POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE PACKETS IN N-BODY QUANTUM SYSTEMS. II

BARRY SIMON 1

ABSTRACT. We provide a simple proof (and mild improvement) of Schnol's result that L^2 eigenfunctions of $-\Delta + V$ are $O(\exp(-ar))$ for any a > 0 whenever $V \to \infty$ as $r \to \infty$.

Despite a rather large literature (reviewed in [6]) on the exponential falloff of Schrödinger operators, $-\Delta + V$, one of the strongest results is one of the first, that of Schnol [9], who asserts that L^2 solutions of $(-\Delta + V)\psi = E\psi$ obey pointwise bounds of the form

$$|\psi(r)| \le C_a \exp(-ar)$$

if V is continuous and bounded below and E is in the discrete spectrum of $-\Delta + V$. The constant a in Schnol's result can be taken arbitrarily obeying a < f(d(E)), where f is a universal function depending on E and V only through the lower bound on V and d(E) is the distance of E from the essential spectrum of $-\Delta + V$.

For the general multiparticle quantum system, Schnol's results have two obvious weaknesses: V is not bounded below in atomic and other systems of interest, and secondly Schnol's function f(E) behaves as E as $E \to \infty$ instead of as E which is suggested by spherically symmetric examples and the theory of ordinary differential equations [8]. Much of the literature on the subject deals with these weaknesses. Due to the recent work of O'Connor [6], Combes-Thomas [2] and Simon [10], we now have nearly maximally good results for the case E and E are E with E and E are E as E and E are E and E are E are E are E and E are E and E are E are E and E are E and E are E and E are E are E and E are E are E are E are E and E are E and E are E are E are E are E and E are E and E are E are E are E and E are E are E and E are E are E a

There is another case which is better handled by Schnol's result, namely where $V \to \infty$ at ∞ with V bounded below (generalized harmonic oscillator) and our goal in this note is to use the methods of the recent papers just quoted to obtain Schnol's results for this case.

Copyright © 1974, American Mathematical Society

Received by the editors December 3, 1973.

AMS (MOS) subject classifications (1970). Primary 35B40, 81A81; Secondary 35D10, 26A16, 42A12.

¹ A Sloan fellow.

First, we can exploit the Combes-Thomas idea:

Theorem 1. Let $V=V_1+V_2$ where $V_2\geq 0$, $V_2\in L^1_{loc}(\mathbb{R}^n)$ and where V_1 is a form bounded perturbation of $-\Delta$ with form bound, a, less than 1 (e.g. $V_1\in L^{n/2}(\mathbb{R}^n)$ will do if $n\geq 3$; see e.g. [7]). Let $H=-\Delta+V$ defined as a sum of quadratic forms [4], [11]. Suppose that $-(1-a)\Delta+V_2$ has compact resolvent (e.g. if $\inf_{|r|>R}V_2(r)\to\infty$ as $R\to\infty$). Then any L^2 eigenfunction of $-\Delta+V$ lies in the domain of $\exp(cr)$ for any c>0.

Proof. Let $H(\vec{b})$ be defined as $(i\vec{\nabla} - \vec{b})^2 + V$ for any $\vec{b} \in \mathbb{C}^n$. It is easy to see that $H(\vec{b})$ is an entire analytic family of type (B) in the sense of Kato [4] with invariant form domain $D(-\Delta^{1/2}) \cap Q(V_2)$. Moreover, since H(0) has compact resolvent by hypothesis and $H(\vec{b})$ is unitarily equivalent to H(0) if $\vec{b} \in \mathbb{R}^n$, $H(\vec{b})$ has compact resolvent for all \vec{b} . By mimicking the Combes-Thomas arguments, one easily sees that eigenvectors of H are entire vectors [5] for the group $\exp(i\vec{b} \cdot \vec{r})$ which implies our result. \square

To obtain pointwise bounds on eigenfunctions we are *not* able to mimic Simon [10], who combines L^2 exponential bounds with L^∞ bounds of Kato [3] for vectors in $C^\infty(H)$, because Kato's methods only work for potentials going to zero at infinity [3], [10]. Instead we combine the L^2 bounds with L^∞ bounds of Davies [1] for analytic vectors of H. Use of Davies' ideas restricts us to V's which are bounded below, thereby recovering Schnol's result:

Theorem 2. Let $V \geq 0$, $V \in L^1_{loc}(\mathbb{R}^n)$, $\inf_{|r| > R} V(r) \to \infty$ as $R \to \infty$. Let $\psi \in L^2(\mathbb{R}^n)$ lie in $Q(-\Delta) \cap Q(V)$ and obey $-\Delta \psi + V \psi = E \psi$. Then for any a > 0, there is a C with $|\psi(r)| \leq C \exp(-a|r|)$.

Proof. It is obviously sufficient to show that for each $b \in \mathbb{R}^n$, $\phi \equiv \exp(b \cdot r)\psi \in L^{\infty}$. But ϕ obeys $H(ib)\phi = E\phi$ with $\phi \in L^2$ by Theorem 1. Now, write $H(ib) = H_0(ib) + V$ and consider the semigroup $\exp(-tH_0(ib))$. It is easy to write down an explicit kernel for it and see that:

- (a) $\exp(-tH_0(ib))$ is positivity preserving;
- (b) $\exp(-tH_0(ib))$: $L^2(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ for t > 0.

Write $V_n = \min(V, n)$. Then $H_0(ib) + V_n$ converges to H(ib) in strong resolvent sense as $n \to \infty$ so that

$$\exp(-tH(ib))\phi = \sup_{n\to\infty} \left(\text{s-lim } \left(\exp(-tH_0(ib)/m) \exp(-tV_n/m) \right)^m \right) \phi$$

and thus since $e^{-tV_n/m} \le 1$ $(V \ge 0!)$ and (a)

$$|\exp(-tH(ib))\phi| \leq \exp(-tH_0(ib))|\phi|$$

pointwise. Thus, by (b), $\exp(-tH(ib))\phi = \exp(-tE)\phi$ is in L^{∞} so that ϕ is in L^{∞} . \Box

Remark. Depending on how fast V goes to infinity we expect ψ to obey $\exp(-x^{\alpha})$ bounds for $\alpha > 1$. We hope to return to this question in a future publication.

REFERENCES

- 1. E. B. Davies, Properties of the Green's functions of operators, J. London Math. Soc. (to appear).
- 2. J. M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1974), 251-270.
- 3. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151-177. MR 19, 501.
- 4. ——, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324.
- 5. E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572-615. MR 21 #5901.
- 6. A. O'Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319.
- 7. M. Reed and B. Simon, Methods of modern mathematical physics. Vol. II, Academic Press, New York (to appear).
- 8. T. Regge and V. de Alfaro, *Potential scattering*, North-Holland, Amsterdam; Interscience, New York, 1965. MR 32 #8724.
- 9. J. E. Šnol', On the behavior of the eigenfunctions of Schrödinger's equation, Mat. Sb. 46 (88) (1957), 273-286; erratum, 259. (Russian) MR 23 #A2618.
- 10. B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. I, Proc. Amer. Math. Soc. 42 (1974), 395-401.
- 11. ——, Quantum mechanics for Hamiltonians defined on quadratic forms, Princeton Univ. Press, Princeton, N. J., 1971.

DEPARTMENT OF MATHEMATICS AND PHYSICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540