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Correlation Inequalities and the Mass Gap in P(φ)2
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Abstract. For the P(φ)2 field theory, we prove that the falloff of the (vacuum subtracted)
two point Schwinger function dominates the higher order (vacuum subtracted) Schwinger
functions. As applications, we prove that for even polynomials, the first excited state is odd,
and that when there is a one particle state in the infinite volume limit, it is coupled to the
vacuum by a single power of the field. The main inputs are the theory of Markov fields
and the F.K.G. inequalities.

1. Introduction

In this note, we discuss certain properties of the P(φ)2 theory of
Glimm, Jaffe, and Rosen (see [2, 3, 20] for references and background).
We will employ the statistical mechanical techniques [22, 4] made
available by Nelson's Markov field theory [12, 13, 15]. In fact, our line
of approach is suggested by some recent work of Lebowitz [9] on the
properties of ferromagnetic Ising models. Lebowitz proved that the
rate of decrease of the two point spin correlations, (σ σ,) — <σ; > {o}), as
|f —7*| —> oo is no faster than that of any other spin-spin correlation
{σ^ ... σimσh ... σjk} - {σn ... σim) {σh ... σjk} as min|fp-;€ |->oo. In the
language of transfer matrices [16, 10, 11], this says that a single spin
must have a non-vanishing matrix element between the two lowest eigen-
vectors. Our goal here will be to prove analogous results for the P(φ)2

field theory. As explained in [5], the (spatially cutoff or infinite volume)
Hamiltonian plays the role of a transfer matrix in Markov field theory.
In fact, this analogy is the basis of (and is implicit in) the proof of Nelson's
reconstruction theorem [12].

Our main theorems appear in Sections 5-7. They are essentially
corollaries of a technical result in Section 4 which is very similar to
Lebowitz'main technical estimate (Lemma 1 of [9]). Lebowitz relied
on the correlation inequalities proven for ferromagnetics by Fortuin,
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Kasteleyn, and Ginibre [1]; we will rely on the analogous inequalities
proven by Guerra, Rosen, and Simon [5] using the abstract F.K.G.
inequalities [1, 8]:

Theorem 1. ([5]). Let < > denote the expectation value with respect

to some P(φ)2 spatially cutoff Gibbs states or some limit of such states.

Let fl9...,fn be non-negative space-imaginary time test functions. Let

F(xl9 ...,xM) and G(x 1 ? ...,xπ) be two real-valued functions on lRn which

are monotone non-decreasing as any coordinate is increased. Then:

, ..., φ(fn)) G{φ(fά ..., φ(fn))>

), ..., φ(fn))> <G(φ(/1), ..., φ(fn))> .

Sections 2 and 3 contain technical preliminaries. We note that we
expect the objects introduced in Section 3 to have a variety of other uses
in constructive field theory.

We use freely the notation and results of Ref. [5].

2. Truncated Correlations

In this section, as a preliminary, we discuss some elementary properties
of expectations, </#> — </> <#>, and their quantum analogue.

Definition. Given a probability measure space (M, dμ) and
feU(M,dμ\ we write </> = $ f dμ. If f,g and fg are in l}(M,dμ)
we write

If </g> r^0, we say that the pair (f,g) is positively correlated.

Lemma 1 (Implicit in Lebowitz [9]). Let /i,/2?^i,^2 be functions
on a probability measure space and let ht = fi — gi (i= 1,2). Suppose that

the pairs (hl9g2) and (fχ,h2) are positively correlated. Then:

Proof. Adding the inequalities

we obtain

Next consider the general situation of a self adjoint operator, H, on a
separable Hubert space, Jf. Suppose that H is positive and that Ω is a
normalized eigenvector for H with HΩ = 0. Let E = mϊ(σ(H \ {Ω}1)).
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Given Ψ e Jf7, we define

and we use dμΨ to denote the spectral measure for H associated with Ψ
[17; p. 225].

Definition. (ψ9 e~tHφ)±~(Ψ±, e~tHφ±)

Definition. M{φ) = inί{Supp dμφj.
Definition. Let S be a subset of Jf. If M{M(Ψ)\ΨeS} = Ey we say

that S is coupled to the first excited state.

Lemma 2. (a) M(Ψ)= ~ lim r 1 \n(Ψ, e~tH Ψ)τ.
t-»00

(b) \n(Ψ, e~tHφ)τ g In || ψ\\ + In \\φ\\ - t max {M(Ψ\ M(φ)).

Proof. A direct consequence of the spectral theorem. G

Lemma 3. Let T be a total set of vectors in J f and let S be a set of
vectors in Jf. Suppose that for each φ e T, there exist Ψι,..., Ψn e S and
constants (Cij)1<ι^j^n so that

(φ,e-tHφ)τ^ £ Ci}(Ψ^ e~ΐH Ψj)τ (1)

1 g i ̂  j ^ n

for all t. Then S is coupled to the first excited state.

Proof. By Lemma 2, — M(φ):g sup ( —M(*F;)) whenever (1) holds.
i = l,...,n

Since E = inf M(φ), the lemma follows. •
φeT

Remark. If (1) holds and if E is an eigenvalue, it is easy to prove that
some Ψι e S is not orthogonal to some eigenvector with eigenvalue E.

3. Field Theoretic Spins and Occupation Numbers

The applications of the F.K.G. inequalities to spin systems depends
heavily on the fact that the spins are bounded so we introduce a cutoff
field as a spin-analogue.

Definition. Let Y(x) be the function from ΪR to IR given by

Y(x) = + 1 if x ^ 1

= x if |x| <; 1

= - 1 if x ̂  - 1.

Definition. Given / a positive test function on space-imaginary time,

l 6 t σ(j)=Y(φ(f))
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The non-linear functionals ρ and σ play the role of the occupation
number in a lattice gas and the spin in a magnetic spin system. Introduce
the shorthand:

Definition. A random variable on the Markov field space which is
of the form F(φ(f1),..., φ{fn)) with fx ,...,/„ positive test functions and F
a monotone increasing function on TR" in the sense of Theorem 1 is called
a monotone function of the fields.

Theorem 2. (i) Let f be a positive test function. Then φ(f), ρ(f\ cr(/),
and φ(f) — σ(f) are monotone functions of the fields.

(ii) Let /i ,...,/„ be positive test function and let

ρ(j\,...Jn)= flρ(fi)

Then ρ(fu..., /„), Σ(fi, ..., fn) and Σ{f\, ..., fn) - ρ{fx , . . . ,/„) are mono-

tone functions of the fields.

Proof, (i) Y(x) and x — Y(x) are monotone functions of x.
(ii) Since each ρ(f) is monotone, Σ(fί9 ...,/„) is monotone. Since

each ρ(f) is also positive, ρ{f\ ,...,/„) is also monotone. Finally, for each /,

Σ(fu...Jr)-ρ(fι,...Jn)= Σ Q(f)+ ίi- YlQifΆ Q(fi)

is a monotone function of ρ(f) because ρ(f)S 1. D
In the applications of Sections 5-7, we will need certain cyclicity

properties of the ρ's. We prove slightly different results in the spatially
cutoff and infinite volume situations:

Lemma 4. Let Ω be the vacuum for a spatially cutoff P(φ)2 Hamiltonian.
Then {ρ(/ l9 ...,/„)Ω} is a total set in (the relativistic free field) Fock
space if / l 5 ...,/„ runs through all positive time-zero test functions and
n = l , 2 , . . . .

Remark. This lemma and the results in Sections 5 and 6 hold also
if the space cutoff is replaced with either a Dirichlet or periodic box.

Proof. Let (Q, dμ) denote the usual free field β-space. Since
(i) l imλ~ ι Y(λx) = x for each x,

(ii) \λ-ιY(λx)\^xϊoτ all A,
(iii) φ(f)eLp(Q,dμl

for each p < oo and for each time-zero test function /, we conclude that
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in each Lp(Q,dμ) (p < oo) as λ^O. Thus since Ωe f] Lp{Q,dμ) [21],
p< oo

for each /i, ...,/„ positive time zero test functions, φί/ i ) . . . φ(fn)Ω is an
L2-limit of a monomial in the σU/^'s and so of a polynomial in the
ρiλfiYs. Since Ω is cyclic for {φ(fi)\fi arbitrary} [21] and any φ(f)
is a difference of φ(#)'s with g positive, {ρ(/1? ...,/JΩ} is total. •

Lemma 5. Lei (φ, M, μ) £>£ α Euclidean Markov field over JfL^lR2)
obeying all the axioms of Nelson [12] including the ±φ(f)<La(H+1)
bound. Let P be the projection from L2{M,dμ) onto the Wightman field
space, J f (i.e. ̂  is the set of elements of L2(M,dμ) measurable with
respect to the σ-field generated by {φ(f)\supp f CIR x {0}}). Then
{P[έ?(/i> •••>/«)]} z's total in Jίf if fx, ...,fn run through all positive space
imaginary time test functions with support in IR x (— oo, 0) and n = 1, 2,... .

Remarks. 1) Since ρ(/ l 5 ...,/„) e L00, Pρ e L2.
2) This lemma holds in higher dimensional Markov field theories

and for theories over 2 provided a ± φ{f) g a(H + bf bound holds.
The results in Section 7 thus extend to any such theory for which F.K.G.
inequalities hold.

Proof. Suppose that Ψetf is orthogonal to {P(ρ(/ l5 ...,/„))}. Then,
in particular, for any tί,..., tn > 0 and any positive time zero test functions

{Ψ,e-t>Hρ(g1)...e-t»Hρ(gn)Ω) = O (2)

where Ω is the vacuum P1 ejήf. By methods of Nelson [14], for any
5 l 5 s 2 > 0 e~ίnHφ(gi)e~S2H is a bounded operator on j f and

ρ(gι)

Thus, (2) implies

fl\ί2) = 0. (2')

By analytic continuation, this extends to complex tί,...,tn so long as
R e f > 0 and thus to the distributional boundary values. We conclude
that the distributions

(Ψ,φJxίJ1)...φJxn,tn)Ω) = O

where φw is the Wightman field. By cyclicity of the vacuum, Ψ = 0. •
We feel that the ρ's and σ's may be useful cutoffs in contexts different

from the one we study here. For example, in dealing with broken sym-
metries, the following might be useful:
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Proposition. Let <( ) α 0 < α ̂  1 fee α sequence of Markov field theory
expectations. Suppose that for each fe 5^(1R2):

(i) ^ s u p ^ f φ t / ) ) 2 ) ^ * .

(ϋ)
α l O

Then, for each feS(]R2):

Proof. Since

\<κλ~ισ{λf)s)OL-(φ{)

we conclude that lim</l~V(/l/) — φ(/)>α = 0 uniformly in α. The

proposition follows from an ε/3 argument.

4. The Basic Estimate

We are now prepared for the proof of the field theoretic analogue
of Lemma 1 of [9].

Theorem 3. Let A and B be finite index sets. For each ie AKJB, let
f be a positive test function in space imaginary time. Let ρA= Y[ ρifi),

ieA

QB= Π @(fj) an^ ^et ( y denote expectation in some P{φ)2 Gibbs state

(of the type described in Theorem 1). Then:

0 ^ < ^ ρ β > Γ ^ i Σ (<P(fι)<P(fj)yτ (3)
ieAJeB

Proof. Let ΣA = Σ Q(fι) a n d ΣB= Σ Q(fj) By Theorems 1 and 2,
ieA jeB

any pair of ΣA, ΣB, ρA, ρB, ΣA — ρA and ΣB — ρB are positively correlated.
Thus, by Lemma 1,

Again using Theorems 1 and 2 and Lemma 1

<σ(fdσ(fj)>τύ<φ(fi)φ(fj)>τ
But

<ΣAΣB}T= Σ <Q(ft)Q(fj)>τ
ieAJeB

and

(4)-(6) imply (3). Π
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5. Spatially Cutoff Theories: General Results

In this section and the next, H will denote a spatially cutoff P(φ)2

Hamiltonian, renormalized so that ff ^ 0 and HΩ = 0 for a unique
vector Ω. Thus H = Ho + f #(x) :P(φ(x)): dx - Eg where geL1+ε + L2 [6].
In this section P will be an arbitrary semibounded, normalized (i.e.
P(0) = 0) polynomial and in the next it will be even.

Theorem 4. Let H be a spatially cutoff Hamiltonian for a P(φ)2
In

theory with P(X) = ]Γ amXm; a2n > 0. Then:
m = l

(i) {φ(f) ΩI / ^ 0 / e «9"(IR)} is coupled to the first excited state.
(ii) If E = inf σ(iτί h Ω1) /s απ eigenvalue with corresponding spectral

projection P and if gu g2 are strictly positive functions in 5̂ (1R), then

(Ω,φ(gί)Pφ(g2)Ω)>0.

Remark. Suppose for simplicity that E is simple. Then our methods
below show that (Ψ, φ(x)Ω) is a measure where Ψ is a suitably normalized
eigenvector. It is a consequence of semiboundedness of H ± φ(f) that this
measure has the form F(x) dx with F e f] LP(JR, dx). We expect that F

is continuous and everywhere strictly positive. Using Rosen's momentum
estimates [18] it may be possible to show F is continuous (or even
smooth) but we do not know how to prove it strictly positive.

Proof, (i) We know that the spatially cutoff P(φ)2 theory is associated
with a Markov theory which is a limit of space-imaginary time cutoff
Gibbs states [15,5]. Let < > denote expectation value for this Gibb's
state. Given time 0 test functions / 1 ? . . . ,/„, let //,...,/,[ denote the same
functions translated to imaginary time ί > 0 . By the Feynman-Kac-
Nelson formula [5]:

and similarly

<φ(f!) φ(fj)> = {φ(fi)Ω, β~f

It follows from Theorem 3 that

(ρ(/ 1,. . .,/π)β,β" ί f lρ(/ 1,. . .,/ I I)β)r^i Σ

(i) now follows from Lemmas 3 and 4.

(ii) By(i), we conclude that (Ω,φ(f) Pφ(f)Ω) + 0

for some fe £f. By a limiting argument we can suppose that
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Since g^g2 are strictly positive we can replace / by a multiple so that
(i) g{ ̂  / ^ 0 (ii) (φ(f)Ω, Pφ(f)Ω)Φ 0. But for any hλ, h2 ̂  0

(φ(h1)Ω,Pφ(h2)Ω)=limetE(φ(h1)Ω,e~tHφ(h2)Ω)τ

= \imetE(φ(h\)φ(h2))τ
ί —» 00

is positive by the P(φ)2 Griffiths' inequalities [4, 5]. Thus

(φ(gί)Ω9Pφ(g2)Ω)^(φ{f)Ω,Pφ(f)Ω)>0. Π

6. Spatially Cutoff Theories: Even Interactions

As an immediate corollary of Theorem 4, we have:

Theorem 5. Let H be the Hamiltonian of a spatially cutoff P(φ)2
m oc

theory with P even, i.e. P{X)= £ anX
2n witham>0. Let J^oάά = 0 f 2 ί ! + 1

n = 1 w = 0

= R a n | ( / - ( - / ) " ) . Then infσ(Ή h JTodd) = infσ(H h Ω1). /n particular,
if H has an eigenvalue in (0, ra0), the lowest one must possess an eigen-
vector in J^odd.

Remarks. 1) This theorem combines with the Griffiths inequalities
to imply monotonicity statements about the mass gap under certain
changes of the interaction; see [4, 5].

2) Because the first excited state of a one degree of freedom system
has a single node, it is a general theorem for one degree of freedom
systems that the first excited state is odd if the interaction is even. One
might think that such a result might hold in general, but it is not true for
a general Schrodinger operator on 1RW with V(x)= V( — x). For example,
if n = 3 and V is the sum of a Coulomb potential and a negative spherical
square well sharply peaked near r = 0, then the first excited state is a 2s
state and hence even. We expect that there are two degree anharmonic
oscillators whose first excited state is odd. What is special about the
P(φ)2 Hamiltonian is that the interaction is local and the free theory is
ferromagnetic.

7. Infinite Volume Theories

Perhaps our most interesting result is:

Theorem 6. Let (φ, M, μ) be an infinite volume P{φ)2 Markov field
theory for which the F.K.G. inequalities hold (in particular it can be a
limit of Gibbs states with free, Dirichlet or periodic boundary conditions).
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Then:
(1) A necessary and sufficient condition for the vacuum to be unique is

that <φ(/ r )φ(/)>r~ > 0 as t-^oo for every function fe@(lR2) where

/(x,s) = /(x,s-ί).
(2) A necessary and sufficient condition for there to be a mass gap of

size at least m0 is that for each f e£^(IR2) and ε > 0

^0 as ί->oc .

Proof. Using the techniques of Sections 5 and 6, this is a direct
consequence of Lemma 5 and Theorem 3. •

Finally, the following is of technical use in employing the Haag
Ruelle scattering theory [19, 7].

Theorem 7. Suppose that the hypotheses of Theorem 7 hold and that,
in addition, the corresponding Wightman theory has an isolated one particle
state of mass m = mfσ(H [ Ω1). Then the spectral weight for the two point
function gives non-zero measure to the mass m. In particular, if P is the
projection on the one particle states of mass m and if f is any space (real)
time function whose Fourier transform is not identically zero on the hyper-
boloid of mass, m then

P φ w ( / ) Ω Φ O . (8)

Proof. If (Ω, φw(f) P φw(f)Ω) were zero for all space (real) time
functions, then by polarization and analytic continuation this would
hold for space imaginary time functions. But, by Theorem 3 and Lemma 5,
there is some Euclidean test function g so that φ(g) couples Ω to the first
excited state. We conclude that the two point function spectral weight
gives non-zero weight to m. (8) follows from the Kallen-Lehmann
representation. •

Acknowledgements. This work was inspired by a beautiful lecture of J. Lebowitz.
It is a pleasure to thank Professor Lebowitz and Professor O. E. Lanford III for useful
discussions and Professor N. H. Kuiper for the hospitality of I.H.E.S.

References

Fortuin,C.M.. Kasteleyn,P. W., Ginibre,J.: Correlation inequalities for some
partially ordered sets. Commun. math. Phys. 22, 89 (1971).
Glimm,J., Jaffe,A.: Quantum field theory models. In: Statistical mechanics and
quantum field theory, ed. De Witt,C, Stora,R. New York: Gordon and Breach 1971.
Glimm,J., Jaffe, A.: Boson quantum field models. In: Mathematics of Contemporary
Physics, ed. Streater,R. New York: Academic Press, (to appear).
Guerra,F., Rosen, L., Simon. B.: Statistical mechanical results in the P(φ)2 quantum
field theory, Phys. Lett., (to appear).



136 B. Simon: Correlation Inequalities and the Mass Gap in P{φ)2

5. Guerra, F., Rosen,L., Simon, B.: The P(φ)2 Euclidean quantum field theory as
classical statistical mechanics, preprint in prep.

6. Guerra,F., Rosen,L., Simon,B.: The vacuum energy for P(φ)2: Infinite volume limit
and coupling constant dependence. Commun. math. Phys. 29, 233—248 (1973).

7. Hepp, K.: On the connection between Wightman and LSZ quantum field theory.
In: Axiomatic field theory, ed. Chretien, M., Deser,S. New York: Gordon and Breach
1966.

8. Holley,R.: Princeton preprint.
9. Lebowitz,J.: Bounds on the correlations and analyticity properties of ferromagnetic

ising spin systems. Commun. math. Phys. 28, 313—322 (1972).
10. Lieb, E., Mattis, D., Schultz, T. D.: Two dimensional ising model as a soluable problem

of many fermions. Rev. Mod. Phys. 36, 856—971 (1964).
11. Minlos, R.A., Sinai, Ya. G.: Investigation of the spectra of stochastic operators

arising in lattice models of a gas. Theor. Math. Phys. 2 (2), 230 (1970) (Russian).
12. Nelson, E.: Construction of quantum fields from Markoff fields. J. Func. Anal,

(to appear).
13. Nelson,E.: The free Markoff field. J. Func. Anal, (to appear).
14. Nelson, E.: Time-ordered operator products of sharp-time quadratic forms. J. Func.

Anal. 11,211—219(1972).
15. Nelson,E.: Quantum fields and Markoff fields, to appear in Proc. 1971 A.M.S.

Summer Institute.
16. Onsager,L.: Phys. Rev. 65, 117 (1944).
17. Reed, M., Simon,B.: Methods of modern mathematical physics. I. Functional

analysis. New York: Academic Press 1972.
18. Rosen,L.: The (Φ 2 w) 2 quantum field theory: Higher order estimates. Comm. Pure

Appl. Math. 24, 417—457 (1971).
19. Ruelle,D.: Helv. Phys. Acta 35, 147 (1962).
20. Simon,B.: Studying spatially, Cutoff P(φ)2 hamiltonians. In: Statistical Mechanics

and Field Theory, ed. Weil,C, Sen,R. Keter Press, 1973.
21. Simon, B., Hoegh-Krohn, R.: Hypercontractive semigroups and two-dimensional

self-coupled bose fields. J. Func. Anal. 9, 121—180 (1972).
22. Symanzik,K.: Euclidean quantum field theory. In: Local Quantum Theory, ed.

Jost,R. New York: Academic Press 1969.

B. Simon
C.N.R.S.
31 Chemin J. Aiguier
F-13 Marseille, France




