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POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE 
PACKETS IN N-BODY QUANTUM SYSTEMS. I 

ABSTRACT. We provide a simple proof of (a modification of) 
Kato's theorem on the Holder continuity of wave packets in 
N-body quantum systems. Using this method of proof and recent 
results of O'Connor, we prove a pointwise bound 

on discrete eigenfunctions of energy E. Here E>O, a:=2 (mass of 
the system) [dist(E, o,,,)] and 1x1 is the radius of gyration. 

1 .  Introduction. In 1957, T...Kato published a beautiful paper [2] 
which has not received the attention it deserves. Our secondary goal in 
this note is to provide a simple proof of Kato's result on the Holder 
continuity of "wave packets" (i.e. vectors in Cm(H))for N-body quantum 
systems on R ~ . ~ - ~with two body potentials. Our proof of this fact, which 
appears in 92, uses the basic elements of Kato's proof, especially an 
Lp-bootstrap; but by working in momentum space instead of configuration 
space, we avoid the use of modified fundamental solutions and the only 
Lp estimates we will need are Holder's and Young's inequalities. 

Our interest in Kato's paper was aroused by, and our major goal is 
related to, recent work of R. Ahlrichs [I] on the exponential falloff of 
discrete eigenfunctions of atomic systems. On physical grounds, one 
expects such an eigenfunction Y to behave more or less like exp(-aolxl) 
as Ix]-+cc where 1x1 is the radius of gyration of the system (see 93) and 
where a, is a simple function of the masses of particles and the distance 
of the eigenvalue from the essential spectrum, (see 93 for an explicit 
formula). Ahlrichs proves that exp(alxl)Y E L V o r  any a<ao. He then 
uses Kato's result to prove that Y obeys a pointwise bound 

where b<aao with a an explicit constant smaller than 1. One expects a 
bound of the form ( I )  to hold for all b<a, and it is this result which is our 
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main concern here. Our proof of a pointwise bound with b arbitrarily 
close to a, appears in $3. 

Independently of Ahlrichs, A. O'Connor [3], [4] proved that 
exp(a1xl)Y E L2 for a<a,. O'Connor's method is very elegant, and his 
result is much more general than Ahlrichs requiring very minimal hypoth- 
eses on the potentials. Our proof in $3 will result by a simple synthesis 
of our version of Kato's Holder continuity theorem and O'Connor's 
methods. 

In $4, we give a brief discussion of the extension of our results to the 
situation where the pair potentials are in Rn (n#3) or where the Hamil- 
tonian must be defined as a sum of quadratic forms [5]. 

It is a pleasure to thank J. Ginibre and A. O'Connor for valuable 
conversations and N. H. Kuiper for the hospitality of I.H.E.S. 

2. Kato's Holder continuity theorem. Throughout this section, H, 
represents an operator on of the form Ho=-Z:z:L ~ ( R ~ ~ - ~ )  aijaiaj 
where a,, is a positive definite matrix. We write h(k)= 2 ajjk,kj. 

DEFINITION.Let 2,(oSco. We say that V is a potential of type 
Me if V= W+z,,, Y,  where I is a finite index set and 

(1) @is in L ' ( R ~ ~ - ~ ) ;  
(2) for each a E I, there is a projection Pa onto some RS in PNv3SO 

that Ya(x)=Z,(Pax) where Za is a function on R3 with 2, E LC+L1 where 
r - l + r 1 =  1. 

REMARKS.(1) denotes the Fourier transform. A 

(2) By the Hausdorff-Young inequality, Za E Le+Lmc (L2 +L")(R3) 
so V is H,-bounded with arbitrary small bound (alternately, see Lemma 1 
below). Thus H,+ V =  H defines a selfadjoint operator on D(H,). 

(3) Condition Me should be compared to Kato's condition in [2], 
that W E  Lm, Za E (Lo),, the La functions of bounded support. Kato's 
conditions and Me are roughly comparable, but for example if Za(x)= 
sin(lxl), V obeys Kato's conditions but not Me; if 

Za(x) = 2m 
C, IX - r,l-l where 2 [C,I < co and r ,  -,a, 

n=l 

then V obeys Me but not Kato's conditions. In any event, either allows 
Yukawa or Coulomb pair interactions. 

DEFINITION.Ce(Rn)(0< 8< 1) denotes the uniformly HBlder continu- 
ous functions of order 8, i.e. Y E Ce if and only if 

for some M and (almost) all x,y E Rn. Similarly Y E CA(R")means Y 
is continuously differentiable and for each i= 1, - . . ,n, a,Y E Cg. 
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THEOREM1. Let H= Ho+ V where V is of type M,. Then: 
(1) If 0 2 2 ,  any Y E Cm(H-)=om in forD(Hm) is c ~ ( R ~ ~ - ~ )any 

6<min(l, 2-30-I). 
(2) I f0>3,  any Y E Cw(H) is in c ~ ( R ~ ~ - ~ )for any 6< 1-30-I. 

REMARKS.(1) AS we shall see, the condition Y E  Cw(H) can be 
replaced with Y E D(Hm) for some rn with (m- 1)(4-60-')>3N-3. 

(2) If Cm(H) is topologized with the norms llYllm=l j  HmYj l  and if 
Ce (resp. Ci) is topologized with the norm 

(resp. l l  f ll~=sup,l f(x)l +Z,"=lllafile), then the imbeddings Cw(H)c  C, 
guaranteed by the theorem are continuous. 

(3) Except for a slight difference in the assumptions on V, this is the 
main theorem (Theorem I) of [2]. 

(4) The basic perturbation estimate tells us that (Ho+l)-lV is bounded 
from L2 to L2. Our proof (like Kato's) is based on two ways in which this 
can be improved. First (Ho+I)-W is bounded for certain !<1 and 
secondly it is bounded on certain LP spaces. 

L E M M ~  Let V be of type M, and let 8>3/20. Suppose that 1,(ps21. 
and let Y E Lp. Then ((Ho+I)-P vY)^ E Lp. 

REMARK.This lemma (and similar statements later) are intended to 
hold in the sense of a priori estimates 

lI((H0 + ~ ) - 8 v ~ ) A l l ,s C ll~Pll, 
for all Y E Y(R~~"-"). 

PROOF. 
((H, + 1)-P v\y)A= (2n)(3.V-3)/2 (h(k) + I)+P * @. 

A A h 

We consider the individual terms w * Y and ?, * Y in P * Y. Since 
W E  L' and (h(k)+l)-P E L", 

ll(h(k) + l)-Pw* lPllV5 ll(h(k) + l)-PllmI 1  Will ll~Pllp 
by Young's and Holder's inequalities. 

31%'-6fork,landP,for the 3 coordinates in Ran k,Write orthogonal 
coordinates. Since (k:+ I )-O E L0(R") for each p s  a, 

Il(kE + *f)(k,)llp 5 C llf 11,. 

Thus for each p 5 2  and each fixed k,l: 

f i(k: + l ) -P/~,(k,  - k:)l(kh, k:) dk: I"dk, 5 CS 1 f 1 (k,, k:)Iv dka. 
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A A 

Integrating over k,l, we conclude that I j  (k: + paE, Y 11 ,sCl IIY11 ,. 
Since (k:+ 1)B(h(k)+l)-8 E L*(R3N-3),the lemma follows. 

LEMMA2. Let V be of type A$, and let y < I  -3120. Let l S p s 2 .  
ZfY, ( H Y ) ~E Lp, then (1 +lk12)YYE Lp. 

PROOF. Since (H+ l)Y= (Ho+ 1)Y+VY, we have Y =(Ho+ 1)-l x 
(H+l)Y- (Ho+ 1)-IVY. SO: 

where p= 1-y >3/2a. By hypothesis, the first term on the right-hand 
side of (2) is in LPand by Lemma 1, the second term is in LP. 

For the reader's convenience, we include the following standard 
result: 

LEMMA3. Zf (1 +lk12)y!? E L1(Rn) for >O, then Y is C. for any 
8 with B<min(l, 2y). I fy>4,  thenY is Cifor any e<min(l,  2y-1). 

PROOF. For any y E R, leiY-lli2 and l e iv - l l= I J~e ixdx /~y .  
Therefore, for any 8 2 1  and all k, x and y E Rn, leik.Y-eik.vI =< 
2"-" ~ k l ~ l x - ~ l ~ .Thus: 

This proves the first statement in the lemma. The second has a similar 
proof using 

leiY- 1 - iyl s 2 Iyl and leiY- 1 - iyl l Y l 2 .  
PROOFOF THEOREM1._ Since (I +lk12)-YE p ( R n )  for all q>n/2y, 

Lemma 2 implies that if Y ,  ( H Y ) ~E LP,then Y ELr for all r &  1 obeying 
r & (p-l+ (2y/(3N-3)))-l. By induction if m z k  and if *,... , (H"\T)^ E 
L2 then '?, . , (H~Y)"E Lr if r & l  and r z (++(m-k) (2y / (3N-3) ) ) - l .  
Since y can be chosen arbitrarily close to 1-3/20, we have that for 
any integer m with (2m)(2:3/0)>3N-3, 

(i) Y E D(Hm) implies Y E L1; 
(ii) Y E D(Hm+l)implies that (1 +lk12)~'? E L1 if y<  1-3/20. 
Lemma 3 completes the proof. 

3. Pointwise exponential falloff of discrete eigenfunctions. By an 
N-body quantum Hamiltonian of type M,, we will mean an operator 
fi on L ~ ( R ~ ~ )of the form 
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Where a point in pNis written (r,, .. ,rN) with ri E R3, Ai is the La-
placian with respect to ri and Vij is a function on R3 with pijE Lq+L1 
where q-I +r1=1. 

Write M= Zzl  mi (total mass), R= M-I zzlmiri (center of mass) and 

(radius of gyration). In a standard way we can choose linear coordinates 
(rl, : .,riv-,, R) so that under the resulting decomposition 

We will call H a reduced N-body quantum Hamiltonian of type Mu. Such 
a Hamiltonian is always of the form Ho+V where V is a potential of 
type Mu in the sense of $2. By a further linear coordinate change (of 
Jacobian not necessarily I), we can suppose that x2=ZZ;' [ & I 2  in which 
case 

THEOREM2. Let H be a reduced N-body quantum Hamiltonian of type 
Mu. Let Ec=inf a,,,(H) and suppose that H Y = E Y  with E<Ec. Let 
a,=(2M(Ec-E))lf2 and let 1x1 be the radius of gyration. Then 

(1) For any al<ao, there exists a constant Dal with 

lY(5)l S Da, exp(-al 1x1) 
for all 5 E R ~ ~ - ~ .  

(2) For any al<ao, and 8<min(l, 2-3r1), there exists a constant 
D,,, with 

lY(5) -Y(5')l 5 Do,,, ex~[-a1min(lll, 15'1)l 15 - 5'le 
for all 5 ,  5' E R ~ ~ - ~ .  

(3) Ifa>3, for any al<ao, and 8< 1- 3 r 1 ,  there exist's Di,,, with 

Igrad y(5) - grad Y(5')l $ Din,,exp[-a, min(l51, 15'1)115 - 5'le 
for all 5, 5' E R3N-3. 

REMARK.The constants, D,,, and DLra1depend on V only 
through Lp norms of the pij. 

PROOF. Suppose H is in normal form. By a Payley-yiener argument 
(see, e.g. O'Connor [3], [4]), we need only prove that Y ha: an analytic 
continuation to the tube {k E c ~ ~ - ~ I[Imk[<ao) so that if Ya is defined 
by '?a(k)='?(k+ia) for any a E R ~ ~ - ~with [a[<aO,then (1 +k2)?qaE L1 
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with L1 norm bounded as a runs through the set {a/lal<a,} for each 
a, <a,. Here y is any real less than 1-3/20. 

OIC_onnor [3], [4] has already proven that such a continuation exists 
with Ya E G2 uniformly as a runs through sets of the form {a/lal<al}. 
Moreover Ya obeys the equation 

LI h 

(3) ((k + i ~ ) ~- E)Ya = ( 2 ~ r ) ' ~ " - ~ " ~ P* Ya. 

By mimicking our argument in 92, the equation (3), the condition that V 
be of type M, and O'Connor's L2 bounds imply the required L1 bound 
on (1 +k2)~+. 

4. Extension to higher dimensions and to operators defined by quadratic 
forms. In this section, we wish to generalize Theorem 1;  a similar 
generalization of Theorem 2 holds. Since there are few new ideas, we only 
sketch the arguments. 

DEFINITION.Let o z  I .  We say that V is a potential of type M:~' on 
RmN-m if V= W+xa,, Ya where I is a finite index set and if 

( I )  w E L ~ ( R ~ ~ - ~1. 
(2) For each K E I ,  there is a projection Paonto an Rmin RmhT-"and 

a function Z, on Rm with 2, E L~+Ll( r -~+o- l=I )  SO that Ya(x)= 
Z a  (Pax). 

If 0 1 2  and o>m/2, then Ho+Vcan be defined as a selfadjoint operator 
sum. If 2>o>m/2 (in particular, only when m s 3 ) ,  we can define Ho+V 
as a selfadjoint operator which is the sum of Hoand V as quadratic forms 
[5].We have: 

THEOREM1'. Let H=Ho+V where V is of type M:~) with o>m/2 
(and 02I). Then: 

(1) Any \r E Ca(H) is in c,(Rm"'-") for any 6 <min(1, 2-mo-I). 
(2) If o>m, any Y E C" (H) is in c ~ ( R ~ " - ~ )for any 6 < 1 -mo-l. 

SKETCHOF PROOF. Case 1 :  0>2. Our proof of Theorem 1 goes 
through with minor modifications; Lemma 1 holds if p>m/2o and Lemma 
2 if y< l -m/2o. The condition 0 2 2  enters in the proof of Lemma 1, 
since to apply Young's inequality to LP * D we need p-'+q-'> I. 

Case 2: 22o>m/2. A simple quadratic form modification. We first 
note that Lemma 1 holds if p>m/2o and if p s o .  Moreover, we have: 

L E M M ~1'. Let o _ l p 5 2  and define K by a-l+o/p= 1. Let B>m/2o 
and let Y E LP. Then the Fourier transform of (Ho+1) - " - a ' 8~ (~o+I ) -"~Y 
is in Lp. 

LEMMA2'. Let p, o, x, p be as in Lemma 1'. Suppose that ( 1  +k2)"@$, 
(HY)^ ELP. Let y< l -m/2o. Then (1 +k2)?(l +k2).@'? E LP. 
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The proofs of Lemmas 1' and 2' follow the pattern of Lemmas 1 and 2. 
If Y E Cm(H), then H n Y  E Q(H), the form domain of H for each n. 
Since Q(H)=Q(Ho), (1 + k 2 ) 1 / 2 ( ~ n ~ ) AE L2 for a11 n. By a finite induction 
using Lemma 2', (H"Y)* E La. Lemma 1 is now applicable and the proof 
is completed as in Theorem 1. 12 

One can ask if some modified version of Theorem 1' remains true at 
the borderline value o=m/2. If m z  5, Ho+V can be defined as an operator 
sumif Visoftype M$ andi fm=2,3 ,4 ,  H,+Vcanbedefinedasasum 
of forms. However, in this borderline case, there may be unbounded 
functions Y E Cm(H). 

EXAMPLE.Let m 1 3  and let Y be a spherically symmetric function 
on Rm so that (i) Y is Cm and strictly positive on Rm\{O). (ii) In the region 
Rl={xl 1x12 I )  Y obeys -AY= -Y and Y+O as Ixl+co. (iii) In the 
region R2={xl Ixls4),  Y(x)= -1nlxl. It is easy to construct such a 
function. Let V(x)=-1 +(AY/Y). Then V has support in Rm\Rl, and in 
the region R,, V(x) =-1+C,r2(ln r)-l .  Thus V E LmI2 (and in particular, 
if m=3, V E R, the Rollnik class [5]) and Y is in Cm(H) and is 
unbounded. 

REMARK. The above example does not work in case m=2, because 
-A(ln r)=C2G(x); but if we modify Y to equal (.-lnlxl)" with O<a< 1 
in R,, then V= -I +d,r2(ln r)-2 in R2 so V E L1(R2). Thus there is a 
borderline example in R2. 
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