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ABSTRACT
We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well-known
gap in the spectrum of the Laplacian on the upper half-plane with a hyperbolic metric. We make some conjectures about antibound states
and make an interesting observation for the so-called rg-model where the underlying graph has r red and g green vertices and where any two
vertices of different colors are connected by a single edge.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033702

I. INTRODUCTION
This paper is a contribution to growing recent literature on periodic Jacobi matrices on trees. Specifically, we were motivated by the work

of Avni, Breuer, and Simon1 (see also Ref. 2) whose notation and ideas we will follow; in particular, we refer the reader to that paper for the
definitions from graph theory that we will use. We also note the relevance of some recent preprints by a group at Berkeley.3,4

One starts out with a finite leafless graph, G, and a Jacobi matrix on that graph. By this, we mean a matrix with indices labeled by the
vertices in the graph whose diagonal elements are a function, b, on the vertices and off diagonal elements, which are only non-zero for pairs
of vertices, which are the two ends of some edge, with matrix elements determined by a function, a, on the edges. The universal cover, T, of G
is always a leafless tree. There is a unique and natural lift of any Jacobi matrix, J, on G to an operator, H (still called a Jacobi matrix), on ℓ2

(G).
Because H is invariant under a group of deck transformations on T (see Ref. 5, Sec. 1.7 for the covering space language we exploit), we call H
a periodic Jacobi matrix.

There are three big general theorems in the subject: (1) a result of Sunada6 on labeling of gaps in the spectrum that implies that the
spectrum of H is at most p bands, where p is the number of vertices in the underlying finite graph G; (2) a result of Aomoto7 stating that if
G has a fixed degree, then H has no point spectrum, and (3) a result of Avni, Breuer, and Simon1 that there is no singular spectrum because
matrix elements of the resolvent are algebraic functions. Besides a very few additional theorems, the subject at this point is mainly some
interesting examples and lots of conjectures and questions.

This paper has some additional results, observations, and an interesting fact about one fascinating example.
Typically, σ, the largest eigenvalue of J, does not lie in the spectrum of H. Two of the subjects we treat involve σ. Section II discusses

quantitative estimates on the distance from σ to the top of the spectrum of H. Section III will show that in a number of examples, σ can be
viewed as an antibound state and we make a general conjecture that it is a pole of the analytically continued Green’s function. Section IV
studies an example of a finite graph with a non-fixed degree for which Aomoto7 showed that H has a point eigenvalue and ABS1 found an
explicit eigenfunction. We prove that this eigenfunction and its translates span the eigenspace.
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II. GAP COMPARISON THEOREM
In this section, we want to fix a connected graph, G, with p vertices, V(G), and q edges, E(G). We are going to fix two sets of Jacobi

parameters on G, namely, {aα, bj}α∈E(G),j∈V(G) and {ãα, b̃j}α∈E(G),j∈V(G), with corresponding Jacobi matrices J and J̃ on ℓ2
(G), and to look at

the induced periodic Jacobi matrices H and H̃ on ℓ2
(T ), with T being the universal cover of G.

By the Perron–Frobenius theorem (Ref. 8, Theorem 1.4.4), J has a simple largest eigenvalue, σ(a, b), with a unique strictly positive
normalized eigenvector, ψ(a, b, j)j∈V . (Below in the bipartite case, where we use σ−, we will sometimes write σ+ for σ.) We will use Σ(a, b) for
sup of the spectrum of H. It is a fundamental result of Sy and Sunada9 that if the graph G has more than one independent closed loop (so the
fundamental group is non-amenable), then the gap

G(a, b) ≡ σ(a, b) − Σ(a, b) (2.1)

is strictly positive. In this section, our goal is to prove comparison inequalities for the gaps G(a, b) and G(ã, b̃) based on comparison results
in distinct but related contexts by Kirsch and Simon10 and Frank, Simon, and Weidl.11

These results rely on a ground state representation for the quadratic form of J, a formula that for continuum Sturm–Liouville operators
goes back to Jacobi.12 For operators, H ≡ −Δ + V , on L2

(Rν
) for which there is a strictly positive solution of (−Δ + V)ψ = E0ψ, it takes the

form

⟨ fψ, (H − E0) fψ⟩ = ∫ ∣∇ f (x)∣2ψ(x)2 dνx. (2.2)

This was first used in spectral theory by Birman13 and made popular in constructive Hamiltonian quantum field theory after its use by Nelson14

and then by Glimm, Jaffe, Sigal, and others.15,16 Remarkably, the version for Jacobi-type matrices seems to have only been written down in
2008 by Frank, Simon, and Weidl11 (see Ref. 17). For our situation, it takes the following form:

Theorem 2.1. Let J be a Jacobi matrix on a finite graph,G, or a periodic Jacobi matrix on an infinite tree, T. Suppose that ψ is a non-negative
sequence {ψi}i∈V that obeys Jψ = σψ. Then, for any real sequence { f i}i∈V , with fψ ∈ ℓ2

(V), we have that

⟨ fψ, (σ − J) fψ⟩ = ∑
α=(j,k)

aαψjψk( f j − f k)
2. (2.3)

Remarks. 1. The sum in (2.3) is over all edges in the graph or tree, and the notation indicates that j and k are the two ends of the edge.
2. For the finite graph, ψ is just the eigenfunction for the largest eigenvalue of the graph. For the tree, ψ is the (periodic) lift of the

underlying graph ψ to its universal cover.
3. We use V as a shorthand notation for either V(G) or V(T ).
4. The proof is as in Ref. 11, Theorem 3.2. If M f is multiplication by a function f of finite support, one verifies that

[M f , (J(a, b) − σ)] = J(aα( f j − f k), b ≡ 0), (2.4)

which then implies

[M f , [M f , (J(a, b) − σ)]] = J(aα( f j − f k)
2, b ≡ 0). (2.5)

Letting ψ♯ be ψ restricted to the support of f and all vertices connected to this finite support then yields M f (J(a, b) − σ)ψ♯ = 0, and hence,

⟨ψ♯, [M f , [M f , (J(a, b) − σ)]]ψ♯⟩ = −2⟨ fψ, (J(a, b) − σ) fψ⟩, (2.6)

so (2.3) for finitely supported f follows from (2.5) and (2.6). To get (2.3) for general f with fψ ∈ ℓ2
(V), one approximates f by finitely

supported f n of increasing support such that ∥( f − f n)ψ∥ℓ2(V) → 0 and takes limits of both sides. The LHS converges since J(a, b) is a
bounded operator, and the RHS converges since we can view it as the difference of

S1( f n) = ∑
α=(j,k)

aαψjψk[( f n)
2
j + ( f n)

2
k] (2.7)
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and
S2( f n) = 2 ∑

α=(j,k)
aα( f nψ)j( f nψ)k = 2⟨ f nψ, J(a, 0) f nψ⟩, (2.8)

where S1( f n) → S1( f ) by monotone convergence and S2( f n) → S2( f ) since J(a, 0) is a bounded operator.

We care about (2.3) because with ∥ f ∥ψ =∥ fψ∥ℓ2(V(T )) and F being the sequences of finite support, we have that

G(a, b) = inf
f ∈F

⎡
⎢
⎢
⎢
⎢
⎣

(∥ f ∥ψ)−2
∑

α=(j,k)
aαψjψk( f j − f k)

2
⎤
⎥
⎥
⎥
⎥
⎦

. (2.9)

This variational principle immediately implies our basic comparison theorem:

Theorem 2.2. Fix a finite graph, G, and two sets of Jacobi parameters, {aα, bj}α∈E(G),j∈V(G) and {ãα, b̃j}α∈E(G),j∈V(G). Let ψ and ψ̃ be the
positive solutions of Jψ = σψ and J̃ψ̃ = σ̃ψ̃, respectively, and set

S = sup
α=(i,j)∈E(G)

[
aα
ãα

ψiψj

ψ̃iψ̃j
], S̃ = sup

α=(i,j)∈E(G)
[

ãα
aα
ψ̃iψ̃j

ψiψj
], (2.10)

I = inf
i∈V(G)

ψ2
i

ψ̃2
j

, Ĩ = inf
i∈V(G)

ψ̃2
j

ψ2
i

. (2.11)

Then,
Ĩ
S̃

G(ã, b̃) ≤ G(a, b) ≤
S
I

G(ã, b̃). (2.12)

Remark. It is easy to see that one need not take normalized ψ or ψ̃ in these definitions since normalization constants drop out of the
ratios of S/I.

We can also define a lower gap by letting σ−(a, b) to be the lowest eigenvalue of J, Σ−(a, b) to be inf of the spectrum of H, and

G−(a, b) ≡ Σ−(a, b) − σ−(a, b). (2.13)

A graph G is called bipartite if V(G) can be written as a disjoint union of V1 and V2 so that every edge α ∈ E(G) has one end in V1
and one end in V2. In that case, if U is the unitary operator that multiplies components of vector, ui, with i ∈ V1 (respectively, i ∈ V2), by 1
(respectively, −1), then

U(−J(a, b))U−1
= J(a,−b), (2.14)

which implies that
σ−(a, b) = −σ(a,−b), Σ−(a, b) = −Σ(a,−b), G−(a, b) = G(a,−b). (2.15)

Moreover, for bipartite graphs, (2.14) implies that there is a vector ψ(−) ∈ ℓ2
(V(G)) with Uψ(−) being positive so that J(a, b)ψ(−)

= σ−(a, b)ψ(−). Thus, if we define S(−) and I(−) with ψ replaced by ψ(−), we find the following.

Theorem 2.3. Fix a finite bipartite graph, G, and two sets of Jacobi parameters, {aα, bj}α∈E(G),j∈V(G) and {ãα, b̃j}α∈E(G),j∈V(G). Define S(−),
I(−), S̃(−), and Ĩ(−) as mentioned above. Then,

Ĩ(−)

S̃(−)
G−(ã, b̃) ≤ G−(a, b) ≤

S(−)

I(−)
G−(ã, b̃). (2.16)

These are especially interesting if we have one comparison operator where we can compute everything. If G is a finite degree d graph so
that T is a degree d homogeneous tree, we can take ãα = 1 for all α ∈ E(G) and b̃j = 0 for all j ∈ V(G). Then, ψ̃j = 1 for all j is an unnormalized
positive eigenvector with σ̃ = d. By Ref. 1, Example 7.1, we have that Σ̃ =

√
4(d − 1), so G̃ = d −

√
4(d − 1). Thus, we have what we regard as

the main result of this section:
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Corollary 2.4. Fix a finite graph, G, of constant degree d and a set, {aα, bj}α∈E(G),j∈V(G), of Jacobi parameters. Let

S = sup
α=(ij)∈E(G)

[aαψiψj], S̃ = sup
α=(ij)∈E(G)

[
1

aαψiψj
], (2.17)

I = inf
i∈V(G)

ψ2
i , Ĩ = inf

i∈V(G)
1
ψ2

i
. (2.18)

Then,
Ĩ
S̃
(d −

√
4(d − 1)) ≤ G(a, b) ≤

S
I
(d −

√
4(d − 1)). (2.19)

Not all finite graphs of homogeneous degree d are bipartite (the complete graph with d + 1 vertices, for instance, is non-bipartite as it
contains a triangle), but the universal cover, Td, which is the homogeneous tree of degree d, is always bipartite (since every tree is bipartite).
If G is a bipartite degree d finite graph, it is easy to see that σ̃ = d (the constant function is an eigenvector), so G̃+ = d −

√
4(d − 1). Since G is

bipartite, G̃− = d −
√

4(d − 1), and so there is a result similar to (2.19) for G−(a, b).
Another explicit example is the rg-model of Ref. 1, Example 7.2, where r > g are two positive integers. The underlying graph, G, has r red

vertices and g green vertices, so p = r + g. There are rg edges, one between each pair of differently colored vertices. The natural comparison
Jacobi parameters have all ã = 1 and all b̃ = 0, which is the model studied in Ref. 1, Example 7.2, and in Sec. IV. If you look at a vector where
all red vertices have value u and all green value v and ask it be an eigenvector of the Jacobi matrix J̃ with eigenvalue λ, then the equations are

ru = λv, gv = λu (2.20)

whose solutions are easily seen to be (unique up to normalization)

λ = ±
√

rg, v =
√

r, u = ±
√

g. (2.21)

It is easily seen that J̃ has rank 2, so the orthogonal complement of these eigenvectors is ker(J̃), and thus,

σ̃ =
√

rg, σ̃− = −
√

rg. (2.22)

By Ref. 1, Example 7.16, we have

Σ̃ = (
√

r − 1 +
√

g − 1)
2
, Σ̃− = −(

√
r − 1 +

√
g − 1)

2
, (2.23)

which yields explicit formulas for G̃ and G̃− and an explicit comparison formula.
We end this section by noting that these comparison results imply non-zero gaps for all the associated periodic tree Jacobi matrices

without using the result of Sy and Sunada and with explicit bounds.

III. ANTIBOUND CONJECTURE
As discussed above, there is a positive periodic eigensolution for any periodic Jacobi matrix on a tree, but the corresponding energy,

σ, is not in the spectrum if the tree is not Z. The norm of the eigenfunction on a ball of radius R is exponentially growing, and it is only
polynomial growth that implies connection to the spectrum. In non-relativistic quantum scattering theory,18,19 such purely exponentially
growing solutions are called anti-bound states and correspond to second sheet poles at real energies not in the spectrum. We think the same
might be true in this case. We start with some explicit examples for trees.

Example 3.1. The free Laplacian on a degree d homogeneous tree has a Green’s function (diagonal matrix element of the resolvent) that
is well-known and computed, for example, in Ref. 1, Example 7.1. Reference 1, Example 7.3, says that

G(z) =
(2 − d)z + d

√
z2 − 4(d − 1)

2(d2 − z2)
. (3.1)

Initially, this function is defined on C/spec(H), where

spec(H) = [−sd, sd], sd =
√

4(d − 1), (3.2)
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is determined as the set where G has a boundary value with a non-zero imaginary part. As noted in Sec. II, σ = d is the largest eigen-
value of the underlying finite Jacobi matrix. It appears that G(z) has a pole at z = ±d, but, in fact, since we take the branch of square root
that is positive on (sd,∞), that square root at z = d is (d − 2) and the numerator vanishes, so there is no pole at z = ±d, where G is originally
defined. However, G has a meromorphic continuation to a two-sheeted Riemann surface, and on the second sheet, the square root takes the
value ∓(d − 2) at z = ±d, so G has second sheet poles at ±σ.

Example 3.2. The rg-model mentioned at the end of Sec. II is studied in Ref. 1, Example 7.2. Equations (7.13) and (7.14) in Ref. 1 compute
the Green’s functions Gr , Gg at red and green sites,

Gr(z) =
(2 − g)z2

− g[(r − g) −
√
Φ(z)]

2z(rg − z2)
, (3.3)

Gg(z) =
(2 − r)z2

− r[(g − r) −
√
Φ(z)]

2z(rg − z2)
, (3.4)

Φ(z) = z4
+ 2(2 − (r + g))z2

+ (r − g)2. (3.5)

If η± =
√

r − 1 ±
√

g − 1, then spec(H) = [−η+,−η−] ∪ [η−,η+] ∪ {0} and the Green’s functions are initially defined on C/spec(H). As we
saw above, σ± = ±

√rg. The denominators of (3.3) or (3.4) vanish at σ±, but a calculation shows that the numerators also vanish there on the
original domain of definition, so the only pole is at z = 0 for Gr . Again, there is a meromorphic continuation to a two-sheeted Riemann surface
with poles at σ±.

Example 3.3. The last example where Ref. 1 computes the Green’s functions is the Jacobi matrix over the graph in Fig. 1, whose covering
tree is the homogeneous degree 3 tree with all a = 1 and alternate values b and −b for the potential. According to Ref. 1, Example 7.25, the
Green’s functions are given by

G±(z) =
(b2
− z2
) + 3
√
Δ

2(z ∓ b)(9 − z2 + b2)
, Δ = (z2

− b2
)

2
− 8(z2

− b2
). (3.6)

The spectrum of H is

[−
√

b2 + 8,−b] ∪ [b,
√

b2 + 8]. (3.7)

J is the 2 × 2 matrix
⎛

⎝

b 3

3 −b

⎞

⎠
, which has eigenvalues σ± = ±

√
b2 + 9. Since Δ(σ±) = 9, we see that the numerator and denominator of (3.6)

vanish at σ±, so on the original domain of definition, C/spec(H), G has no poles, but, once again, there are second sheet poles at σ±.

Given all these examples, we state the following.

Conjecture 3.4. For any periodic Jacobi matrix, H, on a tree (that is not Z), the Green’s functions analytically continued from C/spec(H)
have poles on a higher sheet at z = σ and, in the bipartite case, also at σ−.

Recall20 that certain finite graphs are called Ramanujan because σ or ±σ are singled out from the other eigenvalues. We wonder if there
is a class of finite graph Jacobi matrices for which the only higher sheet poles of the Green’s functions of its covering tree are at ±σ.

FIG. 1. Example 3.3.
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IV. THE rg-MODEL
The rg-model (Ref. 1, Example 7.2) mentioned at the end of Sec. II was originally emphasized by Aomoto7 because he showed, by

proving one of its Green’s functions had a pole, that it has a point eigenvalue at 0, which is outside the continuous spectrum of H. Earlier,
Godsil and Mohar21 had also noted that the model had a spectral measure with a pure point at zero and computed the weight it contributes
to the integrated density of states. The authors of Ref. 1 wrote down an explicit zero energy eigenvector, namely, view the corresponding
tree Tr,g (with r > g) as a tree centered at a single red vertex at level 0, with g vertices at level 1, then g(r − 1) vertices at level 2, each level 1
vertex linked to r − 1 level 2 vertices, etc. Thus, level 2k − 1; k = 1, 2, . . . has g[(r − 1)(g − 1)]k−1 green vertices, while level 2k; k = 1, 2, . . . has
g(r − 1)[(r − 1)(g − 1)]k−1 red vertices. The ABS eigenfunction is radially symmetric (i.e., of constant value on each level) with

u(2k − 1) = 0, k = 1, 2, . . . ,

u(2k) = (−1/(r − 1))k, k = 0, 1, . . . .
(4.1)

This u has the ℓ2-norm,

∥u∥2
2 = 1 +

∞

∑
k=1

g(r − 1)[(r − 1)(g − 1)]k−1
(−1/(r − 1))2k

= 1 +
g

r − 1

∞

∑
n=1
(

g − 1
r − 1

)
n−1
= 1 +

g
r − g

=
r

r − g
, (4.2)

and it is easy to confirm that Hu = 0.
This model has a symmetry group, S, that includes translations that map any red vertex into any other red vertex. Our goal in this section

is to prove the following.

Theorem 4.1. u and its images under the symmetry S span the eigenspace, ker(H), in that the null vector is the only vector in this space,
which is orthogonal to u and all its translates.

Our proof relies on (4.2) and two formulas from Ref. 1, namely, that Gg is regular at 0, and [Ref. 1, Example 7.17] that near z = 0,

Gr(z) = −
r − g

rz
+O(1). (4.3)

Remark. As noted in Ref. 1, Example 8.5, the Aomoto index theorem implies that the DOS measure of the eigenvalue is (r − g)/(r + g).
As also noted in Ref. 1, this follows from the regularity of Gg at 0 and (4.3). One can turn this around and show that (4.3) follows from
Aomoto’s calculation of the DOS weight of the eigenvalue.

Lemma 4.2. The residue of Gr at z = 0 is −∣u(0)∣2/ ∥u∥2
2.

Proof. Immediate from (4.2), (4.3), and u(0) = 1. ◻

Proof of Theorem 4.1. Let e1 = u/ ∥u∥2, and pick {ej}
∞

j=2 an orthonormal basis for the orthogonal complement of e1 in ker(H). By the
spectral theorem, the residue of the pole of ⟨δℓ, (H − z)−1δℓ⟩ at z = 0 is just −∑∞j=1∣ej(ℓ)∣

2. Since Gg has no pole at z = 0, we conclude that
every ej vanishes at every green vertex, which implies that every φ ∈ ker(H) vanishes at all green vertices. By the above-mentioned lemma, we
conclude that for every j = 2, 3, . . ., ej(0) vanishes. It follows that if φ ∈ ker(H) is orthogonal to u, then φ(0) = 0.

Now, let φ ∈ ker(H) be orthogonal to u and all its translates under S. Since S acts transitively on the red vertices, the argument in the last
paragraph implies that φ vanishes on the red vertices. Since φ ∈ ker(H), it vanishes at the green vertices. Thus, it is the null vector as claimed.

As we were preparing this paper, which represents work mainly done in June 2019, we received an early draft of a very interesting paper
of Banks et al.3 that provided a lot of information about the point spectrum of periodic Jacobi matrices on trees. It seemed possible to us that
with the methods of Ref. 3, one can extend Theorem 4.1 to a much more general context.

DEDICATION

Jean Bourgain made many deep contributions to the spectral theory of Jacobi matrices, and we dedicate this paper to his memory.
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