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We study the asymptotic behavior of the ground-state binding energy G(4) of —A + AV as 4 — co.
Unlike the number of bound states, G(4) does not have a universal power growth as 4 — co. It is shown,

however, that as 4 — o for Kato potentials

AA < G(}) < Bis.

Examples are presented for which G ~ A8 forany 1 < f# < 4. Other examples are presented which obey no
power growth. We also prove theorems which reflect the close connection between the large 4 behavior of
G and the small r behavior of ¥ for potentials with a single attractive singularity at r = 0. These can be
roughly phrased as follows: If ¥ ~ —r—* for r ~ 0, then G(4) ~ A8 with B = 2/(2 — a) as A — o,

1. INTRODUCTION

For large classes of potentials it has been shown
that the total number of bound states [N(AV)], the
number of states in any / channel [n,(AV)], and the
largest /-channel with bound states [/,,.(AV)], for
the Hamiltonian —A + AV, all have power growth
in 4 as A — oo. Specifically,

AW} < N(AV) < BA2  (see Ref. 1),
alt <1 (AV) < bAY (see Ref. 1),
CM < n(AV) < DY (see Ref. 2),

where each formula holds for 4 sufficiently large, and
the constants are V-dependent. However, the powers
4 or § are not V-dependent.

In this paper, we examine the analogous question
for G(AV), the binding energy of the ground state of
—A + AV. We define G so it is positive, i.e., G is the
negative of the energy of the bound state. We only
deal with potentials which are “negative somewhere”
(see Ref. 1, Corollary 1). In this case if 4, =
inf {2 > 0| N(AV) > 0}, G(AV) only makes sense if
A > 2y, and so we henceforth suppose 4 > 4,.

We see that, unlike N, n;, and /,,, G does not
necessarily have power growth and, when it does, the
power can vary between 1 and 4; i.e., there is not a
universal power growth. We also show that, when V'is
a (not necessarily central) potential with a single
attractive singularity r = 0, that power growth of
V at r = 0 leads to power growth of G as 4 — .
Thus, the large coupling-constant behavior of G

* This research partially sponsored under Air Force Office of
Scientific Research under Contract AF49(638)-1545.

t N.S.F. pre-doctoral fellow.

1 B. Simon, J. Math. Phys. 10, 1123 (1969); F. Calogero and G.
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“mirrors” the small r behavior of V, which is an
intuitively expected result.

For convenience, we restrict ourselves to potentials
V which are the sum of an L? and an L® function.
This class was first considered by Kato,® who showed
that —A 4 V is self-adjoint on D(A), the domain of
A. We call such potentials Kato potentials.

Let us summarize the remainder of the paper. In
Sec. 2, we discuss various types of power growth.
In Sec. 3, we present a class of Kato potentials for
which G(4) ~ 4 for any 1 < 8 < 4. In Sec. 4, we de-
rive several general properties of G, including the fact*
that any power growth must have 1 < <4 In
Sec. 5, we show that,if V" has power growth V ~ —r®
for r small (0 < «a < §), then G~ A# with f§ =
2/(2 — ). Finally, in Sec. 6, we present a ¥ with
G(4) not possessing power growth as 4 — o,

2. TYPES OF POWER GROWTH

For a function F(4), there are at least five natural
interpretations for the expression F(2) ~ A*:

(a) Thereis a C such that, for any e, there is an £,
with
(C—* <F(A) < (C+ e, for 2> Q,.
(b) There exist C, C’, and €, such that
CI* < F(A)<C'2, for 1> Q,.
(c) For every e, there is an £, such that

A F(A) < A, for 4> Q,.
@) lim (i a—F) —
ivw\F(2) 22
F'(A)

Aa—-—l

{e) lim exists.
Ao
3 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951).
4 B < 4 depends essentially on the fact that V is Kato. If we are

less restrictive and allow ¥ ~r=% with 2 > a > §, we get G ~ A8
with § > 4.
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(a), (b), and (c) can be rewritten in terms of limits:
(a') lim [F(4)/A*] exists and is finite and nonzero.
A—>©

(") Tim [F(4)/4*] and lim [F(4)/A?] are finite and
nonzero.
(¢') lim log F(A)/logd =a.
A-v a0

We also remark that (c) is equivalent to a form with
C, C’ as in (b). The five types of growth are related by:

Theorem 2.1:
(@— (b
A N
)~ @) —(0)

and (d) + (a) — (e¢). Moreover, no additional im-
plications (single or multiple) hold.

Proof: (a) - (b) — (c) is immediate, as is (d) +
(@) — ().

To see that (d) — (c), suppose (d) holds and « is
given. Then find Q, so that 2 > Q, implies

oc——e< 1 0F a+te
2 F(2) 02 I

which, integrated from €, to 4 and then exponentiated,
says
AN F(A) A\
< Iy < - ’
(&) (&)

Q, F(Q,)
which is (c) (in the C, C’ form).

(e) — (a) requires the integration of an inequality
as in (d) — (c). This integration also shows that when
(e) holds,

PO _ o 1im D

)»“_1 )’a

which is L’Hopital’s rule. This means that (e) — (d).
To see that no other implications hold, we remark

that F(4) = A(2 + sin A%) obeys (b) and (d) but not

(a) or (e); F(A) = Alog A obeys (c) but not (a), (b), or

(e); and F(4) = [1 + (1 + A)7sin A*] obeys (a), (b),

(c) but not (d) or (e). Q.E.D.

lim

We write F(1) ~ 2*(—), to indicate growth of type
(=). We remark that similar power growth for V(r)
at r — 0 is also meaningful. In this notation, we have
the following:

Theorem 2.2: For a large class of potentials,
N@Y)~ 2 (b); m(AV) ~ 2 (b); Lex(AV) ~ (D).
(See Ref. 5.) For proof, see Refs. 1 and 2.

8 K. Chadan [Nuovo Cimento 58A, 191 (1968)] has shown that
1 (AV) ~ A} (a) for a restricted set of V.
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3. A CLASS OF EXAMPLES WITH DIFFERENT
POWER GROWTH

Consider the class of potentials, V,(r) = —r For
V to be Kato, we must® have 0 < o < 2. We first
remark that —A + AV, always has bound states; in
fact, because V falls at oo more slowly than r—2,
—A + AV always has infinitely many bound states”;
we do, in fact, prove this below.

Theorem 3.1: There is a unitary transformation
U(4, &) so that
U, oy (—A + VYU, o) = H(—A + V),
where f = 2/(2 — a).

Proof: The formal scaling r — A#/%r takes —A + 1V,
to ##(—A + V,). Thus we let

[UQ, a)y)(r) = A%/yp(22r).

Then U is unitary and UY(A)U = ¥A, UWWVU =
A2y But

o+ 1=14[«/2—a)]=2/2—0a)=4,

so the theorem is proven.

Corollary 3.2: For any A,, —A + 1,V has infinitely
many bound states.

Proof: A simple variational-principle argument as
in Simon,! Corollary 5, shows that —A + AV, has
arbitrarily many bound states for 4 sufficiently large
[i.e., N(AV)— co]. But by Theorem 3.1, —A + AV,
and —A + 1,V are unitarily equivalent up to a factor
and so have the same number of bound states.

Corollary 3.3: G(AV,) = #*G(V,), and thus
G(AV,) ~ 28(e).

Thus,in particular, any power growth 1 < 8 < 4
is possible for Kato potentials. We can see that
f =1 and B =4 are also possible. [For § = 1, see
Theorem 5.1; for f = 4, we remark that Theorem
5.3(iii) implies that ¥(r) = r~#(1 + |log )1, which is
Kato, has G(AV) ~ A4(c).]

4. GENERAL PROPERTIES OF G(V)
Let us write G(4) for G(AV) when V is held fixed.

Theorem 4.1: There is an Q and a B > 0 such that
G(A) > BAif A > Q.

8 Physically we expect no trouble if & < 2, but the mathematics is
more complicated for « > 3§, so we restrict ourselves.

? R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Vol. I, p- 447.
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Proof: Let A, be as in Sec. 1 and let y be the ground
state of —A + (4, + 1)V. Then b = (y, Vy) <0, so
that (y, (—A 4 AV)y) = a + Ab with b < 0. By the
variational principle, G(A) > —a — Ab. Let Q =
—2afb, B = —b[2, and the theorem follows.

Theorem 4.2: There is a ¢ > 0 such that G(4) <
CA* for 4 sufficiently large.*

Proof®: First suppose V € L2 Let y, represent the
ground state, and write k2 = G(4), with &k > 0. By
Kato’s theorem, ¢, € D(A) so that (—A + AV)y, =
—k?*y, implies y; = (A — k*1(AV)y,. Thus 9,
obeys the integral equation

Pix) = — A f exp (—klx — v V(»)wa(y) d°y.
dm lx — yl
Thus
d’x WA(X)F
A2 3 3 3., ’
<(4ﬂ)2fd xfd yfdy 1) 900
o YO IVG)Iexp [—k(lx — yl + Ix = y'D]
Ix — ylIx — ¥l
= 2'2 3 3., ’ ,
= Jd yfd Y VO VO 190 19207

xfd‘"‘x exp [—k(x — yl + [x — Y'l,)]_

[x — yl[x" — yl
The x integral is 2n/k) exp (—kly — y') < 2=/k.?
Thus,

2 2
Il < gfr—k[ f &y V) I%(y)l]

}'2 2 3 2
£ &y V)3
< Py llpall J v IV(»)

where this last inequality follows from the Cauchy-
Schwartz theorem. Therefore, k < C¥A2 or G(A) =

k2 < Cas
Now suppose that V = V; + V, with V; € L? and
Vo€ L” and let ||[Vy]lo = D. Then V > W, where
W=V,— D,soGAV)< GAW)= G@AV) + AD <L
AC + AD, and so the theorem holds true in this case.
Q.E.D.

Let us henceforth restrict ourselves to ¥’s which
lead to nondegenerate ground states for —A + AV;
in particular, ¥ can be any central potential and any
but the most pathological noncentral potential.

8 This is a modification of an argument, due to G. Tiktopoulos,
private communication.

® This can be done most easily in prolate spheroidal coordinates
Ior by Iusing the Green’s-function equation for exp (—k |x — y|)/
x — y|.
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Theorem 4.3: G(4) is a real analytic function for
A> 2, and G'() = —(y,, Vy,), where p, is the
ground state.

Proof: V is a small perturbation of —A 4 AV in the
technical sense.!® Since the ground state is nonde-
generate, Rayleigh-Schrodinger perturbation theory
for G(A + 4,) (expanded in 1) converges,!! and so G
is real analytic. Moreover, G'(4) is given by the
perturbation theoretic result as —(y;, Vy;). Q.E.D.

The condition —G’'(4) = (y,, Vy,) is the famous
Feynman-Hellman theorem,'? whose proof is seen to
be completely rigorous for Kato potentials.

Theorem 4.4:

(i) G(A) > 0;

(i) G'(A) > 1'G(A);
(iiiy G"(4) > 0.

Proof:
(1) is immediate.
(ii) follows from the fact that —A is positive for

G(A) = (i, Ayyy — Ay, V) < —AG'(A).

(iii) follows from the fact that the second-order
perturbation term for —G(4) is negative. Alternately,
we can prove that G'(4) is increasing directly, as fol-
lows: Let 4, > A, and write y; = y, . By the varia-
tional principle,

G(A) = (y1, Ayy) — Alyy, Vo) > (ys, Ay,
- 2'1 (% ’ V'Pz) ’
G(Ay) = (yq, Ayy) — Aoy, V) > (yy, Ayy)

= Aayr, Vo).
Adding, we see that

(A — )(wa, Vo) > (A — ) (pr, Vipr)

or
—G'(A) > —G'(Ay). Q.E.D.
(ii) can be used to give an alternate proof of
Theorem 4.1. (iii) tells us that G is convex. We remark
that the reasonable conjecture that a smooth convex

function has power growth is false, as our example in
Sec. 6 shows.

10 T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1966), pp. 375-377.

11 Reference 10, pp. 381-382.

12 R. P. Feynman, Phys. Rev. 56, 340 (1939); H. Hellman, Ein-
fiihrung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p.
285.
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Theorem 4.5:
@) G < — s, AV + 4r-9y,).
(ii) If 9¥[or exists and the Virial theorem is obeyed,
then
G(A) = —Aly,, $r(@V[or) + Vy,).

Proof:
(i) follows from the simple fact that, for any
y € D(B),

2\
(p, —Ay) > <w, Ly

(see Ref. 13 for a proof when g is C” of compact
support and then use the fact that A is the closure of
its restriction to these functions).

(ii) follows from the Virial theorem

20p,, —Ay,) = (y,, r(@V[oryy,).

For a C? central Kato potential, the standard proof
of the Virial theorem* should go through. For the
noncentral case, Weidmann?® has given simple con-
ditions for the Virial theorem to hold as a rigorous
result.

Q.E.D.

Theorem 4.6: If V, and V, are Kato and V,(r) <
Vy(r) for all r, then G(AV;) > G(AV,) (even if the V;
do not go to 0 at r = c0).

Proof: This is an immediate consequence of the
variational principle. We have, in fact, already used
this argument in the proof of Theorem 4.2.

5. POWER GROWTH AT r =0

Let us first eliminate the trivial case of potentials
that are bounded below.

Theorem 5.1: If V(r) > —C for some constant
C > 0, then G(1) ~ A(e).

Proof: [Notice that (b) growth is trivial since we
have Theorem 4.1 and G(4) < AC.] We have G'(4) =
—{y,, Vy,;) < C. Thus G’ is bounded above, but G’
is increasing by Theorem 4.4(iii). Thus lim G’(4) exists

>

and is finite, i.e., G(1) ~ A(e). Q.E.D.

We deal in the remainder of this section with the
more interesting case of potentials with attractive
centers. We could deal with the case of finitely many
centers, but we restrict ourselves to the following
class.

13 Reference 7, p. 446.

14 The normal proof really supposes Y3 € DI[(9%/9r®)r(/dr)]. For
negative energy eigenfunctions in a C* Kato potential, one should be
able to prove that v; decreases exponentially from its integral
equaatlon For the radial Schrodinger equation, it follows that y;
is C3,

15 J. Weidmann, Bull. Am. Math. Soc. 73, 452 (1967).
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Definition: We say a potential V is attractive if
(i) lim ¥(r) = — oo,

70

(ii) for every R > 0, V is bounded in the region
{r|r> R}. (We say that V is “bounded outside
spheres.”)

Definition: We say V has attractive growth «(a)
[or a(b), a(c)] if

(i) Vis attractive,

(ii)) ¥V~ —r—=(a)as r =0 [or (b) or (c)].

We reserve a(d) and «(e) for a slightly stronger con-
dition.

We are heading towards proving that whenever ¥V
has attractive growth « of some type, G(4) ~ A% with
the same type of growth where § = 2/(2 — «): For
growth of type (a), (b), or (¢), the crucial element of
the proof is the following:

Lemma 5.2: If V(r) < —Ar~ + B, then G(1) >
ARYZ" — BA;andif V(r) > —Cr=" — D,then G(A) <
CR,A’ + D2, where 6 = 2/(2 — y), and R, = G(V,)
as in Sec. 3.

Proof: This follows immediately from Theorems
3.3 and 4.6.

Theorem 5.3: Let 0 < o < $. Then

(1) If ¥ has attractive growth «(a), then G(4) ~
().

(i) If V has attractive growth a(b), then G(1) ~
24(b).

(iii) If V¥ has attractive growth a(c), then G(4) ~
A8(c).
In each case, § = 2/(2 — «). In case (i),

lim GA) = R,lim — Y—(Q
A~ o0 }.ﬂ r—0 r*

Proof: (i) Since V is bounded outside spheres and
V ~ —r~—%(a), there is a C = lim —V(r)/r*, so that
>0

for every e, there is a B with

—(CH+eagr*—=B<V(Ir) < —(C—er*+B.
Thus Lemma 5.2 implies
(C — )R — BA < G(2) < (C + €)R,A* + BA.

Since 8 > 1, for every e we have

(C — &R, < lim —— o) < lim G(Z) < (C + €)R,.
yid Fa
Since e is arbitrary,
lim —= G() = R,C.
A= lﬂ
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(ii) Since ¥V is bounded outside spheres and
V ~ —r~*(b), there is a B, C, C’ so that —Cr—* —
B < V(r) < —C'r® 4+ B. Thus Lemma 5.2 implies

R,C'A* — BA < G(A) < R,CA* + BA.
Thus for A sufficiently large,
3R,C'2F < G(1) < 2R,C2:.

(iii) Since ¥ is bounded outside spheres and
V ~ —r~*(c), for every ¢, there is a B so that

—r** — B <L V()< —r**+ B.
Thus Lemma 5.2 implies
—Bi+ R, ™ < G(2) < Ryy ™+ + BA,

so that

— log G(4) <

< lim + €.
log 2 fte

b ¢ < limEGD)
— logi

Since € is arbitrary and €', € — 0 as e — 0, we have

lim 1089 _ 8.

.E.D.
log A Q

A=

We finally get to the interesting cases of Type (d)
or (e) growth. The Virial theorem is crucial and so we
restrict ourselves to the following:

Definition: We say V has attractive growth a(d) or

a(e) if
(i) Vis attractive,

(ii) V'~ —r=(d) [or (e)],

(iii) V obeys a Virial theorem,

(iv) r(9V/or) is bounded outside spheres.

Condition (iv) is not essential in its strong form.
Using the fact that v, falls off exponentially, we could
probably survive with e~*[r(d¥/dr)] bounded for
some «. However, only the most pathological ¥’s
fail to obey (iv) and so we do not consider weakening
it in detail.

Lemma 5.4: Let fi(2), g;(A) (i = 1,2) be positive
functions with g, — o0 as A — . Suppose that

A= gy
(i1) 1fi(A) — g« < B for some B and all 4.
Then
M_lim_gL(&). rfi(Q:l?n&li—l)
J4)

lim = ; .
T T g(A) 82(4)

1419

Proof: We first remark that f, — o0 as 4 — oo by (i)
and (ii). Moreover,

h & =f182 — /& - (fi — 808 — &:1(fa — g2)

fo g J28a g fa
_hi—8) slfa—g)
e g
But for 4 sufficiently large, (g,/g:) < 2C, so
L_ & B 2B
o &l fa fa
Thus
lim |2 — 8| = o,
A= o0 fz g2

so that the theorem follows.

Theorem 5.5: Let 0 < a < 3. Then:

() If V has attractive growth «(d), then G(4) ~
AB(d).

(ii) If ¥ has attractive growth a(e), then G(4) ~
M#(e).
In either case, § = 2/(2 — «). In case (ii),

limG—('12 = &lim - -VLT)
A= o0 }sﬂ_l o« r=0 Ta—l

Proof: (i) By the Virial and Feynman-Hellman
theorems,

G _ (vs, Gr(@V/or) + VIy)

G (w2, Vo)
Let us fix some R and let
b= P

Then |y, , Vy,) — (v, Vo gl and

[pa> Br(@V[0r) + Vy,)

— {w;, Gr(@V/or) + VIv)rl
are bounded,
h_m_G_(i)_ <1
AG'(A)
[by Theorem 4.4(ii)] and {y,, Vy,) — . Thus, by
Lemma 5.4, the [im and lim of G(A)/AG’(A) are the
same as that of

(¥, (%r(aV/ar) + Mvor

(¥, Vyor

for any fixed R. Since V(r) > — o, pick R,, so that
V(r) < -1 for [r] < R,y. Given ¢, choose R so that
R < Ryand

<e for || <R.

Downloaded 11 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Thus

(o), oo

= <’/’A’ V(_r‘a—V + g) 1/’/1>R{ < ';' Kyas Veorl.

2V or
Thus
1% _ € 1, Gr@V/on) + V)yy)p
2 2" (¥ Vyor
1-%45
< 2 + 2
so that
. G() _=— G a« €
1—-2—S<tim 22 <fim 24 % €
2 2 e S STt
Since e is arbitrary,
lim -S4 _y_x_ 1
AG'(2) 2 B

so (i) is proved.

(ii) By Theorem 2.1, (e) implies (d) and (a) growth.
Thus, by Theorems 5.3(a) and 5.5(a), if ¥ has attractive
growth «(e), then

G(A) ~ 2(d) + (a).
But (d) + (a) — (e) so G(4) ~ A#(e). Moreover,
lim o) =lim AG(1) lim@
PR | B G(4) i~ yid
V(r)

= ﬂR, lim —
r~>wo F

- ﬂR,(lim V'(’)) (lim V) )
r=0 1 [ \rso rV'(r)
= BReji V'O
o« r-s0 r*

(by Theorem 5.3)

6. A CLASS OF EXAMPLES WITHOUT POWER
GROWTH

In this final section we construct potentials for
which G(2) does not have power growth. On the basis
of Sec. 5, we should try to construct them from
potentials V' which do not have power growth at
r=0. In fact, we use central potentials which
alternately grow as r~* and r—2. The key to handling
G(4) in this case is the following lemma:

Lemma 6.1: Let V be a central potential which
monotonically decreases as r decreases. There is a
positive constant C, independent of V, so that for any

BARRY SIMON

fixed R and 2
C . 1
—(R—z + W(R)) < G(#) < —min [472 + W(r)J-

Proof: The upper bound follows from Theorem
4.5(i). To get the lower bound, pick (independently of
V) some fixed normalized C* function ¢, with sup-
port inside the ball {r | |r] < 1} and let

C=(p, —Ad) > 0.
Let ¢5(r) = R-¥4(r/R), so that

[1gsrr @ =1.
Then, by the variational principle, for any R,

—G(A) < ($r, (—A + AV)dz).
We have {(¢p, —Adr) = C/R:. Moreover, since
supp () < {r|[r| < R} and ¥ is decreasing,
¢z, Vér) < V(R).

Thus —G(4) < (C/R?) + AV(R), which yields the
lower bound. Q.E.D.

We could have proven Theorem 5.3 using a
strengthened form of Lemma 6.1.

We construct our examples by using the following
basic fact about potentials which grow as a “variable
power”’:

Lemma 6.2: Let y, be a sequence of numbers with
0<y <y, <a;<$ Let 4, be a sequence of
numbers with
O<"’<An<An_1<"°<A1=1<A0= 0,
Let ¥(r) be given by

V(r)= —-r"+B,,
if 4,,; < r < A,, where the B,’s are defined by By =
0, and by the requirement that ¥ be continuous. Let
61; = 2/(2 - yn)'

Then there exist constants C, and C, dependent only
on «, and «,, so that
—AB, + Cii* < G(2) < =B, + C,i%
whenever
3 (4,7 < 2 < {4(4,4)* " — B(4, )"}

Proof: We first show that under the conditions on
A, that AV + 4r—2 takes its minimum value when
r € (A1, A4,). For suppose that r > A, . Then, for
any m,

Ymd > 0uh > HA) TR > J(A,)0mE > gt
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(we have used the facts, oy < v,, <2 and 4, < 1). .

Thus
@ldr)(=Arm & 372 = (Ay,, — =2l > 0,

so that AV 4 4r—2 decreases monotonically in the
region r > A,, and so the minimum is taken for

r<A4,.

On the other hand, the upper bound for 4 implies
that

—A 1

+ 4B, +
(4™ 4(Ap1a)?
1
= ——— {1 — 42[(4,.)* ™ — B,(4,.)1} > 0,
m An+1)2{ [(4ns0) (4.1} 2

so that +AV + 2 >0 at r=4,,,. But [r*V] is
monotone decreasing as r — 0, so AV + $r—2 > 0 if
r< A,,;. Thus, we have shown that AV 4 4r—2
takes its minimum value in (4,,,, 4,) and hence at
the point

r=R,(A) = (y, )2
At this point

WV(R,) = 1B, — ()1t
and
R—2 = ('}’ )2/(2—y,.)}_a,.'

Thus, using Lemma 6.1 with R = R,, we see that

—1B, + C,4%* < G(A) < —AB,, + CyA%,

where
Cy = max {(y)"*7 —}()¥*7},
ay<y<ag
C,= min {(y)1/(2—4-) - C(,y)zl(z—y)}. Q.E.D.
ay<y<ag

To assure that C, > 0, we restrict ourselves to
oy < min (1, C1). This restriction is not essential;
if we were to work harder, we could probably remove
it. However, we only want examples of nonpower
growth—we do not wish to examine it in detail—so
we take the lazy way out.

Theorem 6.3: Let a,, a, be two numbers with
0 <oy <ay<min (1, C?), and let §;, = 2/(2 — «,).

1421

Then there is a Kato potential V' with

< By lim—— .
loghA — fu lim log A 2 b

i 108 G(AV)

In particular, G fails to have power growth at co.

Proof: Pick the sequence y, as in Lemma 6.2 by
Vom = %z, Yami1 = %;. We shortly pick the 4,’s and
B,’s recursively. Once we have done this, we define
V as in Lemma 6.2. For all 7, ¥ > —r—*. Thus V is
Kato. Let 4, =1 and suppose we have picked
Ay, ,A,, and thus also B,,---, B,. If we had

—1B, + C;A% < G(A) < —1B,, + C A%
for all 2 > (2¢;)714% 72, then it would follow that
lim 2ESA) _
ino log i
so we pick 4, > (2¢;,)4%2, so that

ns

— 6"
log (—4B, + C,4 )__én <l’ atA=14,,
log 4 n
and
— Jﬂ
log ( ABH+C21)_6n <1, ath=1,
log A n

(C, > 0 s crucial here). Now pick 4,,,,, so that
{4'[("4n+1)2—}"l - Bn(An+1)2]}_1 > }“n

and
A, < A,.

This is always possible since
4[(Apn)* 7 = By(4,10)° ' —> 0

as A,y — 0. Determine B,,; and proceed to pick
Anyzs* . The V so constructed has the property
that log G(4;,)/log 4, — B, and

log G(2241)/108 X251 — B
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