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1. Introduction

In this note we wish to study Schrédinger operators — 4 +¢ on L*(R™), where
q is the operator of multiplication by a real-valued measurable function, ¢(x),
on R". We show that — 4 +g¢ is essentially self-adjoint on either Cg°(R™), the C*
functions of compact support, or on CJ”(R™/{0}), the C* functions of compact
support in R™/{0}. Upon occasion we shall denote these sets by Cg° and C&,
respectively.

The sclf-adjointness of such operators is an extensively studied problem, but
until recently all results have at least supposed that g is in a local Stummel space
(slightly weaker than ge(L?),,, with p>mj2, p22). This is considerably stronger
than the condition ge(I?),. (resp. ge(L*(R/{0})).) needed for —A+q to be
well-defined on C§ (resp. CS%). In general, —4+g¢ will not be self-adjoint on
CQ if qel? and m24 (see [4] for an explicit example). However, we recently
showed that if 20, then ge I? is sufficient for essential self-adjointness on Cy° [4].
Extensions of this result have been obtained by KATo [2], some of whose methods
we shall use below. The two theorems we prove below are:

Theorem 1 (KATO). Let =g, +q, with q,€(I*) 100, 426 LF (where p=2 if m<4,
p>2 if m=4 and p=m|2 if m>4). Suppose that g, is bounded from below. Then
— A +q is essentially self-adjoint on Cg°.

Theorem 2. Let q=q,+q,, with g,e(I*(R"/{0}))\. and g,€L™ and suppose
that
0, (F)2 —[(m—1)(m—3)-3]/4r*.

Then — A+ q is essentially self-adjoint on Cg.

Theorem 1 was conjectured in [4] and proved by KATO in [2]; we present a
partly alternative proof in § 2. Theorem 2 generalizes results of KALF & WALTER [1]
and SCHMINCKE [3].

Our method of proof is very different from the methods used in [4] but is
closely related to KATO’s method in [2]. The basic tool is the use of distributional
inequalities. If T and S are distributions, we write T2 S if and only if T(¢)= S(¢)
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for every positive test function ¢ =0. We shall use the following inequality of
KATO ([2], Lemma A):

Kato’s Inequality. Suppose u and Au are in (L' (R™))\oc. Then
Alu|=(sgnu)du.

Remarks. 1. We suppose that u is real-valued although there is a similar
inequality if u is complex-valued. The symbol sgn u is used to denote +1, —1, 0
according to whether #>0, u<0 or u=0.

2. The inequality = holds in the sense of elements of the distribution space
dual to Cg°.

3. This inequality is local; thus if # and du are in L' (R™/{0}),,., the inequality
holds in the sense of the distribution space dual to Cgp.

4. The proof of the inequality is rather simple (Kato’s Lemma A is more
general, so its proof is notationally more complex). If u is smooth and u,=Vu—2_+8,
the formulae w,grad u,=ugradu, wu,du,+|gradu,|>?=udu+|gradu|?® and
u,>|u| imply u,Adu,Zudu. Dividing by u and letting ¢ tend to O yields the in-
equality. For general distributions u (obeying the same conditions), mollified
w’s obey the inequality u,du,=uAdu. Taking limits, we find that u obeys Kato’s
inequality.

2. Proof of Theorem 1

Besides Kato’s inequality, the proof relies on the fact that if « is a distrubution
with uel? and (—A+q,+E)|u|<0 for a suitable real E, then u=0. Here
~A+4q,+E is viewed as an operator from I* to (Cg). This is formally
connected with the fact that (—A4+g¢,+ E)™!, the inverse of the operator from
D(4) to I2, is positivity preserving. Rather than using the fact that H= —4+gq,
has a positivity preserving resolvent, we use the related result that when

X =inf spec(—4+¢,)<0,
then X is a non-degenerate eigenvalue with strictly positive eigenvector.

Lemma. Let g,€I?(R™) (p=2 if m<4, p>2 if m=4 and p=im if p>4) and
suppose that X=inf spec(—A+q,)<0. Let E<ZX. Suppose that uel?® and that
(—4+q,+E)|ul£0 in the sense of distributions (—A|u| being a distributional
derivative). Then u=0.

Proof. A simple argument (see [4] for reference) shows that g, is a relatively
compact perturbation of — 4, so —4 + ¢, has [0, 0) as its essential spectrum. Since
X <0, it is an eigenvalue. By a result in [5], it follows that Z is nondegenerate and
(—4+q,;) P=2Y¥ for some YeD(—4+q,) which is strictly positive a.e. Since
D(—A+q,)=D(—A), we can find ¥,eCS such that ¥, »¥in [?, —A¥,>—A¥
in I?, and ¥,20. Since g, is —4-bounded, (—4+¢,+E) ¥, —(Z+E) ¥. Thus

{(Z+E)|ul, ¥>=lim {{ul,(-4+q: +E)¥,)

=lim<(—A+qz+E)|u|$Tn>

<0 (distributional sense).
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Since Z+E20, {|u|, ¥)<0. But ¥is strictly positive a.e.; hence |u|=0.

Proof of Theorem 1. We assume without loss of generality that q,=0. Moreover
we can suppose that Z'=inf spec(—4+¢,)<0. For choose any & in Cy® with
support in unit ball Band let§, =g, — cx,', where c=1+||®| ~2((®, (- 4 +4,)P))
and §,=q, +cxp. Then §,20, §,e(I?),,.. §,€I? and Z=inf spec(—4+4,)< 1.

Let Z=inf(—A4+¢,)<0. It is sufficient to prove that (—4+g—-Z+1) [C&]is
dense in I*. If it is not dense, then there exists an element yeI? orthogonal to
(=4+49—2+1) [C5’] which can be assumed to be real-valued, since q is real-
valued and Cg° is self-conjugate. But then (—A+g—Z+1) u=0 (distributional
sense). Since uel’ we have ue(L'),, and Au=(g—Z+1) ue(lY),,. since
g€(I?),,.. Thus Kato’s inequality is applicable, and we find

—dju|= —(sgnu)du=(-q+2Z~1)|u|
or

—4+q;+(-Z+D)|uls-q,|ul<0

since g, =0. By the lemma, u=0.

3. Proof of Theorem 2 (Generalized Kalf-Walter-Schmincke Theorem)

Let B be the ball of radius 1 and let ¢, = —3}[m(m—4)1r~%—cyz, where c is
a positive constant which we shall adjust below. Let q94=4; —qs. We shall prove
that —4+q, is essentially self-adjoint on C&, from which Theorem 2 will follow
since g, is bounded.

The key to the proof is to construct an auxiluary function ¥, which is spheri-
cally symmetric, C' on R™\{0}, C* on R™\{0} U{F|r= 1}, and moreover such
that: (1) ¥, is strictly positive, (2) ¥, e I* (R™), (3) ¥y =r*~™/2 as r -0, (4) at any
point 7 with 40, 1, ¥, obeys (—4+g;) ¥, = — ¥, near and 7, where — 4 is the
classical derivative.

Notice that we do not claim that (—4+g;) ¥,= — ¥, in terms of an operator
equation when —A4+g, is interpreted as an operator in some sense. (Once the
theorem is proved, it follows that ¥, is an eigenfunction of — 4 +45[CS, but a
priori we neither know nor need that fact.)

To construct ¥,(7), we choose a function J(r) which is C! on (0, ) and
C* on (0, 1) and on (1,00) and obeys (1') /(r)>0 for all r; (2") f(r) decays ex-
ponentially at o0; (3') f(r)~r*? at r=0; and (4)

[+ =(C=Df on (©1)

and .
—f"+3r % f=—f on (1, ).

We then let ¥o=r'""/2f The differential equations —f"" +3r 2 f=C-nyr

are exactly solvable for any C in terms of Bessel functions. When C=0 (ie.,

re(1, 00)), there is a solution which is strictly positive and which decays exponen-
tially at co. For any real C, there is a solution asymptotic to r*/2 near r=0. By

1 xp denotes the characteristic function of the ball,
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adjusting the positive constant C in the definition of g;, we can arrange that the
two solutions and their derivatives match at r=1 and also that the resulting
function f is strictly positive. )

Let n be a C*® function which is 1 outside the ball of radius 1/2, and 0 inside
the ball of radius 1/4. Let ¥, (r)=n(rn) ¥, (r). Then ¥, - ¥, in I? and

(—4+g3+ )P, = —n[Pn(rn)]- P¥,—n*[(An)(rn)]¥,

is bounded in I? and has support shrinking to 0. We conclude that (—4 +¢;+2) ¥,
converges to ¥, weakly in I2. By modifying ¥, near co and on the unit sphere, we
can find ¢,eC such that (i) ¢,=0, (i) ¢,— ¥, and (iii) (—4+q;+2) §,—> ¥,
weakly.

Tg prove that — A4 +gq, is essentially self-adjoint on Cg, we need only show
that (—4+¢q,+2)[C] is dense. If u is orthogonal to (—4+q,+2)[C&], thc_an
(—4+4¢,+2)u=0 in the sense of (Cg). Thus v and du=(q,+2)u are in
L'(R™/{0}),.. and Kato’s inequality is applicable. We conclude that —A4|u|<
(—q1—2)|u| (in the sense of (C§)"). Since g,=0 by hypothesis, we have

(=4+4q;+2)|u|< —q4|ul=0.
As a result

Fo,|ul)=lim {(-4+q5+2) by, [ul)

n— o
=lim {@,, (—4+45+2)|u|> <0 (Cgp —sense).
Since ¥, is strictly positive, it follows that #=0. We conclude that —A4+g¢, is
essentially self-adjoint.

Remarks. 1. In particular, —d?/dx* +ar~? is essentially self-adjoint on C$%(R)
if and only if @=3/4. It is interesting to compare our proof with the usual proof
employing WEYL’s limit-point limit-circle method. The two solutions of —f"’'+
3/4r~2 f=df for d constant behave at r=0 like r~*/? and r3/2. In WEYL’s method,
the key fact is that r~!/2 is not in I?. In our method, certain properties of r3/2
are critical, namely the estimates

f(r3/2)2dr=0(k‘) and f(d/dr(r”’))’dr=0(R’)-
'l ]

2. T. KaTo (private communication) has found an alternate proof of Theorem 2
which also allows ¢, to vary slightly below the r~2 bound at 0 and the 0 bound
at oo.

3. The constant [(m— 1)(m—3)—3]/4=c,, is best possible in the sense that if
a>c,, then —4—ar~2 is not essentially self-adjoint on C$,.

Acknowledgements. 1t is a pleasure to thank T. Kato for valuable correspondence and for
making his paper [2] available before publication. During the petiod when this paper written
the author held a Sloan Foundation Fellowship. I should also like to thank Professor M. O’CARROLL
for the hospitality of the Dept. of Mathematics, Pontificia Universidade Catolica, Rio de Janeiro
where this work was completed.



48 B. SMoN

References

1. KALF, H., & J. WALTER, Strongly singular potentials and essential self-adjointness of singular
elliptic operators in C (R"/{0}). J. Funct. Analysis 10, 114-130 (1972).

2. Karto, T., Schrodinger operators with singular potentials. Israel J. Math. 13, 135 (1972).

3. ScHMINCKE, U. W., Essential self-adjointness of a Schrédinger operator with strongly singular
potential. Math. Z. 124, 47-50 (1972).

4. SiMoN, B., Essential self-adjointness of Schrédinger operators with positive potentials. Math,
Ann. 201, 211-220 (1973).

5. SiMON, B., & R.HoeGH-KROHN, Hypercontractive semigroups and two dimensional self
coupled bose fields. J. Funct. Analysis 9, 121-180 (1972).

Department of Mathematics
Princeton University
Princeton, New Jersey

( Received October 17, 1972)



