏

j=1

(z − ζj) (3.14)

then ˆ
Γ

log(z − w)dρ(z) =
1

n

∑
ζj∈R

log(ζj − w).

Taking real parts and summing over the Jordan curves, we getˆ
log |z − w| dρ(z) = 1

n
log(|P (w)|/c), (3.15)

which we have seen is the Green’s function up to a constant. This implies that dρ
is the equilibrium measure.

(e) We’ve seen that θ′ is positive except on the finite set of critical points so
the support is all of Lα. �

The last preliminary we need is
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Lemma 3.4. Fix α > 0 and let e ⊂ Sα. Then
C(e) = C(Sα) ⇐⇒ Lα ⊂ e. (3.16)

Proof. Immediate from Proposition 2.1 and the last theorem. �
Proof of Theorem 1.2. Suppose equality holds in (1.3). Then C(e) = C(fn). Let
P = Tn/tn so that fn = Sα=1. By (3.16), P−1(∂D) ⊂ e ⊂ P−1(D). By the second
inclusion, C \ P−1(D) is contained in the unbounded component of C \ e. By the
first inclusion, we conclude that O∂(e) = P−1(∂D).

Conversely, by Theorem 3.2, if (1.6) holds, let S1 be the solid lemniscate
associated to P . By (1.6) and the lemma, C(e) = C(S1). By Theorem 3.2, the
monic multiple, Q, of P is the Chebyshev polynomial for S1 and ‖Q‖S1 = C(S1)

n.
Since C \ S1 ⊂ C \ O∂(e), we have that e ⊂ S1 and thus ‖Q‖e ≤ ‖Q‖S1

= C(e)n.
This implies that Q is the Chebyshev polynomial of e and that equality holds in
(1.3). �

We end this section by exploring some alternate forms and consequences of
Theorem 1.2.

Corollary 3.5. Let e be a compact subset of C so that C \ e is connected. Fix n.
Then tn = C(e)n if and only if e is a solid lemniscate.

Remark. It is fairly easy to prove Theorem 1.2 from this result.

Proof. By Theorem 1.2, this is equivalent to showing that if C\ e is connected and
O∂(e) = Lα, then e = Sα. To say that O∂(e) = Lα means that the unbounded
component of C \ e is C \ Sα. If that is so and there is only one component, then
C \ Sα = C \ e so e = Sα. �

Here are other equivalences that are easy to check given our earlier arguments.

Theorem 3.6. tn = C(e)n ⇐⇒ ∂fn ⊂ e.

Theorem 3.7. tn = C(e)n if and only if there is a polynomial, P , and α > 0 so
that Lα ⊂ e ⊂ Sα.

4. Equality in a Totik–Widom Upper Bound
In [3], we dubbed an upper bound of the form ‖Tn‖e ≤ QC(e)n a Totik–Widom
bound after Widom [28] and Totik [23] who proved it when e ⊂ R is a finite gap
set. In that paper, we proved that

‖Tn‖e ≤ 2 exp(PW (e))C(e)n (4.1)
where PW (e) =

∑
w∈C Ge(w) with C the set of critical points (in C) of Ge (when

e ⊂ R, they lie in R). PW stands for Parreau–Widom who singled out sets with
PW (e) < ∞ in [14, 29]. We’ll call sets that are regular for potential theory and
obey this condition, PW sets. Our main goal in this section is to discuss when one
has equality in this bound.
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Since we want to say something about a formula for fn, we recall the proof
in a more general context, beginning with

Proposition 4.1. Let e ⊂ g be two compact subsets of C with positive capacity
and let ρg (resp. ρe) be the potential theoretic equilibrium measure for g (resp. e).
Then

log

(
C(g)

C(e)

)
=

ˆ
Ge(z)dρg(z). (4.2)

Remark. Since Ge(z) ≥ 0, this implies that C(g) = C(e) if and only if Ge(z) = 0
for ρg-a.e. z in supp(ρg). Since Ge(z) = 0 ⇒ z ∈ e and Ge(z) = 0 for q.e. z ∈ e, this
happens if and only if supp(ρg) ⊂ e. This gives an alternate proof of Proposition
2.1

Proof. It is well-known [18, Theorem 3.6.8] that near z = ∞, we have that Gf(z) =
log |z| − log(C(f)) + O(1/z). Let h(z) ≡ Ge(z)−Gg(z) and note that

h(z) = log

(
C(g)

C(e)

)
+ O(1/z) (4.3)

near ∞. Thus h is harmonic on C\g and bounded near infinity, so harmonic there.
It is known [18, Corollary 3.6.28] that dρg is not just the equilibrium measure but
it is harmonic measure at ∞ in the sense that if H(z) is harmonic and bounded
on (C ∪ {∞}) \ g with q.e. boundary values on ∂g, then

H(∞) =

ˆ
H(z)dρg(z). (4.4)

Taking H = h and noting that q.e., h � g = Ge, we get (4.2) from (4.3). �

Theorem 4.2. (a) For any compact e ⊂ R,

‖Tn‖e = 2C(e)n exp

(
n

ˆ
Ge(x) dρen(x)

)
. (4.5)

(b) For any compact f ⊂ C,

‖Tn‖f = C(f)n exp

(
n

ˆ
Gf(z) dρfn(z)

)
. (4.6)

Remark. (a) is from [3]; (b) is new although the proof closely follows the proof
of (a) in [3].

Proof. Immediate from (2.5), (3.3) and (4.2). �

The following restates the proof of (4.1) from [3] and answers the question
of when equality holds.

Theorem 4.3. (4.1) holds and if for some e ⊂ R and n, we have equality in (4.1),
then e is an interval.
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Proof. The set en \ e consists of some number of intervals in the gaps of e, at most
one per gap [3, Theorem 2.4] and ρen is a purely a.c. measure [3, Theorem 2.3]. In
each gap, K, there is a single critical point, wK of Ge and these are all the critical
points. Moreover, in each gap, Ge is strictly concave so Ge takes its maximum
value for the gap exactly at the single point wK . Moreover, ρen(en ∩K) ≤ 1/n [3,
Theorem 2.4], so

´
K
Ge(x) dρen < Ge(wK)/n since dρen is absolutely continuous.

(4.1) follows by summing over gaps and we only get equality in (4.1) if there are
no gaps in e, i.e., if e is a closed interval. �

We can also answer when equality in the upper or lower bound occurs asymp-
totically along a subsequence. In our paper with Yuditskii [4], we focused on sub-
sequences {nj}∞j=1 where the zeros of Tnj in gaps had limits. There is at most one
zero in each gap, K [3, Theorem 2.3]. Let G denote the set of all gaps of e, i.e.,
bounded components of R \ e. In [4], we defined what we called a gap collection, a
subset G0 ⊂ G and for each K ∈ G0, a point xK ∈ K. We considered subsequences,
Tnj , so that for K ∈ G \ G0, as nj → ∞, either Tnj has no zero in K or the zero
goes to the one of the two edges of K and so that for K ∈ G0, there is a zero for
large nj which goes to xK as nj → ∞. This describes all possible limit points of
the set of zeros.

Theorem 4.4. Fix e ⊂ R, a compact set obeying the PW condition, and a subse-
quence with an associated limiting zero gap collection, G0 and {xK}K∈G0

. Then

lim
j→∞

‖Tnj
‖e/C(e)nj = 2 exp

( ∑
K∈G0

Ge(xK)

)
. (4.7)

Proof. For any K ∈ G and any j, define

vj(K) = nj

ˆ
K

Ge(x) dρenj
(x) (4.8)

and
V (K) = sup

x∈K
Ge(x) = Ge(wK). (4.9)

Since, by the PW hypothesis, V (K) is summable and vj(K) ≤ V (K), the
dominated convergence theorem implies that

lim
j→∞

∑
K∈G

vj(K) =
∑
K∈G

lim
j→∞

vj(K). (4.10)

If K ∈ G \ G0, since ρenj
(K) ≤ 1/nj [3, Theorem 2.4] and Ge → 0 at the

edges, vj(K) → 0.
If K ∈ G0, by [3, Theorem 5.1], there is for j large a single, exponentially

small band of enj
entirely in K with xK in the band and ρenj

(K) = 1/nj . It
follows that vj(K) → Ge(xK). Thus, by (4.10),

∑
K∈G vj(K) →

∑
K∈G0

Ge(xK).
By (4.5), we get (4.7). �



Chebyshev Polynomials, III 241

Corollary 4.5. Fix e ⊂ R, a compact set obeying the PW condition, and a
subsequence with an associated limiting zero gap collection, G0 and {xK}K∈G0 .
Then

(a) If G0 is empty, we have
lim
j→∞

‖Tnj‖e/C(e)nj = 2. (4.11)

(b) If G0 = G and, for each K, xK = wK , the critical point in the gap, we
have

lim
j→∞

‖Tnj
‖e/C(e)nj = 2 exp(PW (e)). (4.12)

In general, we cannot say when there exist any subsequences of the type in
the Corollary but can with a few extra assumptions (see the discussion after the
example). We can analyze an especially simple case completely.

Example 4.6. Fix 0 < a < b and let e = [−b,−a]∪[a, b], a two band set symmetric
about 0. Then for n odd, Tn is odd (by uniqueness of the Chebyshev polynomial),
so the unique zero in the gap (−a, a) is at x = 0 which, by symmetry, is the critical
point of Ge in the gap. Thus the ratio along the odds is given by (4.12).

On the other hand, for n even, Tn is even, so by simplicity of zeros, non-
vanishing at 0. Since there is at most one zero in (−a, a), there cannot be any, so
G0 is empty and thus, the ratio along the evens is given by (4.11). In fact, more is
true. If

P (x) = 2− 4(x− b)2

(a− b)2

then e = P−1([−2, 2]), so ‖T2k‖e = 2C(e)2k for all k and the lower bound is an
equality for all even numbers. �

In [4], we discussed limits of Tn/‖Tn‖e for e ⊂ R under a stronger condition
than PW called DCT. If e has what we called a canonical generator, which holds
in a generic sense, then [4, Theorem 5.1] every Blaschke product occurs as a limit
point of the normalized Chebyshev polynomials which means one has a limit with
any set of simple zeros in any set of gaps. It follows that in this generic DCT case,
the set of limit points of ‖Tn‖e/C(e)n is exactly the interval [2, 2 exp(PW (e))].

Finite gap sets are always DCT and it is not hard to see that they have a
canonical generator in the sense of [4] if and only if the harmonic measures of the
bands are rationally independent (except for the trivial relation that they sum to
1). Moreover, it is known (Totik [24]) that for sets with q gaps (which is a 2q + 2
dimensional space described by a1 < b1 < · · · < aq+1 < bq+1) the condition of
rationally independent harmonic measures is satisfied on the compliment of a set
of dimension q + 2 so this rational independence condition is highly generic. We
thus have

Theorem 4.7. Let e ⊂ R be a set with q gaps so that the harmonic measures of
any q of the q + 1 bands are rationally independent. Then the set of limit points
of ‖Tn‖e/C(e)n is exactly the interval [2, 2 exp(PW (e))].
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5. On a Theorem of Erdős
For this section, it is useful to define dual Chebyshev polynomials as Dn ≡
Tn/‖Tn‖e. They are related to Chebyshev polynomials as dual Widom maximizers
are related to Widom minimizers, namely among all polynomials, p, of degree n
with positive leading coefficient and ‖p‖e ≤ 1, they are the one with largest leading
coefficient. As such, for any such polynomial, p, one has that |p(z)| ≤ |Dn(z)| for
|z| large. The question is how large.

In [5], Erdős proved

Theorem 5.1. Let e = [−1, 1]. Let p be a degree at most n polynomial with real
coefficients and ‖p‖e ≤ 1. Then for all |z| ≥ 1, one has that

|p(z)| ≤ |Dn(z)|. (5.1)

Our goal in this section is first of all to advertise this result but also to
note two results related to this. First of all, we want to note that Erdős’ method
immediately implies

Theorem 5.2. Let e ⊂ R be compact. Let D be the minimum diameter disk
containing e. Let p be a degree at most n polynomial with real coefficients. Then
for z ∈ C \D, one has that

|p(z)| ≤ ‖p‖e|Dn(z)|. (5.2)

Remark. If α = minx∈e x and β = maxx∈e x, then D has center 1
2 (α + β) and

diameter β − α.

Theorem 5.3. Let e ⊂ C be a solid, degree n, lemniscate. Then (5.2) holds for
all polynomials p of degree at most n and all z ∈ C \ e.

Remark. This implies that for general compact e ⊂ C, we have
|p(z)| ≤ ‖p‖e|Dn(z)| (5.3)

for z ∈ C \ fn. Note that in general one cannot replace z ∈ C \ fn by z ∈ C \ e.

Proof of Theorem 5.3. Without loss, we can suppose that ‖p‖e = 1. From The-
orem 3.2 we know that e = {z | |Dn(z)| ≤ 1}. Thus all zeros of Dn lie in e, so
f(z) ≡ p(z)/Dn(z) is analytic in C \ e. It is bounded at ∞, so ∞ is a removable
potential singularity. Since |Dn(z)| = 1 on ∂e, we have that |f(z)| ≤ 1 on ∂e. By
the maximum principle, |f(z)| ≤ 1 on C ∪ {∞} \ e. �

As for Theorem 5.2, the only difference from Erdős’ proof is that he considers
the set of zeros of D′

n and ±1. This is the unique alternating set for Dn when
e = [−1, 1]. In general, the alternating set is not unique but there does exist (see
[2, 12, 3]) a set x0 < x1 < · · · < xn of n+ 1 distinct points in e with

Dn(xj) = (−1)n−j ; j = 0, 1, . . . , n. (5.4)
The key fact is geometric:
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Lemma 5.4. Let w1 6= w2 both in C. Let D be the open disk with {(1 − θ)w1 +
θw2 | 0 ≤ θ ≤ 1} as diameter. Let z /∈ D. Then

Re[(z − w1)(z − w2)] ≥ 0. (5.5)

Proof. (ζ, ξ) 7→ Re(ζξ) is the Euclidean inner product on C viewed as R2. Thus
(5.5) says the angle between z − w1 and z − w2 is acute or right. It is well known
that the set of z where the angle is right is exactly ∂D and that inside D the angle
is obtuse and outside acute. �

Proof of Theorem 5.2. (following Erdős [5]) Without loss, we can suppose that
‖p‖e = 1. Let {xj}nj=0 be an alternating set for Dn. For j = 0, 1, . . . , n, let

ℓj(z) =
∏
k ̸=j

z − xk

xj − xk
(5.6)

be the Lagrange interpolation polynomials so that ℓj(xk) = δjk and thus

Dn(z) =
n∑

j=0

(−1)n−jℓj(z); p(z) =
n∑

j=0

p(xj)ℓj(z). (5.7)

Let cj =
∏

k ̸=j(xj −xk) so (−1)n−jcj > 0 since n− j of the {xj −xk}k ̸=j are
negative. Then

Re[(−1)n−iℓi(z)(−1)n−jℓj(z)] =

∏
k ̸=i,j |z − xk|2

(−1)n−ici(−1)n−jcj
Re[(z − xj)(z − xi)] ≥ 0,

by Lemma 5.4. Thus, since |p(xj)| ≤ 1 and p(xj) is real,

|p(z)|2 = Re
[∑

i,j

ℓi(z)ℓj(z)p(xi)p(xj)
]
≤
∑
i,j

∣∣Re[ℓi(z)ℓj(z)]∣∣
=
∑
i,j

Re[(−1)n−iℓi(z)(−1)n−jℓj(z)] = |Dn(z)|2. �

6. Invariance of Widom Factors Under Polynomial
Preimages

This final section is connected to the earlier ones, in that it involves polynomial
inverse images, but is otherwise unrelated. In the work of Widom [28] on asymp-
totics of Chebyshev polynomials, a key object is ‖Tn‖e/C(e)n, which we, following
Goncharov–Hatinoǧlu [6], call Widom factors. We want to prove:

Theorem 6.1. Let e ⊂ C be a compact set, P (z) a monic polynomial of degree k ≥
1, and eP = P−1(e) = {z ∈ C |P (z) ∈ e}. Then for every Chebyshev polynomial
Tn of e, the polynomial Tn ◦ P is a Chebyshev polynomial of eP and

‖Tn‖e
C(e)n

=
‖Tn ◦ P‖eP
C(eP )nk

. (6.1)
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Remark. The first part of this result was also proved in [8] by use of the Kol-
mogorov criterion (see [9]). Our proof is different.

Lemma 6.2 ([16, Theorem 5.2.5]). Let e ⊂ C be a compact set, p a polynomial of
degree k ≥ 1 with leading coefficient 1/γ, and ep as above. Then C(ep)

k = |γ|C(e).

Proof. Let Ge and Gep be the Green’s functions for e and ep, respectively. Then
Gep = 1

k (Ge ◦ p) since both functions are harmonic on C \ ep, zero q.e. on ∂ep, and
asymptotically log |z| at infinity. Comparing the constant terms in the asymptotics
at infinity yields the claimed result. �

Suppose p(z), q(z) are two polynomials with k = deg(p) ≥ 1. The average of
q over p is defined by

σq|p(z) =
1

k

∑
{ζ | p(ζ)=p(z)}

q(ζ), (6.2)

where the values of ζ are repeated according to their multiplicity.

Lemma 6.3 ([13]). The average of q over p is a polynomial in p, in fact, σq|p = q̂◦p
for some polynomial q̂ of degree at most deg(q)/deg(p).

Proof. Fix z ∈ C. Then for all sufficiently large R > 0, by the residue calculus,

σq|p(z) =
1

2πi deg(p)

ffi
|ζ|=R

q(ζ)p′(ζ)

p(ζ)− p(z)
dζ =

∞∑
j=0

p(z)j

2πi deg(p)

ffi
|ζ|=R

q(ζ)p′(ζ)

p(ζ)j+1
dζ,

(6.3)
by picking R so large that |ζ| = R ⇒ |p(z)| < |p(ζ)|. Since, for j > deg(q)/ deg(p),
the integrals are zero (by taking R to ∞), we conclude that σq|p = q̂ ◦ p with
deg(q̂) ≤ deg(q)/deg(p). �

Proof of Theorem 6.1. Let Q be a monic polynomial of degree nk. By Lemma 6.3,
σQ|P (z) = Q̂ ◦ P where deg(Q̂) ≤ n. In fact, since P is monic of degree k and
Q is monic of degree nk it follows from (6.3) that Q̂ is monic of degree n. In
addition, it follows from the definition of the average that ‖σQ|P ‖eP ≤ ‖Q‖eP .
Thus, ‖Tn ◦ P‖eP = ‖Tn‖e ≤ ‖Q̂‖e = ‖σQ|P ‖eP ≤ ‖Q‖eP so Tn ◦ P is the (nk)th
Chebyshev polynomial of ep.

To get the equality of Widom factors note that ‖Tn‖e = ‖Tn ◦ P‖eP and
C(eP )

k = C(e) by Lemma 6.2. �
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