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ABSTRACT
We provide a simple mechanism for going from Lee–Yang type theorems to analyticity of correlation functions by exploiting under-
appreciated inequalities of Newman. We also describe a Lee–Yang approach that recovers the consequences of a low density cluster expansion
for spin S models without any combinatorics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077229

I. INTRODUCTION
Freeman Dyson was a master of a large swath of modern theoretical and mathematical physics with important contributions. He returned

several times to the area I would call the theory of lattice gases, i.e., the Ising and classical Heisenberg models. Notable are his famous series3–5

on the existence of phase transitions in slowly decaying 1D Ising models, which also introduced the hierarchical models that turn out to be
especially useful in mathematical understanding of the renormalization group.

On a more personal level, there are the joint papers6,7 he wrote with Elliott Lieb and me. One of the high points of my time in
Princeton36 was the weekly several hour meetings the three of us had in Freeman’s office in the first few months of 1976 discussing many
aspects of spin systems leading to our papers that contain what remains the only rigorous results on continuous system breaking in a quan-
tum statistical mechanics model. So it seemed appropriate to provide this memorial with some remarks on analyticity in classical lattice
gases.

Our main subject here concerns proving analyticity of correlation functions of Ising models as a function of magnetic field using
Lee–Yang methods. This was first addressed by Lebowitz and Penrose16 in 1968 who were able to prove it in the spin 1/2 case. In 1974,
Newman25 extended the Lee–Yang theorem to an optimal class of single spin distributions. It appears that it was not until 2012 that
Fröhlich–Rodriguez8 proved the analyticity of correlations in this generality; they had a second paper9 on cluster expansions and decay
of correlations in this generality. One of our main points here is the remark that Newman25 could have proven this result by rather different
methods using an inequality he proved but did not use, namely, for Re(h) > 0, one has that

Re(
fΛ( j1, . . . , jn; h)

fΛ( j1, . . . , jn−1; h)
) > 0, (1.1)

where
fΛ( j1, . . . , jn; h) ≡ ⟨σj1 . . . σjn⟩Λ,h, (1.2)

with ⟨⋅⟩Λ,h being the free boundary condition (BC) Ising expectation in magnetic field h.
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The short version of this paper is the remark that while the Vitali convergence theorem (Ref. 37, Theorem 6.2.8) is usually stated assuming
the analytic functions, gn, are uniformly bounded on compacts, it is valid if one merely has one-sided bounds on the real parts of gn; the
simplest way to see this is to note that if, say, Re(gn) ≥ 0, then hn = e−gn are uniformly bounded, so we can apply Vitali theorem to the hn
and Hurwitz’ Theorem (Ref. 37, Theorem 6.4.1) to see that their limit is non-vanishing, which implies convergence of the gn. From this
observation, it is a few lines to conclude convergence and so analyticity of the correlation functions.

Rather than stop with this punchline and a really short paper, I plan to first provide, in Sec. II, the tools needed for a somewhat more direct
proof of (1.1) and a version of the above observation with quantitative bounds (that thereby provides quantitative bounds on correlations).
In Sec. III, I will provide the details of the proof of Newman’s result (1.1) and of convergence and bounds on correlations. Section IV will
address a related issue. There exist (see that Section for references) an extensive literature on using Ruelle’s extension of Asano’s proof of
the Lee–Yang theorem to obtain cluster expansions for Ising models in the high and low temperature regimes, but there does not seem to
be anything similar for the cluster expansion in the large field (aka large fugacity) region even though this does not require the somewhat
involved group theoretic considerations of the work on high and low temperatures. Since it is reasonable to have these results (which avoid
any combinatorial estimates) in the literature, I sketch them in Sec. IV.

II. FUN AND GAMES WITH GAUSS–LUCAS
The Gauss–Lucas theorem (named after Lucas,21–23 whose earliest result was in 1868, and Gauss, who never published it but had it in his

letters and notebooks as early as 1835) asserts that if P(z) is a polynomial, then the complex roots of P′ lie in the convex hull of the complex
roots of P. The simplest proof follows from the formula

f (z) ≡
P′(z)
P(z)

=
n

∑
j=1

1
z − zj

(2.1)

if

P(z) = A
n

∏
j=1
(z − zj) (2.2)

from which the complex conjugate of f (w) = 0 implies that [note that if P′(w) = 0, then either w is equal to some zj or else f (w) = 0]

w =
n

∑
j=1

ajzj; aj ≡
∣w − zj∣

−2

∑
n
k=1∣w − zk∣

−2 . (2.3)

The more common proof relies on what we will call the strong Gauss–Lucas theorem.

Theorem 2.1 (Strong Gauss–Lucas theorem). If P is a non-constant complex polynomial that is non-vanishing on H+ ≡ {z ∣ Re(z) > 0},
then one has that f given by (2.1) obeys

z ∈ H+ ⇒ Re( f (z)) > 0. (2.4)

In particular, P′ is non-vanishing on H+.

Remark. Once one has this, one sees that if any given open half plane is free of zeros of P, it is free of zeros of P′(z). Since the convex
hull of the zeros of P is the complement of the union of all half planes free of zeros, this implies the Gauss–Lucas theorem.

Proof. If Re(zj) ≤ 0 and z ∈ H+, then Re(1/(z − zj)) > 0, so (2.1) implies (2.4). ◻

Following Lieb–Sokal,20 we define the spaceAa for any a ≥ 0 as the space of entire functions with ∥ f ∥b <∞ for all b > a where

∥ f ∥b = sup
z

e−b∣z∣2
∣ f (z)∣. (2.5)

Aa is a countable normed Fréchet space with the set of norms ∥ f ∥a+1/n. One reason that it is better to deal with this Fréchet space rather
than the Banach space where is a single norm is finite is the freedom of being able to wiggle the value of b in ∥ ⋅ ∥b gives us, as is seen by the
following easy to prove fact:
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Proposition 2.2.

(a) The Taylor series of any f ∈Ab (some b ≥ 0) converge to f in the topology of Ab.

(b) Let { fm} be a sequence that is bounded in Ab (some b ≥ 0), i.e., for each c > b, we have supm∥ fm∥c <∞. Suppose fm converges on a set
with a limit point. Then, fm has a limit inAb.

The spacesAa have analogs for functions of ν complex variables. We define ∥ f ∥b for entire functions, f (z1, . . . , zν), of ν variables by

∥ f ∥b = sup{e−b∑ν
j=1 ∣zj ∣

2

∣ f (z)∣}. (2.6)

Aa(Cν
) is the space of functions with ∥ f ∥b <∞ for all b > a. Proposition 2.2 extends easily to these spaces.

We also define Pν to be the set of polynomials, P(z1, . . . , zν), of ν variables that are non-vanishing if Re(zj) > 0 for j = 1, . . . , ν (we denote
this set of z by Hν

+), and we let Pν
a be its closure inAa(Cν

)/{ f ≡ 0}. If ν = 1, we will sometimes drop the superscript. Since convergence inAa
implies convergence uniformly on compacts, Hurwitz’ theorem implies that if f ∈ Pν

a, then f is non-vanishing on Hν
+. However, we note that

the converse is false for (see Ref. 20) the function z ↦ ebz2
; b > 0 is non-vanishing on H+ but does not lie in any Pa.

One key to the proof of (1.1) will be (we use ∂ j as shorthand for ∂
∂zj

).

Theorem 2.3.

(a) For each ν, a > 0, and j = 1, . . . , ν, the map ∂ j is a bounded map of Aa(Cν
) to itself.

(b) If f ∈ Pν
a and ∂ j f is not identically zero, then ∂j f ∈ Pν

a for j = 1, . . . , ν.
(c) If f ∈ Pν

a with ∂ j f not identically zero, then on Hν
+, we have that

∂∣ f ∣2

∂xj
(z) = 2∣ f (z)∣2Re(

∂j f (z)
f (z)

) > 0. (2.7)

Proof.

(a) By symmetry, we can suppose that j = 1. By a Cauchy estimate,

∂1 f (z) ≤ ∥ f ∥b−ε,ν exp((b − ε)[(∣z1∣ + 1)2
+

ν
∑
k=2
∣zk∣

2
]) (2.8)

We can find C so that for all y > 0, we have that 2(b − ε)y ≤ εy2
+ C, so with G = exp(C + (b − ε)2

), we have that

∂1 f (z) ≤ G∥ f ∥b−ε,ν exp(b[
ν
∑
k=1
∣zk∣

2
]). (2.9)

For any b > a, pick ε = 1
2(b − a) to get ∥∂1 f (z)∥b ≤ G∥ f ∥b−ε,ν, which proves (a).

(b) By the Gauss–Lucas theorem applied to the polynomial P(⋅, z2, . . . , zν), one sees that if P ∈ Pν, then so is ∂1P so by (a) and if Pn ∈ Pν

converges to f inAa, then ∂1Pn converges to ∂1 f proving (b).
(c) By (2.4) applied to the polynomial P(⋅, z2, . . . , zν), one sees that if P ∈ Pν, then Re(∂1P/P) > 0 on Hν

+. Taking limits, one sees the final
inequality in (2.7). For the first equality, we note that

2 Re(
∂j f (z)

f (z)
) =

∂j f (z)
f (z)

+
∂jf (z)
f (z)

=
f (z)∂j f (z) + f (z)∂jf (z)

∣ f (z)∣2

= ∣ f (z)∣−2
(∂j + ∂j)( f f (z)) (2.10)

= ∣ f (z)∣−2 ∂∣ f ∣2

∂xj
(z),

where to get (2.10), we used ∂j f = ∂j( f ) = 0 [a form of the Cauchy–Riemann equations; see Ref. 37 (Problem 2.1.2)]. ◻
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Later, we will need a form of Theorem 2.3 for spin 1/2 that goes back to the disk rather than the half plane.

Lemma 2.4. Let f (z) = Az + Bz−1 and suppose that for some R > 0, we have that f (z) ≠ 0 if ∣z∣ < R. Then,

Re
⎛

⎝

z ∂ f
∂z

f (z)
⎞

⎠
< 0 and so z

∂ f
∂z
(z) ≠ 0 (2.11)

for ∣z∣ < R.

Proof. The case A = 0 is trivial. If A ≠ 0, the ratio in (2.11) only depends on B/A, so without loss, we suppose that A = 1. In that case, the
condition of not vanishing if ∣z∣ < R is equivalent to ∣B∣ ≥ R2. Noting that z ∂ f

∂z = z − Bz−1, we compute

Re
⎛

⎝

z ∂ f
∂z

f (z)
⎞

⎠
= Re[

z − Bz−1

z + Bz−1 ]

=
Re[(z − Bz−1

)(z̄ + Bz̄−1
)

∣z + Bz−1∣2
=
∣z∣2 − ∣B∣2∣z∣−2

∣z + Bz−1∣2
< 0 (2.12)

when ∣z∣ < R since ∣B∣ ≥ R2. ◻

Theorem 2.5.

(a) Let F(z1, . . . , zν) be a function on (C/{0})ν of the form

F(z1, . . . , zν) = ∑
σ1=±1,...,σν=±1

a(σ1, . . . , σν)zσ1
1 . . . zσν

ν , (2.13)

and suppose that F(z1, . . . , zν) ≠ 0 if ∣z1∣ < R1, . . . , ∣zν∣ < Rν. Then, for any ℓ and k1, . . . , kℓ ∈ {1, . . . , ν}, we have that ∏ℓ
j=1zkj

∂
∂zkj

f (z)

≠ 0 if ∣z1∣ < R1, . . . , ∣z1∣ < Rν and on that set

Re
⎛
⎜
⎝

∏
ℓ
j=1 zkj

∂
∂zkj

f (z)

∏
ℓ−1
j=1 zkj

∂
∂zkj

f (z)

⎞
⎟
⎠
< 0. (2.14)

(b) Let Z be the function on Cν given by

Z(h1, . . . , hn) = ∑
σ1=±1,...,σν=±1

a(σ1, . . . , σν) exp
⎛

⎝

ν
∑
j=1

hjσj
⎞

⎠
, (2.15)

and suppose that Z(h1, . . . , hν) ≠ 0 if Re(h1) > A1, . . . , Re(hν) > Aν. Then, for any ℓ and k1, . . . , kℓ ∈ {1, . . . , ν}, we have that
∂ℓ

∂hk1 ...∂hkℓ
Z(h) ≠ 0 if Re(h1) > A1, . . . , Re(hν) > Aν and on that set

Re
⎛
⎜
⎝

∂ℓ

∂hk1 ...∂hkℓ
Z(h)

∂ℓ−1

∂hk1 ...∂hkℓ−1
Z(h)

⎞
⎟
⎠
> 0. (2.16)

Remark. (b) is, of course, a consequence of the Proof of Theorem 3.2 in case the a priori measure is the spin 1/2 Ising measure, and one
can get (a) from (b) by the change of variables we use to go in the other direction. So this is an alternate proof of that special case.

Proof. (a) follows from the lemma and induction since we can fix all the variables but the one we are taking the derivative of. If zj = e−hj ,
then zj

∂
∂zj
= − ∂

∂hj
so with Rj = e−Aj , (a) implies (b). ◻
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We end this section with the promised quantitative version of the remark on Vitali under only control of the real part (even though it
has no relation to Gauss–Lucas). One way is to use a basic result from complex analysis, the Borel–Carathédory theorem (Ref. 37, Problem
3.6.12), that if f is analytic on the unit disk D and continuous on its closure and 0 < r < 1, then

max
∣z∣≤r
∣ f (z)∣ ≤

2r
1 − r

max
∣z∣=1

Re( f (z)) +
1 + r
1 − r

∣ f (0)∣. (2.17)

From this and a simple covering argument, one easily shows if z0 ∈ K ⊂ Ω with K compact and Ω open, there is a constant C (depending only
on z0, K and Ω) so that for all f analytic on Ω, one has that

sup
z∈K
∣ f (z)∣ ≤ C(∣ f (z0)∣ + sup

z∈Ω
Re( f (z))). (2.18)

Instead, we will use the Herglotz representation for Caratheédory functions (Ref. 38, Theorem 5.4.1), i.e., an analytic function, g, on D with
g(0) = 1 and Re g ≥ 0, has the form:

g(z) = ∫
eiθ
+ z

eiθ − z
dμ(eiθ

) (2.19)

for a probability measure, dμ, on ∂D. Since maxθ(∣1 + re−iθ
∣) = 1 + r and minθ(∣1 − re−iθ

∣) = 1 − r, applying this to g = f / f (0), one concludes
that.

Theorem 2.6. If f is analytic on D with Re( f (z)) > 0 there and Im( f (0)) = 0, one has that

∣ f (z)∣ ≤ f (0)
1 + ∣z∣
1 − ∣z∣

. (2.20)

We will be interested in functions analytic with positive real part on H+, so we conformally map H+ to D.

Theorem 2.7. If f is analytic on H+ with Re( f (h)) > 0 there and Im f (1) = 0, then for all h ∈ H+, we have that

α(h)−1 f (1) ≤ ∣ f (h)∣ ≤ α(h) f (1); α(h) ≡
∣1 + h∣ + ∣1 − h∣
∣1 + h∣ − ∣1 − h∣

. (2.21)

Proof. Define

z(h) =
1 − h
1 + h

(2.22)

Then, z maps the imaginary axis to the unit circle, has z(1) = 0 and is a bijection of the Riemann sphere to itself so it maps H+
biholomorphically to D. Let g be defined on D so that g(z(h)) = f (h). Since ∣z(h)∣ = ∣1 − h∣/∣1 + h∣, one sees that

1 + ∣z∣
1 − ∣z∣

= α(h), (2.23)

so the second inequality in (2.21) is just (2.20). By noting that f (h)−1 also has a positive real part, we can apply the second inequality to f (h)−1

to get the first inequality. ◻

III. CONVERGENCE AND ANALYTICITY OF CORRELATIONS
Here are the models we want to discuss. We start with an even probability measure, μ, on R, called the a priori measure, which obeys

∫ eAx2

dμ(x) <∞ for all A > 0. (3.1)

Given a finite set Λ ⊂ Zν, we let ⟨⋅⟩0,Λ be the expectation in the product measure ⊗k∈Λdμ(xj) on R. Fix a symmetric matrix {Jkℓ}k,ℓ∈Λ with
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Jkℓ ≥ 0 (3.2)

and form the Hamiltonian

H({xk}k∈Λ) = −∑
k,ℓ∈Λ

Jkℓxkxℓ. (3.3)

For h ∈ CΛ, we are interested in the function (easily seen to be an entire function on CΛ)

Z(h) = ⟨exp(−H(x) −∑
k∈Λ

hkxk)⟩

0,Λ

, (3.4)

especially on the set HΛ
+. Important is the Lee–Yang property of not vanishing on HΛ

+. That this is true when dμ is the spin 1/2 Ising measure,
1
2(δ+1 + δ−1), is the celebrated Lee–Yang circle theorem19 [the name comes from the fact that they used the variable z = e2βh for which their
result shows what is in their case the polynomial z∣Λ∣/2Z(hj ≡ h) has all its zeros on the unit circle]. The Lee–Yang theorem is important
because of the realization of Lee–Yang43 that this property, convergence of (ZΛ)

1/∣Λ∣ when all hj = h real, and the Vitali theorem prove that
the pressure (or free energy per unit volume depending on how the model is interpreted) is real analytic for h > 0 and indeed has an analytic
continuation to all of H+.

Newman25 found an optimal result specifying those μ for which the Lee–Yang property holds. A PN measure is an even probability
measure on R obeying the condition that

Eμ(z) = ∫ ezx dμ(x) (3.5)

is non-vanishing whenever Re(z) > 0 [and so also when Re(z) < 0 since Eμ(−z) = Eμ(z)]. I choose the name after Newman and Pólya28,29

(Pólya got interested in which even measures had Laplace transforms with only imaginary zeros as part of an unsuccessful attempt to prove
the Riemann hypothesis). In particular, Pólya proved that the measure N−1e−Acosh(x)dx is a PN measure. Pólya’s approach to the Riemann
hypothesis was extended by deBruijn2 and Newman.26 Not all measures are PN measures; a direct calculation shows that the three point
measure, λ

2(δ+1 + δ−1) + (1 − λ)δ0; 0 < λ ≤ 1, is a PN measure if and only if λ ≥ 1/3. However, all measures of special interest in statistical
mechanics are PN measures: this includes (equal weight) spin S (either by a simple direct calculation or Griffiths10), the distribution of the
first component of a unit vector equidistributed on a D-sphere (whose Fourier transform is well known to be a Bessel function, all of whose
zeros are real), N−1e−Acosh(x)dx (done by Pólya, as noted), and N−1 exp(−ax4

+ bx2
)dx (by Griffiths–Simon11 or as noted by Newman25 as a

scaled limit of Pólya’s example).
A moment’s thought shows that a measure has the Lee–Yang property when all Jkℓ = 0 if and only if it is a PN measure. Newman25 made

the remarkable discovery that this necessary condition for the Lee–Yang property for all ferromagnetic J is also sufficient. Lieb–Sokal20 found
an alternate proof and more importantly the following stronger result:

Theorem 3.1. If μ is a PN measure, then for all Jkℓ ≥ 0, the function Z of (3.4) lies in P∣Λ∣a=0 and, in particular, is non-vanishing on H∣Λ∣+ .

Remark. (Ref. 20) proves a stronger result that obtains some results for a priori measures in some Rm, but the quoted result has a simpler
proof that they prove in Appendix A of their paper (as well as from their more general result) and suffices for what we need here.

We turn next to the correlation functions. We fix a translation invariant pair interaction J( j − k) ≥ 0 [with J(−j) = J( j)] and for h > 0
define

fΛ( j1, . . . , jn; h) ≡ ⟨σj1 . . . σjn⟩Λ,h, (3.6)

where ⟨⋅⟩Λ,h is the free BC state with pair interaction, external magnetic field h, and a priori measure dμ at each site. We will also define

J = ∑
j∈Zν

J( j), (3.7)

which we suppose is finite.
It is a fundamental consequence of the analyticity guaranteed by Theorem 3.1 (Ruelle32 and Lebowitz–Martin-Löf15) that when dμ is

a PN measure, there is a unique equilibrium state which is the limit of the ⟨⋅⟩Λ,h. We use f ( j1, . . . , jn; h) for this limit. [The uniqueness
result requires that supp(μ) is compact. In general,18 one only gets a unique tempered state—the limit of the free BC is tempered. Since it is
peripheral, we will ignore this issue; the reader can either supply details or assume the support is compact.]
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From Theorem 3.1 and the methods of Sec. II, we get the main result of this paper.

Theorem 3.2. Let the single site distribution be a PN measure. The infinite volume limits, f ( j1, . . . , jn; h), have analytic continuations to
the region Re(h) > 0 and obey

α(h)−nLn
≤ ∣ f ( j1, . . . , jn; h)∣ ≤ α(h)nQn, (3.8)

where α is given by (2.21), Qn is an explicit dμ dependent constant, and

L = ∫
xex dμ(x)
∫ ex, dμ(x)

. (3.9)

Moreover, the finite volume correlations converge to this analytic function for all h with Re(h) > 0.

Remark.

1. We emphasize that the upper bounds in (3.8) depend only on n and h and are the uniform jk’s. This is useful in proving m ≥ 0 for the
argument in Ref. 17. In general, we will get the upper bounds at h = 1 using Ruelle,34 but, of course, if dμ has compact support with
convex hull, [−S, S], we can use the use the trivial bound Qn = Sn.

2. By the uniqueness of state for real h, we get that the limits exist for Re(h) > 0 for any BC where the Lee–Yang theorem is applicable (so
the finite volume expectation has a non-vanishing denominator), e.g., periodic BC.

Proof. The derivatives of ZΛ({hℓ}ℓ∈Λ) are given by

∂n−1

∂hj1 . . . ∂hjn−1

Z = Z⟨σj1 . . . σjn−1⟩ (3.10)

where the expectation is with a j dependent hj. Hence, by Theorem 3.1 and (2.7), we conclude inductively that ⟨σj1 . . . σjn−1⟩ is non-vanishing
when h ∈ H+, and in that region, one had that

Re(
fΛ( j1, . . . , jn; h)

fΛ( j1, . . . , jn−1; h)
) > 0. (3.11)

By Theorem 2.7 and Vitali’s theorem, the proof of our theorem is reduced to proving that

Ln
≤ fΛ( j1, . . . , jn; h = 1) ≤ Qn. (3.12)

By the Griffiths-Kelly-Sherman (GKS) inequalities [Ref. 14 or Ref. 39 (Chapter 2)], we have that fΛ( j1, . . . , jn; h = 1) ≥∏n
k=1 fΛ( jk; h = 1) ≥

(⟨σ⟩0,h=1)
n
= Ln, where ⟨⋅⟩0,h=1 is the expectation of a single spin in external field h = 1. By Holder’s inequality,

fΛ( j1, . . . , jn; h = 1) ≤
n

∏
k=1
( fΛ( jk, . . . , jk; h = 1))1/n.

Under our assumptions, the system obeys all the requirement of Ruelle34 who proves (Ref. 34, Theorem 2.2) explicit a priori bounds on
probabilities that imply bounds on fΛ( jk, . . . , jk; h = 1), uniformly in Λ; see Ref. 39 (Sec. 2.3). ◻

IV. A POOR PERSON’S LARGE FIELD CLUSTER EXPANSION
The Lee–Yang idea43 that tracking zeros can be used to prove analyticity can also be used to provide the results of cluster expansions

without any combinatorial estimates at all. As explicated by collaborations around Gruber and Slawny (some of their basic papers are Refs.
12, 13, 24, and 40–42), this can be done for both the high temperature and ferromagnetic low temperature regions. Remarkably, there does
not seem to be in the literature an explicit version of this for the large field (also known as large fugacity, low density, or high density) region
even though as we will see that it is quite simple without the need for the involved group theoretic analysis of the high and low temperature
expansions. The one big limitation compared to the more usual cluster expansions is that the analysis is restricted to spin 1/2 (or equal weight
spin S).
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Here is the framework we will use. At each point, j ∈ Zν, we have a ±1 Ising spin, σj. For any finite subset A ⊂ Zν, we define

σA
=∏

j∈A
σj, (4.1)

and as usual, ⟨⋅⟩0,Λ is the product of equal weight Bernoulli expectation of spins in a finite set Λ ⊂ Zν.
We fix J0(A) ≥ 0 for all A with #(A) ≥ 2 with two properties: it is translation invariant and the collection,A, of those A with J0(A) ≠ 0 is

finite range in the sense that

q = #{A ∣ A ∈A, A ∋ 0} <∞. (4.2)

We let v be the number of equivalence class under translations of A ∈A [so 2v ≤ q, since if A ∈A, we have that #(A) translates of it
containing 0].

Below, when we write J(A), we will mean possible complex numbers that are translation invariant [we will suppose that J(A) = 0 if
A ∉A]. In the usual way (Refs. 30 and 35), for real parameters, J(A) and h, one forms the finite volume Hamiltonian, partition function, and
pressure,

−HΛ = ∑
A⊂Λ

J(A)σA
+ h∑

j∈Λ
σj

ZΛ = ⟨e−H
⟩

0,Λ p = lim ∣Λ∣−1 log(ZΛ), (4.3)

and one defines equilibrium states via the DLR equations. Finally, we define

I0 = max
A∈A

2#(A)e2J0(A). (4.4)

Here is what we will prove.

Theorem 4.1. Given an interaction as just defined, there is a unique translation equilibrium invariant state and the pressure and all
correlation functions are jointly analytic on the open set in Cv+1 given by {h ∣ ∣e−2h

∣ < 1/qI0} × {J(A) ∣ A ∈A, ∣J(A)∣ < J0(A)}. For this unique
translation invariant equilibrium state, the mass gap defined by

m = lim sup
∣k−ℓ∣→∞

{−
1
∣k − ℓ∣

log[⟨σkσℓ⟩ − ⟨σk⟩⟨σℓ⟩]} (4.5)

is strictly positive.

Remark.

1. More precisely, there is a unique translation invariant equilibrium state when all parameters are real, and in the larger set, one has joint
analyticity in the set described.

2. These are the major results one gets from cluster expansions in the large h region for spin 1/2. In particular, it has the initial results
needed to prove joint analyticity in (β, h)16 and mass gap17 in the full Re(h) > 0 for pair interacting ferromagnetic Ising models [see
Ref. 39 (Secs. 3.7 and 3.8)].

3. By Griffiths,10 a spin S equal weight model has the same states, pressure, etc., as an analog spin 1/2 model, so by considering that model
and fixing the coupling within the spin 1/2 spins that sum to a spin S, one can extend this theorem to the spin S situation.

We will use Ruelle’s31,33 extension of the Asano contraction theorem.1

Proposition 4.2 (Ruelle–Asano theorem). Let Λ be a finite set, let zΛ ≡ {zx}x∈Λ be the coordinates of a point in C∣Λ∣, and for X ⊂ Λ, define

zX
=∏

x∈X
zx. (4.6)

Let {Λα}α∈A be a finite cover of Λ, and for each α ∈ A, a polynomial

Pα(zΛα) = ∑
X⊂Λα

c(α)X zX . (4.7)

Suppose for each α ∈ A and x ∈ Λ, we have a closed set M(α)x ⊂ C/{0} so that if zx ∉M(α)x , for all x ∈ Λα, we have that Pα(zΛα) ≠ 0. Let
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P(zΛ) = ∑
X⊂Λ

⎛

⎝
∏

α ∣ Λα∩X≠∅
c(α)Λα∩X

⎞

⎠
zX . (4.8)

Then, P(zΛ) ≠ 0 if for all x ∈ Λ, one has that

zx ∉ − ∏
α ∣ x∈Λα

(−M(α)x ). (4.9)

Rather than making use of the formula for the final coefficients in (4.8), we will use the Asano contraction intuition that leads to it. Multi-
affine polynomials like (4.7) arise in the Lee–Yang43 scheme by replacing h∑ j∈Λσj by∑ j∈Λ hjσj, multiplying ZΛ by exp(∑ j∈Λ hjσj), and writing
the result as a function of zj = e2hj . Asano contraction results from forcing two spins, say, σk and σℓ, to be parallel, i.e., dropping the terms
with σk = −σℓ and replacing hkσk + hℓσℓ by a single hσ term. Given the Pα’s, one introduces variables {zα,x}x∈Λα , forms ∏αPα({zα,x}x∈Λα),
then contracts for each x ∈ Λ pairwise all the zα,x with x ∈ Λα. What results is (4.8) and the proposition just tracks its zeros.

We will need two lemmas to get the mass gap.
The first is an elementary piece of complex analysis.

Lemma 4.3. Let f be analytic in DR(0) with C = supz∈DR(0)∣ f (z)∣ <∞. Suppose that f (k)
(0) = 0 for k = 0, . . . , K − 1. Then, for any

z ∈ DR(0), we have that

∣ f (z)∣ ≤
C(∣z∣/R)K

1 − (∣z∣/R)
. (4.10)

Proof. Let f (z) = ∑∞n=0 anzn be the Taylor expansion about z = 0 for f . By a Cauchy estimate (Ref. 37, Theorem 3.1.8),

∣an∣ ≤ CR−n. (4.11)

By the hypothesis on derivatives, the sum in the Taylor series starts at n = K. We can sum the bounds in (4.11) using a geometric series to
get (4.10). ◻

The Ursell functions are defined by

un(X1, X2, . . . , Xn) =
∂n

∂h1 . . . ∂hn
log⟨exp

⎛

⎝

n

∑
j=1

hjXj
⎞

⎠
⟩

RRRRRRRRRRRhj=0

. (4.12)

Lemma 4.4. Let ⟨⋅⟩ be a product measure on single site distributions on Λ ⊂ Zν (could be an infinite set). For any finite set, A ⊂ Λ,
let diam(A) = maxj≠m∈A∣j −m∣. Let A1, . . . , Ak be k sets each with diam(Aj) ≤ R. Let p, ℓ ∈ Λ so that ∣p − ℓ∣ > kR. Then, the Ursell function
uk+2(σp, σℓ, σA1 , . . . , σAk) = 0.

Proof. If ∣p − ℓ∣ > kR, an easy geometric argument proves that one can break {1, . . . , k} into two sets P and Q so that {p} ∪ j∈PAj is
disjoint from {ℓ} ∪ j∈QAj. It is a basic fact sometimes called the second Percus axiom (Ref. 27) that if a set of variables can be broken into
two independent pieces, its Ursell function vanishes; this follows immediately from (4.12) if we note that the log is a sum of logs because of
independence. We conclude that the specified uk+2 is zero. ◻

Proof of Theorem 4.1. For each set finite Λ ⊂ Zν, we define (with zB
=∏j∈Bzj)

ZΛ,J(A)(z) = ∑
A⊂Λ

zAp(A); p(A) = ∏
B⊂A

#(B)>1, odd

e−2J(B), (4.13)

which with zj = e−2hj is the (analytic continuation of the) partition function in j dependent field. A is the set of negative spins and p(A) is the
Gibbs factor for A.

We model our proof on the Asano proof of the Lee–Yang circle theorem. We define, for each A with A ∈A, as a polynomial of ∣A∣
variables {zj,A}j∈A,

RA({zj,A}j∈A) = ∑
B⊂A
even

⎛

⎝
∏
j∈B

zj,A
⎞

⎠
+ e−2J(A)

∑
B⊂A
odd

⎛

⎝
∏
j∈B

zj,A
⎞

⎠
. (4.14)
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The term for B = ∅ is 1, and if r ≡ maxj∣zj,A∣ ≤ 1, all other terms are bounded by eJ0(A)r, so ∣RA(z) − 1∣ < 2∣A∣eJ0(A)r ≤ rI0, so if r < 1/I0, we
see that RA(z) ≠ 0.

We can get ZΛ({zj}j∈Λ) by taking∏A⊂ΛRA({zj,A}j∈A) (i.e., copies of zj for each A ∋ j) and Asano contracting all the copies of zj,A together
to a single zj. Since there are at most q copies of each zj, we see that, by Proposition 4.2, Z is non-vanishing if all zj obey ∣zj∣ < 1/qI0 ≡ R0. It
will be important later (not to control pressure but to control correlation functions) that the same is true of the Zper defined with periodic BC,
i.e., if we take Λ to be a hypercube and take all A with J(A) ≠ 0 with A ⊂ Λ and take all translates in Λ when we connect it to a torus.

By the usual Lee–Yang argument43 (Vitali’s convergence theorem), this proves joint analyticity of the pressure in the limit (for zj all taken
equal). Fix some real value of all J(A) finite range. Now pick a B with B ∉A and form ZB,JB(z). When J(B) = 0, ZB(z) =∏j∈B(1 + zj) is non-
vanishing when all zj ∈ D. By continuity of the zeros, it follows that for any ρ < 1, we can find ε(ρ) so that if ∣J(B)∣ < ε(ρ), then ZB,JB(z) ≠ 0 so
long as z ∈ Dρ(0). If we now form ZΛ with an additional of J(B) term, then Z ≠ 0 so long as ∣zj∣ < ρpR0 = ρp

/qI0, where p = #(B), for we get
this from the J(B) = 0 situation by an additional Asano contraction of all ZC,JB(z), with C being a translation of B that lies inside Λ and each zj
is involved in at most p such contractions. We thus see, because ρ can be taken arbitrarily close to 1, that there is a complex neighborhood (in
C∣Λ∣+1) in the set of complex zj with ∣zj∣ < 1/I0q and J(B) = 0, where the new Z is non-vanishing. It follows that for any real h with e−2h

< 1/qI0,
that the pressure is real analytic near J(B) = 0, so by Ref. 35 (Theorem III.3.11), ⟨σB

⟩ is the same in all translation invariant equilibrium states.
We also have analyticity in J(A), where J0(A) ≠ 0. Since B was arbitrary, we conclude there is a unique such state.

Because any limit point of the periodic BC states is a translation invariant equilibrium state, we conclude that every such limit point is
the unique translation invariant equilibrium state, and thus, we have convergence to that state. By Theorem 2.5, we see that in the region of
joint analyticity in h and J(A) described above, for any j1, . . . , jℓ in a torus, Λ, we have that

Re(
⟨σj1 . . . σjℓ⟩Λ
⟨σj1 . . . σjℓ−1⟩Λ

) > 0, (4.15)

where the expectation is with periodic BC. Fix real values of the parameters. Since any limit point of the periodic BC state is a translation
invariant equilibrium state and such a state is unique, we have convergence for such real parameters. By Theorem 2.7 and (4.15) by induction,
we get uniform (in Λ) bounds on the correlation functions in the region of analyticity, so by Vitali’s theorem, we get convergence and
analyticity of the infinite volume limit.

Fix some real h in the region of analyticity. Put a β in front of all of the other couplings. If we show m > 0 for all small real positive β, then
by the method of Lebowitz–Penrose,17 it is strictly positive everywhere in the region of analyticity. Because of Lemma 4.3 and the uniform
bounds on ⟨σkσℓ⟩ − ⟨σk⟩⟨σℓ⟩ that follow from (2.21) and (4.15), it suffices to prove that if for some R > 0, ∣k − ℓ∣ > QR implies that the jth
derivative of ⟨σkσℓ⟩ − ⟨σk⟩⟨σℓ⟩ with respect to β at β = 0 vanishes for j < Q. Since the limit of states at β = 0 is uncoupled (and so independent)
single sites, this follows with R the range of the interaction because of Lemma 4.4 and (4.12), which shows that the jth derivative in question
is a sum of Ursell functions of the form uq+2(σk, σℓ, σA1 , . . . , σAk) with each Aj ∈A. ◻

Remark. Instead of getting analyticity of correlations from (4.15), one could use the proof of uniqueness of state—it implies joint
analyticity of the pressure and so analyticity of the derivative which is the correlation.
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