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Comparison of Ising models under change of a priori
measure

José Madrid, Barry Simon, and Daniel R. Wells

Dedicated with pleasure to Elliott Lieb on his 90th birthday

We study comparison of correlation functions for ferromagnetic generalized Ising models with
two different a priori measures. One purpose of this note is to publicize some unpublished 45
year old work of Daniel Wells on the issue. We then prove results for the a priori measures
associated to one component ofD-vectors uniformly distributed on the unit sphere and also the
case of spin S (2S C 1 equally spaced values symmetric about 0 and with equal weights) that
improves some 50 year old bounds of Griffiths on transition temperatures.

1 Introduction

Besides Elliott Lieb’s many major accomplishments, there are numerous gems that
sparkle even though they are not among his most important. In this note, we want to
discuss something related to his beautiful note [13] on the infinite spin limit of the
pressure of quantum Heisenberg models which converges to a classical Heisenberg
model, a work which motivated the second author’s extension [17] to more general
Lie groups than SU.2/. Lieb proved comparison inequalities for partition functions
that squeezed the spin S quantum partition function between the corresponding clas-
sical partition functions with slightly different coupling constants so that the differ-
ence of the coupling constants goes to zero as S !1. In the totally anisotropic case
(where only z components are coupled), Dyson, Lieb and the second author (we never
published this work done in 1976 but it was included it in the 1993 book of Simon
[18, Section II.9]) proved monotonicity (increasing) of the partition function in S and
decreasing monotonicity if the coupling is scaled properly.

When we were working on Thomas–Fermi, Elliott taught the second author about
the magic of convergence of convex functions – that convergence of convex functions
implies convergence of derivatives at points where the limit is differentiable. This
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implies convergence of certain correlation functions in the context that Lieb studied
in [13]. But one loses for correlation functions inequalities like those that Dyson, Lieb
and Simon found for partition functions. It is that question that we want to discuss
here. Our framework will be less general in that we will only consider one component
spins and more general in that we will allow general (even) a priori measures.

The second author is writing a book for Cambridge Press entitled Phase transi-
tions in the theory of lattice gases [21]. It is in many ways the successor to the 1993
book [18] from Princeton University Press. That earlier book was mainly framework
and largely left out all the most fun and beautiful elements of the theory: correlation
inequalities, Lee–Yang, Peierls’ argument, Berezinskii–Kosterlitz–Thouless transi-
tions and infrared bounds which are the subjects of the new book. But since a different
publisher is used, this is certainly not volume 2 of the earlier work.

The framework for much of the subject is to fix a finite setƒ � Z� , and an a priori
even probability measure, d�, on R, certainly with all moments finite and typically
of compact support.

One considers the configurations in ƒ, i.e. points � in Rƒ, indicated by ¹�j ºj2ƒ
and uncoupled measure with expectation

hf i�;0 D

Z
f .� /

Y
j2ƒ

d�.�j /

and one fixes a ferromagnetic Hamiltonian (i.e. J.A/ � 0)

�H D
X
A�ƒ

J.A/�A; �A D
Y
j2A

�j

or more general over multiindices, i.e. assignments of an integer, nj � 0 with then
�A D

Q
j2A �

nj

j (and a finite sum or else `1 condition). One then considers the Gibbs
state

hf i�;ƒ D Z
�1
hfe�H i�;0; Z D he�H i�;0: (1)

One studies the infinite volume limit with translation invariant J.A/, typically by
proving stuff about the finite volume expectations. The traditional case is the Ising
model (aka spin 1

2
Ising model) where d� is a measure supported on ˙1 each point

with weight 1
2

; more generally, we will refer to bT with weights 1
2

at ˙T (b is for
Bernoulli). While a lot of the literature is specific to the spin 1

2
Ising model, there

is considerable, mathematically interesting, literature on more general (even) a priori
measures. Traditionally, one mainly considered the spin S measure (for S D 1

2
; 1;

3
2
; : : :, the measure with 2S C 1 pure points equally spaced symmetrically about 0 and

with equal weights) but the work of Guerra, Rosen and Simon [9] and Griffiths and
Simon [22] on discrete approximations to Euclidean Quantum Field Theory changed
that.
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As the second author began to write about correlation inequalities in his new
book, he wondered about a natural question. We say that an a priori measure, �, on R
Ising dominates another measure � if and only if for all J.A/ � 0 and all B , one has
that

h�Bi�;ƒ � h�
B
i�;ƒ: (2)

In particular, for general � compact support, does one have that � Ising dominates
bT� and is Ising dominated by bTC for suitable 0 < T� < TC <1. That would
imply phase transitions occur for one a priori measure if and only if they do for all
and inequalities on transition temperatures.

For most, even minor, aspects of the subject of correlation inequalities there are
several papers, sometimes even dozens. So it is surprised that the second author was
unable to find a single published paper on the subject of what we just called Ising
domination! Of course, it was unclear how to search for the subject in Google. Even-
tually, we did find one 1978 paper of van Beijeren and Sylvester [24] that we will
mention later (see Remark 1 (2) after Theorem 3.1) although in one respect it is unsat-
isfactory. And we did also find an appendix of a paper on another subject but that gets
ahead of our story (see Remark 1 (1) after Theorem 3.1).

One of the pleasant things about writing a book on a subject that one once knew
more about is that one gets to rediscover things that they have forgotten. With the
question of Ising domination in the back of his mind, the second author found an
interesting footnote in a 1980 paper of Aizenman and Simon [1]. The footnote said:

then by results of Wells (D. Wells, Some moment inequalities for general spin
Ising ferromagnets, Indiana Univ. preprint) hsj skiˇ;1 � 2h�

.1/
j �

.1/

k
iˇ;2.

The left hand side is an Ising expectation and the right with the a priori measure
of the two-dimensional rotor with only couplings of the 1 components. So this was
part of what seems to be an Ising domination result (the subscript 2 indicates the Ising
measure should really be b1=

p
2).

So the second author set about finding this preprint. Google did not help directly
but did point him to a 1984 paper of Chuck Newman that mentioned Wells’ Indi-
ana University PhD. thesis. He wrote to Michael asking if he knew anything about
our footnote and cced Chuck (who had been a grad student with the second author
at Princeton) because the second author conjectured Wells had been his student.
Chuck replied and said he remembered that Wells had been Slim Sherman’s student.
Sherman, the S of GKS and GHS was a delightful character, long dead.

So the second author wrote to Kevin Pilgrim, the chair at Indiana, who located
a copy of Wells thesis [25] on Proquest. So far though, no one has had any luck on
the preprint nor on locating Wells through Indiana University alumni records (but
see later)! While the thesis did not have anything directly about the above inequality,
it did have a general framework on what we called the Ising domination problem,
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lovely material that should have been published. After an initial draft of this note was
written, the first two authors got some help and located Dr. Wells who kindly agreed
to be a coauthor which makes sense since much of this chapter publishes for the first
time results from his thesis. Also, we convinced him to allow us to continue to use
the term Wells domination.

Our main goal in this chapter is to describe Wells’ framework in Section 2 and
what we regard as his most significant theorem in Section 3. Since Wells extended
a framework of Ginibre, we begin Section 2 by reminding (telling) you of that. Then
the notion we call Wells’ domination followed by his big theorem in Section 3 and the
notion of canonical lower bound. We will note there that the approach of van Beijeren
and Sylvester [24] has one big flaw in that there is no analog of the Wells Comparison
Theorem, Theorem 3.1. Section 4 will then make explicit the bounds on transition
temperatures implied by Wells Comparison Theorem, recall a result of Griffiths [8]
on comparison of transition temperatures for different spins and note that the bounds
when a measure is canonical are equalities in mean field theory and so optimal in
the high dimension limit. Section 5 has one of our two new results here – that the
distribution of one component of anD-vector spin has a canonical lower bound. From
the footnote in [1], it is clear that the missing Wells preprint has the case D D 2. We
will see that case is much easier to prove thanD � 3. In Section 6, we will prove our
most significant new result that the spin S measures for S ¤ 1 have a canonical lower
bound and its consequence for improving Griffiths bound on transition temperatures
for arbitrary spins. Finally, Appendix A provides the proof of a technical inequality.

Elliott Lieb has been a major figure in all the fields he has worked in and con-
tributed through his work, his students and his energy. We hope he enjoys this birthday
bouquet.

2 Wells framework

As mentioned, Wells’ approach is a slight modification of Ginibre’s approach to the
proof of GKS inequalities for Ising-type models. In a remarkable 1970 paper [7], Jean
Ginibre (who alas passed away in March of 2020 at age 82) not only found a really
simple proof of GKS inequalities but showed somewhat surprisingly that they held
for all (even) a priori measures. If you are new to Ising models and have time for only
one result, this one might be what you should know.

A Ginibre system is a triple hX;�;F i of a compact Hausdorff space, X , a proba-
bility measure,�, onX (with expectations h � i�) and a class of continuous real-valued
functions F � C.X/ that obeys

8f1;:::;fn2F

Z
X

f1.x/ : : : fn.x/ d�.x/ � 0 (G1)
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and

8f1;:::;fn2F

Z
X�X

nY
jD1

�
fj .x/˙ fj .y/

�
d�.x/d�.y/ � 0 (G2)

for all 2n choices of the plus and minus sign.
When it is clear which measure is intended, we will drop the � from h � i�. We

have restricted to compact Hausdorff spaces and so bounded functions for simplicity.
But since all the arguments are essentially algebraic, all results extend to the case
where X is only locally compact so long as all f 2 F obey

R
jf .x/jm d�.x/ <1

for all m since that condition assures that all integrals below are convergent.
Note that

(G2) H) 2hf i� D

Z
X

.f .x/C f .y// d�.x/d�.y/ � 0

and Z
X�X

.f .x/ � f .y//.g.x/ � g.y// d�.x/d�.y/

D 2Œhfgi� � hf i�hgi�� � 0:

We will see shortly that (G2)) (G1). What makes the notion so powerful is that there
are three theorems for getting new Ginibre systems from old ones.

Given a family of functions, F � C.X/, we define the Ginibre cone, C.F /, as
the set of linear combinations with non-negative coefficients of products of functions
from F .

Theorem 2.1 (Ginibre Theorem 1). If a triple hX;�;F i obeys estimate (G2), so does
hX;�;C.F /i.

It is trivial that (G2) holds for sums and positive multiples of functions for which
it holds, so it suffices to prove it holds for products. By induction, we need only
handle products of two functions. We note that

fg ˙ f 0g0 D
1

2
.f C f 0/.g ˙ g0/C

1

2
.f � f 0/.g � g0/

which allows us to prove (G2) for a single product when we have it for individual
functions (and shows (G2)) (G1)).

The following is trivial:

Theorem 2.2 (Ginibre Theorem 2). Let ¹hXj ; �j ;Fj iºnjD1 be a family of Ginibre
systems. Then h�njD1Xj ;

Nn
jD1 �j ;

Sn
jD1 Fj i is also a Ginibre system

And to add interactions, we use the following result.
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Theorem 2.3 (Ginibre Theorem 3). Let hX;�;F i be Ginibre system. Let �H 2 F

and define a new measure �H by

hf i�H
D
hfe�H i�

he�H i�
:

Then hX;�H ;F i is a Ginibre system.

The proof is easy. The normalization is irrelevant and we expand the exponential
exp.�H.x/ �H.y//. Finally:

Theorem 2.4 (Ginibre Theorem 4). Let X be R or a compact subset of the form
Œ�A;A� and let d� be a probability measure which is invariant under x 7! �x and
so that (only non-trivial in caseX is not compact)

R
x2n d�.x/ <1 for all n. Let F

contain the single function, f .x/ D x. Then hX;�;F i is a Ginibre system.

The proof is easy! Condition (G2) says that for all non-negative integers, k and
m, one has that Z

X�X

.x C y/k.x � y/m d�.x/d�.y/ � 0:

Interchanging x and y implies the integral is zero ifm is odd and .x; y/ 7! .�x;�y/

symmetry implies the integral is zero ifmC k is odd. Thus the only possible non-zero
integrals are when m and k are even in which case the integrand is positive!

A little thought shows that for Hamiltonians of the form

�H D
X
A�ƒ

J.A/�A; �A D
Y
j2A

�j (3)

with any (!) even a priori measure, one has positive expectations and positive corre-
lations of the �A which is GKS inequalities for general even measures.

We would be remiss if we left the subject Ginibre’s wonderful paper without men-
tioning two other examples he gives of Ginibre systems that are not relevant to Wells,
although one will appear later. The first is to note that he proves that if d� is a prod-
uct of rotation invariant measures on circles, the set of functions cos.

Pn
jD1mj �j /

is a Ginibre system. This and some extensions are essentially half the correlation
inequalities for plane rotors.

The second is related to an 1882 paper of Chebyshev [3] (which I do not think
Ginibre knew about when he wrote his 1970 paper) which contained what is probably
the earliest correlation inequality: Chebyshev proved that if f; g are two monotone
functions on Œ0; 1�, thenZ 1

0

f .x/g.x/ dx �

Z 1

0

f .x/ dx

Z 1

0

g.x/ dx:
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Ginibre proved that for any (not necessarily even) positive probability measure on R,
the set F of all positive monotone functions is a Ginibre family. The proof is again
very easy. This is a sort of poor man’s FKG inequalities.

This completes our review of Ginibre, so we turn to Wells’ work. There is a sim-
ple extension of Ginibre’s method in Wells’ thesis [25] that allows comparison of
measures. Given two probability measures, � and � on a locally compact space, X ,
we say that � Wells dominates �, written � F � or � G � with respect to a class of
continuous functions F (with all moments of all f 2 F finite with respect to both
measures; not needed if X is compact) if for all n and all f1; f2; : : : ; fn and all 2n

choices of˙, we have thatZ Z
.f1.x/˙ f1.y// : : : .fn.x/˙ fn.y// d�.x/ d�.y/ � 0:

We will be most interested in case X D R, � and � are both even measures
with all moments finite and F has the single function f .x/ D x in which case the
condition takes the formZ

R

Z
R
.x C y/n.x � y/m d�.x/ d�.y/ � 0 (4)

for all non-negative integers, n and m in which case we use the symbol G without
being explicit about F . Since the measures are even, one need only check this when
nCm is even. It is trivial if both are even, so we only need worry about the case that
both are odd. Since the measures are different, we do not have the exchange symmetry
that makes the integral vanish if both are odd but symmetry under y 7! �y implies
invariance under interchange of m and n, so we need only check for m � n. We will
see examples later.

Extending the Ginibre machine is effortless. It is easy to prove that:

Theorem 2.5 (Wells [25]). The following statements hold:

(a) If � G � for a set of functions F , the same is true for the Ginibre cone C.F /.

(b) If for j D 1; : : : ; n, �j G �j for probability measures on spaces Xj with
respect to sets of functions Fj on Xj , then for the measures on �njD1Xj
and the set of functions

Sn
jD1 Fj , one has that

Nn
jD1 �j G

Nn
jD1 �j .

(c) If � G � for probability measures on a space X with respect to a set of func-
tions F onX , if�H 2 F and if �H , �H are Gibbs measures, then �H G �H
for F .

(d) If � G � with respect to a set of functions F , then for every f 2 F , we have
that Z

f .x/ d�.x/ �

Z
f .x/ d�.x/:
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This immediately implies that:

Corollary 2.6 (Wells [25]). If for j D 1; : : : ; n, �j G �j for probability measures on
spaces Xj with respect to sets of functions Fj on Xj ,then if �H 2 C.

Sn
jD1 Fj / and

if �H ; �H are formed from the underlying product measures
Nn
jD1 �j and

Nn
jD1 �j ,

then for all F 2 C.
Sn
jD1 Fj /, one has that

R
f .x/ d�H .x/ �

R
f .x/ d�H .x/. In

particular, if each Xj D R (so implicitly Fj is the single function �j ) and if H has
the general ferromagnetic Ising form, (3) with all J.A/ � 0, then for all A � 2¹1;:::;nº

one has that
h�Ai�H

� h�Ai�H
:

Thus by the definition, (2), of Ising domination, we see that if � G �, then � Ising
dominates �.

Of course, G is a binary relation and it is tempting to think of it as a partial order
on measures on R with all moments finite. Indeed, it is certainly reflexive. It is almost
antisymmetric. It is easy to see that � G � and � G � if and only if � and � have the
same moments. Thus it is antisymmetric among the measures of compact support
or among measures obeying

R
eAx

2
d�.x/ <1 for some A > 0 but not among all

measures with finite moments because of the possibilities of measures non-unique for
the moment problem. But we do not know the following

Question 1. Is Wells relation transitive among all even measures on R? How about
among all measures on a general topological space if F is rich enough?

Since Ising domination is trivially transitive, for applications, this lack is not so
important.

3 The Wells Comparison Theorem

Given an even measure probability, �, on R and s > 0, we define its scaling by

�.s/ŒA� D �Œs�1A�:

Then the Bernoulli measure bS defined after (1) obeys bS D .b1/.S/.
Even if it is not true that � G �, it can happen that �.s/ G � for s sufficiently small.

In the next section, we will see that this implies a bound on transition temperatures,
so such comparison results are interesting. The main result of this section implies that
any two non-trivial measures of compact support are comparable in this sense. Well’s
most important result is:

Theorem 3.1 (Wells Comparison Theorem [25]). Let d� be an even probability mea-
sure on R with compact support that is not a point mass at 0. Then there are two
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strictly positive numbers, T�.�/ and TC.�/, so that � G bS if and only if S � TC
and bS G � if and only if S � T�. Moreover,

TC D sup¹s j s 2 supp.�/º (5)

and
S � T� ” 8n2N

Z
R
.x2 � S2/n d�.x/ � 0: (6)

Remark 1. (1) Bricmont-Lebowitz-Pfister [2] state the existence of T� part of this
theorem, quoting Wells and providing his proof.

(2) There is a very different order from Wells order defined by van Beijeren and
Sylvester [24] (discussed further in [21, Section 2.2]) that also implies Ising domina-
tion but it has the serious flaw that if 0 2 supp.�/, then for no T > 0 does � dominate
bT in their order.

(3) The proof below is essentially that of Wells.

Lemma 3.2. Let� be a positive measure on an interval I � R (either open or closed
at each endpoint). Let f; g 2 L2.d�/ and suppose that g is monotone increasing on I
and there is c 2 I so that f .x/ � 0 (resp f .x/ � 0) if x � c (resp x � c). ThenZ

f .x/g.x/ d�.x/ � g.c/

Z
f .x/ d�.x/:

Proof. The function f .x/Œg.x/ � g.c/� is positive so its integral is positive which is
the claim.

Proof of Theorem 3.1. We first prove the existence of TC and equation (5). To this
end, if S � sup¹s j s 2 supp.�/º, then, for the integrand in (4) to be positive, we
need that .S C y/n.S � y/m C .S C y/m.S � y/n � 0 for all y � 0 in supp.�/. If
�.¹0º/ > 0, there is an additional term of SnCm�.¹0º/ on the right-hand side, but
that is also positive, so for such S , we have that � G bS .

On the other hand, if � G bS , we have thatZ
x2N d�.x/ � S2N ;

so, taking 2N th roots and thenN !1, we see that S � sup¹s j s 2 supp.�/ºwhich
proves the formula for TC.

Next we will prove that

bS G � ” 8n odd

Z
R
.x2 � S2/n d�.x/ � 0: (7)

Taking n D m in the basic integral, we see that

bS G � H) 8n odd

Z
R
.x2 � S2/n d�.x/ � 0:
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Now look at the basic integral when � D bS and m > n with both odd. Since
.x ˙ S/n.x � S/m D .x2 � S2/n.x � S/m�n, we see that the integral in question is

1

2

Z
.x2 � S2/nŒ.x C S/m�n C .x � S/m�n� d�.x/

D

Z
.x2 � S2/nŒ.x C S/m�n C .x � S/m�n� d z�.x/;

where z� is the measure restricted to .0;1/ plus 1
2
�.¹0º/ı0. By the binomial theorem,

the polynomial Q2k.y/ D .y C S/2k C .y � S/2k only has even degree terms with
only positive coefficients so the function in Œ � � in the last equation is monotone on
I D Œ0;1/. Applying the lemma with c D S , we see thatZ

R

Z
R
.x C y/n.x � y/md�.x/d�.y/ � .2S/m�n

Z
R
.x2 � S2/n d�.x/:

Thus, we have proven (7).
Finally, we show that T� > 0. First, pick a > 0 so that �.Œa;1// > 0. Pick

0 < b < a so small that

b2

a2 � b2
� min.1; 2�.Œa;1///

possible since the left side goes to zero as b # 0. Since the integrand is positive on
Œb; a�, we have that for all k 2 N,Z

.x2 � b2/2kC1d�.x/ � �.b2/2kC1 C 2.a2 � b2/2kC1�.Œa;1//;

D 2.a2 � b2/2kC1
�
2�.Œa;1// �

�
b2

a2 � b2

�2kC1�
� 0

by the choice of b. Thus T� � b > 0.

One consequence of the theorem is

T� �

�Z
R
x2 d�.x/

� 1
2

: (8)

It is an interesting question when one has equality. One would like as good a lower
bound on T� as possible which can yield good lower bounds on transition tempera-
tures. Often one has equality in (8) in which case we will say that T� is canonical for
�.

Example 3.3. We consider spins taking three values. For 0 � � � 1, consider the
probability measure supported by the three points ¹0;˙1º given by

d�� D
�

2
.ı1 C ı�1/C .1 � �/ı0:
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For � D 2
3

, which is equal weights, this is called (normalized) spin 1. Then

h.x2 � T 2/2mC1i� D .1 � T
2/2mC1� � .1 � �/T 2.2mC1/

� 0 ”

�
1 � T 2

T 2

�2mC1
�
1 � �

�

”
1 � T 2

T 2
�

�
1 � �

�

� 1
2mC1

:

If � � 1
2

, then 1��
�
� 1 and the maximum on the right side of the last formula occurs

form D 0 while, if � � 1
2

, then 1��
�
� 1 and we get the maximum asm!1. Thus,

we find that

T�.�/ D

8<:
p
� if � � 1

2
;q

1
2

if � � 1
2
:

So we see there are cases where T� D hx2i
1
2 D
p
� and other cases where the inequal-

ity is strict. Note also that at � D 1
2

, the integral h.x2 � T 2�/
2mC1i� vanishes for all n,

a sign that the distribution of x2 � T 2� is symmetric about 0.

In the remainder of this chapter, we will discuss bounds on transition temperatures
and then two interesting classes: in Section 5, the distribution of a single component
of a D-vector model and in Section 6, the spin S spin.

4 Bounds on transition temperatures

Fix a translation invariant ferromagnetic interaction, J.i � j / � 0 and an even a pri-
ori measure, �. Let Tc.�/ be the transition temperature for the model defined as the
unique minimal temperature (which may be zero if there is no phase transition!) so
that for larger temperatures, the two point infinite volume free boundary condition
state h � i has

lim
j!1
h�j�0i D 0: (9)

We want to see what �.s/ G � implies about the relation of Tc.�/ and Tc.�/ (a similar
analysis holds with other possible definitions of transition temperature).

The arguments below while stated for Wells order only depend on Ising domina-
tion. Making the temperature and measure explicit, with h � iT;� the infinite volume
free BC state, we note that by the definition of �.s/, we have that (because we are
assuming only pair interactions and because temperature appears as �i�j

T
)

h�AiT;�.s/ D sjAjh�AiT=s2;� :

Thus, since Wells order implies Ising domination, we see that �.s/ G � implies that

h�AiT;� � s
jAj
h�AiT=s2;� : (10)
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Therefore, if T � s2Tc.�/, we see that (9) fails for h�j�0iT=s2;� and so by (10)
for h�j�0iT;�. We have thus proven that:

Proposition 4.1. Let �.s/ G � for two non-trivial even measures. Then

Tc.�/ � s
2Tc.�/:

In particular,
Tc.�/ � T�.�/

2Tc.classical Ising/;

so if T� is canonical for �, then

Tc.�/ � hx
2
i�Tc.classical Ising/: (11)

This last putative inequality is especially interesting because the mean field tran-
sition temperature (see, for example, [18, Section II.13] or [21, Section 2.6]) is given
by

TMF .�/ D hx
2
i�

X
j

J.j / (12)

for a pair interacting ferromagnetic model. Thus one has equality in (11) if Tc is
replaced by TMF . It is known [5, 21] that mean field theory is exact in the infinite-
dimensional limit of nearest neighbor generalized Ising models (in the sense that
Tc=TMF ! 1 as d !1 for the model on Zd ). The work [5] only discusses spin 1

2

but to get that equality holds in (11), it suffices to get a MF lower bound on Tc.�/
and [5] get that from Fröhlich, Simon and Spencer [6] whose argument works for
any a priori measure (for many models of interest including those of the next two
sections, there is also a mean field upper bound on transition temperatures – see [21,
Section 2.6] and [15, 23]). In event, we see that if (11) holds for all ferromagnetic
pair interactions, then the constant hx2i� is best possible. A major theme of the rest
of the chapter is proving (11) in two classes of models.

One of these is the spin S measure and we want to end this section by noting what
we believe is the best prior lower bound on Tc.z�S /. To be explicit, for each value of
S D 1

2
; 1; 3

2
; : : : , consider the measure z�S which takes 2S C 1 values equally spaced

between�1 and 1, each with weight 1
2SC1

. It is interesting to find the square, T�.S/2,
of the Wells T� associated to z�S because if Tc.S/ is the transition temperature for
a model with a priori measure z�S and some fixed two point ferromagnetic interaction,
then Proposition 4.1 (and the easy TC.S/ D 1) implies that

T�.S/
2Tc

�
1

2

�
� Tc.S/ � Tc

�
1

2

�
(13)

(we will prove in Section 6 that z�S is canonical and compute hx2i�S
). So far as

we know the best previous result of this genre in the literature is due to Griffiths
[8, equation (4.23)] who proved the following.
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Theorem 4.2 (Griffiths [8]). One has that

1

4
Tc

�
1

2

�
� Tc.S/ � Tc

�
1

2

�
: (14)

Remark 2. (1) This is what Griffiths proves for S an integer. For 2S D 2k C 1 odd,
he proves the slightly stronger result with 1

4
replaced by .k C 1

2k
C 1/2. Please note

that what we call Tc.S/, Griffiths denotes Tc.2S/, e.g. Tc.classical Ising/ which we
denote Tc.12 /, he denotes as Tc.1/.

(2) This paper of Griffiths [8] is best known for proving Lee–Yang and GKS
inequalities by realizing spin S (normalized so the maximum value is 2S , a measure
we call �S ) by 2S spins with values ˙1 with finite ferromagnetic couplings (given
by Figures 2 and 3 in his paper) but he notes that one can also realize them with S
(if S is an integer or S C 1

2
if that is an integer) frozen together and then GKS implies

that z�S Ising dominates bTD 1
2

.

5 Totally anisotropicD-vector model

We turn next to one of the two new results on this subject. It involves the interesting
measure

d�D.x/ D

�
�
�
D
2

�
p
� �

�
D�1
2

��.1 � x2/ 1
2 .D�3/�Œ�1;1�.x/ dx:

This is the distribution of the component x1 if one looks at a D-component unit
vector, x D .x1; : : : ; xD/, distributed with the rotation invariant probability measure
on SD�1. Since, with respect to this measure, all xj have the same distribution andPD
jD1 x

2
j D 1, we clearly have that

hx2iD D
1

D
:

Theorem 5.1. The number T�.�D/ is canonical, i.e. T�.�D/2 D 1
D

, so, in particu-
lar, (11) holds for �D .

The result for D D 2 is especially easy because, for all m,��
x2 �

1

2

�2mC1�
DD2

D 0:

To prove this, note that it is equivalent to

h.2x2 � 1/2mC1iDD2 D h.x
2
1 � x

2
2/
2mC1

irotor D 0

which follows by x1 $ x2. I note that this result for D D 2 is precisely the result
that Aizenman and the second author say is in Wells’ mystery preprint.
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Lemma 5.2. Let �; � be two measures of compact support on Œ0;1/. ThenZ
f .x/ d�.x/ �

Z
f .x/ d�.x/ (15)

for all monotone functions with f .0/ D 0 if and only if

8C>0 �.ŒC;1// � �.ŒC;1// (16)

Proof. If (15) holds, we take f to be the characteristic function of ŒC;1/ to get (16).
Now suppose that we have (16). By a simple approximation argument, it suffices

to prove (15) for functions f which are C 1 with f .0/ D 0. For such functions f , we
have that

f .x/ D

Z 1
0

f 0.C /�ŒC;1/.x/ dC

by doing the integral. ThusZ
f .x/ d�.x/ D

Z 1
0

f 0.C /�.ŒC;1// dC:

Monotonicity of f implies that f 0 � 0, so that (16) implies (15).

Lemma 5.3. Let a; b > 0 and suppose that g is positive on .�b; a/ withZ 0

�b

g.x/ dx D

Z a

0

g.x/ dx; 0 � y < b H) g.�y/ � g.y/: (17)

Let f be an odd, monotone increasing, continuous function on .�b; a/. ThenZ a

�b

f .x/g.x/ dx � 0: (18)

Remark. The result is quite intuitive. The condition on g says that the measure
g.x/ dx is concentrated on the right at larger x than on the left, so more concentrated
where jf j is larger.

Proof. Define the measures on Œ0;1/:

d�.x/ D �Œ0;a�.x/g.x/ dx; d�.x/ D �Œ0;b�.x/g.�x/ dx:

We claim that for all C > 0, one has that

�.Œ0; C // � �.Œ0; C // (19)

so, by (17), we have that (16) holds. Thus, since f is monotone, by Lemma 5.2, we
have that Z b

0

f .x/g.�x/ dx �

Z a

0

f .x/g.x/ dx;

which is (18) since f is odd. So we need only prove (19).
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If C � b, then (19) is immediate from the fact that for x � 0, g.�x/ � g.x/.
By (17), if C > b, then

�.Œ0; C // D �.Œ0;1// D �.Œ0;1// � �.Œ0; C //:

Proof of Theorem 5.1. As noted after the theorem, 1
D

is the second moment. Thus,
by (8), T 2� �

1
D

, so, by (6), we need only prove that for all m 2 N, the have thatZ 1

�1

�
x2 �

1

D

�2mC1
.1 � x2/

1
2 .D�3/ dx � 0: (20)

Note first that, since the integrand is even in x, we can integrate only from 0 to 1
and then change variables from x to y D x2 � 1

D
. One sees that (20) is equivalent toZ 1� 1

D

� 1
D

y2mC1
�
1 � 1

D
� y

� 1
2 .D�3/�

y C 1
D

� 1
2

dy � 0: (21)

If D D 2, the integral goes from �1
2

to 1
2

and the integrand is y2mC1.y2 � 1
4
/�

1
2

which is odd so the integral in (21) is 0 for all m, recovering what we saw above. If
D � 3, define, for m � 1,

g.y/ D
jyj
�
1 � 1

D
� y

� 1
2 .D�3/�

y C 1
D

� 1
2

; f .y/ D sgn.y/y2m:

The fact that 1
D

is the second moment of d�D implies the integral in (20) vanishes if
m D 0 which means that g obeys the first equation in (17). Since g.y/

jyj
is monotone

decreasing in y, the inequality in the second half of (17) holds. The function f is odd
and monotone increasing, so (18) implies (21).

6 Spin S

For each value of S D 1
2
; 1; 3

2
; : : : , consider the measure z�S which takes 2S C 1

values equally spaced between �1 and 1, each with weight 1
2SC1

. We will prove here
that except for S D 1, this measure is canonical which will lead to improvements in
the first inequality in (14) by a factor of at least 4

3
and which by discussion after (12)

yields optimal constants. We begin by computing hx2iz�S
.

Theorem 6.1. We have

aS �

Z
x2 d z�S .x/ D

1

3

S C 1

S
: (22)

Remark 3. (1) Using
PS
jD1 j

2 D
S.SC1/.2SC1/

6
, one easily gets this result for S

integral. One can also use this formula to get the result for half odd integral S by
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using the fact that this case can be rewritten as a sum over odd integers between 1 and
2S which one can realize as a sum over all integers minus the sum over even integers.
That calculation is awkward and it is surprising it yields the same algebraic formula
which is why we give the slick uniform proof below.

(2) We will often scale the measure by a factor of S so the 2S C 1 values are
equally spaced from �S to S yielding a measure �S . If we interpret

PS
jD�S as the

sum over the �S;�S C 1; : : : ; S � 1; S (the usual meaning if S is an integer but
unusual if S is half and odd integer), then (22) is equivalent to

AS �

Z
x2 d�S .x/ D

1

2S C 1

SX
�S

j 2 D
S.S C 1/

3
: (23)

Proof. Use Tr.�/ for the normalized trace on finite-dimensional spaces, i.e. the aver-
age of diagonal elements or Tr.�/ divided by the dimension. Consider what a physicist
would call a quantum spin, � , of spin S and a mathematician the generators of
the irreducible representation of SU.2/ of dimension 2S C 1. The operator �z has
eigenvalues �S;�S C 1; : : : ; S � 1; S and the Casimir operator has the form

�2x C �
2
y C �

2
z D S.S C 1/1:

Thus

AS D Tr.�2z / D
1

3
Tr..�2x C �

2
y C �

2
z / D

1

3
Tr.S.S C 1/1/ D

S.S C 1/

3
: (24)

by the symmetry of the three directions. This proves (23).

We saw in Example 3.3 that for S D 1 (� D 1
3

), one has that

T� D

r
1

2
<

r
2

3
D
p
aSD1;

so z�S is not canonical for that value of S . The main technical result of this section,
which we will prove in Appendix A, is:

Theorem 6.2. Let S ¤ 1 be half a positive integer. Then

SX
jD�S

.3j 2 � S.S C 1//2mC1 � 0: (25)

We will also see that the opposite inequality is true when S D 1. By Theorem 3.1,
this implies:

Corollary 6.3. For any S ¤ 1, we have that T� is canonical for z�S .

This, in turn, by (13) implies the following result.
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Corollary 6.4. For S ¤ 1, one has that

Tc.S/ �

�
1

3
C

1

3S

�
Tc

�
1

2

�
while for S D 1 one has that

Tc.1/ �
1

2
Tc

�
1

2

�
:

This improves Griffiths result, (14) by a factor of at least 4
3

. To be totally accurate,
as we noted Griffith’s lower bound (as proven, not as stated!) is slightly stronger than
(14) when S is half an odd integer. In particular, for S D 3

2
what (14) has as 1

4
, he

actually proves is 4
9

so our results are improvement but for this value only by a factor
of 5

4
rather than 4

3
.

One final remark. In the notation used in (24), (25) is equivalent to

Tr
�
.2�2z � �

2
x � �

2
y /
2mC1

�
� 0:

We wonder if that could not be used for a matrix theoretic version of what we prove
in the Appendix.

A A majorization bound

In this appendix, we will prove a general set of inequalities that includes (25). We
will prove two theorems:

Theorem A.1. Fix an integer N � 1, a function,  on Œ0; 1�, which is non-negative,
continuous, strictly monotone increasing and convex and a function, ˆ, on the inter-
val Œ�k k1; k k1� which is continuous, odd and whose restriction to Œ0; k k� is
convex. Let

 D .N C 1/�1
NX
jD0

 

�
j

N

�
:

Then
NX
jD1

ˆ

�
 

�
j

N

�
�  

�
� 0:

Remark. By translation and scaling, this result can easily be generalized. For exam-
ple, while stated forN C 1 equally spaced points between 0 and 1, we will apply it to
N C 1 odd integers stating at 1. The map k 7! k�1

2N
maps those N C 1 integers into

the points of the theorem.
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Theorem A.2. For an integerN � 2 and an even, continuous, convex function,  on
Œ�1; 1� and a function, ˆ, on Œ�k k1; k k1� which is continuous, odd and whose
restriction to Œ0; k k� is convex. Let  be given by

 D .2N C 1/�1
NX

jD�N

 

�
j

N

�
:

Suppose that

2 .1/C  .0/C 2 

�
1

N

�
� 5 : (26)

If N is odd, suppose that

 

�
1

2
C

1

2N

�
�  : (27)

Then
NX

jD�N

ˆ

�
 

�
j

N

�
�  

�
� 0: (28)

Remark 4. (1) We will see later (see (33)) that 2 .1/C 2 .0/ � 4 which puts
(26) in perspective.

(2) It might be true that this theorem holds without the need for the condition (26)
but it holds in the case we need so we did not try hard to eliminate it. We will explain
later why a naive extension of the proof of Theorem A.1 does not work in a simple
example and led to the extra condition. We do note that (26) is a restriction. If we
normalize  by  .0/ D 0;  .1/ D 1, then in the limit as N !1, (26) becomesZ 1

0

 .x/ dx �
2

5
;

which for  .x/ D jxjp requires p � 3
2

while convexity only requires p � 1.
(3) On the other hand, (27), as we will see, is quite natural independent of our

method of proof.

One key idea behind the proofs is the theory of majorization. We let RnC;� denote
the set of n-tuples of reals, x D .x1; : : : ; xn/ with

x1 � x2 � � � � � xn � 0: (29)

If x; y 2 RnC;�, we say that x majorizes y, written x � y or y � x if and only if

nX
jD1

xj D

nX
jD1

yj ; Sk.x/ �
kX

jD1

xj �

kX
jD1

yj ; k D 1; : : : ; n � 1;

which defines Sk.x/. A standard reference is Marshall and Olkin [14] which has
been called a love poem to majorization; other references are Hardy, Littlewood and
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Pólya [11] and Simon [20, Chapters 14–15]. We will rely on the following aspect of
the theory:

Theorem A.3 (Karamata’s inequality). Let x; y 2 RnC;� with x � y and let ' be an
arbitrary continuous convex function on Œ0; x1�. Then

nX
jD1

'.xj / �

nX
jD1

'.yj /: (30)

Remark 5. (1) Even though this is widely referred to as Karamata’s inequality (e.g.,
Cvetkovski[4] or Wikipedia [26]) after Karamata’s 1932 paper [12], it or theorems
that imply it appear in a 1923 paper of Schur [16] and a 1929 paper of Hardy, Little-
wood and Pólya [10]. That said, we note that [10] does not have a proof which may
not have appeared until [11] in 1934 and that Karamata proved a converse, namely, if
x; y 2 RnC;� and (30) holds for all convex ', then x � y.

(2) The idea of one proof is quite simple (for details, see, e.g., Simon [19, Theo-
rem 1.9] or Simon [20, Theorem 15.5]): by slicing with specific hyperplanes, one
proves that y is in the convex hull in Rn of the (at most) nŠ points obtained from x
by permuting the coordinates and then one notes the function w 7!

Pn
jD1 '.wj / is

convex and permutation symmetric.

In the case of Theorem A.1, we will prove that x � y using a simple observation:

Proposition A.4. Suppose that x; y 2 RnC;� with
Pn
jD1 xj D

Pn
jD1 yj and that for

some ` 2 2; : : : ; n � 1, one has that

j < ` H) xj > yj ; j � ` H) xj � yj :

Then x � y.

Proof. If k < `, it is immediate that

kX
jD1

xj �

kX
jD1

yj

and similarly, it is immediate that if k � `, then

nX
jDk

xj �

nX
jDk

yj :

Subtracting this from
Pn
jD1 xj D

Pn
jD1 yj , we see that also for k � `, one has thatPk

jD1 xj �
Pk
jD1 yj .

We need two preliminaries for the proof of Theorem A.1.
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Lemma A.5. Let  be a convex function on Œ0; 1� and suppose that

0 � zb � 2c � b < za � 2c � a � c � a < b � 1:

Then
1

2
. .b/C  .zb// �

1

2
. .a/C  .za// �  .c/: (31)

Moreover, the first inequality is strict unless  0.s/ is constant on .za; a/.

Proof. If one takes a D c and then replaces b by a, the first inequality becomes the
second so it suffices to prove the first one. Without loss (by translation and scaling)
we can take c D 1

2
; b D 1 so that zb D 0 and za D 1 � a. By the fundamental theorem

of calculus (a general convex function is not C 1 but it is differentiable with the pos-
sible exception of a countable set and the fundamental theorem of calculus holds; see
Simon [20, Theorem 1.28])

1

2
. .1/C  .0// �

1

2
. .a/C  .za// D

1

2

Z 1

a

Œ 0.s/ �  0.1 � s/� ds:

By convexity, the integrand is non-negative so we have proven (31). Moreover, if
 0.s/ is not constant on .1 � a; a/, then the integral is strictly positive.

Proposition A.6. Let  ,  and N be as in Theorem A.1. Then

n � #
²
j

ˇ̌̌̌
 

�
j

N

�
�  

³
�
N C 1

2
(32)

and

 

�
1

2

�
�  �

1

2
. .0/C  .1//: (33)

Moreover, the inequalities in (33) are strict if N � 2 and  is not an affine function
on Œ0; 1� (i.e.  0 is not constant).

Proof. For any j D 0; 1; : : : ; N , (31) implies that

 

�
1

2

�
�
1

2

�
 

�
j

N

�
C  

�
1 �

j

N

��
�
1

2
. .0/C  .1//:

Averaging over j yields (33). If  is not affine on the interval Œ0; 1�, then the second
inequality is strict for 1 � j � N � 1 so the second inequality in (33) is strict. Since
 .1

2
/ < 1

2
. .0/C  .1// if  is not affine, we see that in the case the first inequality

is always strict.
As  is strictly monotone, the first inequality in (33) implies the unique x 2 Œ0; 1�

with  .x/ D  has x � 1
2

. This implies that

n D #
²
j

ˇ̌̌̌
j

N
� x

³
� #

²
j

ˇ̌̌̌
j

N
�
1

2

³
�
N C 1

2
:
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Proof of Theorem A.1. Let q D N C 1 � n � n by (32). Define

yj D  �  

�
j � 1

N

�
; j D 1; : : : ; n;

and

xj D

´
 
�
NC1�j
N

�
�  if j D 1; : : : ; q;

0 if j � q:

Since  is monotone and n is defined by (32), we have that x; y 2 RnC;�. By the
definition of  , we have that

nX
jD1

xj D

nX
jD1

yj : (34)

If N D 1 or  is affine on Œ0; 1�, it is easy to see that xj D yj for all j , so, since
ˆ is odd, we have that (29) holds. Thus henceforth we will suppose that N � 2 and
 is not an affine function on Œ0; 1�, so, in particular, the inequalities in (33) are strict.

Note next that because  is assumed convex, we have that

m < p H)  

�
mC 1

N

�
�  

�
m

N

�
�  

�
p C 1

N

�
�  

�
p

N

�
: (35)

By the strict form of (33), x1 > y1. Because of (34), there must be a first ` so that
x` � y`. We claim that if ` < n, then x`C1 � y`C1. If `C 1 > q, then x`C1 D 0 and
the required inequality is immediate. If `C 1 � q, then (35) implies that x` � x`C1 �
y` � y`C1. Subtracting this from x` � y` proves that x`C1 � y`C1. Repeating this
argument proves that for all j � ` we have xj � yj . Thus by Proposition A.4, x � y.

By Karamata’s inequality, (30), we conclude that
Pn
jD1ˆ.xj / �ˆ.yj / � 0. As

ˆ is odd and ˆ.0/ D 0, this is equivalent to (29).

Example A.7. To understand why we need the extra condition (26) in Theorem A.2,
we consider �S for S D 6, i.e. thirteen pure points with weight 1

13
at 0;˙1;˙2;˙3,

˙4;˙5;˙6. By (23), the average of the square is A6 D 14. The values of j 2 are
j 2 D 0; 1; 1; 4; 4; 9; 9; 16; 16; 25; 25; 36; 36 so n D 7 values are less than A6 and one
sees that (ignore w for now)

x D 22; 22; 11; 11; 2; 2; 0;
y D 14; 13; 13; 10; 10; 5; 5;
w D 22; 22; 0; 11; 11; 2; 2:

One can verify that x � y by hand (and, below, we will prove the result for all S � 2)
but one cannot use Proposition A.4 as we did in our proof of Theorem A.1 for xj � yj
shifts signs three times instead of one time. The problem is that the components of x
and y are paired but shifted.



J. Madrid, B. Simon, and D. R. Wells 68

Look at w which we get by moving the 0 from position 7 to position 3. One can
handle the first three partial sums by noting that 22C 22 � 14C 13C 13 and the
remaining partial sums by noting that there is only one sign change after the third
place and use Proposition A.4 to prove the partial sums of w dominate those of y and
note it is trivial that partial sums of x dominate those of w. The key is that by moving
the 0, the pairs are no longer shifted.

Proof of Theorem A.2. Notice that 2N C 1 is odd, so either x or y needs to have
a zero added. To be sure that it is added to the x, we need the analog of (32), namely
that

n � #
²
j

ˇ̌̌̌
 

�
j

N

�
�  

³
� N C 1: (36)

If N D 2k is even, the N C 1 values of j among the 2N C 1 overall values with
the smallest values of  . j

N
/ are 0;˙1;˙k, so (36) follows from the first inequality

in (33). If N D 2k C 1 is odd, we cannot take the max j to be k since that only
yields 2k C 1 < N C 1 values and therefore we need to go up to j D k C 1 yielding
N C 2 values (leaving over N � 1), so we need (27) to hold. In that case, there are at
least three more values �  than >  ! (This has to be because n is odd and N � n
even and we require that n > N � n.)

Define x to be the 2N C 1 � n values of �  larger than 0written in decreasing
order plus 2n � 2N � 1 zero values at the end and y the n non-negative values of
 �  so x; y 2 Rn. As in the proof of Theorem A.1, if we prove that x � y, then
(28) follows from Karamata’s inequality.

For N � 2 (so n � 3), define w 2 RnC;� by

wj D

8̂̂<̂
:̂
xj if j D 1; 2;

0 if j D 3;

xj�1 if j � 3:

We claim first that

Sn.x/ D Sn.w/; Sj .x/ � Sj .w/; j D 1; : : : ; n � 1 (37)

(we do not write this as x � w, first because w … RnC;� and we’ve only defined
majorization for such sequences and also because it is usual to extend � to RnC by
demanding the relations for the decreasing rearrangements rather than by (37)). This
follows because w is a rearrangement of x and the decreasing sequence, Sj .x/, is
maximal among those sums for any arrangement or also, more directly, by noting
that Sj .w/ D Sj .x/ for j D 1; 2; n and Sj .w/ D Sj�1.x/ for j � 3.

Thus, if we prove that

Sn.w/ D Sn.y/; Sj .w/ � Sj .y/; j D 1; : : : ; n � 1; (38)

then x � y and the proof is done.
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Note that (38) for j D n follows from the definition of  . For j D 1; 2, we note
that by the second inequality of (33), we have that w1 D x1 � y1 and then that
S2.w/ D S2.x/ D 2x1 � 2y1 � y1 C y2. For j D 3, the required inequality is the
hypothesis (26).

Because of the equality for j D n and inequality for j D 3, there must be a first
` � 4 with x` � y`. We claim either x`C1 D 0 or x` � x`C1 � y` � y`C1 because if
x`C1 > 0 and ` is odd, we have that x` D x`C1 and y` D y`C1 or ` is even and we
can use (35) to prove the inequality as in the proof of Theorem A.1. By induction we
see that for j � `, we have that xj � yj . By following the argument used to prove
Proposition A.4 we conclude that for all j � 4, we have (38).

Proof of Theorem 6.2. If S is half an odd integer, we can use Theorem A.1 with
N D S � 1

2
and  .x/ D .1

2
CNx/2 which is non-negative, strictly monotone and

convex and ˆ.y/ D .3y/2mC1.
If S is an integer, we will use Theorem A.2 with N D S ,  .x/ D .Sx/2 and

ˆ.y/ D .3y/2mC1. We need to check (26), which says that

2S2 C 2 � 5AS D
5

3
S.S C 1/ (39)

and (27) which says that for S � 3 odd, one has that

S2
�
1

2
C

1

2S

�2
� AS D

S.S C 1/

3
: (40)

Estimate (39) is equivalent to

0 � S2 � 5S C 6 D .S � 2/.S � 3/

which holds for all integral S (since the polynomial x2 � 5x C 6 is negative precisely
for x 2 .2; 3/). (40) is equivalent to 3S2 C 6S C 3 � 4S2 C 4S or

0 � S2 � 2S � 3 D .S � 3/.S C 1/

which holds for all S � 3 as required.

We note that when S D 1 with the normalization used in this proof, one has that
the values of j 2 are 0; 1; 1 so A1 D 2

3
and x D .1

3
; 1
3
/ while y D .2

3
; 0/ so x � y and

for all m, (25) holds with the opposite sign!
As we mentioned, we would guess that results like Theorem A.2 hold with-

out (26). To be explicit, consider the an analog of (25) with 3j 2 replace by jj jp

and 3AS D S.S C 1/ replaced by the suitable average. We know this analog is valid
for any p > 1 if S is half an odd integer but because (26) fails when p < 3

2
and S is

large we do not know the answer to the following question.
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Question 2. Does the analog of (25) hold for S ¤ 1 integral when 3j 2 is replaced
by jj jp for any p > 1 and with 3AS D S.S C 1/ replaced by the suitable average?

This is an explicit example for what we hope might be a general result.
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