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POINTWISE BOUNDS ON EIGENFUNCTIONS AND 

WAVE PACKETS IN N-BODY QUANTUM SYSTEMS. 111 

BARRY SIMON(I) 

ABSTRACT. We provide a number of bounds of the form ($1 i 
~(exp(-alxl~)) ,a, 1, for L~-eigenfunctions$ of - A + V with V +.c 

rapidly as 1x1+m. Our strongest results assert that if Iv(x)l >- cx2m 
near infinity, then ($(x)l 5 D, erp(-(e - + 1)-tmtl), and if (v(x)( 
<- cx2m near infinity, then for the ground state eigenfunction, Q, Q(x)2 

E, exp(-(c + ~)"~(m+ 1)-'Xrn +I). 

1. Introduction. This is the last  in our series of papers [191, [20] on 
2pointwise bounds for L -eigenfunctions for Schriidinger operators - A + V on 

L ~ ( R ~ ) .We have been partly motivated by a desire to extend and exploit 

the recent elegant techniques of O'Conner [15I and Combes-Thomas [31. In 
(I) of this series, we considered the c a s e  V = Zv. . ( t i  - r.) with Vij(x) + 0

ZI I 

a s  x + m and found exponential bounds Dbexp(- blr[) but only for b smaller 
than some optimal bo; in (11) of th is  series, we considered the case  where V 

was bounded below and V --.m a s  --+ = and found exponential falloff for 

every b. In this paper, we wish to  examine the case  where V not only goes 

to infinity a s  r -+= but a t  least  a s  fast  a s  some power s2m. Not surprising-

ly, we will find that there i s  then falloff of O(exp(- cr")) for some a > 1. 
The relation between a and n is simple and i s  "predicted" by the fol-

lowing heuristic argument of WKB type [14I: If A* = W$ and we write $ = 

exp(- h), we find that h obeys 

(grad - (Ah) = W. 

If the variations of h are primarily radial we have (dh/dr)2 - r'2(d/&) 

(r2(dh/dr)) = W. If W -t m, then dh/dr += s o  that the second derivate 

makes a small contribution. Thus h - f$w1l2  dr, i.e. 
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If W = rZm- E, we see that J w1I2 - rm'I, i.e. we expect to find that a = m + 1. 
For the case n = 1, it i s  often possible to use ordinary differential 

equation methods to control the falloff of eigenfunctions. For example, one 

has the following theorem of Hsieh-Sibuya [lo] (see also the appendix by 

Dicke in LIB]): 

Theorem 1. Let $ E c'(R) be a nonzero function obeying 

(1 -$'+ V$ = E$ 
with 

~ ( x )= a2mx2w+ + a 0; a Z m> 0. 

Then, for suitable cO,either: 

(a) co$(x) -m a s  x -+ m, in which case (m+ 1)(In co$(x))/a:~xmtl 

-1 a s  x +m, or 
1/2 m t l(b) cO$(x) -0 a s  x -+ m, in which case (m + l)(ln cO$(x))/(- aZmx ) 

-+1a s  x +m. 

The proof of Theorem 1depends on the explicit construction of two 

independent solutions of (1) and thereby of all solutions. When n > 1, we 

have a partial differential equation and, in general, one cannot use a method 

listing all solutions. For later reference, we do note that in the case where 

V on Rn i s  centrally symmetric, one can separate variables in spherical co-

ordinates and employ Theorem 1to give some information. 

We attack the problem of bounds on eigenfunctions of 

(2 -AIL + ~7,b= Ed 

by twoQmethods. The first follows the approach of Combes-Thomas 131 and 

our earlier work [19], [20] and i s  discussed in $92-4. We will be able to 

discuss fairly general V but our results will not always be as  strong as  

might be hoped for. The second approach, found in $ $ 5 ,  6 i s  completely 

independent of $52-4 although it does depend on a result of Combes-Thomas 

type we proved in [20]. The V's we are able to discuss are somewhat re-

stricted and so  we restrict ourselves to multidimensional anharmonic oscil-

lators, i.e. V will be a polynomial in xl, .  ..,x of degree 2m with the 

property that the leading term be strictly positive on the unit sphere (so that 

for x near m, c l  lxIzm5 V(x) 5 c2lxlZm). Our strongest result i s  ($6) 

Theorem2. Let $ be an L2-eigenfunction for - A + V. Suppose that V 

is and for some c > 0, d:  

(3 V(x) 2 ~1x12 m  - d. 
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Then for any 6 > 0 there i s  a D, with -

(4) l$(x)l 5 DE exp(-d(c + I)-').- E) ~ ~ ~ ~ + ' ( m  

Next suppose that $ is the "ground state" eigenfunction, i.e. $ is the 

eigenfunction associated to the lowest eigenvalue, Eo ,  of -h + V. Then it 

is known (see, e.g. [221) that E o  is a nondegenerate eigenvalue and that $ 
can be chosen to be a.e. strictly positive. For this ground state eigenfunc- 

tion we have ($6) 

Theorem 3. Let $ be the s ta te  eigenfunction for - A  + V. 

Suppose that V is c", V -+ 00 a t  oc and for some e > 0, f: 

(5) V(x) 5 e1x12rn + f. 
Then, for any E > 0, there is  a G, with 

In particular, $ i s  strictly positive. 

We close this introduction with a series of remarks about Theorems 2 and 3. 
1. The proofs of Theorems 2 and 3 rely on Theorem 1and a simple 

comparison argument ($5). The comparison argument depends on certain 

methods from classical  potential theory; we have borrowed the idea of using 

these potential theory methods from Lieb-Simon 1111who is turn were moti- 

vated in part by some remarks of Teller [231. 

2. Our interest in Theorem 3 and in the more general problem of sharp 

bounds on eigenfunctions of multidimensional anharmonic oscillators comes 

in part from recent work of Eckmann 151 and J. Rosen C17I generalizing L. 

Gross' logarithmic Sobolev inequalities [81. We discuss the use of Theorem 

3 to generalizing Rosen's results in $7. 

3. Still another method for controlling falloff of eigenfunctions for an- 

harmonic oscillators i s  to look a t  the finite dimensional Lie algebra gener- 

ated by - A and V and use  Lie algebraic techniques on eigenfunctions 

treated a s  analytic vectors. This approach has been advocated and 

developed by Goodman [GI, C7I and Gunderson C91. 

2. L* bounds of WKB type. 

Theorem 4. Let V = V+- V- with V + _ >  0, Vt E ( L ' ) ~ ,  V - E Lq(Rn)+ 
L"(Rn) with q = 1 if n = 1, q > 1 if n = 2 and q = n/2 if n 2 3 (so that V - i s  
a form bounded perturbation of - h with form bound 0). Let H = -h + V 
defined a s  a sum of quadratic forms. Let $ be an eigenfunction for H with 

eigenvalue E in the discrete spectrum for H. Suppose W is a real-valued 
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absolutely continuous function on Rn with 

for suitable cl ,  c2. Then, for some a > 0, 

Remarks. 1. In most applications, V+ +m at m so  H has compact 

resolvent by Rellich's criterion. In such situations, E i s  automatically in 

the discrete spectrum. * 
2. As a particular example, suppose V- = 0 and let V(r) = inflxltrV(x). 

T "
Then we can take W(r) = & lV(r)I1" dr, thereby obtaining L2-bounds on $ 

0 
of the usual WKB form. 

3. Our proof i s  a fairly direct modification of the idea of Combes- 
Thomas [3I which in turn i s  motivated by [I], [21 (see also [211). 

Proof. For real P, let U(P) be the unitary operator of multiplication by 

exp(iPW(x)). (8) i s  easily seen to be equivalent to the statement that $ be 
an analytic vector for U(P) in the sense of Nelson. For P real, let 

If(@) = U(P)HU(@)-

Then 


(9) H(P) = (p - p grad wI2 + V 

where p = i- grad. Thus 

(9') H(P) = H + P 2 ( g a d  w ) ~  - P[p(grad W) + (grad W)'pl. 

Now, note the following estimates for $ E Q(H) = Q(b) nQ(V+): 

(lob) 2 R ~ ( P $ ,  (grad W)#) j2(p$, p$)'($, (grad w)~$)' jc3($, (H + cq)$) 

where we have used (7) and the operator estimate p2 5 p2 + (p2 - 2V- + 
c,) < 2(p2 + V) + c ,  which follows from the fact that V- i s  a form perturba- 

tion of p2 with relative bound 0. 

Choose d with H + d _> 1. It follows from (lO(a) (b)) that for complex P 
sufficiently small, say IP(< B, (9') defines a closed sectorial form on Q(H). 
It follows that for \PI< B, H(P) i s  an analytic family of type (B) h21. 

By analytic perturbation theory, it follows that for IPI < Bo, H(P) has 

only discrete eigenvalues E l  (P), . . .,En@) in i ts  spectrum near E and 

that the Ei(P) are analytic. Since H(P) i s  unitarily equivalent to H for P 
real, Ei(P) = E for p real and thus, by analyticity for all  P with \PI< Bo. 

Let 
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( -h i ) - '(H(P) - A)- dh 

so that P(P) is  the projection onto the eigenvectors for H(p) with eigen-

value E. Since U(a) P(P) ~ ( a ) - l= P(P + a )  rbr a real with 18+ a1 < Boy 
a lemma of O'Connor 1151 assures us that + E Ran P(0) i s  an analytic 

vector for U(a). 

3. Pointwise bounds, m < 1. We now wish to turn the L~-bounds, 

+ E D(exp(aW(x))), into pointwise bounds of the form 

(11) I$(x)l 5 A exp(- afW(x)). 

We consider the case W(x) = Ixlrnt l. In this section, we will see how to 

use our method from [20] to obtain pointwise bounds in case V- = 0 and 

m 5 1. We note that our method in [201 was motivated by an idea of Davies 

[41. We exploit .smoothing properties of exp(tA): 

Lemma 3.1. Let + ~ ~ ( e x ~ ( a l x l ~ + l ) )forsome a > Oand O <  m <  1. 
Then for all  t sufficiently small, there is an A and C (t dependent) s o  that 

Ie'A$l(x) _< C exp(-~1x1~"). 

Proof. We first note that 

1 + Jx- y J 2+ l y J m + l  > ) x- ylrntl + J y l m t l  
2 2-m-l(1x - yI + lyl)rn+l > 2-m-11~Im+1 

so  that 

exp(-aJx - yJ3exp(-alylmtl) 5 exp(l - 2'm'1alxJm+1). 

Thus 

since both factors in the integral are L ~ .On account of the explicit form 

of the kernel for etA, the lemma i s  proven. 

Theorem 5. Let V E ( L ~ ) ~ ~with 
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for suitable m, 0 < m 5 1, and suitable a,  /3. Let H = - A + V defined a s  

a selfadjoint operator sum [13]. Let $ be an eigenfunction of H. Then, for 

some y > 0 and C: 

(13) I$Cl(x)l 5 C e ~ ~ ( - ~ l x ) ~ + ' ) .  

Proof. By Rellich's criterion, (12) implies that H has only discrete 

spectrum. Letting W(x) = Ixlm" and using (12) and Theorem 4, we s e e  

that $ E D(exp(alxJm+ I ) )  for some a > 0. 

Let Vk be a sequence of bounded functions with Vk(x) - P converging 

montonically upward to V. Then using the fact that C y  i s  a common core 

[13I, i t  is easy to see  that Hk = - A + Vk converges to H in strong resol-

vent sense [121,[161 a s  k -4m s o  that exp(- tH)k -+ exp(- tH) strongly a s  
- t V k  

k -4m. Moreover, since e tA is positivity preserving and e t P >  e 2 0: 

o 5 (e-t~/ne-tVk'n)n1415 etAetP\+\ 

for all 4 E L ~ .By the Trotter product formula [16I, 

so  by the convergence result: 

0 < ,-t:1- 1415 etAetPl6l.  

Thus for any eigenfunctions JI with H$ = EJI: 

J$l  = e t E ~ e - t H $ ~-< e t ( E+P)etAl,l,l. 

By the lemma, and the fact noted above that 1r,b1 E ~ ( e x p ( a I x l ~ +'>)we 

obtain (13). 

4. Pointwise bounds, m > 1. When m > 1, we are not able to use the 

method of the last  section to obtain pointwise bounds. Instead, we rely on 

Sobolev type estimates and therefore obtain results whose hypotheses 

depend on n, the dimension of space. We illustrate the ideas first in the 

special case n 5 3 where only minimal additional hypotheses are needed. 

Lemma 4.1. Let f(x) = a(x2 + I ) ( ~+')I2on Rn. If $ E L ~ ( R ~ )and $, 
h$ E ~ ( e f ) ,then for any multi-index a with a 5 2, Da$ E D(exp[(l - of ] )  

for a l l  6 > 0. In particular, A(e('-')/$) E L ~ .  

Proof. By a simple argument, we need only prove a priori estimates for 

$ E c;(Rn). We note first that for any p: 



POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE PACKETS 323 

Let p < 1, then since ePf$*, E L2 and v f e p f $ *  E L 2 ,  the R.H.S. o f  

(14) i s  finite and thus v$ E ~ ( e ~ / / ~ ) .We can now apply (14)when /3 < 3/2 

to conclude the R.H.S. i s  finite so that v$r E D((3/4 - 01). Repeating the 

argument, we see that v$ E D(exp((1- t ) f ) ) .  From 

we conclude that eP f+ E D(A) for ,8< 1 so  that Da(ePf+)  E L2 i f  la1 5 2. 

Since O$ E D(eDf), we see that Da$  E D(exp((1- 4f)). 
Theorem 6. Suppose that the hypotheses of Theorem 4 hold with n 5 3 

and W(x)= (x lm'l .  Suppose in addition that 

(15) I v ( x ) ~  5 C 1  exp(c21xla )  

with a < m + 1. Then any eigenfunction $ of - b + V obeys 

for suitable C 3 ,  C4 > 0. 

Proof. By Theorem 4, $ E D(exp(af)) for suitable a > 0 with f -
(1  + I x ~ ~ ) ( ~ ~ ~ ) / ~ .Since A+ =.V$ - E$, A+ E (exp((a- O f ) )on account o f  

(15). Thus by Lemma 4.1, e(a-')f$ E L2(Rn)n D(b). By a Sobolev 

estimate, e (a -E) f$  i s  a bounded continuous function, so  (16)holds. 0 

For general n ,  we need 

Lemma 4.2. Let k be a positive integer and let Da$, b(Da+) E 

D(exp(f))with f(x\ = a(x2 + ' for la1 5 2k. Then Da$ E 

D(exp((1 - r ) f ) )  for all 6 > 0 and la\ 5 2(k + 1). In particular, 

kt l ) ( e ( I - E ) f $ )  E ~ 2 .  

Proof. This  follows immediately from Lemma 4.1. 0 

Theorem 7. Fix n and m. Suppose the distributional derivatives DaV 

for la1 5 2fn/4 + 9/81 (where [x]=greatest integer less  than or equal to  x )  

are locally L I  obeying 

and that moreover 
~ ( x )2 C I X ~2m - D. 

Then any eigenfunction $ of - A + V obeys 

I$(x)l _< A exp(- ~ 1 x 1m'') 

for suitable A ,  B > 0. 
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Proof. Similar to  Theorem 6 but employing -AD a$ + Da (V$) = ED a$ 

a s  well a s  -A$ + V$ = E$. EI 

5. A comparison argument. We now turn to a method of obtain:ng falloff 

information for eigenfunctions which is independent of and stronger than the 

results of $92-4 but under stronger hypotheses. As we have already stated 

in the introduction, this method is motivated by [231, 1111although the basic 

idea is fairly standard. J. M. Combes (private communication) has  informed 

me that T. Kato (unpublished) has used a not dissimilar idea in the one-

dimensional case. The basic comparison theorem i s  

Theorem 8.(2) Let S be a closed ball  in R*. Suppose that f, g are func-

tions Cm in a neighborhood of R ~ \ s ,and that 

( 9  Alfl I vlfl a l l  x # 5, 
(ii) Algl -> Wlgl a l l  x # S, 
(iii) f ,  g -+ O a s  x -,my 

(iv) W(X)2 V(X)2 0 a l l  x k S, 

(v) If(x)l -> Ig(x>I a l l  x E as. 
Then (f(x)(2 Ig(x)l a l l  x E S. 

Remark. (i), (ii) are intended in the sense of distributional inequalities. 

Proof. Let D = 4x1 If(x)l < lg (~) I )and let  $ = Ig(x)( - If(x)l on D, which 

is open. Then, on D, 

Al/l L Wlgl - VIfI (by (i), (ivN 

2 V(lgl - I f  1) (by (iv)) 
> 0- (by x E Dl. 

Thus $ is subharmonic on D and s o  takes i t s  maximum value on dD U (w), 

But $ -+ 0, a t  by (iii), at points x E dD n dS by (i) and at points 

x E d ~ \ d ~by definition. Thus $(x) 0 on D. But, by definition, $(x) > 0 

on D s o  D is empty. 

6. Eigenfunctions of anharmonic oscillators. 

Lemma 6.1. For any m > 0, C > 0, there exist an  f and E s o  that 

- Af + c(x2  + l)m/ = Ef with 

a l l  x. Moreover, for suitable D'> 0 

( 2  ) Added in proof. H. Kalf h a s  pointed out a similar result  in P. Hartman 
and A. W. Winter, Par t ia l  differential equations and a theorem of A. Kneser, Rend. 
Cir. Mat. Palermo ( 2 ) 4  (1.955), 237-255. MR 18, 214. 
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Proof. Let H = - A + (x2 + l)m. Choose f to be the ground state eigen-

function for H (which exists since H has purely discrete spectrum). Then f 
is a.e. nonnegative, s o  by the symmetry of H, f is spherically symmetric. 

Thus f obeys a suitable second order ordinary differential equation s o  that 

i t  is impossible that f and v f  both vanish. But since f 2 0 and C" (elliptic 

regularity) f = 0 implies that Of = 0 s o  f is strictly positive. 

We claim that (17) holds near infinity and s o  everywhere. This follows 

either by appealing to a suitable generalization of Theorem 1 (since 

~ x l ~ - ~ / ~ /obeys an equation similar to 1 but with an extra ~ 1 x 1 ' ~in the 

potential) or by appealing directly to Theorem 1, using Theorem 8 and an 

argument similar to that used in Theorem 2 below. 

We now repeat 

Theorem 2. Let V be a C" function on Rn and let g be an eigenfunction 

of - 9 + V. Suppose that V(x) 2 ~ 1 x 12m - d for some c,'d > 0. Then, for 

any 6 > 0, there is  a Dc with 

Remark. It is easy to replace C" by cPfor suitable finite P. 
Proof. Let (- A + V)g = Eg. Given c, find f with [- A + (C- c / 2 ) I ~ ( ~ ~ ]f = 

f-" nd 

Eof ,  O < f < D c e x p ( - ( c - r ) ' / 2 ( x l m t ' ) .  Let V = ( C - & ) ~ X ~ ~ ~ - E; W =  
-2 nd 

0 

V - E. Find a sphere S with V 2 W 2 0 outside S. Since f > 0, f is bounded 
f-" f-" 

below on dS, s o  choose f a multiple of f with I g l  5 f on dS. By Kato's in-

equality 1131 

2 ~ e ( ( s ~ ng)ag) = ~ e ( W l g l )= Wlgl-

Finally, we note that by the exponential falloff inequalities on g [201, g 4 

0 at  M. Thus applying Theorem 8, I g (  5 f outside 5. (18) now follows. 

Now consider V which is C" with V 4 a t  w. By Rellich's criterion, 

- A + V has compact resolvent and s o  a lowest eigenvalue Eo. By a stan-

dard argument 1221, E o  i s  simple, and the corresponding eigenvector, $ i s  

a.e. positive. Following 1231, [111we first note 

Lemma 6.2. 1f $ i s  a.e. positive, C" with - A$ = (- V + E)$ with V 

CM, then $ i s  everywhere strictly positive. 

Proof. Suppose that $(O) = 0. We will prove that $ is identically zero 

near 0 violating the fact that $ i s  a.e. positive., This will prove that $(O) f 
0 and by similar argument that $ f 0 for all X. 
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Thus, suppose $ ( O )  = 0. Let c(r)= J X l  i(")dQ. Then c(r)  +9 as 
r -+ 0 and 

< max ( I v - ~ l ) r ~ - ~ K c ( x ) d r-
1~19 

Fix Ro  and let D = maxlxlsR ( I V - El). Then for O < r <  Ro 
0 

Since ~ ( 0 )= 0: c(r)5 (?4DrZ)rnaxosxsrc(x)so for O <  r< R, maxosxsrc(x)< 

(%DrZ)maxo_'x<rc(x)* 

Choosing t so small that Dr2 < 2 and 0 < r < R, we see that 
maxosxsr ~ ( ~ )= 0 so that $ (x )  = 0 i f  1x1 < I. 

W e  next repeat 

Theorem 3. Let $ be the ground state eigenfunction for -A + V where 

V is  C" and V + m. Suppose that V ( x )5 e J ~ 1 ' ~+ s .  Then for any E > 0, 

there is  a Gc with 
I 

(19) $ ( X I  2 G, exp(- v'(e + 0 Ixlmtl(m + 1)-'1. 

* 
Proof. Let f = $, V = V - E and let W = (e + E / ~ ) ) X ) ' ~+ s. Let g be 

'ZI * 'ZI 

the ground state o f  -A + W with ground state energy E and let W = W - E. 
'ZI 'ZI 

Pick S so that W 2 V 2 0 outside S. Since f i s  strictly positive and Cm by 

Lemma 6.2, choose a multiple 2 o f  g with f 2 ? on dS. Then f 2 2 on Rn/S 

by Theorem 8, Thus, by Lemma 6.1, (19)follows. 
When V i s  a polynomial, we can say much more about.the eigenfunctions. 

Theorem 9. Let V be a polynomial in n variables on Rn with 
C(x2" - 1)5 V(x )5 d(xZrn+ 1)for m 2 1. Let $ be an L'-eigenfunction for 

-h + V. Then: 

( a )  $ is a real-analytic function and has an analytic continuation to 

the entire space Cn. 

(b )  For any y E Rn, E > 0, 

+ i y ) [5 cYpEexp[-(m + 1)- ' ( d  - c)Hlxlrntll 

for all x E Rn. 
( c )  For any c > 0, there are constants E and F with 
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al l  z E Cn with arg = = arg zn and Jargz 1 (n/2(m + 1) - 6. 

(d) For any E > 0, there are constants GI and G2 with 

for al l  z E Cn with larg z i [  5 d4m - 6, i = 1, ,n. 

Remark. With a minimal amount of extra work, one should be able to 

improve (d). 

Proof. By the basic Combes-Thomas argument 131 we see that $ i s  an 

entire analytic vector for the group ~ ( a ) l aE Rni where U(a)$(b) =$(b -a). 

Thus 4, the Fourier transform of $, has the property that eiP"4 6 L2 for 

all a E Cn. It follows that $ i s  an entire function, proving (a). Moreover, 
$(a + iy) i s  an L1-eigenfunction of - A + V(. + iy) so the methods of $4 
(br $ 5 )  allow one to prove (b). The bounds in (c), (d) follow by similar 
arguments (and a PhragmerLinde16f argument to get uniform constants) but 

using the group of dilations 111, 121, 1211. For (c) we note that - p-2A + 
V(px) i s  an analytic family of operators sectorial (in the sense of h61) so  

long as larg < n/2(m + 1) and for (d) that 

i s  accretive if larg Pil < 77/4m. 
Remark. Results related to Theorem 9 have been found by different 

methods in 191. 

7. Supercontractive estimates la J. Rosen. In 181, Gross considered 
the following situation. Let H = -b + V on L~(R" ,dx) where V i s  a poly-

nomial bounded from below. Let i-2 be the ground state eigenfunction for H 

and let I?= H - (a ,  Ha). Let dp be the probability measure Q2dx. Then 2 
on L2(Rn, dxn) i s  unitarily equivalent to G = Q"GQ on L2(Rn, dp). G is  

a Dirichlet form in the sense that ($, G+) = lgrad $I grad ybdp. Eckmann 

151, following a suggestion of Gross [81, proved a variety of estimates which 

imply that G generates a hypercontractive semigroup 1221 on L'(R~,  dp) in 
case n = 1 or V i s  central and these estimates were improved by Rosen 1171 

who proved, in particular, that e-tG is bounded from L'(R~, dp) to 
Lq(Rn, dp) for all t > 0, P, q & 1, -, again if n = 1. In Rosen's proof n = 1 

enters in two places. First, he uses the fact that on R, f 5 c(d2/dx2 + 1) if 
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f E L'(R, dx), but  on Rn t h i s  c a n  b e  rep laced  by  f 5 c(- d + 1) if f E 

=L'(R", dx), P > n/2 (n > 2). More cr i t ical ly ,  h e  requ i res  tha t  e o h
with 

(h)2m/mt -< a(V + b )  if m = %deg V. T h i s  requ i res  a lower bound on  t h e  

falloff of fl which w a s  not ava i lab le  t o  him. 

Our considerat ions i n  $6 were part ia l ly  motivated by a d e s i r e  t o  prove 

Rosen ' s  e s t i m a t e s  i n  c a s e  n > 1 and our r e s u l t s  there  al low u s  t o  mimic 

Rosen ' s  proof 1171and conclude: 

Theorem 10. Let  V be a polynomial on Rn with a ( x Z m  - 1) 5 V(x) 5 
b(xZm+ 1). Le t  H = - A + V, $2 be i t s  ground s t a t e ,  dp = Q Z d n x  a n d  G be 

the Dir ichlet  form on L2(Rn,  dp). Then: 

( i )  F o r  a l l  f E CT(Rn): 

( i i )  D ( G ' / ~ )  = If E ( c ; ) ' / D ~ ~  E L ~ ;(a(5 kl. 
( i i i )  F o r  a l l  t > 0, p, q 1, oo, e-" is bounded from L ' (R~,  d p )  t o  

L4(R", dp). 

Remark. By us ing  t h e  upper bounds w e  h a v e  on  a, w e  c a n  show t h a t  

the  inequal i ty  i n  ( i )  f a i l s  if a fac tor  of logq(log 4 ( s o *  logq(\/())) ( j t imes)  is 
added t o  t h e  integral  for  any  j > 0. This fol lows by Rosen 's  arguments [17I. 
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