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POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE
PACKETS IN N-BODY QUANTUM SYSTEMS. 1I

BARRY SIMON!

ABSTRACT. We provide a simple proof (and mild improvement) of
Schnol’s result that L2 eigenfunctions of —A + V are O(exp(~ ar)) for

any a >0 whenever V — oas r — 0.

Despite a rather large literature (reviewed in [6]) on the exponential
falloff of Schrédinger operators, — A + V, one of the strongest results is one
of the first, that of Schnol [9], who asserts that L? solutions of (- A + V)i =

Eyr obey pointwise bounds of the form
(1) |yAn)| <C, exp(-ar)

if V is continuous and bounded below and E is in the discrete spectrum of
—~A + V. The constant a in Schnol’s result can be taken arbitrarily obeying
a < {(d(E)), where [ is a universal function depending on E and V only
through the lower bound on V and d(E) is the distance of E from the essen-
tial spectrum of — A + V.

For the general multiparticle quantum system, Schnol’s results have two
obvious weaknesses: V is not bounded below in atomic and other systems of
interest, and secondly Schnol’s function f(E) behaves as In E as E — »
instead of as \/E which is suggested by spherically symmetric examples and
the theory of ordinary differential equations [8]. Much of the literature on
the subject deals with these weaknesses. Due to the recent work of
O’Connor [6], Combes-Thomas [2] and Simon [10], we now have nearly maxi-
mally good results for the case V(r)= EVZ.].(rZ. - r].) with Vz.].(x) — 0O as
X — oo,

There is another case which is better handled by Schnol’s result, namely
where V — oo at o with V bounded below (generalized harmonic oscillator)
and our goal in this note is to use the methods of the recent papers just

quoted to obtain Schnol’s results for this case.
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First, we can exploit the Combes-Thomas idea:

Theorem 1. Let V=V, +V, where V,>0,V, € L}OC(R") and where
v, is a form bounded perturbation of — A with form bound, a, less than 1
(e.ge V€ L*2(R" ) will do if n>3;seeeg. [7]). Let H=- A+V defined
as a sum of quadratic forms [4), [11). Suppose that —(1 — a)A + V, has
compact resolvent (e.g. if infM g V() > eoas R — o). Then any L?
eigenfunction of — A +V lies in the domain of exp(cr) for any ¢ > 0.

Proof. Let H(b) be defined as (z'§~ )% + V for any b € C”. It is easy
to see that H(b) is an entire analytic family of type (B) in the sense of
Kato [4] with invariant form domain D(- A2y n Q(V,). Moreover, since
H(0) has compact resolvent by hypothesis and H) is unitarily equivalent
to H(0)if b € R”, H() has compact resolvent for all b. By mimicking the
Combes-Thomas arguments, one easily sees that eigenvectors of H are
entire vectors [5] for the group exp(iz « 7) which implies our result. O

To obtain pointwise bounds on eigenfunctions we are not able to mimic
Simon [10], who combines L? exponential bounds with L™ bounds of Kato
[3] for vectors in C*(H), because Kato’s methods only work for potentials
going to zero at infinity [3], [10]. Instead we combine the L? bounds with
L™ bounds of Davies [1] for analytic vectors of H. Use of Davies’ ideas
restricts us to V’s which are bounded below, thereby recovering Schnol’s

result:

Theorem 2. Let V>0,V € Llloc(R"), infM >R V(r) — w0 as R — oo,
Let ¢ € L>(R™) lie in Q(= A) N Q(V) and obey — Ay + Vi = EYr. Then for
any a > 0, there is a C with ()| < C exp(- alr|).

Proof. It is obviously sufficient to show that for each b € R", ¢ =
exp(b « r)y € L*. But ¢ obeys H(ib)¢ = E¢p with ¢ € L? by Theorem 1.
Now, write H(ib) = H(ib) + V and consider the semigroup exp(- tH (ib)).

It is easy to write down an explicit kernel for it and see that:

(a) exp(~ tH(ib)) is positivity preserving;

(b) exp(~ tH o(ib)): L*(R™) — L™(R™) for ¢ > 0.

Write v, = min(V, n). Then Ho(ib) + Vn converges to H(ib) in strong resol-
vent sense as n — o so that

exp(=tH(ib))$ = s-lim ( s-lim (exp (~¢H ((ib)/m)exp(~ an/m))m> o)

n—oo m— oo

-tV /m
and thus since e 7 <1 (Vv>0Yand (a)
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lexp (- tH(ib)) | < exp (~tH ,(ib))|ep|

pointwise. Thus, by (b), exp(~ tH(ib))¢ = exp(~ tE)¢ is in L™ so that ¢
is in L. O

Remark. Depending on how fast V goes to infinity we expect i to obey
exp(- x*) bounds for @ > 1. We hope to return to this question in a future

publication.
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