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Avni–Breuer–Simon [2] that there is no singular spectrum because matrix elements
of the resolvent are algebraic functions. Besides a very few additional theorems, the
subject at this point is mainly some interesting examples and lots of conjectures
and questions.

A basic object is the density of states (DOS), dk (and the weight this measure
assigns to (−∞, E), the integrated density of states (IDS), k(E)). We fix a finite
graph, G, with p vertices and q edges. For each vertex, j ∈ G, the spectral measure
for H at vertex r ∈ T , dµr is the same for all r ∈ T with Ξ(r) = j, where Ξ : T → G
is the covering map. The DOS is defined by picking one dµr for each j ∈ G, summing
over j and dividing by p, the number of vertices in G, that is

(1.1) dk(λ) =
1

p

∑
j∈G;r so that Ξ(r)=j

dµr(λ).

In the one dimensional case, a fundamental fact [3] is that the DOS can be
computed as a limit of normalized eigenvalue counting of operators restricted to
boxes with either periodic or free boundary conditions (we say one dimensional
because we are discussing trees but the result in [3] holds also on Zν). In [2], it is
proven that for any tree but the line, this result fails for the free boundary condition
case and our goal in this paper is to explore the case of periodic boundary conditions.

Of course, it isn’t quite clear what one should mean by periodic BC which is
illuminated by the lego block picture. Before discussing that, we want to remind
the reader about what [2] calls the lego block picture of periodic Jacobi matrices
on trees, an unpublished realization of Christiansen, Simon and Zinchenko. In this
view, the fundamental trees are T2ℓ, the homogenous degree 2ℓ tree. Any leafless
finite graph, G, has as its universal cover a tree which can be realized as some T2ℓ
with each vertex replaced by a finite tree! (see also [5,12] for discussions of universal
covers of non-regular graphs). Indeed, if G has p vertices and q edges, there is a
maximal connected subtree, F , obtained by removing ℓ edges and it is then easy to
see that the homotopy group of G is Fℓ, the free non-abelian group on ℓ generators,
whose natural Cayley graph is T2ℓ. In general we think of the 2ℓ edges coming out
of each vertex as labelled e+1 , . . . , e

+
ℓ , e

−
1 , . . . , e

−
ℓ with the rule that each e±j has to

be connected to an e∓j edge of a neighboring graph.
Now view G as the finite tree, F , with ℓ edges added but rather than removing

these edges, one imagines cutting them and leaving 2ℓ half edges e+1 , . . . , e
+
ℓ , e

−
1 , . . . , e

−
ℓ

dangling. These are the lego blocks which we place one at each vertex of T2ℓ and
connect the dangling edges by the above rules. Thus the Hilbert space for H = ℓ2(T )
on which H acts is replaced by vector valued functions on ℓ2(T2ℓ;Cp). H is now
a block Jacobi matrix where the diagonal elements are p × p block Jacobi matri-
ces obtained by restricting the original Jacobi matrix on G to the subgraph F , i.e.
dropping the a’s from the cut edges. The off diagonal piece linking two neighboring
vertices v1 and v2 is a rank one p × p matrix, which, associated to the edge ej
linking v1 and v2 in T2ℓ, has a single non-zero matrix element (namely the G Jacobi
parameter associated to ej) at the vertices inside the copies of F corresponding to
the vertices v1 and v2.

Because of the lego representation, if we prove convergence of eigenvalue counting
measure for some class of periodic BC operators for the case of scalar T2ℓ but
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where these periodic operators respect e+1 , . . . , e
+
ℓ , e

−
1 , . . . , e

−
ℓ labelling (see below

after (1.6)), then automatically we have results for infinite trees built over general
finite leafless graphs G. Thus, henceforth, we will only discuss and state results for
the scalar T2ℓ case bearing in mind that these automatically imply the more general
results.

Because all the measures we consider (i.e., normalized eigenvalue counting and
DOS) have supports in some fixed bounded set (once we fix all the Jacobi parame-
ters), to prove convergence of measures, it suffices to prove convergence of moments.
In this regard, we will need a graphical representation of the moments of the density
of states. If dµj is the spectral measure of a point j ∈ T , then

(1.2)

ˆ
λkdµj(λ) = 〈δj ,Hkδj〉.

Expanding Hk, one sees that

(1.3) 〈δj ,Hkδj〉 =
∑

ω∈Wj,k

ρ(ω),

where Wj,k is the set of all “walks” of length k starting and ending at site j, i.e.
ω1, . . . , ωk+1 ∈ T where ω1 = ωk+1 = j and for m = 1, . . . , k, one has that either
ωm+1 = ωm or ωm and ωm+1 are neighbors in T (i.e. two ends of a single edge).
Moreover

(1.4) ρ(ω) = ρ1(ω) . . . ρk(ω),

(1.5) ρm(ω) =

{
bωm , if ωm = ωm+1

a(ωm,ωm+1) if ωm 6= ωm+1
.

On the other hand, suppose we have a finite cover, Gr, of G (of covering order r)
and we let Hr be the lift of J to Gr, nr = #(Gr) and Nr the normalized eigenvalue

counting measure for Hr (later we’ll sometimes use N (r)), thenˆ
λkdNr(λ) = n−1

r Tr(Hk
r )

= n−1
r

∑
j∈Gr

〈δj ,Hk
r δj〉

= n−1
r

∑
j∈Gr

∑
ω∈Wj,k,r

ρ(ω)(1.6)

where Wj,k,r is defined like Wj,k except that we require ωm ∈ Gr instead of ωm ∈ T .
In the tree, the only paths that start and end at j retrace where they have

been so a little thought shows that difference between the average of (1.3) over a
fundamental domain and (1.6) is due to the existence of simple closed cycles in Gr.
Thus if there are no short closed cycles in Gr as r → ∞, we expect that dNr will
converge to dk. Indeed, it suffices that there be few such closed path compared to
nr.

If the operator is acting on ℓ2(T2ℓ;Cp) with matrix Jacobi parameters, there is
still a random walk representation. In (1.5) the a’s and b’s are replaced by matrices,
the order in (1.4) matters and the right side of (1.4) is Tr(ρ1(ω) . . . ρk(ω)). All the
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arguments in later sections where we prove results for general period 1 operators
on ℓ2(T2ℓ) easily extend to matrix valued period 1 Jacobi operators on ℓ2(T2ℓ;Cp).
Then via the Lego representation we get results for general scalar periodic Jacobi
matrices on trees.

One way to construct natural periodic boundary condition objects is to start with
a fixed vertex in T2ℓ, most naturally, the identity after T2ℓ is identified with Fℓ, and
look at Λr, the set of all vertices a distance at most r from the centered point. The
boundary of this set (i.e. all points a distance equal to r from the center), ∂Λr

has (2ℓ)(2ℓ − 1)r−1 points. Each of them can be viewed as having 2ℓ − 1 dangling
half edges sticking out which have natural labels with one of e+1 , . . . , e

+
ℓ , e

−
1 , . . . , e

−
ℓ

missing. We can form a natural cover of the basic G (which for this case is a graph,

G̃ℓ, with one vertex and ℓ self loops) by pairing each dangling e+j with some dangling

e−j .
For a natural way to do this, view T2ℓ as the Cayley graph of Fℓ, take the center

of Λr to be the identity in Fℓ so that Λr is all words in e+1 , . . . , e
+
ℓ , e

−
1 , . . . , e

−
ℓ (with

the condition that no e−j and e+j are adjacent) of length at most r. If b = w1 . . . wr ∈
∂Λr, then b̃ = w−1

1 . . . w−1
r are distinct points in ∂Λr whose dangling edges match

(i.e. for each e±j coming out of b where is an e∓j coming out of b̃) and we can
form a cover, Gr, by joining together these dangling edges. This is in some way
the most natural kind of periodic BC object and in Section 2 we will see this has
too many short closed cycles and its normalized eigenvalue counting measures do
not converge to dk. Our main result in Section 2 will be that if the dangling edges
in Λr are connected in a random manner, then the eigenvalue counting measures
do converge to dk. This is because we’ll show such random graphs have very few
small cycles. This result is related, of course, to the result of McKay [13] that the
eigenvalue measures for Laplacians of large random graphs of fixed degree converge
to the DOS of the Laplacian of a tree of the same degree.

There is, of course, another way of thinking about collections of larger and larger
finite covers of a fixed graph, G. By the theory of covering spaces [11] the covers,
C, of G are associated to subgroups of the fundamental group of G and C is a finite
cover if and only the subgroup is of finite index. We’ll sketch the ideas here with
details in Section 3. Thus a sequence of periodic BC objects is a sequence of finite
index subgroups H1,H2, . . . of π1(G). The naive notion of their going to infinity is
that for any finite subset, F , of π1(G) not containing the identity, eventually, one
has that Hj ∩ F is empty. One might expect that is the same as saying there are
no small closed cycles but that is, in general, wrong (as can be seen by looking at
the example at the start of Section 2): the point is that the condition

(condition K) ∀finite F not containing the identityHj ∩ F = ∅, eventually

only implies the absence of small closed cycles containing the base point of the
cover. For other points we need hHjh

−1 ∩ F = ∅ for conjugates of H. Thus a
special role is played by covers, which we’ll call homogenous covers, associated to
normal subgroups of π1(G) (we note that the subgroups associated to the covers
of Section 2 are (once r is large) never normal). If all the Hj are normal, we will
see easily that condition K is enough to imply that eigenvalue counting measures
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converge to the DOS. So the issue becomes the existence of sequences of normal
subgroups of Fℓ that obey condition K. This is a well known folk theorem that we’ll
discuss in Section 3 providing a second class of periodic BC objects for which the
desired convergence result holds.

In summary, we construct two classes of periodic BC Hamiltonians for which the
normalized eigenvalue counting measures converge to the tree DOS. In Section 2,
we look at Λr with random pairings of the dangling ends. In Section 3 we construct
homogeneous covers with this property.

Remark 1.1. In general (unless the tree is of degree two), the spectrum of the
Jacobi matrix on the finite graph is not contained in the spectrum of its lift to the
tree [19]. The convergence of the eigenvalue counting measures of random covers
to the density of states says in particular that these covers have few eigenvalues
outside the spectrum of the tree. Related to this, using Bordenave-Collins [7], it is
possible to show that for the sequence of random covers (chosen uniformly of the
set of all degree k covers) of growing degree, the Hausdorff distance between the
added eigenvalues and the spectrum of the tree converges in probability to zero, a
direct analog of McKay’s result [13]. That is there is a third collection of covers for
which we can prove convergence of the normalized eigenvalue counting measure to
the DOS of the tree.

Acknowledgment We thank the anonymous referee for useful comments.

Shmuel Agmon is a giant in spectral theory whose innovations have long charmed
and benefitted us. It is a great pleasure to present him this bouquet on his 100th

birthday.

2. Random centered BC

In this section, we will fix ℓ ∈ Z; ℓ ≥ 2 and take G to be the graph with one vertex
and ℓ self loops so that the covering tree, T2ℓ, is the homogeneous tree of degree 2ℓ,
which we can identify with the Cayley graph of Fℓ, the free group on ℓ generators.
We also fix a Jacobi matrix, J , on G. We’ll discuss covers of G where we can label
the edges coming out from a vertex as e+1 , . . . , e

+
ℓ , e

−
1 , . . . , e

−
ℓ with the rule that each

e±j has to be connected to an e∓j edge of a neighboring vertex of the cover. As we
explained in the introduction, if we prove results about a class of finite covers whose
normalized eigenvalue counting measure converges to the tree DOS, then, using lego
blocks, these automatically extend to results about general graphs which we will
not state explicitly (essentially by extending the results to vector valued functions
and block Jacobi matrices).

We will first describe our general framework, then give the example mentioned
in the introduction with too many short cycles, next state our general result and
finally describe its proof.

For the time being, we fix r although, eventually, we will use r as a label on
sequences where we take r → ∞. In T2ℓ, let Λr be the set of all vertices a distance
at most r from the origin of T2ℓ thought of as Fℓ so that Λr is identified with the
set of words in e+1 , . . . , e

+
ℓ , e

−
1 , . . . , e

−
ℓ of length at most r (with the relations that
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e−j = (e+j )
−1). Let Mr = (2ℓ− 1)r so that

(2.1) #(∂Λr) =
2ℓ

2ℓ−1Mr; #(Λr) =
ℓMr−1
ℓ−1 ,

are comparable to Mr. For each vertex in ∂Λr we imagine extra half edges labelled
by all the labels among e+1 , . . . , e

+
ℓ , e

−
1 , . . . , e

−
ℓ except for the label of the edge that

connects that vertex to the interior of Λr. It is easy to see that for each j and ±
there are exactly Mr e±j dangling half edges. By a pairing, we mean a bijective

association of each e+j half-edge to a e−j half-edge (at the same or a different vertex

in ∂Λr). The set of all pairings we denote by Qr. If we fix a pairing, all other
pairings are related by a permutation of each of the e−j half edges, so the number of

points in Qr is (Mr!)
ℓ. For each q ∈ Qr, we get a graph, Gq by adding to Λr edges

along the linked pairs and this graph is a cover of G. We let Jq be the associated

Jacobi matrix on Gq and let N
(r)
q be the associated normalized eigenvalue counting

measure.
In Section 1, we defined a map b 7→ b̃ of Λr which also maps ∂Λr to itself (the

square of the map is 1 and it leaves no point of ∂Λr fixed). Moreover, the map is
such that if α ∈ ∂Λr is linked to the interior by e±j then α̃ is linked to the interior

by e∓j . We can thus define a natural element, q0 of Qr by pairing all the dangling
edges from each α to the matching dangling edges of α̃.

Proposition 2.1. For any choice of Jacobi parameters J on G, the limit

limr→∞
´
λ2dN

(r)
q0 (λ) exists and is strictly larger than the second moment of the

associated infinite tree DOS.

Proof. Let b be the Jacobi parameter for the vertex in G and a1, . . . , aℓ for the ℓ
edges. Since the full tree is fully translation invariant, the DOS is the spectral
measure associated to any vertex so, by (1.2) and (1.3), we see that

(2.2)

ˆ
λ2dk(λ) = b2 + 2

ℓ∑
m=1

a2m,

since paths of length two that start and end at a vertex on the tree either stay at
that vertex for two steps (giving b2) or go out and back in one of the 2ℓ edges e±m
giving each a2m twice.

For all vertices in Gq0 other than those on the boundary, these are the only paths
of length 2 so the contribution to (1.6) from sites j /∈ ∂Λr is as given on the right
of (2.2). But there are additional paths of length two that start at j ∈ ∂Λr go to
j̃ by one edge and go back via another. One gets Mr factors of each a2m by going
to j̃ along e+m and coming back via e−m and an additional Mr factor by going to j̃
along e−m and coming back via e+m. There is a different number, Cr, of terms that
count up the number of vertices j which have a pair of edges between j and j̃ with
an on one edge and am on the other for some n 6= m (counting multiplicities). We
will not make Cr explicit except to note that c ≡ limr→∞Cr/#Λr exists and is non
zero. We also note that by (2.1), limr→∞Mr/nr = (ℓ − 1)/ℓ. We conclude from
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(1.6) that

(2.3) lim
r→∞

ˆ
λ2dN (r)

q0 (λ) = 2
ℓ− 1

ℓ

ℓ∑
m=1

a2m + c
∑
m ̸=n

aman +

ˆ
λ2dk(λ),

proving the claim. □

Thus, because of small closed cycles, we can’t expect the periodic BC eigenvalue
counting measure to converge to the DOS for all possible pairs and we turn to
random pairings. We put normalized counting measure, Ξr, on Qr with associated
probability, Pr and expectation, Er. We want to consider sequences (qr)(1≤r<∞) ∈∏∞

r=1Qr ≡ Q and put the product measure
⊗∞

j=1 Ξr onQ, so the qr are independent
and uniformly distributed. Here is the main result of this section:

Theorem 2.2. For almost every choice (qr) ∈ Q, we have that the normalized

eigenvalue counting measures, dN (r), converges weakly to the DOS, dk.

We will prove this by a sequence of steps:
Step 1. Fix a positive integer m and a site α ∈ Λr. Call q ∈ Qr m,α-bad if

there is a simple closed cycle in Gq of length at most 2m all within distance m (in
Gq-distance) of α. Let

(2.4) Bm,α = {q | q is m,α-bad }.

We will prove that there is a constant Tm so that for all r and all α ∈ Λr we have
that

(2.5) Pr(Bm,α) ≤ Tm/Mr.

Step 2. If q ∈ Qr is not m,α-bad, then the set of β ∈ Gq at a distance at most m
from α is a truncated degree 2ℓ tree centered at α. From this it follows that

(2.6) 〈δα, (Jq)mδα〉 =
ˆ

λmdk(λ).

Step 3. Prove that for each positive integer, m, there is a constant Um so that

(2.7) Er

(∣∣∣∣ˆ λmdN (r)
qr (λ)−

ˆ
λmdk(λ)

∣∣∣∣) ≤ Um/Mr.

Step 4. Prove that for almost every choice (qr) ∈ Q, we have that

(2.8) lim
q→∞

ˆ
λmdN (r)

qr (λ) =

ˆ
λmdk(λ),

and deduce the theorem from this.

Proof of Step 1. This is the most involved argument in the paper and is critical.
We use the word “finitely” to indicate that a quantity only depends on m but can
be chosen independently of r. The idea is that for each x ∈ ∂Λr in some bad graph,
G, finitely far from α we can swap an edge in a small cycle with an edge from x to
get a new graph K. On the one hand the number of choices for such x grows like
Mr so the number of options for performing such a procedure is approximately Mr

times the number of bad graphs. On the other hand, we will show that for any such
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K, the number of bad graphs producing it, is bounded (independently of r). This
yields the bound (2.5).

We will fix r, α ∈ Λr, and m and call the half-edge 2ℓ possibilities, e±j , colors

labelled by γ. We will suppose r is fairly large (to be specified later). Given
p, s ∈ ∂Λr at a Λr-distance at most 2m from each other, we let

Bp,s,γ = {q ∈ Qr | there is a non-backtracking path of length at most

2m from p to s leaving p along half edge γ},(2.9)

where γ is one of the 2ℓ− 1 half edges that does not link p to the interior of Λr.
Since any simple closed path within distance m of α in some Gq must contain an

edge not in Λr, we can label such paths by the first and last times the path lies in
∂Λr and the direction it leaves that first point and we see that

(2.10) Bm,α ⊂
⋃
p,s,γ

Bp,s,γ ,

where p, s are points in ∂Λr at a Λr-distance at most 2m of α (since these points are
linked to α by a path entirely in Λr). An over count of the number of such points
is 2ℓ(2ℓ− 1)2m−1. In (2.10), γ is one of the 2ℓ− 1 half edges that does not link p to
the interior of Λr. Thus

(2.11) the number of terms in (2.10) ≤ (2ℓ− 1)[2ℓ(2ℓ− 1)2m−1]2.

We will be considering a variety of graphs, G, with degree at most 2ℓ at each ver-
tex. dG will denote distance on that graph, i.e. shortest path between two vertices.
If G and H have the same vertices but the edges of H are a superset of the edges of
G, clearly
(2.12) dH(x, y) ≤ dG(x, y).

Let Dr = #(Λr) given by (2.1). Then if G has maximum degree 2ℓ, it is easy to see
that the number of points at a distance at most r from a fixed x ∈ G is bounded by
Dr.

Now suppose G ∈ Bp,s,γ (by which we mean that G = Gq for some q ∈ Bp,s,γ) and
suppose that x ∈ ∂Λr with dG(x, s) > 2m + 1 and so that x is not linked to the
interior by a vertex whose edge with x is γ. The distance condition implies that x is
not linked to p by the edge labelled γ. So we let y 6= x be the vertex linked to p by
the edge labelled γ coming out of p and let z 6= p be the vertex whose edge labelled
by gamma has x at the other end. Let G̃ be G with the gamma edges coming out of
p and z removed (so if say γ = e+1 , we have that x and y have dangling e−1 edges).
By the distance condition, the path of length at most 2m from p to s does not
include x or z and thus

(2.13) dG̃(y, s) ≤ 2m.

Let τx(G) be the graph obtained from G̃ by linking p to x and z to y by the edges
labelled γ coming out of the first points (i.e. τx(G) is obtained from G by switching
end points the gamma edges coming out of p and z). Suppose that K = τx(G) for
some G ∈ Bp,s,γ and some x. The key observation is the bound on how many G’s
there can be with τx(G) = K. Clearly, to recover G from K, it suffices to know
p, x, z, y. p is fixed and x is the vertex linked to it in K by the γ edge. If two G’s



PERIODIC BC TREES 497

with τx(G) = K have the same y they are equal. By (2.13) and (2.12), dK(y, s) ≤ 2m
so we conclude

(2.14) the number of G with τx(G) = K ≤ D2m.

Instead of counting numbers of possibilities it is simpler to divide by the number
of matchings in Qr, and note that for each G ∈ Bp,s,γ we can form τx(G) for at
least Mr − D2m+1 vertices and see that (for any single graph L, we have that
Pr(L) = 1/#(Qr))

(2.15) (Mr −D2m+1)Pr(G) ≤
∑

K | ∃x with τx(G)=K

Pr(K).

If we sum over all G ∈ Bp,s,γ and use (2.14) and the fact that
∑

K Pr(K) = 1 we
conclude that

(2.16) (Mr −D2m+1)Pr(Bp,s,γ) ≤ D2m.

If r is so large that Mr ≥ 2D2m+1 we conclude using (2.10) and (2.11) that for
such r we have that

(2.17) Pr(Bm,α) ≤
(2ℓ− 1)[2ℓ(2ℓ− 1)2m−1]22D2m

Mr
,

which proves (2.5) with

(2.18) Tm = max((2ℓ− 1)[2ℓ(2ℓ− 1)2m−1]22D2m, 2D2m+1),

since then, when r is small, the right side is bigger than 1. □

Remark 2.3. There is an alternate proof of this step that we have that relies on
McKay’s result. While it is somewhat shorter, we decided to use this result because
it is self-contained and conceptually simple.

Proof of Step 2. Suppose that Gq has no simple closed cycle of size no more than
2m all of whose sites are within distance m of α. Since it is a cover, every vertex
in Gq has degree 2ℓ. All of the 2ℓ edges coming out of α must have second ends
different from α (to avoid a closed cycle of length 1) and from each other (to avoid
a closed cycle of length 2). Each of the 2ℓ vertices a distance one from α have 2ℓ−1
edges coming out besides the one linking to α. Those edges can’t have a distance
one vertex as their other end (to avoid cycles of length 1 or 3) and must have all
different second vertices (to avoid cycles of length 2 or 4) so there are 2ℓ(2ℓ − 1)
vertices a distance 2 from α. Repeating this shows that the vertices in Gr a distance
at most m from α is exactly the truncated tree centered at α as claimed.

Since this implies all walks of length m starting and α are the same as would be
on an infinite tree starting at α, we obtain (2.6) from (1.3). □

Proof of Step 3. Fix α. Let f(q) = 〈δα, (Jq)mδα〉−
´
λmdk(λ). It is easy to see that

‖Jq‖ ≤ |b|+ 2
∑ℓ

s=1 as ≡ Γ. It follows (ignoring possible cancelling from the minus
sign) that for all q, one has that |f(q)| ≤ 2Γm. Since f vanishes off the set on the
left side of (2.5), we see that

(2.19) Er(|f |) ≤ ‖f‖∞Pr(q | q is m,α-bad ) ≤ 2ΓmTm/Mr.
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Summing over α and dividing by the number of α yields (2.7) with Um = 2ΓmTm.
□

Proof of Step 4. By (2.7) and Markov’s inequality

(2.20) Pr

(∣∣∣∣ˆ λmdN (r)
qr (λ)−

ˆ
λmdk(λ)

∣∣∣∣ ≥ M−1/2
r

)
≤ Um/M1/2

r .

Since Mr grows exponentially in r, we have that

(2.21)
∞∑
r=1

Pr

(∣∣∣∣ˆ λmdN (r)
qr (λ)−

ˆ
λmdk(λ)

∣∣∣∣ ≥ M−1/2
r

)
< ∞.

Thus, by the Borel-Cantelli lemma [16, Theorem 7.2.1], for a.e. q ∈ Q, we have that

eventually
∣∣∣´ λmdN

(r)
qr (λ)−

´
λmdk(λ)

∣∣∣ ≤ M
−1/2
r so that a.e., any given moment of

dN
(r)
qr converges to that moment of dk. It follows that a.e., we have convergence for

all moments. Since there is a priori compact set in R that supports all the measures,
the Weierstrass density theorem [16, Theorem 2.4.1] implies weak convergence a.e.

□
Remark 2.4. The relation between the spectrum of Laplacians of finite graphs
and that of the covering tree is a central theme in graph theory and is related to
the notions of expander graphs, and Ramanujan graphs. Analysis of sizes of cy-
cles for random graphs has a crucial role in proving spectral properties for random
regular graphs and especially expansion properties and relatives of the Ramanu-
jan properties (see Hoory, Linial, Wigderson’s survey of expander graphs [12] and
Friedman [8]). It could be of interest to extend notions related to expander graphs
based on the Laplacian to Jacobi operators and various Schrödinger operators. In
particular it would be interesting to extend to more general operators the Alon-
Bopanna theorem (see [14] or [12, Section 5.2]) that asserts that the spectrum of
regular graphs is controlled by the spectrum of the covering tree.

3. Homogeneous BC

In this section, we will identify finite pointed covers of the base graph G with
1 vertex and ℓ self loops with subgroups of Fℓ and use this to find sequences of
finite covers whose normalized eigenvalue counting measures converge to the DOS
(distinct from the examples in Section 2). By using the lego block representation
one could then construct such sequences of finite covers for the Jacobi matrix on
any finite leafless graph.

We quickly recall some basics of covering spaces for this situation. We can view
the universal cover as the Cayley graph Fℓ. If C is any cover of G, then there is
a covering map π : Fℓ → C and if 1 is the identity in Fℓ and we let v0 = π(1),
then H ≡ π−1[v0] is precisely those h ∈ Fℓ so that the simple path from 1 to h
is pushed by π to a closed curve. This easily implies that H is a group and that
the map sending h ∈ H to the just mentioned closed path is an isomorphism of H
to the fundamental group, π1(C, v0). Thus there is a 1-1 correspondence between
subgroups of Fℓ and equivalence classes of pointed covers of G. The finite covers
correspond precisely to subgroups, H, of finite index.
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We are interested in sequences of finite covers, {Cn}∞n=1, which in some sense
converge to Fℓ. One notion of this is that the corresponding subgroups Hn have
the property that any given h 6= 1 lies in only finitely many Hn. We’ll call the
corresponding covering Jacobi matrices a sequence of periodic BC objects converging
to infinity. We are especially interested in the case where each Cn+1 is a finite cover
of Cn for all n, which we call a tower of periodic BC objects converging to infinity
(if it indeed converges to infinity). We have a tower if and only if the sequence Hn

is nested, i.e. Hn ⊂ Hn+1 in which case convergence to infinity is equivalent to
∩Hn = {1}.

As we’ve seen, to get convergence of the normalized eigenvalue counting measures
to the DOS we need very few small cycles. At first sight, one might think that
is automatic when the covers converge to infinity since H is connected to closed
cycles through v0 so a condition like ∩Hn = {1}. Indeed, by the random walk
representation, this implies that 〈δv0 , Jm

Cnδv0〉 converges to the mth moment of the
DOS. But, of course, it can’t always be true for the normalized eigenvalue counting
measures since all the periodic BC operators we discussed in Section 2 converge
to infinity and by Proposition 2.1 we do not have convergence of the normalized
counting measures for the sequence of q0’s!

A little thought shows that if v1 = π(g) for some g ∈ Fℓ and C corresponds to
the subgroup, H, then the paths through v1 moved to 1 are given by gHg−1. In
terms of measuring how big the closed paths are, that might seem harmless, but we
note that if, for example, ℓ = 2 and a, b are generators of F2, then (ab)na(ab)−n = h
is distance 2n + 1 from 1, while if g = (ab)−n, then ghg−1 = a is close to 1. The
moral is that the absence of small cycles through 1 does not imply the same for
all points. But, if gHg−1 = H, then no small cycles through v0 implies no small
cycles through v1! This suggests that finite covers associated to normal subgroups
should be especially interesting. We will call the cover associated to such a normal
subgroup a homogeneous cover for reasons that will become clear in a moment.

If C is a homogeneous cover associated to a normal subgroup H, then C is the
Cayley graph of the quotient group G/H. In particular by group multiplication
G/H acts freely and transitively on C by an action which preserves the Cayley
edges (so C looks the same from any point which is why we call it homogeneous).
In particular, 〈δv, Jm

Cnδv〉 is independent of v, so we conclude that

Theorem 3.1. If Jn a sequence of periodic BC objects converging to infinity which
are all operators on homogenous covers, then its normalized eigenvalue counting
measures converge to the DOS.

Of course, for this to be interesting, there have to exist such sequences so the
following is interesting

Theorem 3.2. For any ℓ there exist nested sequences of finite index normal sub-
groups of Fℓ and so towers of homogenous covers converging to infinity. In particu-
lar, for these towers, we get associated Jacobi matrices whose normalized eigenvalue
counting measures converge to the DOS.

There is of course a huge literature and knowledge about the structure of Fℓ

and we believe many experts would regard this theorem as folk wisdom, but we
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feel it is useful to sketch one explicit construction. We note that if Hn ⊂ G is a
nested sequence of finite index normal subgroups with ∩nHn = {1} and if K ⊂ G
is any subgroup of G, then K ∩ Hn is a nested sequence of finite index normal
subgroups of K with ∩n(K∩Hn) = {1}. The strategy will be to show that for each
ℓ, Fℓ is isomorphic to a subgroup of SL(2,Z) and then to show that SL(2,Z) has
the required family of nested normal subgroups. So our proof is via a sequence of
simple Propositions.

Proposition 3.3. For each ℓ > 2, Fℓ is isomorphic to a subgroup of F2.

Proof. It is remarkable that this algebraic fact about discrete groups will be proven
using covering space theory, a subject that arose in complex analysis! For n ≥ 2,
form a graph Kn whose vertices are the points in Zn = Z/nZ, the integers mod n,
and where m is connected by four edges to the points m± 1,m± 2 (for n ≤ 4, one
has to describe things more carefully and describe in terms of self loops for n = 2
and multiple edges for n = 2, 3, 4 but it is still a degree 4 graph with n points). A
maximal spanning tree obviously has n−1 edges so one needs to remove 2n−(n−1)
edges to get from Kn to the tree and thus, the fundamental group of Kn is Fn+1.

On the other hand, as a homogenous degree 4 graph, Kn is a finite cover of G2,
the graph with a single point and two self loops whose fundamental group is F2 (for
example one can get an explicit covering map by taking all vertices of Kn to the
single vertex of G2 and taking the m,m± 1 edges to one self loop and the m,m± 2
edges to the other self loop with the ± edges going in opposite directions). Taking
n = ℓ − 1, the covering map induces an injection on fundamental groups realizing
Fℓ as a subgroup of F2, indeed one of index ℓ− 1. □
Remark 3.4. One can take any homogenous graph of degree 4. For example, if
H2 is the graph with 2 vertices and 4 edges between them, the spanning tree is a
single edge and F3 is generated by cycles that go from the base point to the other
by the spanning tree and return by one of the three others. The four edges map to
a±1, b±1 under the induced covering map to G2, so we see that a2, ab, ab−1 are free
in F2 giving an explicit set of generators.

Proposition 3.5. Each Fℓ, ℓ ≥ 2 is isomorphic to a subgroup of SL(2,Z)

Proof. By the previous proposition, it suffices to prove it for ℓ = 2. It is well known

that the two matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
are free generators (and generate

the group of matrices of the form

(
4a+ 1 2b
2c 4d+ 1

)
for arbitrary a, b, c, d ∈ Z).

This group is often called the Sanov group after [15] who first proved the generators
are free. For a simple proof in English, see Goldbeg-Newman [10] □

The proof of Theorem 3.2 is clearly completed by

Proposition 3.6. SL(2,Z) contains nested sequences of normal subgroups that
converge to infinity.

Proof. Let Hn be the subgroup of all matrices in SL(2,Z) which are congruent to
1 mod 2n. This is clearly a decreasing sequence of subgroups whose intersection
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is {1}. Since the set of matrices congruent to zero mod 2n is obviously an ideal
in Mat(2,Z), if C ≡ 0, mod 2n and B ∈ SL(2,Z), then B(1 + C)B−1 − 1 ≡ 0
mod 2n, so Hn is normal. □
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