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Abstract. We make a number of comments on Chebyshev polynomials
for general compact subsets of the complex plane. We focus on two aspects:
asymptotics of the zeros and explicit Totik–Widom upper bounds on their norms.

1 Introduction

Let e ⊂ C be a compact, not finite, set. For any continuous, complex-valued
function, f , on e, let

(1.1) ‖f‖e = sup
z∈e

|f (z)|.

The Chebyshev polynomial, Tn, of e is the (it turns out unique) degree n monic
polynomial that minimizes ‖P‖e over all degree n monic polynomials, P. We
define

(1.2) tn ≡ ‖Tn‖e.

We will use T (e)
n and t(e)n when we want to be explicit about the underlying set. We

let C(e) denote the logarithmic capacity of e (see [36, Section 3.6] or [5, 17, 19, 20,
28] for the basics of potential theory; in particular, we will make reference below
to the notion of equilibrium measure).

This paper continues our study [11, 12, 13] of tn and Tn. Those papers mainly
(albeit not entirely) dealt with the case e ⊂ R. In this paper, we make a number
of comments on the general complex case focusing on two aspects, upper bounds
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on tn, which we called Totik–Widom bounds (henceforth, sometimes, TW bounds),
and the asymptotics of zeros of Tn(z). As is often the case in complex analysis,
there is magic in simple observations. Larry Zalcman has long been a master
magician in this way, so we are pleased to provide this present to him recognizing
his long service as editor-in-chief of Journal d’Analyse Mathématique.

We begin by sketching the uniqueness proof for Tn which extends the argument
when e ⊂ R (a case that appears in many places including [11]). We call z ∈ e

an extreme point for P if and only if |P(z)| = ‖P‖e. We claim that any norm
minimizer, P, a monic polynomial of degree n, must have at least n + 1 extreme
points. For, if there are only z1, . . . , zk with k ≤ n distinct extreme points for P, by
Lagrange interpolation, we can find a polynomial Q with degree k − 1 so that

(1.3) Q(zj) = P(zj), j = 1, . . . , k.

Then for ε small and positive, it is easy to see that ‖P− εQ‖e < ‖P‖e violating the
fact that P is a norm minimizer. (We note that for e = [−1, 1], Tn has exactly n + 1
extreme points although for many sets, e.g., e = D, each Tn has infinitely many
extreme points.)

Suppose now that f and g are both norm minimizers among monic polynomials
of degree n. Then so is h = 1

2(f + g). Pick {zj}n+1
j=1 distinct extreme points for h.

Since |h(zj)| = tn and |f (zj)|, |g(zj)| ≤ tn, we must have that f (zj) = g(zj) for
j = 1, . . . , n+1. Since deg(f −g) ≤ n−1, we have that f = g completing the proof
of uniqueness of the minimizing polynomial.

Recall (see, e.g., [36]) that the outer boundary, O∂(K), of a compact set, K, is
the boundary of the unbounded component of C \ K. So the complement of K is
connected if and only if its boundary equals O∂(K). Given a compact set K, there
is a unique compact set, K̂, with ∂K̂ = O∂(K). This set is called the polynomial
convex hull of K. By the maximum principle, ‖f‖K = ‖f‖

̂K for any entire analytic
function f , so K and K̂ have the same Chebyshev polynomials. They also have
the same potential theory (i.e., if C(·) is the capacity, then C(K̂) = C(K); they have
the same potential theory Green’s function in the region where that function is
positive and the same equilibrium measure). We will call a compact set K with
K = K̂ polynomially convex and, without loss of generality, often state results only
for such sets.

Let w1, . . . , wn be the zeros of Tn counting multiplicity and μn = 1
n

∑n
j=1 δwj

the normalized counting measure for zeros of Tn. The limit points of {μn}∞n=1 as
n → ∞ are called density of Chebyshev zeros for e.

In [30], Saff–Totik proved the following theorem:
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Theorem A ([30]). Let K be a compact subset of C with connected interior

and complement. Then:

(a) If K is an analytic Jordan region (i.e., ∂K is an analytic simple curve), then

there is a neighborhood, N, of ∂K so that for all large n, T (K)
n has no zeros

in N.

(b) If ∂K has a neighborhood, N, and there is a sequence nj → ∞ so that
μnj(N) → 0, then K is an analytic Jordan region.

In [10], Blatt–Saff–Simkani proved the following theorem:

Theorem B ([10]). Let K be a polynomially convex subset ofC with empty in-
terior and C(K) > 0. Then, as n → ∞, the Chebyshev zero counting measure, μn,

converges to μK, the equilibrium measure for K.

In Section 2, we will explore local versions of these theorems and prove

Theorem 1.1. Let e be a polynomially convex subset of C and N an open
connected set in C with connected complement so that N ∩ ∂e is a continuous arc

that divides N into two pieces, eint ∩ N and (C \ e) ∩ N. Let Mn(N) be the number

of zeros of T (e)
n in N. Then either lim infn→∞ Mn(N)/n > 0 or N ∩ ∂e is an analytic

arc.

In particular, if e is a Jordan region whose boundary curve is nowhere analytic,
all of the boundary points are points of density of zeros ofTn. We believe, but cannot
prove, that in this case the density of zeros-measure exists and is the equilibrium
measure. Moreover, this theorem implies that if ∂e is piecewise analytic but not
analytic at some corner points, then at least these corner points are points of density
for the zeros. In Section 2, we will also discuss zeros near crossing points of a
boundary as occur, for example, with a figure eight.

Theorem 1.2. Let e be a polynomially convex subset of C and N an open
connected set inCwhose complement is also connected. Suppose that C(N∩e) > 0
but that N ∩ e has two-dimensional Lebesgue measure zero. Then, as n → ∞, the
density of zeros-measure for T (e)

n restricted to N convergesweakly to the equilibrium

measure, μe, restricted to N.

The example to think of is e = D ∪ [1, 2] and N a small disk about some point
x0 ∈ (1, 2). We suspect that the measure zero condition can be replaced by the
condition that the set has empty interior; we will discuss this further in Section 2.
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The last three sections deal with TW upper bounds on t(e)n . One knows that
t1/n
n → C(e) (see, for example, the discussion in [37, Theorem 4.3.10]) and that
C(e)n ≤ tn (the Szegő lower bound). In [11, 12], a key in the analysis of the
pointwise asymptotics of Tn(z) was upper bounds on tn of the form

(1.4) tn ≤ QC(e)n

which we dubbed Totik–Widom bounds after Widom [45] and Totik [41] who
proved it forfinite gap subsets ofR (andWidomalso forfinite unions of disjointC2+ε

Jordan regions).

Our work in [11, 12] relied on Parreau–Widom sets (after [23, 46]). For any
compact set e ⊂ C, let C be the critical points of Ge, the Green’s function for e, on
the unbounded component of C \ e. Define

(1.5) PW(e) ≡ ∑
w∈C

Ge(w).

The Parreau–Widom sets are those with PW(e) < ∞. In [11], we proved for sets
regular for potential theory that

(1.6) e ⊂ R ⇒ t(e)n ≤ 2 exp{PW(e)}C(e)n,

and in [12], we proved that if e ⊂ R has the property that for all decompositions
e = e1 ∪ · · · ∪ e� into closed disjoint sets, one has that μe(e1), . . . , μe(e�) are
rationally independent (equivalently, correcting a typo in [12, eq. (1.24)], that∑�−1

j=1 qjμe(ej) �= 0 (mod 1) for rational numbers {qj}�−1
j=1 not all zero), then (1.4) for e

implies that PW(e) < ∞. In [13], we proved that for such sets with PW(e) < ∞,
one has that the set of limit points of Wn(e) ≡ ‖Tn‖e/C(e)n (called Widom factors)
is the entire closed interval [2, 2 exp{PW(e)}]. Sections 3–5 explore the question
of when a bound like (1.4) holds for some e ⊂ C. In [11], we raised the question
of whetherWn(e) is bounded for every PW set in C and we will discuss this further
in Section 5.

Sections 3 and 4 discuss two caseswhere we can proveTW bounds with explicit
constants (for many but not all of these sets, Widom has TW bounds but without
explicit constants; basically, the sets which are not handled in [45] include certain
unions of mutually external analytic Jordan curves but some of which can touch at
single points).

Section 3 discusses solid lemniscates, that is, sets of the form

(1.7) fn = {z ∈ C | |Pn(z)| ≤ α}
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for a polynomial Pn of exact degree n. In [13] (see also Faber [14]), we implicitly
noted that if Pn is monic, then

(1.8) T (fn)
kn (z) = Pn(z)

k; k = 1, 2, . . .

and we use this in Section 3 to prove

Theorem 1.3. Let fn be of the form (1.7). Define

(1.9) Q = max
j=0,...,n−1

Wj(fn).

Then (1.4) holds for fn.

Our discussion in Section 4 is motivated by an old result of Faber [14] (he stated
it for [−1, 1]; we use [−2, 2] to minimize factors of 2; the results are equivalent).

Theorem C ([14]). Let e be an ellipse with foci at ±2. Then T ([−2,2])
n (which

are scaled multiples of the classical Chebyshev polynomials of the first kind) are

the Chebyshev polynomials for e.

We note that [−2, 2] is the image of ∂D under the Joukowskimap z �→ x = z+z−1

(z = eiθ ⇒ x = 2 cos θ). Let z(x) = 1
2 [x +

√
x2 − 4] where we take the branch of

square root on C \ [−2, 2] that behaves like x near x = ∞. Then the Green’s
function for [−2, 2] is log |z(x)| so C([−2, 2]) = 1. The Chebyshev polynomials
of [−2, 2] are given by

(1.10) T ([−2,2])
n (x) = z(x)n + z(x)−n

so for e = [−2, 2] we have t(e)n = 2 = 2C(e)n and henceW(e) = 2 (saturating a lower
bound of Schiefermayr [32] for e ⊂ R).

The ellipses with foci ±2 are precisely the sets of the form

(1.11) eα = {x ∈ C | |z(x)| = eα}
(here and in the rest of the paper, the reader needs to be careful to distinguish eα

from eα!) for some α > 0. By Theorem C and (1.10), one has that

(1.12) t(e
α)

n = enα + e−nα.

The Green’s function for eα is log |z(x)| − α so C(eα) = eα and we have that

(1.13) t(e
α)

n = (1 + e−2nα)C(eα)n

and hence (e = [−2, 2])

(1.14) W(eα) =
1
2
(1 + e−2nα)W(e).
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Section 4 generalizes Faber’s results and later results of Fischer [15] for unions
of two disjoint intervals. Recall that a period-n set is a subset en ⊂ R so that there
is a degree n polynomial Pn with en = P−1

n ([−2, 2]) ≡ {z ∈ C |Pn(z) ∈ [−2, 2]}.
These are the spectra of period n Jacobi matrices (see Geronimo–Van Assche [16],
Peherstorfer [24, 25, 26, 27], Totik [39, 40, 41, 42] or Simon [33, Chap. 5]). In
Section 4 We will prove the following theorem:

Theorem 1.4. Let en be a period-n set and Gn(z) its Green’s function. Let

eαn = {z |Gn(z) = α} for some α > 0. Then for k = 1, 2, . . . , one has that

(1.15) T (eα
n )

kn = T (en)
kn

and

(1.16) t(e
α
n )

kn = cosh(knα)t(en)
kn .

Remarks. (1) If n = 1, en is just a single interval e1 = [a, b] and this is Faber’s
Theorem C.

(2) The result of [13], discussed further in Section 3, that if fn is a lemniscate
of the form (1.7), then its Chebyshev polynomials of degree nk are of the form
(1.8), implies a complex version of Theorem 1.4. For the level sets of the Green’s
function of fn are again lemniscates with just a different value of α so the Chebyshev
polynomials are the same since (1.8) holds for all values of α.

Theorem 1.5. Let e be a polynomially convex subset ofC which is regular for
potential theory. Let Ge be its Green’s function and eα = {z |Ge(z) = α} for some

α > 0. Then

(1.17) α �→ Wn(e
α)

is monotone decreasing in α. In particular, if e obeys a TW bound of the form (1.4),
so does each eα with the same or smaller Q.

Given our result (1.6), of [11], we see that when e ⊂ R is a PW set, we have
that

(1.18) t(e
α)

n ≤ 2 exp{PW(e)}C(eα)n.

We will be able to improve this to

Theorem 1.6. If e ⊂ R is a PW set and eα = {z |Ge(z) = α} for some α > 0,
then

(1.19) t(e
α)

n ≤ (1 + e−nα) exp{PW(e)}C(eα)n.
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Remarks. (1) As n → ∞, this beats (1.18) by a factor of 2.
(2) We note that (1.19) has PW(e) and not PW(eα). If e is a finite gap set, and α

is small, PW(eα) = PW(e) − kα, where k is the number of gaps. As α increases,
PW(eα) shrinks further as eα absorbs some of the critical points of Ge.

Acknowledgment. J. S. C. and M. Z. would like to thank F. Harrison and
E. Mantovan for the hospitality of Caltech where some of this work was done.

2 Zero counting measure

In this section, we study the asymptotics of the zero counting measure for
Chebyshev polynomials and, in particular, prove Theorems 1.1 and 1.2. The
theme is that in many ways the density of zeros wants to converge to the potential-
theoretic equilibrium measure for e. The only exception is when there are analytic
pieces of ∂e. We suspect this is true in much greater generality than we can prove
it here (see the conjecture below).

The key to understanding this theme is

Theorem D ([31]). Outside the convex hull of e, one has that

(2.1) |Tn(z)|1/n → C(e) exp{Ge(z)}.
We provided another proof of this result as Theorem 3.2 of [11]. That proof was

short. The log of the ratio of the right to left side of (2.1) is a non-negative harmonic
function onC∪{∞}\cvh(e) by a theorem of Fejér (which states that the zeros of Tn

lie within the convex hull of e) and by the Bernstein–Walsh lemma. By the Faber–
Fekete–Szegő theorem ([38] or [37, Theorem 4.3.10]), this harmonic function is
zero at ∞ and so, by Harnack’s inequality, everywhere on C ∪ {∞} \ cvh(e).

We next note the following theorem of Widom:

Theorem E ([44]). Let S be a closed subset of the unbounded component of

C \ e. Then there is NS < ∞ so that for all n, the number of zeros of Tn in S is at
most NS.

This implies

Theorem 2.1. Any limit point, dμ∞, of dμn, the zero counting measure of Tn,

is supported in the polynomial convex hull of e. Moreover, for all z in the unbounded

component of C \ e,

(2.2)
∫

log |z − w| dμ∞(w) =
∫

log |z − w| dμe(w),

where dμe is the equilibrium measure for e.
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Proof. The first sentence is an immediate consequence of Theorem E. Let h

be the difference of the two sides of (2.2) on the unbounded component of C \ e.
By the first sentence, h is harmonic. By (2.1), h = 0 near infinity, so h = 0 on all of
the unbounded component of C\ e by the identity principle for harmonic functions
([36, Theorem 3.1.17]). �

This theorem says that dμe is the balayage of dμ∞ onto ∂e, equivalently, the
balayage (see, e.g., [31, Section II.4]) of dμn converges to dμe, ideas that go back
at least to Mhaskar–Saff [21].

The key to the proof of Theorem 1.1 is

Proposition 2.1. Let u be harmonic and not identically zero in a disk, N,

centered at z0 with u(z0) = 0. Then, by shrinking the radius of N, if necessary, one
can find p ∈ {1, 2, . . . } and p analytic curves, γ1, . . . , γp, with γj(0) = z0 so that the

angle between any two successive tangents, γ′
1(0), . . . , γ′

p(0),−γ′
1(0), . . . ,−γ′

p(0),
is π/p and so that

(2.3) {z ∈ N | u(z) = 0} = {z ∈ N | z lies in some γj}.

Moreover, the sign of u alternates between successive sectors.

Proof. There is a function, f , analytic in N so that f (z0)=0 and u(z)=Im f (z).
By a standard result in complex analysis (see, for example [35, Theorem 3.5]
and its proof), by shrinking N, if necessary, one can find p ∈ {1, 2, . . . } and
an analytic function, g in N with f = gp, g(z0) = 0 and g′(z0) �= 0. By another
standard result in complex analysis ([35, Theorem 3.4.1]), g has an analytic inverse
function, h (perhaps by shrinking N further). Let γj(t) = h(te2πi(j−1)/p), j = 1, . . . , p

so g(γj(t)) = te2πi(j−1)/p and f (γj(t)) = tp and u(γj(t)) = 0. The remaining claims are
immediate. �

Proof of Theorem 1.1. If lim inf Mn(N)/n = 0, by passing to a subsequence
and using compactness of the probability measures on the convex hull of e, we get
a limit point, dμ∞ of the zero counting measure with μ∞(N) = 0. It follows that∫

log |z − w|dμ∞(w) is harmonic on N. By (2.2) and [36, (3.6.43)],

(2.4) u(z) = − log(C(e)) +
∫

log |z − w| dμ∞(w)

equals Ge outside e and, in particular, u = α on eα = {z |Ge(z) = α} for α > 0.
By (2.4), u(z) is subharmonic onC. By the maximum principle for subharmonic

functions ([36, Theorem 3.2.10]), u ≤ α on the polynomial convex hull of eα and,
in particular, on e for all α > 0. Hence u ≤ 0 on e. Since u(z) is harmonic and
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nonconstant on N, another application of the maximum principle for subharmonic
functions implies that u(z) < 0 on eint. Thus ∂e ∩ N = {z | u(z) = 0} ∩ N.

For z0 ∈ ∂e∩N, u(z0) = 0 and we can apply Proposition 2.1. We must have p = 1
since otherwise, ∂e doesn’t divide N into two pieces. Proposition 2.1 completes
the proof. �

This argument is modelled after arguments in [30]. They don’t need an a priori
assumption on ∂e dividing N in two since they make a global assumption on the
zeros and, more importantly, they suppose that eint is connected. If we don’t make
the a priori assumption on ∂e, we still have, by the above argument,

Theorem 2.2. Let e be a polynomially convex subset of C which is regu-

lar for potential theory. Suppose that z0 ∈ ∂e has a neighborhood, N, so that

lim inf Mn(N)/n = 0. Then for some p ∈ {1, 2, . . . }, there are p analytic curves
γ1, . . . , γp through z0 obeying the π/p tangent condition so that (shrinking N, if

necessary) e ∩ N is precisely the union of p alternate sectors.

Example 2.3 (Lemniscate of Bernoulli). Consider the set

(2.5) e = {z | |z2 − 1| ≤ 1},

which is the connected and polynomially convex set bounded by the famous
lemniscate of Bernoulli [8], a figure eight curve with crossing angle π/2. By
general principles (see (3.4) below), for j = 1, 2, . . .

(2.6) T2j(z) = (z2 − 1)j

whose zeros are only at z = ±1, so the limit of the zero counting measure through
the sequence of even orders is

(2.7) dμ∞ =
1
2
[δz−1 + δz+1],

which gives zero weight to the entire boundary of e. We precisely have a point as
in the last theorem with p = 2. Note that Tn(−z) = (−1)nTn(z) by the uniqueness
of the Chebyshev polynomials so T2j+1(0) = 0. We suspect (but cannot prove) that
for j large all the other zeros of T2j+1 lie in small neighborhoods of ±1 and that the
above dμ∞ is also the limit through odd n’s. The paper of Saff–Totik [30] shows
that when eint is connected, one has that zero density on ∂e implies no zeros at all
in a neighborhood of ∂e. If our surmise is correct, this example shows that that
result does not extend when eint is not connected.

One corollary of Theorem 1.1 is
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Corollary 2.2. If e is a Jordan curve whose boundary is nowhere analytic,

then every point on the boundary is a limit of zeros of Tn

We suspect that much more is true.

Conjecture 2.4. If e is a Jordan curve whose boundary is nowhere analytic,

then the density of zeros-measure converges to the equilibrium measure for e.

It is an intriguing question to understand when the density of zeros-measure
converges to the equilibrium measure. An interesting result on this question is in
Saff–Stylianopoulos [29] who prove that if ∂e has an inward pointing corner in a
suitable sense, then the density of zeros converges to the equilibrium measure. For
example, if e is a polygon that is not convex, then their hypothesis holds.

It would be useful to know what happens for convex polygons; the simplest
example is the equilateral triangle. Theorem 1.1 implies that at least the vertices of
the triangle are density points of zeros. We wonder what other points are density
points of zeros (there must be others since the balayage of the average of the point
masses at the corners is not the equilibrium measure). It seems to us there are only
two reasonable guesses. Either the entire boundary are limit points of zeros (in
which case it is likely the density of zeros converges to the equilibrium measure)
or else the limit points are the skeleton obtained from the line segments from the
centroid of the triangle to the vertices. [29, Figure 3], which admittedly is for the
Bergmann polynomials, not the Chebyshev polynomials, suggests the skeleton is
the more likely answer. We hope some numerical analyst will explore this example.

Next we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. For κ a measure of compact support on C, we
define, for all z ∈ C, its antipotential (negative of the logarithmic potential) by

(2.8) �κ(z) =
∫

log |z − w| dκ(w)

(where the integral either converges or diverges to −∞). It is subharmonic and
locally L1 and behaves like (

∫
dκ) log |z| near infinity, so it defines a tempered

distribution and its distributional Laplacian obeys

(2.9) ��κ = 2πκ

(see [34, Section 6.9] and [36, Section 3.2]).
Now let μ∞ be a limit point of the zero counting measure. By (2.2),

�μ∞(z) = �μe
(z) for z ∈ N \ e. Since the functions are L1 and N ∩ e has Lebesgue

measure zero, we conclude they define the same distributions on N. By (2.9),
μ∞ � N = μe � N. Since the restrictions of all limit points agree, we see the
restrictions of the zero counting measures to N converge and converge to μe � N.�
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For the casewhere one has a global assumption on e (i.e., whereN is a very large
disk), our result is somewhat weaker than that of Blatt–Saff–Simikani [10] in that
they only require that eint is empty while we require that e have two-dimensional
Lebesgue measure zero. Their arguments are global and do not appear to work
with only a local assumption. On the other hand, Totik [43] has sent us an example
(reproduced below) of two distinct measures, μ and ν, with �μ = �ν off a set e,
with eint empty, so our method doesn’t seem capable of extending to the case where
one only supposes that N ∩ eint is empty.

Example 2.5 ([43]). Let D0 = D be the open unit disk and define recur-
sively Dn to be Dn−1 with a small closed disk removed. Assume that 0 ∈ Dn and
let μn be the balayage of δ0 onto ∂Dn so that the potentials of δ0 and μn coincide
on C \ Dn. The center of the removed disk can be chosen arbitrarily in Dn−1 \ {0}
but the radius must be small enough to ensure that 0 ∈ Dn and μn(∂D) > 1

2 . Now
choose centers of the removed disks in such a way that e =

⋂
n Dn is nowhere dense

and let μ be a weak limit of the μn’s. Then both μ and δ0 are supported on e, the
potentials of μ and δ0 are the same on C \ e, but μ and δ0 are different measures
since μ(∂D) ≥ 1

2 .

3 Lemniscates

We now turn to the study of when Widom factors, Wn(e) = tn/C(e)n, are bounded
as n → ∞ and explicit bounds on supn Wn(e). In this section, we will prove
Theorem 1.3. It is a very small addendum to our discussion of lemniscates in [13].
Solid lemniscates are defined by (1.7) where, without loss, we can suppose that Pn

is a monic polynomial of degree n. The Green’s function, Gfn , of fn is clearly given
by

(3.1) Gfn(z) =
1
n

log
( |Pn(z)|

α

)
from which it follows that

(3.2) C(fn) = α1/n.

Thus

(3.3) ‖Pk
n‖fn = αk = C(fnk)

nk ≤ tnk

by the Szegő lower bound. Since Pk
n is monic we see that

(3.4) Tnk = Pk
n; Wnk(fn) = 1.
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Proof of Theorem 1.3. Since for any compact set e, TjT� is a monic
polynomial of degree j + � with ‖TjT�‖e ≤ ‖Tj‖e‖T�‖e, we see that tj+� ≤ tjt�. It
follows that

Wnk+j(fn) ≤ Wnk(fn)Wj(fn) = Wj(fn)

proving that

(3.5) sup
m

Wm(fn) = max
j=0,...,n−1

Wj(fn),

which is the assertion of (1.9). �

4 Level sets of Green’s functions

In this section, we will prove Theorems 1.4–1.6. We start with Theorem 1.5.

Proof of Theorem 1.5. By definition of eα, we have that Geα = Ge−α is the
Green’s function for eα, which implies that C(eα) = eαC(e) and also (eα)β = eα+β.
Thus, it suffices to show that Wn(eα) ≤ Wn(e) for α > 0.

Let Tn be the nth Chebyshev polynomial of e. Define

(4.1) fn = {z ∈ C | |Tn(z)| ≤ ‖Tn‖e}.
Then, as discussed in the previous section, Tn is also the nth Chebyshev polynomial
for fn and Gfn(z) = 1

n log |Tn(z)|
‖Tn‖e is the Green’s function for fn so

(4.2) |Tn(z)| = ‖Tn‖e exp{nGfn(z)}.
Let Tα

n denote the Chebyshev polynomials for eα and define

fαn = {z |Gfn(z) = α}.
Since e ⊂ fn, we have Ge ≥ Gfn and hence eα lies inside fαn . It follows that
‖Tα

n ‖eα ≤ ‖Tn‖eα ≤ ‖Tn‖fαn and so, by (4.2), ‖Tα
n ‖eα ≤ ‖Tn‖eenα. Dividing by

C(eα)n = enαC(e)n yields Wn(eα) ≤ Wn(e). �
In the case of e ⊂ R, the bound Wn(eα) ≤ Wn(e) (α ≥ 0) can be improved:

Proof of Theorem 1.6. Let en = {x ∈ R | |Tn(x)| ≤ ‖Tn‖e}. Then, by (2.4)
in [11], we have that

(4.3) |Tn(z)| ≤ 1
2
‖Tn‖e(exp{nGen(z)} + exp{−nGen(z)}).

Let Tα
n denote the Chebyshev polynomials of eα. Since e ⊂ en, we have

Ge ≥ Gen and hence eα lies inside eαn . It follows that

‖Tα
n ‖eα ≤ ‖Tn‖eα ≤ ‖Tn‖eα

n
≤ 1

2
‖Tn‖e(e

nα + e−nα)

using (4.3) on ∂eα.
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Thus, by (1.6), we have that

(4.4)
t(e

α)
n ≤ exp{PW(e)}(enα + e−nα)C(e)n

= exp{PW(e)}(1 + e−2nα)C(eα)n. �

To prove Theorem 1.4 we need a complex variant of the Alternation Theorem
([11, Theorem 1.1]):

Lemma 4.1. Suppose K ⊂ C is a compact set and P is a monic degree n

polynomial such that K0 = {z ∈ K |P(z) = ±‖P‖K} contains 2n points counting
multiplicities. Then P is the nth Chebyshev polynomial of K.

Proof. Note that T1(z) = z is the Chebyshev polynomial of the two point
set e = {±‖P‖K}. Thus, by [13, Theorem 6.1], P = T1 ◦ P is the Chebyshev
polynomial of eP = P−1(e) = {z ∈ C |P(z) ∈ e} ⊃ K0. Since P has degree n, eP
consists of 2n points. Hence eP = K0 ⊂ K. Since ‖P‖K = ‖P‖eP , it follows that P
is also the nth Chebyshev polynomial of K. �

Proof of Theorem 1.4. Since a period-n set is also a period-kn set for each
k = 1, 2, . . . , it suffices to prove the result for k = 1. As in [11, (2.4)], we have that

(4.5) Tn(z) =
1
2
‖Tn‖en(Bn(z) + Bn(z)

−1),

where Bn is the unique analytic function on C \ en such that |Bn| = exp{nGen}
on en and Bn(z) ∼ (z/C(en))n as z → ∞. Then |Bn| = enα on eαn and hence the
extremal values of Tn on eαn are ± cosh(nα)‖Tn‖en which occur at the 2n points
{z ∈ eαn |Bn(z) = ±enα}. Thus, by the lemma, Tn is the nth Chebyshev polynomial
of eαn . �

5 Do Totik–Widom bounds hold for the connected,
polynomially convex case?

From the time we proved that all Parreau–Widom sets (henceforth PW) in R have
the TW property, whether this result extends to e ⊂ C has been an interesting open
question. Initially, we thought it was likely true. We realized that a key test case
was where e is a connected, polynomially convex (henceforth CPC) set. In that
case, it is a consequence of the Riemann mapping theorem that Ge has no critical
points on C \ e, so the PW condition holds. If PW⇒TW for general e ⊂ C, then
clearly every CPC set obeys TW. And if PW⇒TW is false, it likely fails for some
CPC set.
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So, for several years, we have discussed widely the need to look at this question
for CPC sets. It goes back to Faber [14] that if e is a Jordan region with analytic
boundary, then limn→∞ Wn(e) = 1 so TW holds. Widom [45] extended this to C2+ε

boundary.

We suggested in several talks that if TW fails, it likely fails for the Koch
snowflake. But this set is more regular than one might think—it is a quasidisk (i.e.,
a Jordan region bounded by a quasicircle). Recall that there is a simple geometric
criterion which characterizes planar quasicircles: a Jordan curve, γ, is a quasicircle
if and only if there is a constant C ≥ 1 such that for each pair of points z1, z2 on γ,
the smaller diameter subarc γ[z1, z2] of γ that joins z1, z2 satisfies

diam(γ[z1, z2]) ≤ C|z1 − z2|.

Andrievskii [3] and Andrievskii–Nazarov [4] proved that every quasidisk has the
TW property, so the Koch snowflake does not provide a counterexample.

Here, we want to suggest several additional places to look for counterexamples.

(1) Koch antennae. Recall the construction of the Koch snowflake. One
starts with T1, a solid equilateral triangle in C with side 1. One adds T2, the three
equilateral triangles of side 1/3 centered on the midpoints of the sides of T1. Then
K2 = T1 ∪ T2 has 4 × 3 sides with size 1/3. At stage j, Kj = Kj−1 ∪ Tj has 3 × 4j−1

sides of size 3−(j−1); Tj+1 is then the 3 × 4j−1 triangles with side 3−j centered at the
midpoints of the sides of Kj; K∞ =

⋃∞
j=1 Kj is the Koch snowflake, a Jordan region

whose boundary is a non-rectifiable curve of Hausdorff dimension strictly greater
than 1. But it is regular in the sense that it is a quasidisk.

Modify this construction by picking a1, a2, . . . all in (0, 1]; Kj still has 3 × 4j−1

sides but now of size sj defined inductively starting with s1 = 1. The 3 × 4j−1

triangles of Tj+1 are now isosceles with base ajsj/3 and two equal sides
1
2 (1 − aj/3)sj = sj+1. The limit K∞ is still a Jordan region with non-rectifiable
boundary of dimension larger than 1. With the case aj ↓ 0 rapidly in mind, we call
this the Koch antenna (although, so far as we know, Koch never considered it!). If
lim inf aj = 0, K∞ is not a quasidisk and [3, 4] do not apply. We believe that the
case aj = 3−j is a good candidate for a situation where TW might fail. An extreme
case is what happens if all aj = 0 so the added “triangles” are line segments (we
need to destroy the symmetry by taking sj+1 = βsj with β strictly less than 1/2 to
avoid the lines in Tj from intersecting). The boundary is no longer a Jordan curve
although it is the image of a circle under a continuous map.
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(2) The Cauliflower. The Cauliflower is the Julia set of the map z2 + z; see,
for example, Milnor [22, Figure 2.4]. This has inward pointing cusps so, by [29],
the density of zeros approaches the equilibrium measure. Since there has been
previous work [6, 7, 9, 18, 1, 5] on extremal polynomials on Julia sets (albeit
certain disconnected Julia sets where PW fails), this might be an approachable
example.

(3) Non-Jordan regions. All examples discussed so far in the context of
TW bounds have been Jordan regions in that ∂e is a simple, closed continuous
curve. Examples like the lemniscate, the extreme antenna (i.e. all aj = 0) or even
a disk with a spike (D ∪ [1, 2]) aren’t Jordan regions but at least their boundaries
are images of a continuous curve. But there are CPC regions whose boundaries
are not images of continuous curves or even boundaries with inaccessible points.
A good example is the open set

(5.1) � = (0, 1) × (0, 1) \
∞⋃
n=1

{(
1 − 1

2n
, y

)
∪
(
1 − 1

2n + 1
, 1 − y

) ∣∣∣ y ∈
[
0,

3
4

]}

of [35, Figure 8.2.1]. Of course, � is open and � is a Jordan region but
e = {(z − z0)−1 | z ∈ C \ �}, where z0 ∈ �, is a compact set whose boundary has
tangled spikes and the boundary is neither continuous nor everywhere accessible
from the outside. Our point here is not that this example should be analyzed but
that while searching for possible counterexamples to “every CPC set is TW”, one
needs to consider sets whose boundary is not a continuous curve.

In any event, we regard finding either a non-TW example among the CPC sets
or else proving that all CPC sets are TW one of the most important open questions
in the theory of Chebyshev polynomials.
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