Correlation inequalities and the
mass gap in P(g),.
II. Uniqueness of the vacuum for a class
of strongly coupled theories

By BARRY SIMON*

Abstract: We prove uniqueness of the vacuum in the infinite volume
(half-Dirichlet) P(g), theory when P(X) = aX* + bX®* — pX; a > 0, ¢t # 0.
This completes the proof of the Wightman axioms for such theories.

This paper is a contribution to the P(¢), quantum field theory whose
foundations have been presented by Glimm-Jaffe [3] and others (see [4], [5],
[15] for reviews of results and a guide to the literature).

It is a development in the program proposed and initiated by Guerra,
Rosen and Simon [7] of using statistical mechanical methods in constructive
field theory. This program, in turn, is an offshoot of the introduction of
Euclidean techniques and probability ideas in field theory by Symanzik [19]
and Nelson [10].

In order to describe our main result, we recall the definition of half-
Dirichlet states [7]. Throughout this paper, we only deal with half-Dirichlet
states and fields, so we do not add a superscript “D” as was donein [7]. We
also fix a bare mass, m, throughout. Given a bounded open region A C R?,
we write — A, for the Dirichlet boundary condition Laplacian on L*(A, d*x),
i.e. the Friedrichs extension of —A on Cy(A). H_,(A) denotes the comple-
tion of L*(A) in norm (., (—A, + m®)™'.)'"*. The free Dirichlet theory in
region A is the Gaussian random field over H_,(A) with mean zero and covar-
iance matrix:

(G()(@))0n = (f, (—Ax + M) 'g) .

We will denote the expectation value with respect to this Gaussian measure
by {->,.». If Pis a semi-bounded polynomial, the expectation value

(o, — XD (= UGDun
P exp (= UQA))on

where U(g) = S 9(x): P(4(x)): do and where y, is the characteristic function
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of A, defines the interaction field in region A with Dirichlet boundary condi-
tions.

Here : : denotes #, (free) Wick ordering; hence the term half-Dirichlet.
If the polynomial P intended is clear, we write { ).

The importance of half-Dirichlet states was pointed out by Nelson [12]
who noted that monotonicity of the Schwinger functions resulted. Bounds
allowing the convergence of the Schwinger functions are due to Guerra et
al. [7] and Frohlich [2]. The existence of a half-Dirichlet transfer matrix [17]

then implies convergence of the Wightman functions. One therefore has
(see e.g. [17] for details):

THEOREM. Let P(X) = Q(X) — ¢#X where Q is an even semibounded
polynomial. If f, ---, f. are functions in C3(R?) with disjoint supports,
then lim , .., (3(f1) - - - ¢(fa)) p.a €xists and is the (smeared) Schwinger function
of a theory obeying all the Wightman axioms except possibly uniqueness of
the vacuum.

The basic inequality of Nelson is the following consequence of the second
Griffiths inequality [7]:

(1) $p(f1) =+ - o(Fadn = Ko(f) -+ (L)) s

if
ACA’,f1;O,"',fn20: #20'

One handles the case ¢ < 0 by using
(2) (P(f) =+ d(fadesuxn = (=1)" < (f) «+ (fa))o—rxoa -

We write { )., . for the infinite volume expectation values.
Our goal in this paper is to prove:

THEOREM. Let P(X) = aX*® + bX* — uX wherea > 0Oand ¢t # 0. Then
the Wightman theory defined by { )p,. Dossesses a unique vacuum.

Remarks 1. This completes the proof of the Wightman axioms for a
class of P(¢), theories without any restriction on the magnitude of the over-
all coupling constant. For small coupling constant (high temperature in the
statistical mechanical picture) and arbitrary semibounded polynomial, the
uniqueness of the vacuum has already been proved by Glimm-Jaffe-Spencer [6].

2. Our theorem is motivated by a result of Lebowitz and Penrose [9]
who prove exponential falloff of truncated correlation functions for finite-
range, pair-coupled Ising ferromagnets at non-zero magnetic field. We do
not see how to mimic their proof which depends on a Mayer expansion since
this expansion relies on the boundedness and discreteness of Ising spins. The
use of the Lee-Yang zero theorem to control truncated vacuum expectation
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values was suggested by another argument in [9].
3. We expect that { )p,. possesses a mass gap under the hypotheses of

the theorem.*
4. This theorem is “predicted” by the “conventional wisdom” model of

[20], [18].

5. By equation (2) we need only consider the case ;£ > 0.

6. Without a priori knowledge of uniqueness of the vacuum in ¢ > .,
one could construct theories with unique vacuum by a decomposition proce-
dure applied to { >p,.. See[1].

The proof of this theorem uses many of the techniques recently developed
in the statistical mechanical approach to P(¢), [7], [12], [16], [18]. The basic
idea is very simple.

On the one hand, we will show, using FKG inequalities (indirectly) and
the “transfer matrix”, that if {.). does not have a unique vacuum, then

(3) (AN UAA 7, = C A C> 0
where
()@ r,... = (9. — (8(f))...<8(9))...
and |A| = volume of A. On the other hand using the Lee-Yang theorem,
and the second Griffiths inequality, we will prove for squares A, that

(4) U AN T S BIAL d < oo

LEMMA 1. {¢(2)¢(¥))r,» 18 a fumction, f, of |x —yl|. f(-) s a real
analytic, monotone decreasing, positive function on (0, «).

Remarks 1. This result holds in any scalar theory obeying the Oster-
walder-Schrader axioms [13] without necessarily having unique vacuum.
2. A proof can also be based on the Kallén-Lehmann representation [14].

Proof. That the truncated two-point function only depends on |z — ¥ |
is a consequence of Euclidean invariance. Real analyticity is a consequence
of the fact that the non-coincident points in the Euclidean region lie in the
permuted extended forward tube [13]. Pick ge Cy(R? with support in
{¢a, t) |t < 0}. Let g.a,t) = g(a, s —t). Then, there is a vector, ¥, in the
physical Hilbert space so that
(5) (DG 1,0 = (¥, €7*F)
for all s > 0 where H is the Hamiltonian on the physical Hilbert space. For

example, ¥ = E(s(9)) — (2, #(9))Q, in the Nelson language [11] and + =
V(89) — (R, $(9)2)Q in the Osterwalder-Schrader language [13]. By (5) and

* This has been proven by Guerra, Rosen, Simon (submitted to Commun. Math. Phys.).




UNIQUENESS OF THE VACUUM 263

the spectral theorem, {¢(9)é(9.))r,. is monotone decreasing and positive. Let-
ting g — 0, the Dirac measure at (0, 0), we complete the proof. O

LEMMA 2. (-}, has a unique vacuum if and only if
lim, i {3(@)$(Y))7, = 0 .

In particular, if there is not a unique vacuum, then there is a C > 0 with

(@Y1, = C
for all x, y.

Proof. If {- ). has a unique vacuum, then by equation (5), {¢(¢)¢(9:)) r,.—0
as s — co. Taking g — 6 and using the fact that the resulting convergence
is uniform for s€ [1, =), we see that the limit is 0. Conversely, if the limit
is 0, then lim,_... {¢(9)¢(9.))r, =0 for any g € C;> with support in {<a, t) |t <0}.
It follows from the FGK inequalities [7] that { ). has a unique vacuum (this
is the main theorem, Theorem 6, of [16]). The second statement follows from
the first and Lemma 1. O

This proves (3).
The basic estimate going into the proof of equation (4) is:

LEMMA 3. For all squares, A, of stde bigger than 1

(6) (AU 7 n = A A
for some d < oo.

Remark. Once we have Lemma 4, the condition that A have side bigger
than 1 can be dropped.

Proof. Let

a(p) = _lz]x—l In <exp (— SA (a: ¢*(x): +b: ¢*(x): — p¢(x))dx>>

The functions a,(%) are entire in /¢ (a, b fixed with @ > 0 and b real). By a
result in [8], they converge when / is real, as | A| — o, suitably to a.. By
the Lee-Yang theorem [18] (see especially Theorem 10 of [18]), a,(¢¢) converges
to a function @, (%) uniformly on compacts of the right half plane. In partic-

ular, by the Cauchy integral formula, d’a,/dt* converges for any ¢ > 0.
Thus

0, A

Sup(AlAlsasquare, alzy @ fdpt = d < oo
Since

d;d#z_al\(#) = ‘lil‘<¢(XA)¢(XA)>T, aX44+bX2—px
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(6) follows. O
LEMMA 4. Let d be given by (6). Then for any square A,

U A 70 S A

Proof. Suppose not. Then for some ¢ > 0 and some square A, centered
at the origin, {(¢(Xr,)é6(Xr,)) 7. = (& + 26) |Ay|. By equation (1), the limit
A — oo is in the sense of the direction given by inclusion. (We make use of
the fact that even though, a priori, {¢(Xa)¢(Xs,))- Mmay be co, {((Ys,))% is
finite.) Thus, there is some square A’ centered at the origin so that A’ C A
implies that (@(Ya)d(Ana))r.a = (@ + €) [As|. Let I, = [A,|'"* and [A'['* =
l, + 2a. By translation covariance, we conclude that if A, is any square of
side [, so that the square with the same center and side I, + 2a is contained
in A, then
(7) Ua)dAn )78 = (@ + €)I5 .
Let A™® be the square of side kl, + 2a centered at the origin. A™ can be
decomposed into a “corridor” of width a about its boundary and %? squares
A., each with side /,, mutually disjoint, and so that each obeys the geometric
condition required for (7) to hold with A = A“*. By the second Griffiths
inequality (6):

<¢(XA<’°))¢(XA”°>>T,A<’” = Zzil <¢(XA,,), ¢(XAa)>T,A(k)
= (d + e)(kl,) .

Choosing k so that (d + e)(kl,)* > d(kl, + 2a)’, we obtain a contradiction to
Lemma 3. O

Our theorem follows directly from Lemmas 2 and 4.

Acknowledgment: 1 should like to thank Prof. J. M. Combes for the
hospitality of Centre Universitaire, Toulon.
Appendix A: Uniformity of convergence of the one-point function

Geometric considerations of the type used in the proof of Lemma 4 have
led us to an improvement of equation (8) of [18] which we feel may be of
some use:

PROPOSITION 1. Let M = {$(x))p,.. where P(X) = Q(X) — 1X, Q an even
polynomial, pt = 0. Then for any € > 0, there is a 0 so that

(7) M—e={p@)pr=M
for any region A and any x € A with dist (x, 0A) > 0.

Remarks 1. (7) is interpreted in a “distributional” sense; i.e., it means
that there is a neighborhood of x so that for any non-negative function, f,



UNIQUENESS OF THE VACUUM 265

with support in the neighborhood
1 — o) aw) = oo = (| 1)

2. It must be true that « — {(¢(x))p,, is continuous, in which case (7)
holds pointwise and our proof below can be made less wordy.

3. By equation (2), if ¢t < 0, the proposition holds if {¢(x))5,, is replaced
by (—¢(x)>5.» in equation (7) and in the definition of M.

Proof. Let S be the unit square centered at the origin. Let A, be a
square centered at the origin of side » > 1 so that

PUs))ng = (M — &) = {d(Xs)) — €
Let n be a positive integer. Since S is the disjoint union of n* squares of
side 1/n, we can find some square, S,, of side 1/» so that

(X Dne = (M —en™ .

Let A, be the square of side » + 2 centered at the origin. For any square,
M,, of side 1/n, with M, — S, we claim that

(8) (Y Xy, ), = (M — e)n™" .
(8) comes from translation covariance, the monotonicity of equation (1) and

the fact that we can find A, C A, so that the geometric relation of M, inside
A} is identical to that of S, inside A,. By approximating with Riemann sums,

(9) GDs, 2 M = 9| i

if suppf S, and f = 0. Pickd = (r + 21/2). Givenanyxand A withze A,
dist (x, dA) > 8, we can fit the square A} of side (» + 2) and center x inside
A. (7) follows from equations (1) and (9). ]

Appendix B: Non-unique vacuums and spontaneous magnetization
As a typical application of our main theorem (together with correlation
inequalities), we have:

PROPOSITION 2. Let Q(X) = aX* + bX* with a > 0. If { ), . does not
have a unique vacuum, then

lim,, <¢(0))¢—rpx..c. > 0 = <{6(0)) g, -

Remarks 1. The existence of the limit on the left is proved in [7].

2. Consider the following four meanings of “dynamical instability” in
the Q(¢), theory:

(@) ¢ Yo... does not have a unique vacuum.

(b) { Y¢... does not have a mass gap.
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(c) lim/tlo <¢(O)>Q—'#X,oo > 0.
(d) The pressure a, () is not differentiable at ¢ = 0.

Combining Proposition 2 with results of [18], we have
(a) (©) (d) (b) .

Proof: On account of Lemma 2, if ), . does not have a unique vacuum,
then lim, .., (3(x)¢(0))q.. = C* > 0. But by the Griffiths inequalities (see [7])
{#(x)¢(0))¢_,x is monotone increasing in g. Thus lim,.. {(3(x)$(0))e_.y = C*
if # > 0. By the theorem

lim, ... {3(@)$(0))¢-rx = ((B(0)qsux)* if £ >0 .
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