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1. Introduction

One of the crowning achievements of spectral theory and of mathematical physics is 
the theory of periodic Schrödinger operators especially in one dimension and the related 
theory of periodic Jacobi matrices. In this paper, we discuss a variety of aspects of a class 
of objects that we feel are an interesting analog of these one dimensional objects, in many 
ways closer to the one dimensional periodic theory than the theory on Zν or Rν when 
ν > 1. Remarkably, there is almost no study of these objects in the mathematical physics 
or spectral theory literature and we hope this paper will stimulate those communities to 
their further study.

These objects are periodic Jacobi matrices on discrete trees. In general, a Jacobi 
matrix on a graph is an operator that acts on �2 of the vertices of the graph with non-
zero matrix elements only for pairs of indices that are the two vertices at the ends of 
an edge of the graph or diagonal matrix elements. It is not even clear what it means 
for such a Jacobi matrix to be periodic and one of our goals here is to give a precise 
definition: If G is a finite graph without leaves, then its universal cover, T , is a tree on 
which the fundamental group of G acts. If J is a Jacobi matrix on G, it has a natural 
lift to T which commutes with the set of unitaries on �2(T ) induced by the fundamental 
group.

What makes these new objects fascinating is that the underlying group is not Abelian 
(unless T = Z) and what makes the theory difficult is that there is no longer a Flo-
quet analysis based on the one dimensional irreducible representation of the underlying 
symmetry group.

There has been some study of the objects we study (albeit without a formal definition 
of what they are!) among the community of researchers that has focused on the theory of 
Laplacians and adjacency matrices on infinite graphs, a community which unfortunately 
has not had close connection to others working in spectral theory. We believe there are, 
so far, three major results on these objects:

(1) Gap labeling. If p is the underlying period, then the density of states in a gap 
of the spectrum is j/p (j ∈ {1, 2, . . . , p − 1}). In particular there are at most p − 1
gaps in the spectrum and so a band structure. This result is implicit in Sunada [68]
who proves a band structure for certain continuum Schrödinger operators on manifolds 
with a hyperbolic symmetry and remarks in passing that the ideas also hold for suitable 
discrete operators.

(2) No flat bands on regular trees. In Aomoto [5], it is proven that if a tree is regular 
(i.e. of constant degree), then periodic Jacobi matrices have no point spectrum. On the 
other hand, the same paper describes an example of a non-regular periodic tree with a 
Jacobi matrix that has point spectrum.

(3) Absence of singular continuous spectrum. The result, new here, that periodic Jacobi 
matrices on trees have no singular continuous spectrum.
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One of our main goals in this paper is to discuss these three results. Another is to 
describe a few explicit models which we feel are illuminating. Finally, we intend to discuss 
a number of conjectures and open questions that we feel could be stimulating.

Section 2 summarizes the 1D case which serves as the source of some of our conjec-
tures. Section 3 makes precise our definition of periodic Jacobi matrices and presents a 
definition of the period. Section 4 defines the density of states and discusses its relation 
to eigenvalue counting densities while Section 5 presents gap labeling. The appendix 
provides an exposition of the basic gap labeling result which we feel will be more ac-
cessible to spectral theorists. Section 6 discusses linked equations for the Green’s and 
m–functions which we then use to prove the absence of singular continuous spectrum. 
Section 7 has some of the promised illuminating examples and Section 8 discusses the 
context for Aomoto’s result on no point spectrum in the case of regular trees. Sections 9
and 10 presents a number of open questions and conjectures.

We’d like to thank a number of people for illuminating discussions: Nalini Ananthara-
man, Jacob Christiansen, Latif Eliaz, Alexandre Eremenko, Matthias Keller, Wolfgang 
Woess and Maxim Zinchenko.

2. Highlights in one dimension

As we explained, thinking of 1D Jacobi matrices as regular degree 2 trees makes 
classical two-sided Jacobi matrices our guide for what to look for in the analysis of 
general trees, so to set notation and expectations, we briefly summarize the beautiful 
theory of 1D periodic Jacobi matrices. A reference for much of this is [62, Chapters 5 
and 6].

Our operators, J , act on �2(Z) and depend on two sequences of real numbers {an}n∈Z
and {bn}n∈Z with an > 0. The Jacobi matrix indexed by those sequences acts by

(Ju)n = anun+1 + bnun + an−1un−1 (2.1)

It is natural to think of Z as a graph with vertices j ∈ Z and edges from j to j + 1. bj
is associated to the vertex at j and aj to the edge from j to j + 1.

We suppose that J is periodic, that is for some p ∈ Z+, we have that

ak+p = ak, bk+p = bk (2.2)

for all k ∈ Z.
For a bounded measurable function, f , one defines f(J), an operator on �2(Z) by the 

spectral theorem [66, Section 5.1]. The spectral measures, dμn, n ∈ Z, are defined by

〈δn, f(J)δn〉 =
ˆ

f(λ) dμn(λ) (2.3)
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where δn ∈ �2(Z) is the function δn(j) = δnj . For Ω ⊂ R, a Borel set and χΩ the 
characteristic function of Ω, χΩ(J) is the spectral projection, PΩ = PΩ(J). Because of 
(2.2), we have that

dμk+p = dμk (2.4)

A. The DOS and Gap Labeling For a, b ∈ Z, we let χ[a,b] be the operator on �2(Z)
that is the orthogonal projection onto vectors supported on [a, b]. By (2.2) and (2.4), we 
have that

Fact 2.1.

lim
a→−∞; b→∞

1
b− a

Tr(χ[a,b]f(J)) =
ˆ

f(λ) dk(λ) (2.5)

where

dk(λ) = 1
p

p∑
j=1

dμj(λ) (2.6)

k(λ) =
´ λ

∞ dk is called the integrated density of states (IDS) and dk the density of 
states (DOS). The DOS for periodic Schrödinger operators goes back to the earliest 
days of condensed matter theory. It seems to have entered the mathematical physics 
community in the more general consideration of ergodic discrete Schrödinger operators; 
some of the results are due to Benderskii–Pastur [14], Pastur [53], Nakao [52], Kirsch–
Martinelli [43] and Avron–Simon [10] who also had Facts 2.2 and 2.3 below.

Since (2.6) is a finite sum, we have that supp(dk) = ∪p
j=1supp(dμj) so

Fact 2.2. spec(J)=supp(dk)

Let J (k)
D,P be J restricted to [1, kp] with Dirichlet (i.e. setting a0 = akp = 0) or 

periodic (i.e. putting a0 in the upper right and lower left corners) boundary conditions. 
Then Avron–Simon [10] proved that

Fact 2.3. k(E) is an eigenvalue counting density, i.e. if N (k)
D,P (E) is the number of eigen-

values of J (k)
D,P below E, then

k(E) = lim
k→∞

N
(k)
D (E)/kp (2.7)

= lim
k→∞

N
(k)
P (E)/kp (2.8)

The following also goes back to the earliest days of quantum theory or even earlier 
given the work of Hill and Floquet.
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Fact 2.4. (Band Structure) spec(J) is a union of at most p disjoint closed intervals.

Fact 2.5. (Gap Labeling) In each gap of spec(J) (i.e. connected bounded open interval 
in R \ spec(J)), we have that k(E) = j/p for some j ∈ {1, . . . , p − 1}.

In the mathematical physics literature, the latter fact came to the fore with its ex-
tension to the almost periodic case [10,39,13].

B. Spectral Properties
The basic result is that the spectral measures are purely absolutely continuous which 

we prefer to list as two facts

Fact 2.6. J has no singular continuous spectrum.

Fact 2.7. J has no pure point spectrum.

Because he proved the analog for higher dimensions, the last fact is often associated 
with L. Thomas [69].

C. Analyticity of m− and Green’s Functions
The Green’s function is

Gn(z) = 〈δn, (H − z)−1δn〉 (2.9)

If we replace an−1 by 0, then H decomposes into a direct sum, H+
n acting on �2(n, ∞)

and H−
n−1 acting on �2(−∞, n − 1) and we define

m+
n (z) = 〈δn, (H+

n − z)−1δn〉 m−
n (z) = 〈δn−1, (H−

n − z)−1δn−1〉. (2.10)

The functions Gn, m+
n , and m−

n are related by

Gn(z) = 1
−z + bn − a2

nm
+
n (z) + a2

n−1m
−
n (z)

.

Fact 2.8. For all n, Gn(z) and m±
n (z) have analytic continuations from C\spec(H) to a 

finite sheeted Riemann surface with a discrete set of branch points.

Fact 2.9. These functions are hyperelliptic and, in particular, have only square root 
branch points and the surface is two sheeted.

Fact 2.10. The branch points are all in R at edges of the spectrum. There are no poles 
of G away from the branch points and all poles of m± are in the bounded spectral gaps 
of one sheet or the other or at the branch points. There is one pole in each “gap”.

These results follow by writing down an explicit quadratic equation for the m-functions 
(which follows from the recursive relation (6.5)) and analyzing it using, in part, the 
monotonicity of G in gaps and the fact that poles of m correspond to zeros of G.
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D. Universality of the DOS
Two periodic Jacobi matrices are called isospectral if they have the same spectrum 

(as a set).

Fact 2.11. Two isospectral Jacobi matrices have the same period and same DOS.

Fact 2.12. The DOS of a periodic Jacobi matrix is equal to the potential theoretic equi-
librium measure, aka harmonic measure, of its spectrum.

(Standard references for potential theory are [7,36,47,55,71] or [65, Section 3.6].) The 
second of these facts, together with the Borg-Hochstadt Theorem (Fact 2.14) below, 
implies the first. For mathematical physicists, these facts are connected to the Thouless 
formula and the fact that pure a.c. spectrum implies the Lyaponov exponent is zero on 
the spectrum; see for example Simon [58]. In the OP community, it is connected to the 
theory of regular Jacobi matrices as developed especially by Stahl–Totik [67]. We’ll see 
in G below that these results plus gap labeling restrict the sets that can be spectra of 
periodic Jacobi matrices.

E. Borg and Borg–Hochstadt Theorems

Fact 2.13. (Borg’s Theorem) If a periodic Jacobi matrix has no gaps in its spectrum, 
then a and b are constant.

Fact 2.14. (Borg–Hochstadt Theorem) If the IDS of a periodic Jacobi matrix has a value 
j/p in each gap of the spectrum, then the period is (a divisor of) p.

Both Borg [16] and Hochstadt [37] proved their results for Hill’s equation (i.e. contin-
uum Schrödinger operators) but it is known to hold for the Jacobi case; see for example 
[62, Theorem 5.4.21 and Corollary 5.13.9].

F. Floquet Theory and Spectral Gaps
While it is often expressed in terms of Floquet boundary conditions, it is better for 

our purposes to consider the group of symmetries Wn = Un where U is the symmetry 
Uuj = uj+p so WnH = HWn.

Fact 2.15. The representation of {Wn}n∈Z acting on �2(Z) is a direct integral of all the 
irreducible representations of Z, each with multiplicity p

Fact 2.16. H is a direct integral of the p × p matrices H(θ); eiθ ∈ ∂D given by

H(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 0 · · · 0 ape
iθ

a1 b2 a2 0 · · · 0 0
0 a2 b3 a4 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · bp−1 ap−1
−iθ

⎞⎟⎟⎟⎟⎟⎟⎠ .
ape 0 0 0 · · · ap−1 bp
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In particular,

spec(H) =
⋃

eiθ∈∂D

spec(H(θ)) (2.11)

This lets us describe band edges

Fact 2.17. The edges of gaps correspond to eigenvalues of H(θ) for θ = 0, π, that is 
periodic and antiperiodic boundary conditions.

There is a detailed analysis; the largest periodic eigenvalue is simple and is the top 
of spec(H), the next two are antiperiodic and they are unequal if and only if there is a 
gap with IDS value (p −1)/p, the next two are periodic . . . . One consequence of this gap 
edge result is

Fact 2.18. Generically, all gaps are open, that is the set of {an, bn}pn=1 in R2p for which 
there is a closed gap is a closed nowhere dense set.

One looks at the set in R2p of all possible a’s and b’s for which there are gaps where 
the IDS is j/p for all j = 1, . . . , p − 1. It is easy to see it is open and this says it is dense. 
In 1976, Simon [59] showed that the analog holds for continuum Schrödinger operators.

In this Jacobi case, more is true using ideas that go back to Wigner–von Neumann 
[72].

Fact 2.19. The set of {an, bn}pn=1 in R2p where one or more gaps are closed is a real 
variety of codimension 2.

G. Isospectral Manifold
The set of p band sets, ∪p

j=1[αj , βj ], α1 < β1 < α2 < · · · < βp, is described by 2p
real numbers so a manifold of dimension 2p. But they are not all possible spectra of 
periodic Jacobi matrices because a general set has arbitrary real harmonic measures of 
the bands while, in the periodic case, bands have harmonic measures of the form j/p. 
This places p − 1 constraints on the set (not p because it suffices that p − 1 harmonic 
measures be rational).

Fact 2.20. The dimension of allowed periodic spectra of period p is p + 1, that is the set 
of {αj , βj}pj=1 in the subset of R2p with α1 < β1 < α2 < · · · < βp which is the spectrum 
of some period p Jacobi matrix is a manifold of dimension p + 1.

Fact 2.21. The isospectral family associated to a p-band periodic spectral set is a manifold 
of dimension p − 1.

One can describe this isospectral manifold in detail due to several beautiful underlying 
structures. One involves the Toda flow and shows that the isospectral manifolds are the 
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fibers of a completely integrable Hamiltonian system (see, for example [62, Chapter 6]). 
In particular, they are tori. Another views the isospectral torus as the Jacobian variety 
of a hyperelliptic Riemann surface [33,51].

Fact 2.22. The isospectral family associated to a given p-band periodic spectral set is a 
torus of dimension p − 1.

Fact 2.23. The torus can be described by giving the position of the poles of m+
1 on the 

two sheeted Riemann surface, one in each gap.

H. Discriminant
We’d be remiss if we didn’t mention the discriminant, Δ(z)

Fact 2.24. There is a polynomial, Δ(z), of degree p so that

spec(H) = Δ−1[−2, 2] (2.12)

In the math physics literature, Δ arises as the trace of a transfer matrix (see [62, 
Chapter 5]) while in the OP literature as a Chebyshev polynomial; see, for example 
[34,70,21]. This is a key tool in some proofs of the above results.

3. Definition of periodic Jacobi matrices

In this section, we’ll define what we mean by a periodic Jacobi matrix on a tree. To set 
notation and terminology, we begin with some preliminaries and facts about graphs. Our 
graphs will either be finite or infinite leafless graphs with bounded degree. References on 
graph theory include [15,27,35].

A graph, G, is a collection of vertices V (G) and of edges E (G). Our edges will be 
undirected. Each edge was two ends v1, v2 in V . In the finite case, V has p < ∞ elements 
and E has q < ∞ elements. We also demand that every v ∈ V is the end of some edge. 
In the infinite case, we demand that each vertex is the end of only finitely many edges.

We allow self–loops, i.e. edges where the two ends are the same v ∈ V and we allow a 
given pair v, v′ ∈ V to be the ends of more than one edge. The degree, d(v), of a vertex 
is the number of edges of which v is an end, with an edge counted twice if that edge is 
a self–loop with v at both ends. In the infinite case, we will demand that

sup
v∈V

d(v) < ∞ (3.1)

A leaf is a vertex with degree 1. We will normally only consider graphs with no leaves 
although in the finite case, we will sometimes drop edges to produce a finite tree which 
must have some leaves. A graph with constant degree is called regular. There is a natural 
notion of homeomorphism between graphs and once we define trees, it is easy to see that, 
up to homeomorphism, there is a unique infinite regular tree of degree d.
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While our edges are not directed, it is sometimes useful to temporarily assign a di-
rection in which case we write ẽα and call the vertices the initial and final vertices of 
the directed edge. A path in G is a finite set of edges e1, . . . , ek ∈ E and a direction for 
each edge so that the final vertex of ej is the initial vertex of ej+1 for j = 1, . . . , k − 1. 
We say that the path goes from the initial vertex of e1 to the final vertex of ek. We say 
that a path is simple if its initial vertices are distinct, its final vertices are distinct and 
its edges are all distinct. A path is called closed (or a cycle) if it goes from some vertex 
to itself. We will only consider graphs with the property that there is a path from any 
vertex to any other distinct vertex. Such graphs are called connected.

It is easy to see that the following are equivalent under the connectedness assumption: 
that G contains no simple closed paths and that there is a unique simple path between 
any pair of points. In that case, we say that G is a tree. Associated to any graph, G, is 
a topological space: We start out with a point for each vertex and a topological copy of 
[0, 1] for each edge. We then glue the end points of the copy of [0, 1] associated to an 
edge to the two vertices at its ends. We also use G for this topological space. It is easy 
to that G is connected as a topological space if and only if it is connected as a graph. 
Moreover, G is a tree if and only if it is simply connected as a topological space.

It is easy to see that a finite graph which is a tree has leaves, so our basic finite graphs 
are never trees although we will sometimes drop some edges from our leafless graphs 
to get a connected tree. A simple induction proves that any finite connected graph has 
q ≥ p −1 and such a graph is a tree if and only if equality holds. If G is a finite connected 
graph and q > p −1, one can prove that one can turn it into a connected tree by dropping

� ≡ q − (p− 1) (3.2)

suitable edges. That implies that the fundamental group of a finite connected graph with 
p vertices and q edges is the free (non–abelian when � ≥ 2) group, F�, on � generators.

A Jacobi matrix on a graph, G, is associated to a set of real numbers {bj}j∈V assigned 
to each vertex and strictly positive reals {aα}α∈E assigned to each edge. Because we will 
only consider finite graphs or infinite trees with periodic parameters, the sets of a’s and 
b’s are finite. The Jacobi matrix acts on �2(V ), the vector space of square summable 
sequences indexed by the vertices of the graph. It has matrix elements

Hjk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bj , if j = k;∑

α aα, if j 
= k are ends of one or more edges
α which we sum over;

0, if no edges have j and k as ends.

(3.3)

If there are self–loops, one needs to modify this.
Let G be a connected finite graph (with no leaves). Its universal cover, T , is easily 

seen to be the topological space associated to an infinite graph so the covering map takes 
edges to edges and vertices to vertices. This graph is a tree so that if G has constant 
degree, so does T , i.e. it is a regular tree.
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Now let J be a Jacobi matrix on G. There is a unique Jacobi matrix, H, on T so 
that if Ξ : T → G is the covering map and Bj , Aα the Jacobi parameters of J and bj , aα
of H, then bj = BΞ(j), aα = AΞ(α). Any deck transformation, G ∈ Γ, the set of deck 
transformations on T , induces a unitary on H(T ) and these unitaries all commute with 
H. We call H a periodic Jacobi matrix and set p, the number of vertices of G to be its 
period, although, as we’ll explain, there is some question if this is the right definition of 
period!

As we’ve discussed, if G has � independent cycles (equivalently, one can drop � edges 
and turn G into a connected finite tree), then the fundamental group of G is the free 
nonabelian group with � generators, F�. So that is the natural symmetry of our periodic 
trees.

By the free Laplacian matrix on a tree, we will mean the one with all b’s 0 and all a’s 
1 (this is sometimes called the adjacency matrix; the Laplacian (or its negative!) has bj
equal to minus the degree at j. If the tree is regular, the two differ by a constant but 
they don’t in the non–regular case). In this regard, there is a strange distinction between 
regular trees of constant degree d depending on whether d is even or odd! The graph 
with one vertex and � self loops has degree d = 2�. Its universal cover is the regular 
graph of degree d = 2� and its free Laplacian is a period 1 Jacobi matrix. But there is 
no graph with a single vertex of odd degree, so, with our definition, the free Laplacian 
on an odd degree homogenous tree is of period 2! So perhaps one needs to refine our 
definition of period. In any event, we’ll see that there are some significant differences 
between periodic Jacobi matrices on homogenous trees of even and of odd degree.

The point is that the free group with � generators acts freely (i.e. no fixed point for 
non-identity elements) and transitively on the degree 2� regular tree. There is no such 
symmetry group on any odd degree regular tree, although by looking at the cover of the 
two vertex, no self loop, d edge graph, one sees that Fd−1 acts freely on the degree d
regular tree but with two orbits rather than transitively. One can add an extra generator 
to get a transitive symmetry group but that action is no longer free.

Sunada [68] who dealt primarily with continuum Schrodinger type operators noted 
that there is often a realization of operators invariant under discrete groups as operators 
acting on �2(T , W) where T is a Cayley graph of the symmetry group, and W in his 
situation is an infinite dimensional Hilbert space, essentially the spaces of orbits of the 
symmetry group. We owe to Christiansen and Zinchenko the explicit realization of this 
picture for our situation which appears in Theorem 3.1.

We use notation from appendix A. T2� denotes the regular tree of degree 2� thought 
of as the Cayley graph of F�. H2�;p is �2(T2�, Cp). By a simple Jacobi matrix we mean 
the operator J̃ on H2�;p given by

(J̃u)w = B̃uw +
�∑

Ãjuxjw +
�∑

Ã∗
jux−1

j w (3.4)

j=1 j=1
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where w is an index labeling a point in T2� thought of as an element in F� and {xj}�j=1

are the basic generators of F�. Here B̃ is a self–adjoint p × p matrix and Ã1, . . . , Ã� are 
p × p (possibly non–self–adjoint) matrices.

Given a periodic Jacobi matrix, H, built over a Jacobi matrix, J , on a finite graph G
with p vertices and p + � − 1 edges, we can remove � of those edges to get a tree, TG (aka 
a spanning tree for G). The Jacobi matrix of that tree will be B̃ obtained by restricting 
the original Jacobi parameter to TG and defines a self–adjoint p × p matrix.

Let eα be one of the dropped edges which we can associate with one of the generators, 
xj(α), of F�. If aα is the corresponding Jacobi parameter and eα goes from i(α) to j(α), 
we can define a rank 1 matrix, Ãj , with only a single non–zero matrix element, the 
i(α)j(α) matrix element which has the value aα. A little thought shows that

Theorem 3.1. H is unitarily equivalent to the simple Jacobi matrix on H2�;p with B̃ the 
Jacobi matrix on TG and Ãj the rank one matrices above (which are not self–adjoint if 
eα is not a self loop).

One way of thinking of this is what we’ll call the lego viewpoint of a periodic Jacobi 
matrix on a tree. Our original graph, G, leads to a tree, TG, (and matrix B obtained by 
restricting J to TG) by throwing away � edges e1, . . . , e�. Instead of throwing away these 
edges, we think of cutting them leaving 2� connectors e+

1 , . . . , e
+
� , e

−
1 , . . . , e

−
� , half edges 

with only one vertex. Our basic lego block is TG with the 2� labeled connectors sticking 
out.

We get the infinite Jacobi matrix, J̃ , over the Jacobi matrix J on G by placing a lego 
block at each vertex on the regular tree, T2� connecting neighboring set of lego pieces via 
matching connectors, an e+

j on one to an e−j on the neighbor. The blocks get a matrix 
B acting on the copy of Cp at the corresponding site. The connectors get an Aj. The 
finite tree TG with the dangling half edges is also known as a fundamental domain of the 
action of F2� on T viewed as the universal cover of G.

This realization allows certain natural *–algebras discussed in the Appendix to enter 
the picture. C(0)

2�;p is the *–algebra generated by the set of all simple Jacobi matrices 
operating on H2�;p, C∗

red(F�; Cp) its norm closure and V2�;p the set of all operators com-
muting with the natural representation of F� on H2�;p – it is the weak* closure of C(0)

2�;p. 
Clearly H (or the unitarily equivalent J̃) lies in C(0)

2�;p, so f(H) lies in C∗
red(F�; Cp) if f

is a continuous function and in V2�;p if f is a Borel function. In particular

Theorem 3.2. For any λ ∈ R, the spectral projection E(−∞,λ)(H) ∈ V2�;p. If λ /∈ spec(H), 
then E(−∞,λ)(H) ∈ C(0)

2�;p.

4. The free model and the DOS

The definition we will take for the density of states (DOS), dk (and so integrated 
density of states (IDS), k) is simple. We fix a finite graph, G, with p vertices and q edges. 
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For each vertex, j ∈ G, the spectral measure for H at vertex r ∈ T , dμr is the same for 
all r ∈ T with Ξ(r) = j. The DOS is defined by picking one dμr for each j ∈ G, summing 
over j and dividing by p, the number of vertices in G. That is

dk(λ) = 1
p

∑
j∈G;r so that Ξ(r)=j

dμr (4.1)

One of the simplest examples for which one can compute the DOS is the free Laplacian 
on, Td, the regular tree of degree d, for which the DOS is

dkd(λ) =
d
√

4(d− 1) − λ2

2π(d2 − λ2) χ[−sd,sd](λ)dλ (4.2)

where sd =
√

4(d− 1) which is the top of the spectrum. Since it follows easily from our 
formalism in Section 6, we’ll compute this in Section 7, but it has been presented earlier 
in discussions of random Schrödinger operators on trees [44,1,3] and radially symmetric 
potentials [25,26,62]. It is called the Kesten–McKay distribution (after [50,42]) since it 
also describes finite random graphs of constant degree d (this may seem surprising but 
we’ll discuss the reason later).

An important tool in understanding the DOS involves the operator algebras discussed 
in the Appendix. Fix a finite graph G with universal cover tree T2�. As we saw in Theo-
rem 3.2, the spectral projections of the periodic Jacobi matrix, H, lie in the von Neumann 
algebra V2�;p and the spectral projection of an interval (a, b) ⊂ R with a, b /∈ spec(H)
lies in the C∗-algebra C∗

red(F�; Cp). By (4.1), we have that

k(λ) = p−1T (E(−∞,λ)(H)) (4.3)

where T is the unnormalized trace of (A.8).
We next want to discuss whether the DOS can be viewed as an infinite volume limit 

of eigenvalue densities of operators restricted to finite boxes as it can in the 1D case. 
Fix the base point, e0 ∈ T2� and define the ball, Λ̃r, as the set of all vertices in T2� with 
distance at most r from e0. Let Λr be the p[1 +

∑r
q=1(2�)(2� − 1)q−1] points in T that 

map to Λ̃r under the representation of Theorem 3.1. Because the number of boundary 
points in Λr is comparable to the total number of points in Λr, one cannot expect to get 
dk as a limit eigenvalue counting measures with free boundary conditions. We can make 
this explicit.

Theorem 4.1. Let H be a periodic Jacobi matrix on any infinite tree which is not a line. 
Then no limit point of free boundary condition eigenvalue counting density agrees with 
the DOS. Indeed,

lim sup
ˆ

λ2dNr(λ) <
ˆ

λ2dk(λ) (4.4)

r
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Here, letting nr = p[1 +
∑r

q=1(2�)(2� − 1)q−1] be the number of vertices in Λr, one 
defines dNr to be (nr)−1 times the eigenvalue counting measure for the Jacobi matrix, 
Hr, obtained by keeping only the vertices in Λr and edges between them and taking the 
restricted Jacobi parameters associated to the resulting graph.

To prove this result, we need a graphical representation of the moments of the density 
of states. If dμj is the spectral measure of a point j ∈ T , then

ˆ
λkdμj(λ) = 〈δj , Hkδj〉 (4.5)

Expanding Hk, one sees that

〈δj , Hkδj〉 =
∑

ω∈Wj,k

ρ(ω) (4.6)

where Wj,k is the set of all “walks” of length k starting and ending at site j, i.e. 
ω1, . . . , ωk+1 ∈ T where ω1 = ωk+1 = j and for m = 1, . . . , k, one has that either 
ωm+1 = ωm or ωm and ωm+1 are neighbors in T (i.e. two ends of an edge). Moreover

ρ(ω) = ρ1(ω) . . . ρk(ω) (4.7)

ρm(ω) =
{

bωm
, if ωm = ωm+1

a(ωm,ωm+1) if ωm 
= ωm+1
(4.8)

On the other hand,

ˆ
λkdNr(λ) = n−1

r Tr(Hk
r )

= n−1
r

∑
j∈Λr

〈δj , Hk
r δj〉

= n−1
r

∑
j∈Λr

∑
ω∈Wj,k,r

ρ(ω) (4.9)

where Wj,k,r is defined like Wj,k except that we require ωm ∈ Λr instead of ωm ∈ T .

Proof of Theorem 4.1. It clearly suffices to prove (4.4). Comparing (4.6) and (4.9) and 
using the definition of dk, one sees that

ˆ
λ2[dk − dNr](λ) = n−1

r

∑
j∈Λr

∑
ω∈Wj,2\Wj,2,r

ρ(ω)

= n−1
r

∑
j∈∂Λr

∑
α=(jk), k/∈Λr

a2
α (4.10)
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Here ∂Λr is the set of j ∈ Λr which are one end of an edge in T whose other end is 
not in Λr. Since each boundary cell has at least one vertex in ∂Λr, the number of points, 
sr, in ∂Λr is at least

sr ≥ 2�(2�− 1)r−1

In particular,

lim inf
r→∞

srn
−1
r ≥ p−1

[ ∞∑
q=0

(2�− 1)−q

]−1

= p−1[(2�− 1)/(2�− 2)] (4.11)

Therefore,

lim inf
r→∞

RHS of (4.10) ≥ lim inf
r→∞

srn
−1
r min(a2

α)

≥ p−1[(2�− 1)/(2�− 2)] min(a2
α)

(4.12)

which proves (4.4) �
Remarks. 1. The lower bounds above are far from optimal. For example, we have not 
used the fact that there are � links from a boundary cell to the outside of Λr.

2. If all bj ≥ 0, one can replace λ2 in (4.4) by λ2k for any k ≥ 1.
3. Without much additional effort, one can actually compute the limit in (4.4) and 

even prove that the measures dNr have a limit. In fact, using the canopy tree C defined 
in [2], it is possible to define a simple Jacobi matrix J̃∞ on C such that its appropriately 
defined DOS is the limit of dNr. Since the details are of marginal relevance to the 
discussion here, we leave them to the interested reader.

4. However, this doesn’t mean that there is a single possible “free boundary condition” 
density of states because in forming Λr we made a choice of which links in G to break to 
get TG . For example, in the ace model of Example 9.4, 

´
λ2dk(λ) − lim supr

´
λ2dNr(λ)

can be any of (a multiple of) a2 + c2, a2 + e2 or c2 + e2 depending on whether we leave 
the e, c or a edge unbroken.

The easiest way to discuss periodic boundary conditions (BC) is to use the lego pieces 
picture described after Theorem 3.1. The boundary points in Λr are described by words, 
ω = α1 . . . αr, in F�. Here each αj is one of the � generators of F� or its inverse with 
αjαj+1 
= e for j = 1, . . . , r− 1. We define the opposite word to be ω̃ = α−1

1 . . . α−1
r (this 

is not usually ω−1 which is α−1
r . . . α−1

1 ). ω̃ is obtained by walking from the origin taking 
the opposite step to the one taken for the walk to ω.

Place a lego piece down at each vertex in Λr, linking neighbors by the group labels 
on generators on the edges. The free boundary condition operator Hr has a link at 
ω that uses the α−1

r connector to ω by its only neighbor in Λr but the other 2� − 1
connectors are unlinked. Consider linking each connector left at ω to the matching free 
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connector at ω̃. We define the canonical periodic boundary condition operator by taking 
the graph π(r)

C obtained by adding these links for each ω in ∂Λr, the boundary of Λr. 
π

(r)
C is a finite graph with fixed degree 2� (although once we put the lego pieces in we 

get a finite graph which may not have a fixed degree – recall the lego pieces, TG, do 
not necessarily have a fixed degree). H

π
(r)
C

is the Jacobi matrix obtained by adding to 
Hr the Aα links associated to the added connectors. There is a graphical representation 
for matrix elements of Hk

π
(r)
C

which involves walks that can go through the added links. 
There are at least as many walks for r much larger than k as on the infinite graph but 
due to loops there can be additional walks.

π
(r)
C has lots of closed loops of length 2 since we can go from ω to ω̃ by one link and 

come back via another. For this reason, the eigenvalue counting measure for H
π

(r)
C

does 
not converge to the infinite tree DOS, indeed its second moment is strictly larger than 
for the infinite tree DOS.

Pairing all the links of ω to ω̃ is natural in one sense. Λr with lego pieces has 2�−1
2� sr

connectors of each of the 2� types, e+
1 , e

−
1 , . . . , e

+
� , e

−
� . By a periodic pairing, we mean a 

pairing of each of the 2�−1
2� sr, e+

j ’s with a different e−j for each j = 1, . . . , �. There are [( 2�−1
2� sr

)
!
]� such pairings in all. We’ll use Pr for the set of all such pairings. Associated to 

any pairing is a graph, π, of constant degree 2� and using lego pieces, also a Hamiltonian 
Hπ on �2(Λr, Cp). These all have a claim to be a periodic BC operator.

There is a natural way to randomly pick a sequence of periodic pairings. On Pr, we 
put counting measure (i.e. weight 1/ 

[( 2�−1
2� sr

)
!
]�) to each possibility). By a random set 

of pairings, we mean a point in ×∞
r=1 Pr of a sequence of pairings, one for each r and we 

give the space the infinite product of counting measures. In [8], we will prove with Kalai:

Theorem 4.2. For a.e. sequence of periodic pairings, the eigenvalue counting measure for 
Hπ converges to the DOS for the infinite tree.

The reason this is true is that random π’s have few small closed loops. Indeed we 
prove the expected number of loops of a fixed size is finite. While the method of proof is 
different, this result is related to McKay’s result [50] quoted at the start of this section 
that a randomly chosen degree d graph has an eigenvalue density that converges to (4.2); 
he shows that random graphs have few small closed loops.

There is a different way of thinking of about periodic boundary conditions. Our graphs, 
π, are of constant degree 2� with labeled edges so that there is a natural map of π to 
the basic graph with p = 1 point and q = � edges, each a self loop to the single point. 
By replacing the points of π by the tree TG in the lego representation, we get a natural 
map onto the initial graph, G. This map is then a covering map, i.e., the decorated π is 
a covering space to G and Hπ is the lift of the Jacobi matrix on G to the covering space.

More generally, we can regard any such finite cover and its associated Jacobi matrix 
lift as a periodic BC Hamiltonian. Such finite covers are in one-one correspondence to 
finite index subgroups, H, of F�, the fundamental group of G. At first sight, this looks 
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ideal since H is connected to loops in the finite covering space, but on more careful 
examination, one realizes that H is only closed loops through the base point.

An additional point is that while the periodic BC objects studied in Theorem 4.2 are 
reasonable from the point of view of someone who thinks about periodic BC on Zν , they 
have a big lack in comparison with that case. The periodic BC graph on Zν is a torus 
which has a huge symmetry group while, for example, it is easy to see that the graph 
π

(r)
C has no translational symmetries at all. The key is to consider normal subgroups, 

H, in F�. The points in the covering space for the one point, � self-loop case are then 
points in the quotient group G = F�/H. Because the subgroup is normal, G acts on it by 
right multiplication and the covering space has a transitive group of symmetries. For the 
objects built over a graph G, the action is transitive at the level of copies of G (although 
not transitive on the vertices of G and its covering space). So we will call the periodic 
BC objects associated with normal H, symmetric periodic BC objects. For symmetric 
graphs, to know there are no small loops, it suffices to see that there are no small loops 
through the origin.

There is a huge literature on normal subgroups of F� due to its importance in topology, 
group theory and number theory. Using ideas from that literature, [8] will also prove:

Theorem 4.3. There exist sequences of symmetric periodic BC whose eigenvalue counting 
distributions converge to the infinite tree DOS.

5. Sunada’s gap labeling theorem

The following is a fundamental result in the theory

Theorem 5.1 (Sunada [68]). Let H be a period p periodic Jacobi matrix on a tree T . 
Then the integrated density of states, k(λ), takes a value j/p, j ∈ {1, . . . , p − 1} in any 
gap of the spectrum. In particular, the spectrum of H is a union of at most p closed 
intervals.

Remarks. 1. It is trivial that k is constant in any gap. The deep fact is, of course, 
the quantization. Fix j ∈ {1, . . . , p − 1}. If there is a unique point in spec(H) where 
k(λ) = j/p, so that this point is neither in a gap or an edge of the gap, then we say the 
gap at j/p is closed. Otherwise, we say that the gap at j/p is open.

2. Sunada’s paper deals primarily with differential operators invariant under a discrete 
group but he remarks that it applies to difference operators. Since the IDS is not normal-
izable in the continuum case, he only has a quantization claim. If you follow his argument 
in our case, you get a precise 1/p quantization although it never appears explicitly in his 
paper.

Proof. By Theorem 3.1, H is unitarily equivalent to an operator J̃ on H2�;p where F� is 
the fundamental group of the graph G underlying the model. By Theorem 3.2, if λ is in 
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a gap of the spectrum E(−∞,λ)(J̃) ∈ C(0)
2�;p. If T is the unnormalized trace of (A.8), then 

T (E(−∞,λ)(J̃)) ∈ Z by Theorem A.3. By (4.3), we conclude that pk(λ) ∈ Z. �
We note a curious consequence of gap labelling:

Theorem 5.2. Let H be a periodic Jacobi matrix on a tree with odd period. Suppose that 
all bj = 0. Then 0 ∈ spec(H)

Proof. Let V be the operator V ϕ(j) = (−1)ρ(j)ϕ(j) where ρ(j) is the distance of j from 
some base vertex picked once and for all. Then

V HV −1 = −H (5.1)

If 0 /∈ spec(H), there is a gap (−2ε, 2ε) in the spectrum. By (5.1), we have that k(ε) =
1 − k(ε). By gap labeling, for some integer q, k(ε) = q/p. It follows that 1 = k(ε) + (1 −
k(ε)) = 2q/p so p = 2q. Since p is odd, we conclude that 0 ∈ spec(H). �
6. Equations for G and M and the absence of SC spectrum

In this section, we introduce the basic Green’s and m-functions for Jacobi operators on 
graphs, derive equations amongst them and use these equations to prove the absence of 
singular continuous spectrum for periodic Jacobi matrices on trees. Let H be a bounded 
Jacobi matrix on an infinite tree, T , with no leaves (for now, we do not suppose either 
that the Jacobi matrix or even that the tree is periodic). If α is an edge with ends j, k, 
then removing the edge α disconnects T into two components, T α

j and T α
k , containing 

j and k respectively. They are also infinite trees although if either vertex has degree 2, 
they may have a leaf. We let H(T α

j ) be the obvious Jacobi matrix acting on �2(T α
j ) and 

similarly for H(T α
k ). Define

Gj(z) = 〈δj , (H − z)−1δj〉 mα
j = 〈δj , (H(T α

j ) − z)−1δj〉 (6.1)

and similarly for mα
k . These are defined as analytic functions on C \ [A, B] if A and B

are the bottom and top of spec(H). They are also analytic at infinity and in the gaps 
of suitable spectra. In the periodic case, one can show that the three operators have the 
same essential spectra, so all are meromorphic on C \ ess spec(H).

We want to derive the equations for G and m. These have often appeared in the 
literature on random discrete Schrödinger operators on regular trees; see e.g. Klein [44], 
Aizenman-Sims-Warzel [1,3] and Froese-Hasler-Sptizer [40,41]. Unfortunately these equa-
tions have appeared many times with incorrect signs (whose corrections, fortunately, 
don’t seem to effect the validity of their theorems)! So we want to provide a derivation. 
A particularly clean method involves Banachiewicz’ formula [12] from the theory of Schur 
complements [56] (also known as the method of Feshbach projections, after [30], or the 
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Livšic matrix after [49]). This formula has been used often before in spectral theory in 
related contexts, see, for example, [11,38]. Consider a Hilbert space that is a direct sum 
H = H1 ⊕H2 so that any N ∈ L(H), the set of bounded operators on H, can be written

N =
(

X Z

Z∗ Y

)

where, for example, X ∈ L(H1). Given such an N with Y invertible, we define the Schur 
complement of Y as S = X − ZY −1Z∗ ∈ L(H1). Let

L =
(

1 0
−Y −1Z∗ 1

)
so L−1 =

(
1 0

Y −1Z∗ 1

)

A simple calculation shows that

L∗NL =
(
S 0
0 Y

)
(6.2)

so that

N−1 = L

(
S−1 0
0 Y −1

)
L∗

=
(

S−1 −S−1ZY −1

−Y −1Z∗S−1 Y −1 + Y −1Z∗S−1ZY −1

)

which proves Banachiewicz’ formula

(N−1)11 = S−1 (6.3)

For a tree, we fix j ∈ T so that we can write �2(T ) = C⊕�2(∪α=(jk)T α
k ) corresponding 

to singling out the site j. Then (N−1)11 is a number, X is bj , Y = ⊕α=(jk)H(T α
k ) and 

Z is the various aα. The result of applying (6.3) both to H and to H(T (rj)
j ) is

Theorem 6.1. Let H be an bounded Jacobi matric on an infinite tree T (not necessarily 
periodic). Then the Green’s functions and m-functions given by (6.1) are related by

Gj(z) = 1
−z + bj −

∑
α=(jk) a

2
αm

α
k (z) (6.4)

If β = (rj) is an edge in T , we have that

mβ
j (z) = 1

−z + b −
∑

a2mα(z) (6.5)

j α=(jk); k �=r α k
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Note that if H is a periodic Jacobi matrix built over a finite graph G with p vertices 
and q edges, the Green’s and m-functions are invariant under the action of the group F�

so that there are p distinct Green’s functions and 2q m–functions.
If you compare the two equations for G and m, they differ in a single term, so returning 

to the not necessarily periodic case

Corollary 6.2. If β = (rj) is an edge in T , we have that

Gj(z) = 1[
mβ

j (z)
]−1

− a2
βm

β
r (z)

(6.6)

This is an analog of a well known formula from the 1D case; see, for example, Simon 
[62, (5.4.45)].

We should mention that in [6], Aomoto derived some coupled equations for Green’s 
functions (without being explicit about what branches of the square roots one needs to 
take):

Gj(z)−1 = z − bj − 1
2

∑
α=(jk)

(
−Gj(z)−1 +

√
Gj(z)−2 + 4a2

α(Gk(z)/Gj(z))
)

(6.7)

Given the definition of spectral measures and (6.1), we have that

Gj(z) =
ˆ

dμj(λ)
λ− z

(6.8)

so that in the periodic case

1
p

∑
one j in each orbit

Gj(z) =
ˆ

dk(λ)
λ− z

(6.9)

That means (given that we will see below that dμj , and so dk, have no singular 
continuous part) that one can recover dk from knowing all the Gj : pure points of dk
occur at the poles of Gj and the pure point masses are essentially averages of the residues 
at these poles and the a.c. weight of k is related to limits of averages of Gj(λ + iε). In 
the next section, we’ll use Theorem 6.1 to compute G and m in certain models and then 
compute dk using this connection.

In the periodic case, we’ll see that the Green’s and m-functions are algebraic by which 
we mean functions f(z) that solve P (z, f(z)) = 0 where P is a polynomial in two variables 
(that depends non–trivially on both variables). The algebraicity of the Green’s functions 
for periodic finite difference operators of finite range on free groups (for the case that 
bj ≡ 0) was proved in [4]. We give an independent proof for our setting (covering also 
the case of nonzero bj ’s) here.
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We need several well known results about algebraic functions. By the degree in w of 
P (z, w) we mean the highest power of w that occurs with a non-vanishing coefficient. 
First we need the following:

Theorem 6.3. Let P (z, w) be a polynomial of degree n in w. Then there exist two finite 
sets F1 and F2 in the Riemann sphere, Ĉ, and k ≤ n, so that if z0 /∈ F ≡ F1 ∪ F2, then 
P (z0, w) = 0 has k solutions, each the value of a function fj(z) analytic near z0. Each 

fj can be meromorphically continued along any curve in 
(
Ĉ
)
\F1 with the only possible 

poles at F2. At points in F , there are fewer than k solutions. At points z2 ∈ F2, there 
are k functions meromorphic at z2 which give all solutions for z near z2 while at points 
z1 ∈ F1 all the solutions near z1 are given by one or more Laurent-Pusieux series.

Remarks. 1. Thus the functions defined at regular points (i.e. points not in F ) are 
analytic functions which can be meromorphically continued to multisheeted Riemann 
surfaces with branch points at (perhaps a proper subset of) F1 with possible poles at F2. 
The branch points are at most k fold and there are at most k sheets.

2. This follows, for example, from [64, Theorem 3.5.2]; there the set is discrete but by 
looking at Q(z, w) = znP (1/z, w), one sees it is also discrete at infinity, so F is finite. 
This remark also shows that an algebraic function of 1/z is algebraic in z.

By algebraic functions, we’ll mean either the global possibly multisheeted functions 
or else the local germs defined by a single solution near a point of analyticity. Since the 
analytic continuation of a function obeying P (z, f(z)) = 0 near a point z0 obeys the 
same equation near any point to which f can be analytically continued, the two notions 
are essentially the same. In one place, (to conclude that G is algebraic; we could avoid 
it but it is more elegant to prove it) we will need:

Theorem 6.4. The set of algebraic functions is a field, that is sums, products and inverses 
of such functions are again such functions.

Remarks. 1. One proof of this, attractive to algebraists, uses the fact that the alge-
braic functions are precisely the set of solutions of polynomials over the field of rational 
functions and the fact [48, Proposition V.1.4] that the algebraic closure of a field is a 
field.

2. Another proof, attractive to analysts, that uses tensor products of matrices, can 
be obtained by modifying [60, Proposition III.4.4]. That proposition proves that the 
algebraic integers are a ring, but by replacing integers by polynomials in z, it shows that 
the algebraic functions are a ring. To see that the inverse of an algebraic function is also 
an algebraic function, one notes that if P (z, w) is a polynomial then, for suitable k, so 
is R(z, w) = wkP (z, 1/w) and if P (z, f(z)) = 0, so does R(z, 1/f(z)) = 0.

The final general theorem on algebraic functions that we’ll need can be found in Lang 
[48, Proposition VIII.5.3]:
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Theorem 6.5. Let {Pj(z, w1, . . . , wn)}nj=1 be n polynomials in n + 1 variables. Suppose 

that (z0, w
(0)
1 , . . . , w(0)

n ) is a point where

Pj(z0, w
(0)
1 , . . . , w

(0)
n )} = 0, j = 1, . . . , n

det
(

∂Pj

∂wj

)
j,k=1,...,n

(z0, w
(0)
1 , . . . , w

(0)
n ) 
= 0 (6.10)

Then there is a neighborhood, N , of z0, and δ > 0 so that for z ∈ N , there is a unique 
solution, fj(z), j = 1, . . . , n of Pj(z, f1(z), . . . , fn(z)) = 0 j = 1, . . . , n with |fj(z) −
w

(0)
j | < δ, j = 1, . . . , n. Moreover, each fj is an algebraic function.

Everything before “Moreover” is just the implicit function theorem for analytic func-
tions [45, Theorem 1.4.11]. That the functions are algebraic is the essence of what is in 
Lang’s text. We can now apply these theorems to Green’s and m-functions.

Theorem 6.6. The Green’s functions and m–functions of a periodic Jacobi matrix on a 
tree, defined originally on C \ [A, B], are algebraic functions. In particular, there is a 
finite subset, F0 ⊆ R, so that uniformly on compact subsets of R \F0, all these functions 
have limits (which might be equal to infinity) evaluated at x +iε as ε ↓ 0. These functions 
all have meromorphic continuations to a finite sheeted Riemann surface.

Proof. In terms of u = 1/z and fβ
j (u) = mβ

j (1/u), the equations (6.5) for the 2q functions 
fβ
j can be written (with β = (rj):

fβ
j (u) + u− bjuf

β
j (u) +

∑
α=(jk);k �=r

ua2
αf

β
j (u)fα

k (u) = 0 (6.11)

These equations hold at u = 0, fβ
j = 0 and at that point, the Hessian matrix whose 

determinant appears in (6.10) is the identity, so the determinant is 1. It follows by 
Theorem 6.5 that for u small there are unique small solutions f ’s which are algebraic in 
u. We know the m’s go to zero at infinity, so the f ’s they define must be this unique 
small solution which is algebraic. It follows that the m’s are algebraic in z. Since each m
is algebraic, by Theorem 6.3, they have analytic continuations to multisheeted analytic 
functions over C\F β

j . So the collection of m’s has a continuation to a mutlisheeted family 

over C \ F with F = ∪j,βF
β
j . By analyticity, this family obeys the set of polynomial 

equations (6.5).
(6.4) or (6.6) and Theorem 6.4 then imply that the G’s are algebraic. The remaining 

assertions follow from Theorem 6.3 if one uses the fact that the m’s are initially given 
as analytic functions on C \ [A, B]. Thus while their analytic continuation might have 
singularities at possible non-real points in F , these non-real singularities are on different 
sheets so that the only singularities on the initial sheet lie on F0 = F ∩R. �
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We note that given that the basic equations are quadratic in the f ’s and that there are 
2q of them, Bezout’s Theorem [57, Section 3.2.2] implies that the number of sheets is at 
most 22q, although in the few cases we can compute, there are only 2 sheets. Theorem 6.6
has one immediate corollary that is so important we’ll call it a Theorem:

Theorem 6.7. Periodic Jacobi matrices on trees have no singular continuous spectrum.

Remarks. 1. This result has not appeared previously and we regard it as the most im-
portant result in this paper. That said, it is an immediate consequence of the fact that 
the Gj(z) are algebraic. In [5], Aomoto claims that the Green’s functions are algebraic 
although he makes no mention at all of singular continuous spectrum. His argument that 
these functions are algebraic depends on his equations (6.7). They are not polynomial 
but are what he calls algebraic. He remarks that these are p algebraic equations in p
unknowns and such functions are algebraic. He is thus relying on some unstated (but 
probably correct) extension of Theorem 6.5. More importantly, his argument is incom-
plete since he doesn’t prove that these equations are independent, essentially some kind 
of condition on the invertibility of a Hessian matrix.

2. This is an analog of Fact 2.6. One can ask about Fact 2.7. In the next section we’ll 
see that there are examples with point spectrum and in the section after, we’ll discuss 
the Theorem of Aomoto [5] that periodic Jacobi matrices on regular trees have no point 
spectrum.

7. Several simple examples

Using discriminants (Fact 2.24), you can compute closed forms for virtually any 1D 
periodic Jacobi matrices (up to the solution of a high degree polynomial in two variables). 
There seem to be only are a few examples where one can do the same for periodic trees. 
Since we’ve found these examples illuminating, we will discuss some here and in the next 
few sections.

Example 7.1. (Degree d regular tree) Let Td be the homogenous tree of degree d and H
the Jacobi matrix with all b = 0 and all a = 1. (6.5) yields

m(z) = 1
−z − (d− 1)m(z) ⇒ (d− 1)m2 + zm + 1 = 0

⇒ m(z) =
−z +

√
z2 − 4(d− 1)

2(d− 1) (7.1)

We want the branch of the square root which is O( 1
z ) near ∞ (at least on the principal 

sheet) since near ∞, m → 0 rather than m → ∞.
Using (6.4), we find that

G(z) = 1

−z − dm(z)
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= 2(d− 1)
(2 − d)z − d

√
z2 − 4(d− 1)

(7.2)

Multiplying numerator and denominator by (2 − d)z + d
√

z2 − 4(d− 1) and using [(2 −
d)z]2 + [d

√
z2 − 4(d− 1)]2 = 4(d − 1)(d2 − z2), we get

G(z) =
(2 − d)z + d

√
z2 − 4(d− 1)

2(d2 − z2) (7.3)

The boundary value of Im(G) on the real axis comes from the square root and is 
non-zero only when its argument is negative so we get what appeared as (4.2) (sd =√

4(d− 1)).

dkd(λ) =
d
√

4(d− 1) − λ2

2π(d2 − λ2) χ[−sd,sd](λ)dλ (7.4)

Returning to G, it may appear that it has a pole at z = ±d and so ±d an eigenvalue 
but (at least on the principal sheet) the numerator also vanishes there, so G is not 
singular on the principal sheet at those points. This phenomenon is connected to the 
fact that Hu = du has a positive solution (namely u ≡ 1) which is not in �2.

We note that in the sense of [18], this model is spherically symmetric, so the com-
putation of m can be reduced to the half-line m functions associated to a conventional 
Jacobi matrix (see (7.5) below).

Example 7.2. (rg-model) Fix two integers r and g, each at least 2. This model will have 
an underlying finite graph, G, with p = r+ g vertices which we think of as r red vertices 
and g green vertices. G has q = rg edges - specifically, every red vertex has degree g and 
is connected to every green vertex by a single edge. Thus each green vertex has degree 
r. There are no edges between vertices of the same color. This model was introduced by 
Aomoto [5] because, as we will see, this Jacobi matrix has point spectrum when r 
= g

(illuminating partially how much Fact 2.7 extends to general tree). Aomoto mentions 
that the existence of point spectrum in this model follows from point spectrum in a 
more complicated model studied in [17,20,29,46].

While Aomoto does not write down explicit eigenfunctions, one can. To see this, one 
writes the model as a radial tree. Consider a tree with a single red vertex at level 0, linked 
(i.e. connected by an edge) to g green vertices at level 1. Each of these green vertices is 
also linked to r − 1 red vertices at level 2 and, in turn, these vertices are also linked to 
g−1 green vertices at level 3. In general, level 2k−1; k = 1, 2, . . . has g[(r−1)(g−1)]k−1

green vertices while level 2k; k = 1, 2, . . . has g(r − 1)[(r − 1)(g − 1)]k−1 red vertices. 
Each level m vertex, m = 1, 2, . . . has one edge linking it to a level m − 1 vertex and 
either r− 1 or g− 1 edges linking to level m + 1 vertices. It is easy to see this tree is the 
universal cover to the basic finite red-green graph described at the start.



24 N. Avni et al. / Advances in Mathematics 370 (2020) 107241
We note in passing, that using the formalism in [18], the m-function at the central 
point and radial eigenfunctions can be studied with the classical tri-diagonal Jacobi 
matrix:

J =

⎛⎜⎜⎜⎜⎜⎜⎝
0 √

g . . .√
g 0

√
r − 1 . . .√

r − 1 0
√
g − 1 . . .√

g − 1 0
√
r − 1

. . . . . .
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (7.5)

We will instead use direct calculation of eigenfunctions and the formulae for m- and 
Green’s functions in Section 6. We want a radially symmetric (i.e. constant on each 
level) solution of Hu = 0. We’ll indicate the value at level j as uj and suppose that 
u0 = 1. That Hu vanishes at level 0 implies that u1 = 0 and that Hu vanishes at level 
1 implies that u2 = −1/(r − 1). A simple induction shows that

u2j+1 = 0 u2j = (−1/(r − 1))j (7.6)

That the eigenfunction be �2 is equivalent to 
∑∞

j=0 Nj |uj |2 < ∞ where Nj is the 
number of vertices at level j which we computed above. This is equivalent to

∞∑
j=1

[
g − 1
r − 1

]j
< ∞ (7.7)

which happens if and only if r > g. There is also a square integrable eigenfunction 
when g > r but radially symmetric in a form that the tree is written as one centered 
at a green vertex. We’ll see below that when r > g, all �2 eigenfunctions vanish at the 
green sites. In [22], Christiansen et al. prove that linear combinations of the radially 
symmetric functions about each of the red vertices (which are linearly independent but 
not orthogonal) are dense in the eigenspace.

Let mr, resp. mg, be the m-function at the red, resp. green, vertices (i.e. mr = m
(rg)
r ). 

Then (6.5) says that

mr(z) = 1
−z − (g − 1)mg(z)

mg(z) = 1
−z − (r − 1)mr(z)

(7.8)

Substituting one equation in the other yields quadratic equations whose solutions 
involve a function

Φ(z) = z4 + 2(2 − (r + g))z2 + (r − g)2 (7.9)

in terms of which the solutions are
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mr(z) =
(g − r) − z2 +

√
Φ(z)

2(r − 1)z mg(z) =
(r − g) − z2 +

√
Φ(z)

2(g − 1)z (7.10)

where the root of Φ is taken which is +z2 near ∞ on the principle sheet (this branch is 
chosen so that the m-functions go to 0 at ∞).

By (6.4), we find that the Green’s functions at red and green vertices are given by:

Gr(z) = 1
−z − gmg(z)

(7.11)

= 2(g − 1)z(
(2 − g)z2 − g(r − g) − g

√
Φ(z)

) (7.12)

=
(2 − g)z2 − g

[
(r − g) −

√
Φ(z)

]
2rgz − 2z3 (7.13)

where we get (7.13) by multiplying numerator and denominator by ((2 − g)z2 − g(r −
g) + g

√
Φ(z)) and using that

[(2 − g)z2 − g(r − g)]2 + g2Φ(z) = 2(g − 1)z[2rgz − 2z3]

Similarly, we get

Gg(z) =
(2 − r)z2 − r

[
(g − r) −

√
Φ(z)

]
2rgz − 2z3 (7.14)

In analyzing these equations, we take r > g > 2 without requiring them to be integral 
(later we’ll also consider r = g). Write Φ(z) = Q(z2) where Q is a quadratic polynomial 
whose discriminant is

Δ = [2(r + g − 2)]2 − 4(r − g)2 = 16rg + 16 − 16(r + g) = 16(r − 1)(g − 1) > 0 (7.15)

Thus Q has two positive roots (where s = r − 1, t = g − 1):

γ± = 1
2

[
2r + 2g − 4 ±

√
Δ
]

= s + t± 2
√
st (7.16)

= (
√
s±

√
t)2

Thus Φ(x) on the real axis is negative on (−√
γ+, −

√
γ−) ∪ (√γ−, 

√
γ+) and positive 

on (−∞, −√
γ+) ∪ (−√

γ−, 
√
γ−) ∪ (√γ+, ∞). Since we take the branch of 

√
Φ which is 

positive near ±∞ on R and negative on the imaginary axis, we conclude that 
√

Φ(x) is 
positive on (−∞, −√

γ+) ∪ (√γ+, ∞) and negative on (−√
γ−, 

√
γ−).

The denominator in (7.13) and (7.14) vanishes at z = 0 and z = ±√
rg. Notice that 

rg = (s + 1)(t + 1) = s + t + (1 + st) > γ+, so we know that 
√

Φ(√rg) is the positive 
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square root. Since Φ(±√
rg) = (rg− g− r)2, and rg− r− g = (r− 1)(g− 1) − 1 > 0, we 

conclude that 
√

Φ(√rg) = rg − r − g which implies that the numerators of (7.13) and 
(7.14) vanish and there are no principle sheet poles of G at z = ±√

rg. On the other 
hand since 

√
Φ(0) by the above is negative, we conclude that 

√
Φ(0) = g − r. It follows 

that the numerator of (7.14) vanishes at z = 0 and so Gg has no poles in the spectral 
region, so, in particular, all the eigenfunctions with eigenvalue 0 vanish at the green sites. 
On the other hand, the numerator of (7.13) at z = 0 is −2g(r− g) so we have that near 
z = 0.

Gr(z) = −r − g

rz
+ O(1) (7.17)

Next, by (7.13) and (7.14), the Stieltjes transform of the DOS is

rGr(z) + gGg(z)
r + g

=
(r + g − rg)z2 + rg

√
Φ(z)

z(r + g)(rg − z2) (7.18)

from which we get (taking into account that r times the residue in (7.17) is −(r − g)) 
that the DOS measure has a point mass of weight r−g

r+g at zero and an a.c. weight on 
(−√

γ+, 
√
γ−) ∪ (√γ−, 

√
γ+) of

dk

dλ
(λ) =

rg
√
−Φ(λ)

(πλ)(r + g)(rg − λ2) (7.19)

Since the total mass of the DOS is r+g
r+g and the model is symmetric about 0, in line with 

gap labeling, we see each of the ac bands has DOS total weight g
r+g .

Finally, we note that if r = g = d the radial picture shows that the Jacobi matrix is 
the same as the degree d regular tree and (7.19) yields (7.4). By (3.3), the graph G of 
this model has rg − r − g + 1 = (r − 1)(g − 1) loops. When d = 2� is even, we can write 
the d-regular tree as a period one operator as the universal cover of a finite graph with 
� loops and, for general d as a period 2 operator as the universal cover of a graph with 
d edges. The period 2d graph of this model is just a finite cover of these simpler graphs.

Example 7.3. This is the simplest period 2 example and confirms the idea that for non–
constant b, all gaps are open. The graph G has p = 2 points, and so two different values 
of the parameter b that we set to be b > 0 and −b. There are q = d edges joining the 
vertices with all a = 1. The universal cover is Td, the regular tree of degree d and H
is the sum of the adjacency matrix of this tree and the diagonal matrix with values b
and −b on “alternate” vertices. By replacing H by γH + η1, one can describe the model 
where all the edges have a common value and the two vertices any pair of values.

There are two Green’s functions, G+ and G− for the vertices that have diagonal value 
+b and −b. The m-functions concern a rooted tree where the root only has degree d − 1. 
We use m± when the root has diagonal value ±b. Then (6.5) becomes
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m±(z) = 1
−z ± b− (d− 1)m∓(z) (7.20)

while (6.4) becomes

G±(z) = 1
−z ± b− dm∓(z) (7.21)

The equation (7.20) for m+ has m− on the right but one can use the m− equation 
from (7.20) to obtain

m+ = (b + z) + (d− 1)m+

b2 − z2 + (d− 1)(b− z)m+ + (d− 1) (7.22)

or

(d− 1)(b− z)m2
+ + (b2 − z2)m+ − (z + b) = 0 (7.23)

Solving this equation and the similar one for m−, we obtain

m± =
z2 − b2 −

√
(z2 − b2)2 − 4(d− 1)(z2 − b2)
(d− 1)(−z ± b) (7.24)

The discriminant is Δ = (z2 − b2)2 − 4(d − 1)(z2 − b2), so Δ = 0 at z =
±b, ±

√
b2 + 4(d− 1) ≡ ±c so we expect that the spectrum of H is [−c, −b] ∪ [b, c].

Inserting the formula for the m-functions in (7.21), we get that

G±(z) =
(d− 2)

(
b2 − z2)+ d

√
Δ

2(z ∓ b) (d2 − z2 + b2) (7.25)

The Stieltjes transform of the DOS is

G+ + G−
2 =

z
(
(d− 2)

(
b2 − z2)+ d

√
Δ
)

2 (d2 − z2 + b2) (z2 − b2) (7.26)

so, by taking the limit of the imaginary part, we get that

dk

dλ
(λ) =

|λ|d
√

(λ2 − b2) (c2 − λ2)
2π (c2 + (d− 2)2 − λ2) (λ2 − b2)χ[−c,−b]∪[b,c](λ) (7.27)

which reduces to the Kesten-Mckay distribution when b = 0 and to the one-dimensional 
result for d = 2.
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8. Aomoto’s index theorem

In [5], Aomoto proved a remarkable result about point spectra of periodic Jacobi 
matrices on trees. Fix λ ∈ R and suppose that Hu = λu has �2 solutions for a periodic 
Jacobi matrix built over a graph G. Since the eigenspace, Im

(
P{λ}(H)

)
, is invariant 

under the group action and the unitaries in the group action go weakly to 0 as the group 
parameter leaves compact sets, this eigenspace is infinite dimensional. Aomoto defines 
X

(1)
λ to be the set of x ∈ G for which there is y ∈ T with Ξ(y) = x and some eigenfunction 

u with eigenvalue λ and u(y) 
= 0. These are precisely the set of x so that the Green’s 
function Gx(z) has a pole at λ.

If follows from the arguments in [5] that X(1)
λ cannot contain any cycles or self-loops 

(Aomoto actually considers more general isomorphism groups that may have nontrivial 
elements of finite order and so needs to consider also the case of self-loops in X(1)

λ ). 
Therefore X(1)

λ is always a proper subset of G. Let p 
(
X

(1)
λ

)
be the number of points 

in X(1)
λ and q

(
X

(1)
λ

)
the number of edges of G whose end points are both in X(1)

λ . Let 

X
(−1)
λ be the set of vertices of G that are not in X(1)

λ but are connected to some point 
in X(1)

λ by an edge in G and let p 
(
X

(−1)
λ

)
be the number of points in it. Aomoto proves

Theorem 8.1 (Aomoto’s Index Theorem [5]). Let T be the unnormalized trace discussed 
in the Appendix and suppose λ is an eigenvalue of H. Then

T
(
P{λ}

)
= p

(
X

(1)
λ

)
− q

(
X

(1)
λ

)
− p

(
X

(−1)
λ

)
(8.1)

Remark. As noted above, the main result in [5] includes the case where there are self-
loops in X(1)

λ , and in that case the right hand side of (8.1) is a little different.

While we can follow Aomoto’s proof, it is involved and we don’t understand why it 
works. Moreover, while the striking fact is that the right side is an integer, the proof has 
many intermediate formulae with non-integral terms. So we raise

Problem 8.2. Find a natural, easy to understand, proof of Theorem 8.1.

Gap labeling implies that if λ is an isolated point of spec(H) with H a period p Jacobi 
matrix on a tree then the DOS measure gives weight to {λ} of the form j/p with j a 
positive integer. Theorem 8.1 implies the more general result

Corollary 8.3. Let λ be an eigenvalue (perhaps not isolated in spec(H)) of H, a period 
p Jacobi matrix on a tree. Then the DOS measure gives weight to {λ} of the form j/p
with j a positive integer.
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Remark. We are not aware of any example of a periodic Jacobi matrix on a tree with a 
non-isolated eigenvalue. It would be interesting to find such an example or prove this is 
impossible.

That j > 0 follows from the fact that the trace T is faithful (Theorem A.2). Aomoto 
has a corollary to his index theorem that can be regarded as the most important result 
in his paper [5]; we state it as a theorem.

Theorem 8.4 ([5]). Let H be a period p Jacobi matrix on a regular tree. Then H has no 
eigenvalues so its spectrum is purely absolutely continuous.

Proof. Suppose that λ is an eigenvalue. Let d be the degree of the underlying tree and 
let r be the total number of edges between X(1)

λ and X(−1)
λ so

r ≤ dp
(
X

(−1)
λ

)
(8.2)

Let d1(x) be the number of edges with both ends in X(1)
λ for which one end is x. Thus

r =
∑

x∈X
(1)
λ

(d− d1(x)) = dp(X(1)
λ ) − 2q(X(1)

λ ) (8.3)

Therefore, since d ≥ 2, we see that

dp(X(−1)
λ ) ≥ dp(X(1)

λ ) − 2q(X(1)
λ ) ≥ d[p(X(1)

λ ) − q(X(1)
λ )] (8.4)

so the right side of (8.1) is non-positive. Since T is faithful, λ is not an eigenvalue after 
all. �
Example 8.5. Aomoto applied (8.1) to the model in Example 7.2. One has that p(X(1)

λ ) =
r, q(X(1)

λ ) = 0 and p(X(−1)
λ ) = g so he gets a result equivalent to the weight of {0} in 

the DOS measure being (r− g)/(r + g) (he first needs a separate argument that 0 is an 
eigenvalue). This is, of course, what we found with our explicit calculation of Green’s 
functions. His argument also shows directly there is no pole in Gg.

Aomoto raises a general question which we turn to in a moment but there are already 
interesting open questions about the rg-model of Example 7.2:

Problem 8.6. Does every periodic Jacobi matrix associated with a Jacobi matrix on the 
graph of an rg-model with r 
= g have a point eigenvalue.

Problem 8.7. If the answer to Problem 8.6 is yes and r > g does every eigenvector live 
only on the r vertices?
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There is the most general question asked by Aomoto:

Problem 8.8. Fix a finite connected leafless graph G. If the universal cover of one Jacobi 
matrix on G has a point eigenvalue, is that true of every other Jacobi matrix on G.

9. Borg’s theorem

In this section, we want to discuss a number of conjectures that we feel are among 
the most intriguing open questions in this area. We begin with a first guess about what 
might be the analog of Borg’s Theorem (Fact 2.13):

Initial Guess 9.1 (Wrong!). Let H be a Jacobi matrix of period p on a tree. Suppose 
spec(H) has no gaps. Then all a’s are equal to each other and all b’s are equal to each 
other.

Example 9.2 (ac model). Let G be the graph with one vertex and two self loops so p = 1, 
q = 2 and the universal cover is the regular tree of degree 4. Let J be the matrix with 
b = 0 but two values a and c on the two edges. Then H has period 1 so by Sunada’s 
Theorem (Theorem 5.1), there is no gap in the spectrum. This is a counterexample to 
the strong guess that appears in Initial Guess 9.1! It also provides additional insight 
connected to Fact 2.11. H(a, c) has spectrum [−E(a, c), E(a, c)]. If a = c = 1/

√
12, then 

E = 1 by (4.2) with d = 4. Moreover, if a = 0, c = 1/2, we also have E = 1 by (4.2)
with d = 2. It follows that for any a ∈ (0, 1/2), there is a c(a) also in (0, 1/2) with 
E(a, c(a)) = 1, so we get a one parameter family of isospectral period 1 Jacobi matrices 
on T4. But for a = 1/

√
12, the DOS is the scaled Kesten McKay distribution, (4.2), with 

d = 4 while as a ↓ 0, the DOS converges to the distribution with d = 2. We presume 
the distributions are all different for 0 < a < 1/

√
12. We conclude that the analog of 

Fact 2.11 is false.

Fact 9.3. Unlike the 2-regular case, for general periodic Jacobi matrices on trees, the 
graph G and the spectrum do not determine the DOS!

While we’ve only established this when p = 1 and a regular tree of even degree, it 
surely must be true in great generality.

Example 9.4 (ace model). Looking at the model in Example 9.2 one might worry it 
was a more general indication that Guess 9.1 fails not only in the case of T2d by also 
for T2d+1. So it is natural to consider the graph G with p = 2, q = 3 of 2 vertices, 
connected by 3 edges with bi = 0 but three distinct values, say, a, c, e on the three edges. 
The corresponding H lives on T3 and has three edges with distinct values in the Jacobi 
parameters coming out of each vertex. Perhaps this model also has no gap (although its 
period seems to be 2). In fact for many non-zero values of the three parameters, there is 
a gap. Consider first what happens if G has one edge removed. Then the tree is 1D with 
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all b = 0 and alternating values on the edges of period 2. By Borg’s theorem, this 1D
model has a gap. Indeed, that problem has discriminant Δ(z) = z2−a2−c2

ac . The edges of 
the spectrum are given by Δ(x) = ±2 or x = ±(a ± c). If c < a, the spectrum is thus 
(−a − c, −(a − c)) ∪ (a − c, a + c) which has a gap of size 2(a − c). If e = 0, the operator 
on T3 degenerates into a direct sum of the 1D operators. The 2 × 2 matrix with 0 on 
diagonal and e off-diagonal has norm e. By a standard argument from spectral theory 
the gap persists if 2(a − c) > 2e. Thus if a > c + e, there is a gap. We presume there is 
also a gap unless they are all equal.

With this example in mind, we break our conjecture about the analog of Borg’s 
theorem into three parts:

Conjecture 9.5. A periodic Jacobi matrix on a tree which is not of constant degree always 
has a gap in its spectrum.

Conjecture 9.6. A periodic Jacobi matrix on an odd degree regular tree, T2j+1, with no 
gap in its spectrum has constant a’s and constant b’s.

Conjecture 9.7. A periodic Jacobi matrix on an even degree regular tree, T2j, with no 
gap in its spectrum is of period 1.

The last conjecture says that any such Jacobi matrix has constant b’s and j (possibly 
not distinct) values of a so that each vertex has 2 of each of these j values on the edges 
attached to it.

With our definition of period, there are no period 1 Jacobi matrices on T2j+1 (or on 
non-regular trees). This leads us to propose

Problem 9.8. Find a definition of period for periodic Jacobi matrices on trees so that 
gap labeling holds and so that a Jacobi matrix on T2j+1 has period 1 if and only if a
and b (as functions on the edges and vertices respectively) are each constant and so that 
non-regular trees have no period 1 Jacobi matrices.

If that is done the union of the three conjectures above is that a gapless periodic 
Jacobi matrix on a tree has period 1. With a proper definition of period one can also 
hope to extend the Borg–Hochstadt theorem:

Conjecture 9.9. There is a definition of period for Jacobi matrices on trees so that gap 
labeling holds and so that the following analog of the Borg–Hochstadt Theorem holds: If 
the IDS of a periodic Jacobi matrix on a tree has a value j/p in each gap of the spectrum, 
then the period is (a divisor of) p.
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10. Additional conjectures and problems

In this final section, we discuss a number of conjectures and open problems in the 
spectral theory of periodic Jacobi matrices on trees.

10.1. The Riemann surface of G

On the basis of the analytic structure in the 1D case, there are some natural guesses 
about the more general case:

Problem 10.1. Are all the branch points of the m− and Green’s functions are square 
root so the varieties defined by them are manifolds (i.e. have no singularities).

Problem 10.2. Are the m− and Green’s functions are two sheeted.

These are consistent with all the examples where we can do calculations although we 
haven’t any other strong reasons in support of them. At one point we conjectured that 
all branch points are on the real axis, but on the basis of some examples we hope to 
discuss in detail elsewhere, we no longer expect that is true.

In the 1D case, one argues that Gj has a single zero in each gap. Those zeros are 
associated to poles of either m+ or m− and, then, the m− poles to second sheet poles 
of m+.

Problem 10.3. Explore what connection there is between non-physical sheet poles (i.e. 
poles that lie on the sheets associated to the analytic continuation, and not on the 
original domain of definition) of an mβ

j and physical sheet poles of the other mα
k in (6.5). 

Resolve the notion that there are d −1 such functions and, we suspect, only two branches 
for m.

10.2. Open gaps

Let G be a finite graph. Let P(G) be the set of allowed Jacobi parameters. It is an 
open orthant of Rp+q since p + q is the number of vertices plus the number of edges (it 
is only an orthant since all a > 0). We say a period p Jacobi matrix has all gaps open 
if the spectrum has p − 1 gaps. It is easy to see the set of Jacobi parameters for which 
all gaps are open is an open set in Rp+q. We believe the most interesting open question 
except perhaps for Borg’s Theorem is

Conjecture 10.4. The set of parameters with all gaps open is a dense open set in the set 
of allowed parameters.

We at least know the set is non-empty, for, if all b are different and 
∑

α aα <

mini�=j |bi − bj |, then all gaps are open.
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Conjecture 10.5. The set of parameters where not all gaps are open is a variety of codi-
mension 2.

The problem is that we have no way of describing gap edges analogous to periodic 
and anti–periodic eigenvalues in the 1D case.

Problem 10.6. Find an effective specification of gap edges.

10.3. Isospectral sets

We’ve seen by example that unlike the 1D case, two different periodic Jacobi matri-
ces with the same tree, same period and same spectrum, can have different DOS (see 
Example 9.2).

Problem 10.7. Classify the possible DOS allowed for a given tree, period and spectrum.

The analog of having the same spectrum is the fine property of having the same DOS. 
We then say they lie in the same IsoDOS set.

Problem 10.8. Is the IsoDOS set a manifold? Is it perhaps a torus?

Problem 10.9. Is there an natural flow on the IsoDOS set?

10.4. Direct integral decomposition

One of the most powerful tools in understanding the 1D case is looking at the direct 
integral decomposition of the representation of the translation group into irreducibles 
which is simple because those irreducibles are one dimensional. There has been consid-
erable literature studying the representations of the free non-abelian groups and of the 
decomposition of translations on trees of which we mention Cartier [19], Figà-Talamanca-
Steger [31] and Woess [73].

Problem 10.10. Determine if the direct integral decomposition is of any use in spectral 
analysis. In particular, do gap edges have anything to do with particular irreducible 
representations?

Appendix A. Proof of the gap labeling theorem

In this appendix, we both set notation and provide a proof of the fundamental gap 
labeling theorem accessible to spectral theorists. The gap labeling theorem is close to 
a theorem of Pimsner–Voiculescu [54] and our proof follows that of Effros [28], which, 
in turn, simplifies an approach of Cunze [24] and Connes [23]. We differ from Effros 
in discussing general � and Cp valued functions, as well as providing some technical 
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issues that he omits. Sunada [68] also provides an appendix with a proof but we feel 
our discussion here is more approachable, in part because we restrict to the situation 
relevant to the simpler lattice case discussed in this paper.

Because of our audience, we assume that the reader has knowledge of the basic facts 
about the trace class, I1, in L(H), the bounded operators on a separable Hilbert space, 
H, including the definition of the trace map, Tr. These basics can be found, for example, 
in the books of Goh’berg–Krein [32] or Simon [61] or in Simon [66, Chapter 3]. We will 
need the following result

Theorem A.1. Let P, Q be orthogonal projections in L(H) so that P − Q ∈ I1. Then 
Tr(P −Q) ∈ Z.

This was first proven by Effros [28] and rediscovered, with a different proof, by Avron–
Seiler–Simon [9]. [66] has three proofs: the original proof of Effros [66, Problem 3.15.20], 
the proof of Avron et al. [66, Theorem 3.15.20] and an otherwise unpublished proof 
using the Krein spectral shift [66, Problem 5.9.1]. We note the simple proof of [9]: Let 
A = P −Q, B = 1 − P −Q. Simple algebra shows that

A2 + B2 = 1, AB = −BA (A.1)

Since A is assumed trace class and self-adjoint trace class operators have an orthonor-
mal basis of eigenvectors [66, Section 3.2], if, for λ ∈ E(A), the non–zero eigenvalues of 
A, we define Hλ = {ϕ | Aϕ = λϕ}, we have that

Tr(P −Q) =
∑

λ∈E(A)

λ dim(Hλ) (A.2)

By (A.1), B maps Hλ to H−λ and if ϕ ∈ Hλ, we have B2ϕ = (1 − λ2)ϕ, so if λ 
= ±1
then B is an invertible map of Hλ to H−λ and thus

λ 
= ±1 ⇒ dim(Hλ) = dim(H−λ) (A.3)

Thus, by (A.2),

Tr(P −Q) = dim(H1) − dim(H−1) ∈ Z � (A.4)

Now, fix � ∈ {1, 2, . . . } and let F� be the free group on � generators (which is non-
abelian if � > 1 and Z if � = 1). We let T2� be the regular tree of degree 2�. One 
can associate the vertices in T2� with F� (so that T2� becomes the Cayley graph of the 
group). To do this, first pick an orientation so that each vertex in T2� has � edges coming 
out of it and � edges coming in; for example, start at one vertex and inductively define 
orientations starting with the chosen vertex.



N. Avni et al. / Advances in Mathematics 370 (2020) 107241 35
If F� is generated by x1, . . . , x� and their inverses, we label the � edges coming out of 
each vertex with x1, . . . , x� and then view the � coming in with x−1

1 , . . . , x−1
� so that an 

edge coming out of one vertex as xj comes into its other vertex as x−1
j .

Given this tree with labels, we can define � maps of T2� to itself, τ(xj), j = 1, . . . , �
by mapping a vertex w into the vertex connected to it by the edge that starts at w and 
is labeled xj . Any element, w in F�, is uniquely associated to a word y1 . . . yk where each 
ym is an xj or x−1

j with the rule that no xj is next to an x−1
j . We associate x−1

j to the 
map τ(xj)−1 ≡ τ(x−1

j ) and then define τ(w) ≡ τ(y1) . . . τ(yk). τ defines a free transitive 
action of the group F� on the set T2�. By picking, once and for all, a vertex, e0 in T2�
to associate with e, the identity in F�, the map w �→ τ(w)e0 defines a bijection, σ, of F�

onto T2� so that

τ(w1)σ(w2) = σ(w1w2) (A.5)

Fix p ∈ {1, 2, . . . }. Our basic Hilbert space, H2�;p will be �2(T2�, Cp) of square 
summable functions on T2� with values in Cp. Associating to any g ∈ F�, the unitary 
map U0(g) : f ∈ H2�;p �→ U0(g)f ∈ H2�;p by

(U0(g)f)σ(w) = fσ(g−1w) (A.6)

defines a natural unitary representation of F� which is just the direct sum of p copies of 
the left regular representation. Similarly, let R0 denote the direct sum of p copies of the 
right regular representation, defined by

(R0(g)f)σ(w) = fσ(wg).

We let V2�;p be the von Neumann algebra of all bounded operators, B, which commute 
with {R0(g) | g ∈ F�}. For any such B there is a function B̂ : F� → Hom(Cp), the p × p

matrices, so that

(Bf)(g) =
∑
h∈F�

B̂(h−1g) f(h) (A.7)

Thus, for ϕ ∈ Cp, B̂(g)ϕ = B(δe;ϕ)(g), where δe;ϕ is the function that is supported 
at the identity and has the value ϕ there. It follows that B̂ is in �2(T2�, Hom(Cp)) so 
that the sum in (A.7) converges. If B̂ is supported at g, it acts like a left multiplication 
operator.

We define the unnormalized trace, T : V2�;p → C by

T (B) = Tr(B̂(e)) (A.8)

where Tr is the trace on p × p matrices.

Theorem A.2. T is a positive, finite, faithful trace on V2�;p with T (1) = p.
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Proof. For w ∈ F� and ϕ ∈ Cp, let δw;ϕ be the function in H2�;p which is supported only 
at w and has the value ϕ there. Then

〈δv;ψ, Bδw;ϕ〉H2�;p = 〈ϕ, B̂(w−1v)ϕ〉Cp (A.9)

Let {ϕj}pj=1 be the canonical basis for Cp and let Bv,w;j,k ≡ 〈δv;ϕj
, Bδw;ϕk

〉 =
B̂(w−1v)jk. Then, for B, C ∈ V2�;p, we have that

T (BC) =
p∑

j=1
[B̂C(e)]jj

=
p∑

j,k=1

∑
w∈F�

Be,w;jkCw,e;kj

=
p∑

j,k=1

∑
w∈F�

B̂(w−1)jkĈ(w)kj (A.10)

=
p∑

j,k=1

∑
w∈F�

B̂(w)jkĈ(w−1)kj (A.11)

= T (CB) (A.12)

proving that T is an (obviously finite) trace. (A.11) comes from the fact that summing 
over all w is the same as summing over all w−1 and (A.12) comes from undoing all the 
steps that led to (A.10).

Next notice that using (A.9) twice, we have that

〈ψ, B̂∗(w)ϕ〉 = 〈δw;ψ, B
∗δe;ϕ〉

= 〈δe;ϕ, Bδw;ψ〉

= 〈ϕ, B̂(w−1)ψ〉
= 〈ψ, B̂(w−1)∗ϕ〉

proving that

B̂∗(w) = B̂(w−1)∗ (A.13)

This and (A.10) show that

T (B∗B) =
∑
w∈F�

Tr(B̂(w)∗B̂(w)) (A.14)

which implies that T is positive and that T (B∗B) = 0 ⇒ B̂ ≡ 0 ⇒ B = 0, so T is 
faithful. �
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We let C(0)
2�;p be the set of those B ∈ V2�;p with {w | B̂(w) 
= 0} finite. It is 

generated by the set of diagonal B (i.e. B’s with B̂(w) = 0 if w 
= e) and {
U0(xj), U0(x−1

j ); j = 1, . . . , �
}
. C∗

red(F�; Cp), the reduced C∗ algebra of F� (when p = 1), 
is the C∗ closure of C(0)

2�;p. One has that C∗
red(F�; Cp) = C∗

red(F�; C) ⊗Hom(Cp). The main 
gap labeling theorem is

Theorem A.3. Let P ∈ C∗
red(F�; Cp) be an orthogonal projection. Then

T (P ) ∈ Z (A.15)

Corollary A.4. If P ∈ C∗
red(F�; C) is an orthogonal projection, then P = 0 or P = 1.

Remark. This is the celebrated theorem of Pimsner–Voiculescu [54] which established a 
conjecture of Kadison.

Proof of the Corollary. Since 0 ≤ P ≤ 1, we have that T (P ) is 0 or 1, so either T (P ) = 0
or T (1 − P ) = 0. Since T is faithful, either P = 0 or 1 − P = 0. �

To prove Theorem A.3, we introduce a degenerate representation, U1, of F�. Single 
out e0 ∈ T2� and remove it. We get 2� rooted trees with roots corresponding to the 
generators and their inverses. Join the x−1

j tree to the xj tree and get � copies of the 
original tree which can be directed and labeled consistently with the original directions 
and labels. We thus find that

H2�;p = Cp ⊕ � copies of H2�;p (A.16)

U1 is then 0 ⊕ � copies of U0. It is a degenerate representation since the identity in F�

goes into a codimension 1 projection rather than the identity on H2�;p.
Both U0 and U1 extend to representations π0 and π1 (with π1 degenerate) of V2�;p

and so, by restriction, of C∗
red(F�; Cp). π0(B) = B and π1(B) is a bounded operator on 

H2�;p (which is not usually in V2�;p).

Proposition A.5. (a) the diagonal part of π1(B) at site w is

B̂(e) if w 
= e; 0 if w = e (A.17)

(b) If P ∈ C∗
red(F�; Cp) is an orthogonal projection, so are π0(P ) and π1(P ).

(c) If B ∈ C∗
red(F�; Cp) is such that

π0(B) − π1(B) ∈ I1(H2�;p) (A.18)

then
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T (B) = Tr(π0(B) − π1(B)) (A.19)

(d) If P ∈ C∗
red(F�; Cp) is an orthogonal projection so that

π0(P ) − π1(P ) ∈ I1(H2�;p) (A.20)

then

T (P ) ∈ Z (A.21)

Proof. (a) The diagonal part of π0 is just B̂(e). Since π1 is just a copy of π0 on each of 
the � trees, the first assertion in (A.17) follows. The second assertion is immediate.

(b) follows from the fact that π0 is a representation and π1 a degenerate representation.
(c) If C ∈ I1, its trace is just the sum over w ∈ F� of TrCp(Cww), where Cww =

(Cww;jk). By (a)

[π0(B) − π1(B)]ww =
{

B̂(e) if w = e

0 otherwise

so (A.19) is immediate.
(d) follows from (c) and Theorem A.1 �
Let

A0 = {B ∈ C∗
red(F�;Cp) |π0(B) − π1(B) ∈ I1(H2�;p)} (A.22)

Since T is operator norm continuous on C∗
red(F�; Cp), Theorem A.3 follows from Propo-

sition A.5(d) and

Theorem A.6. Any orthogonal projection in C∗
red(F�; Cp) is an operator norm limit of 

orthogonal projections in A0.

We begin the proof of Theorem A.6 with

Lemma A.7. Let f be a continuous function from [0, 1] to I1 (continuous in I1-norm). 
Then the Riemann sums for 

´ 1
0 f(s) ds converge in I1-norm.

Proof. Follows from the standard proof of convergence of the Riemann integral [63, 
Theorem 4.1.1] and the fact that continuity on [0, 1] implies uniform continuity. �

Recall [66, Section 2.3], that in any Banach algebra, B, if x ∈ B and E is a closed 
subset of the spectrum, σ(x), of x, then
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p = (2πi)−1
ˆ

Γ

dz

z − x
(A.23)

(here Γ is a curve that winds around E) defines a natural Gel’fand projection which 
when x = B ∈ L(H) and B is self-adjoint agrees with the spectral projection, PE(B).

Proposition A.8. (a) A0 is a *-algebra.
(b) C(0)

2�;p ⊂ A0
(c) If B ∈ C∗

red(F�; Cp) lies in A0 and z 
= 0 with z /∈ σ(B), then (B− z)−1 ∈ A0 and 
on C \ σ(B), z �→ π0((B − z)−1) − π1((B − z)−1) is I1-norm continuous.

(d) If E is a closed subset of the spectrum of B ∈ A0 with 0 /∈ E, then P given by 
(A.23) lies in A0.

Proof. (a) That B ∈ A0 ⇒ B∗ ∈ A0 follows from the fact that I1 has that property. 
That A, B ∈ A0 ⇒ AB ∈ A0 follows from the fact that I1 is an ideal in L(H) and

π0(AB) − π1(AB) = π0(A)(π0(B) − π1(B)) + (π0(A) − π1(A))π1(B)

(b) If B is a generator of C(0)
2�;p, C = π0(B) −π1(B) is finite rank (because Cw,v;j,k = 0

unless both w and v are e or one of its neighbors). By (a), C(0)
2�;p ⊂ A0.

(c) We note that (π1(B) − z)−1 = π1((B − z)−1) − z−1Pe0 with Pe0 the projection 
onto those functions supported at e0 while (π0(B) − z)−1 = π0((B − z)−1). Thus

π0((B − z)−1) − π1((B − z)−1) =

π0((B − z)−1)[π1(B) − π0(B)](π1(B) − z)−1) − z−1Pe0 (A.24)

which proves both assertions.
(d) By (A.24), the integrand in

π0(P ) − π1(P ) = −(2πi)−1
ˆ

Γ

[π0((B − z)−1) − π1((B − z)−1)] dz

is continuous in I1, so by Lemma A.7, P ∈ A0. �
Proof of Theorem A.6. Let P ∈ C∗

red(F�; Cp) be an orthogonal projection. Since C(0)
2�;p is 

dense in C∗
red(F�; Cp), we can find Bn, self-adjoint, in C(0)

2�;p so that ‖Bn−P‖ < 1/2n. Since 
‖Bn−P‖ < 1/2, there is a gap about 1

2 in σ(Bn), so the spectral projection Q[1
2 ,

3
2
](Bn)

is given by an integral like (A.23). Thus Q[1
2 ,

3
2
](Bn) ∈ A0. Since Q[ 1

2 ,
3
2
](Bn) is given by 

this integral, as n → ∞, we have that Q[1
2 ,

3
2
](Bn) → Q[ 1

2 ,
3
2
](P ) = P in norm. �

This completes the proofs of the results. We end this appendix with a remark that 
shows some of the technicalities of proof are needed. Let p = 1. As we’ve seen, for 
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any projection, P , in V2�;p=1 π0(P ) − π1(P ) has only one non-zero diagonal element in 
the natural basis of �2(T2�) and its value is T (P ). Surely this must be some kind of 
trace of a difference of projections and so an integer. But if J0 is the free Jacobi matrix 
on the tree, it has continuous spectrum on [−2

√
2�− 1, 2

√
2�− 1] (see (4.2)). For any 

λ ∈ (−2
√

2�− 1, 2
√

2�− 1), the spectral projection P(−∞,λ)(J0) lies in V2�;p=1 and has 
T value, k(λ) which is not an integer. Thus Theorem A.3 does not extend to P ∈ V2�;p=1
and requires the C∗

red(F�; Cp) condition.
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