Offprint from "Archive for Rational Mechanics and Analysis",
Volume 52, Number 1, 1973, P. 44-48

© by Springer-Verlag 1973

Printed in Germany

Essential Self-Adjointness of Schrödinger Operators with Singular Potentials

BARRY SIMON

Communicated by S. AGMON

1. Introduction

In this note we wish to study Schrödinger operators $-\Delta + q$ on $L^2(R^m)$, where q is the operator of multiplication by a real-valued measurable function, q(x), on R^n . We show that $-\Delta + q$ is essentially self-adjoint on either $C_0^{\infty}(R^m)$, the C^{∞} functions of compact support, or on $C_0^{\infty}(R^m/\{0\})$, the C^{∞} functions of compact support in $R^m/\{0\}$. Upon occasion we shall denote these sets by C_0^{∞} and C_{00}^{∞} , respectively.

The self-adjointness of such operators is an extensively studied problem, but until recently all results have at least supposed that q is in a local Stummel space (slightly weaker than $q \in (L^p)_{loc}$ with p > m/2, $p \ge 2$). This is considerably stronger than the condition $q \in (L^2)_{loc}$ (resp. $q \in (L^2(R/\{0\}))_{loc}$) needed for $-\Delta + q$ to be well-defined on C_0^{∞} (resp. C_{00}^{∞}). In general, $-\Delta + q$ will not be self-adjoint on C_0^{∞} if $q \in L^2$ and $m \ge 4$ (see [4] for an explicit example). However, we recently showed that if $q \ge 0$, then $q \in L^2$ is sufficient for essential self-adjointness on C_0^{∞} [4]. Extensions of this result have been obtained by KATO [2], some of whose methods we shall use below. The two theorems we prove below are:

Theorem 1 (KATO). Let $q = q_1 + q_2$ with $q_1 \in (L^2)_{loc}$, $q_2 \in L^p$ (where p = 2 if m < 4, p > 2 if m = 4 and p = m/2 if m > 4). Suppose that q_1 is bounded from below. Then $-\Delta + q$ is essentially self-adjoint on C_0^{∞} .

Theorem 2. Let $q=q_1+q_2$, with $q_1 \in (L^2(\mathbb{R}^m/\{0\}))_{loc}$ and $q_2 \in L^\infty$ and suppose that

$$q_1(\vec{r}) \ge -[(m-1)(m-3)-3]/4r^2.$$

Then $-\Delta + q$ is essentially self-adjoint on C_{00}^{∞} .

Theorem 1 was conjectured in [4] and proved by KATO in [2]; we present a partly alternative proof in § 2. Theorem 2 generalizes results of KALF & WALTER [1] and SCHMINCKE [3].

Our method of proof is very different from the methods used in [4] but is closely related to Kato's method in [2]. The basic tool is the use of distributional inequalities. If T and S are distributions, we write $T \ge S$ if and only if $T(\phi) \ge S(\phi)$

Schrödinger Operators

45

for every positive test function $\phi \ge 0$. We shall use the following inequality of KATO ([2], Lemma A):

Kato's Inequality. Suppose u and Δu are in $(L^1(R^m))_{loc}$. Then

$$\Delta |u| \ge (\operatorname{sgn} u) \Delta u$$
.

- **Remarks.** 1. We suppose that u is real-valued although there is a similar inequality if u is complex-valued. The symbol sgn u is used to denote +1, -1, 0 according to whether u>0, u<0 or u=0.
- 2. The inequality \geq holds in the sense of elements of the distribution space dual to C_0^{∞} .
- 3. This inequality is local; thus if u and Δu are in $L^1(R^m/\{0\})_{loc}$, the inequality holds in the sense of the distribution space dual to C_{00}^{∞} .
- 4. The proof of the inequality is rather simple (Kato's Lemma A is more general, so its proof is notationally more complex). If u is smooth and $u_{\varepsilon} = \sqrt{u^2 + \varepsilon}$, the formulae $u_{\varepsilon} \operatorname{grad} u_{\varepsilon} = u \operatorname{grad} u$, $u_{\varepsilon} \Delta u_{\varepsilon} + |\operatorname{grad} u_{\varepsilon}|^2 = u \Delta u + |\operatorname{grad} u|^2$ and $u_{\varepsilon} \ge |u|$ imply $u_{\varepsilon} \Delta u_{\varepsilon} \ge u \Delta u$. Dividing by u and letting ε tend to 0 yields the inequality. For general distributions u (obeying the same conditions), mollified u's obey the inequality $u_{\varepsilon} \Delta u_{\varepsilon} \ge u \Delta u$. Taking limits, we find that u obeys Kato's inequality.

2. Proof of Theorem 1

Besides Kato's inequality, the proof relies on the fact that if u is a distrubution with $u \in L^2$ and $(-\Delta + q_2 + E)|u| \le 0$ for a suitable real E, then u = 0. Here $-\Delta + q_2 + E$ is viewed as an operator from L^2 to $(C_0^{\infty})'$. This is formally connected with the fact that $(-\Delta + q_2 + E)^{-1}$, the inverse of the operator from $D(\Delta)$ to L^2 , is positivity preserving. Rather than using the fact that $H = -\Delta + q_2$ has a positivity preserving resolvent, we use the related result that when

$$\Sigma = \inf \operatorname{spec}(-\Delta + q_2) < 0$$
,

then Σ is a non-degenerate eigenvalue with strictly positive eigenvector.

Lemma. Let $q_2 \in L^p(\mathbb{R}^m)$ $(p=2 \text{ if } m<4, p>2 \text{ if } m=4 \text{ and } p=\frac{1}{2}m \text{ if } p>4)$ and suppose that $\Sigma=\inf \operatorname{spec}(-\Delta+q_2)<0$. Let $E<\Sigma$. Suppose that $u\in L^2$ and that $(-\Delta+q_2+E)|u|\leq 0$ in the sense of distributions $(-\Delta|u|$ being a distributional derivative). Then u=0.

Proof. A simple argument (see [4] for reference) shows that q_2 is a relatively compact perturbation of $-\Delta$, so $-\Delta + q_2$ has $[0, \infty)$ as its essential spectrum. Since $\Sigma < 0$, it is an eigenvalue. By a result in [5], it follows that Σ is nondegenerate and $(-\Delta + q_2) \Psi = \Sigma \Psi$ for some $\Psi \in D(-\Delta + q_2)$ which is strictly positive a.e. Since $D(-\Delta + q_2) = D(-\Delta)$, we can find $\Psi_n \in C_0^\infty$ such that $\Psi_n \to \Psi$ in L^2 , $-\Delta \Psi_n \to -\Delta \Psi$ in L^2 , and $\Psi_n \ge 0$. Since q_2 is $-\Delta$ -bounded, $(-\Delta + q_2 + E) \Psi_n \to (\Sigma + E) \Psi$. Thus

$$\langle (\Sigma + E) | u |, \Psi \rangle = \lim_{n \to \infty} \langle |u|, (-\Delta + q_2 + E) \Psi_n \rangle$$

$$= \lim_{n \to \infty} \langle (-\Delta + q_2 + E) |u|, \Psi_n \rangle$$

$$\leq 0 \text{ (distributional sense)}.$$

Schrödinger Operators

47

Since $\Sigma + E \ge 0$, $\langle |u|, \Psi \rangle \le 0$. But Ψ is strictly positive a.e.; hence |u| = 0.

Proof of Theorem 1. We assume without loss of generality that $q_1 \ge 0$. Moreover we can suppose that $\Sigma = \inf \operatorname{spec}(-\Delta + q_2) < 0$. For choose any Φ in C_0^{∞} with support in unit ball B and let $\tilde{q}_2 = q_2 - c\chi_B^{-1}$, where $c = 1 + \|\Phi\|^{-2} (\langle \Phi, (-\Delta + q_2) \Phi \rangle)$ and $\tilde{q}_1 = q_1 + c\chi_B$. Then $\tilde{q}_1 \ge 0$, $\tilde{q}_1 \in (L^2)_{loc}$, $\tilde{q}_2 \in L^P$ and $\tilde{\Sigma} = \inf \operatorname{spec}(-\Delta + \tilde{q}_2) \le -1$.

Let $\Sigma=\inf(-\Delta+q_2)<0$. It is sufficient to prove that $(-\Delta+q-\Sigma+1)$ $[C_0^{\infty}]$ is dense in L^2 . If it is not dense, then there exists an element $u\in L^2$ orthogonal to $(-\Delta+q-\Sigma+1)$ $[C_0^{\infty}]$ which can be assumed to be real-valued, since q is real-valued and C_0^{∞} is self-conjugate. But then $(-\Delta+q-\Sigma+1)$ u=0 (distributional sense). Since $u\in L^2$ we have $u\in (L^1)_{loc}$, and $\Delta u=(q-\Sigma+1)$ $u\in (L^1)_{loc}$ since $q\in (L^2)_{loc}$. Thus Kato's inequality is applicable, and we find

$$-\Delta |u| \leq -(\operatorname{sgn} u) \Delta u = (-q + \Sigma - 1)|u|$$

or

$$-\Delta + q_2 + (-\Sigma + 1)|u| \le -q_1|u| \le 0$$

since $q_1 \ge 0$. By the lemma, u = 0.

3. Proof of Theorem 2 (Generalized Kalf-Walter-Schmincke Theorem)

Let B be the ball of radius 1 and let $q_3 = -\frac{1}{4} [m(m-4)] r^{-2} - c\chi_B$, where c is a positive constant which we shall adjust below. Let $q_4 = q_1 - q_3$. We shall prove that $-\Delta + q_1$ is essentially self-adjoint on C_0^{∞} , from which Theorem 2 will follow since q_2 is bounded.

The key to the proof is to construct an auxiliary function Ψ_0 which is spherically symmetric, C^1 on $\mathbb{R}^m \setminus \{0\}$, C^{∞} on $\mathbb{R}^m \setminus \{0\} \cup \{\vec{r} \mid r=1\}$, and moreover such that: (1) Ψ_0 is strictly positive, (2) $\Psi_0 \in L^2(\mathbb{R}^m)$, (3) $\Psi_0 \cong r^{(4-m)/2}$ as $r \to 0$, (4) at any point \vec{r} with $r \neq 0$, 1, Ψ_0 obeys $(-\Delta + q_3)$ $\Psi_0 = -\Psi_0$ near and \vec{r} , where $-\Delta$ is the classical derivative.

Notice that we do not claim that $(-\Delta + q_3) \Psi_0 = -\Psi_0$ in terms of an operator equation when $-\Delta + q_3$ is interpreted as an operator in some sense. (Once the theorem is proved, it follows that Ψ_0 is an eigenfunction of $-\Delta + q_3 \mid C_{00}^{\infty}$, but a priori we neither know nor need that fact.)

To construct $\Psi_0(\vec{r})$, we choose a function f(r) which is C^1 on $(0, \infty)$ and C^{∞} on (0, 1) and on $(1, \infty)$ and obeys (1') f(r) > 0 for all r; (2') f(r) decays exponentially at ∞ ; $(3') f(r) \sim r^{3/2}$ at r = 0; and (4')

$$-f'' + \frac{3}{4}r^{-2}f = (C-1)f$$
 on $(0,1)$

and

$$-f'' + \frac{3}{4}r^{-2}f = -f$$
 on $(1, \infty)$.

We then let $\Psi_0 = r^{(1-m)/2} f$. The differential equations $-f'' + \frac{3}{4} r^{-2} f = (C-1) f$ are exactly solvable for any C in terms of Bessel functions. When C=0 (i.e., $r \in (1, \infty)$), there is a solution which is strictly positive and which decays exponentially at ∞ . For any real C, there is a solution asymptotic to $r^{3/2}$ near r=0. By

adjusting the positive constant C in the definition of q_3 , we can arrange that the two solutions and their derivatives match at r=1 and also that the resulting function f is strictly positive.

Let η be a C^{∞} function which is 1 outside the ball of radius 1/2, and 0 inside the ball of radius 1/4. Let $\Psi_n(r) = \eta(rn) \Psi_0(r)$. Then $\Psi_n \to \Psi_0$ in L^2 and

$$(-\Delta + q_3 + 1)\Psi_n = -n[\vec{V}\eta(rn)] \cdot \vec{V}\Psi_0 - n^2[(\Delta\eta)(rn)]\Psi_0$$

is bounded in L^2 and has support shrinking to 0. We conclude that $(-\Delta + q_3 + 2) \Psi_n$ converges to Ψ_0 weakly in L^2 . By modifying Ψ_n near ∞ and on the unit sphere, we can find $\phi_n \in C_{00}^{\infty}$ such that (i) $\phi_n \ge 0$, (ii) $\phi_n \to \Psi_0$, and (iii) $(-\Delta + q_3 + 2) \phi_n \to \Psi_0$ weakly.

To prove that $-\Delta + q_1$ is essentially self-adjoint on C_{00}^{∞} , we need only show that $(-\Delta + q_1 + 2)[C_{00}^{\infty}]$ is dense. If u is orthogonal to $(-\Delta + q_1 + 2)[C_{00}^{\infty}]$, then $(-\Delta + q_1 + 2)u = 0$ in the sense of $(C_{00}^{\infty})'$. Thus u and $\Delta u = (q_1 + 2)u$ are in $L^1(R^m/\{0\})_{loc}$ and Kato's inequality is applicable. We conclude that $-\Delta |u| \le (-q_1 - 2)|u|$ (in the sense of $(C_{00}^{\infty})'$). Since $q_4 \ge 0$ by hypothesis, we have

$$(-\Delta + q_3 + 2)|u| \le -q_4|u| \le 0.$$

As a result

$$\langle \Psi_0, |u| \rangle = \lim_{n \to \infty} \langle (-\Delta + q_3 + 2) \phi_n, |u| \rangle$$

$$= \lim_{n \to \infty} \langle \phi_n, (-\Delta + q_3 + 2) |u| \rangle \leq 0 \quad (C_{00}^{\infty} - \text{sense}).$$

Since Ψ_0 is strictly positive, it follows that u=0. We conclude that $-\Delta+q_1$ is essentially self-adjoint.

Remarks. 1. In particular, $-d^2/dx^2 + ar^{-2}$ is essentially self-adjoint on $C_{00}^{\infty}(R)$ if and only if $a \ge 3/4$. It is interesting to compare our proof with the usual proof employing Weyl's limit-point limit-circle method. The two solutions of $-f'' + 3/4r^{-2}f = df$ for d constant behave at r = 0 like $r^{-1/2}$ and $r^{3/2}$. In Weyl's method, the key fact is that $r^{-1/2}$ is not in L^2 . In our method, certain properties of $r^{3/2}$ are critical, namely the estimates

$$\int_{0}^{R} (r^{3/2})^{2} dr = O(R^{4}) \text{ and } \int_{0}^{R} (d/dr(r^{3/2}))^{2} dr = O(R^{2}).$$

- 2. T. KATO (private communication) has found an alternate proof of Theorem 2 which also allows q_1 to vary slightly below the r^{-2} bound at 0 and the 0 bound at ∞ .
- 3. The constant $[(m-1)(m-3)-3]/4=c_m$ is best possible in the sense that if $\alpha > c_m$, then $-\Delta \alpha r^{-2}$ is not essentially self-adjoint on C_{∞}^{∞} .

Acknowledgements. It is a pleasure to thank T. KATO for valuable correspondence and for making his paper [2] available before publication. During the period when this paper written the author held a Sloan Foundation Fellowship. I should also like to thank Professor M. O'CARROLL for the hospitality of the Dept. of Mathematics, Pontificia Universidade Catolica, Rio de Janeiro where this work was completed.

¹ χ_B denotes the characteristic function of the ball.

References

- 1. Kalf, H., & J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_0^{\infty}(R^n/\{0\})$. J. Funct. Analysis 10, 114–130 (1972).
- 2. KATO, T., Schrödinger operators with singular potentials. Israel J. Math. 13, 135 (1972).
- SCHMINCKE, U. W., Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z. 124, 47-50 (1972).
- SIMON, B., Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201, 211-220 (1973).
- SIMON, B., & R. HOEGH-KROHN, Hypercontractive semigroups and two dimensional self coupled bose fields. J. Funct. Analysis 9, 121-180 (1972).

Department of Mathematics Princeton University Princeton, New Jersey

(Received October 17, 1972)