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We place the Thomas—Fermi model of the quantumn theory of atoms, mol-
ecules, and solids on a firm mathematical footing, Qur results include: (1} A proof
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(3) contro] of the thermodynamic limit of the Thomas-Fermi theory on a
lattice,
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1. INTRODULCTION

From the earliest days of quantum mechanics, it has been clear that one could
not hope to solve exactly most of the physically interesting systems, especially
those with three or more particles. Thus, by 1930 (only 5 years after the advent
of the “new” quantum theory}, a large variety of approximate methods had been
developed such as the time-independent perturbation theory contained in some
of Schridinger’s original series of papers [76], the time-dependent perturbation
theory developed especially by Dirac [14], the high-accuracy variational methods
by Hylleraas [34], the Hartree approximation [28] and its improvement by
Fock [19] and Slater [84], the Thomas—Fermi (henceforth TF) approximation
[17, 90] and the WKB method [35, 94, §, 44].

There has been a great deal of work on rigorous mathematical problems in
quantum theory, most of it on the fundamentals (beginning with von Neumann’s
great treatise [62]) and on the relevant operator theory (see [41] for a review up
to 1966). Until recently, the only approximation methods treated in the mathe-
matics literature were the variational methods (for which much of the mathe-
matical theory predates quantum mechanics; see the treatise of Stenger and
Weinstein [86] for recent developments) and perturbation theory starting from
the pioneering work of Rellich [70] on time-independent perturbation theory.
(See also [37, 40; 81} for a discussion of time-dependent perturbation theory.) It
is not surprising that the other approximation methods have not been so exten-
sively discussed. Perturbation theory is “linear” and variational methods are
“basically linear”” and the past 40 years have been the age of linear functional
analysis. T'he other techniques are basically nonlinear. They are, in fact, a
particularly fascinating class of nonlinear problems. It is not uncommon for one
to approximate basic nonlinear equations arising in a physical context by linear
ones; in contradistinction the TT and Hartree-Fock methods involve approxi-
mating a linear system in a large number of variables by a nonlinear system in a
few variables!

Recently, with the popularity of nonlinear functional analysis has come some
work on the nonlinear methods. Maslov [57] has studied WKB methods in
detail. (See [9, 56, 58, 88, 91] for other WKB results.) The results obtained thus
far for the Hartree, Hartree—Fock, and TF methods are of a more meager sort.
These methods lead to nonlinear differential and/or integral equations and 1t 1s
not obvious that these equations even have solutions. For the Hartree equation,
this was cstablished for helium by Recken [69] using a bifurcation analysis.
(See [75, 87] for related results.) For general atoms, Wolkowsky [95], using the
Schauder fixed point theorem, proved the existence of solutions to the Hartree
equation in the spherical approximation. Solutions of the Hartree—Fock equa-
tions for a class of potentials excluding the Coulomb potentials has been estab-
lished by Fente, Mignani, and Schiffrer [23]. Solutions of the time-dependent
Hartree—Fock equations have been studied recently by Bove, DaPrato and Fano
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[7] and Chadam and Glassey {10]. Using in part methods of the present paper,
we have established the existence of solutions of the Hartree and Hartree-Fock
equations with Coulomb forces. These results, announced in [50], will appear
elsewhere [51].

The TF theory, which is the topic of this paper, has an enormous physics
literature (see, e.g., [6, 24, 55]) and few rigotous results. Existence of solutions
of the nonlinear ordinary differential equation associated with the TF atom was
shown by Hille [32, 33] (see also Rijnierse [71]) who also established Sommer-
feld’s asymptotic formula [85] for sphericaily symmetric solutions (see Sect. I'V.
2 below). At least three important questions were left open: (i} the existence of
solutions of the nonlinear partial differential equation that arises in the TF
theory of molecules when rotational symmetry is lacking; (ii) the much more
important question of the connection of the TF theory with the original quantum
system it was meant to be approximating; (iii) the rigorous connection between
the TF equation and the TF energy functional of Lenz [46]. It is these questions,
among others, that we wish to answer in this paper. We consider questions
(i) and (iii) in Section II and question (i) in Section 111, In Sections IV-VII,
we discuss further elements of the theory. Among our most significant additional
results are: (iv) extension of Sommerfeld’s formula to the molecular case; (v)
a rigorous transcription of Teller’s result [89] that molecules do not bind in the
TF theory;(vi) a proof that the TF theory of a large system with charges at points
in a lattice is well approximated by a 'T'T theory in a box with periodic boundary
conditions; (vii) a proof of concavity of the chemical potential in TF theory
as a function of electron charge.

In the remainder of this introduction, we shail describe the TF approximation,
establish some of its formal properties that we need later and summarize our
results. Some of our results were announced in [49, 98, 99]. See Note 1.

We would like to thank J. F. Barnes for stimulating our interest in the problem,
W. Thirring for valuable discussions, and N. Kuiper for the hospitality of the
IL.H.E.S. where this work was begun. We would also like to thank Dr. Barnes for
providing two graphs relating to the TF theory of screening (Section VII).

I1. The TF Equation and the TF Energy Functional

We begin by describing the quantum mechanical problem that will concern us.
We consider a system of N “electrons” of mass m and charge —e < 0 moving
about fixed positive charges of magnitude zye,..., 2,¢ at positions R, ,..., R e R%
Then the clagsical Hamiltonian (energy function) is given by

N

N N
He(pryeoos By s Fyvees 7)) = Q)L Y p2 Y, Wiy — 1) — 3 Vi), (1)

i=1 <] i=1

where
k

Vir) = ¢ Z 2|7 — Ry [T (1)
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and
Wiy =2¢€{rl™

The corresponding quantum mechanical operator acting on L¥R3Y), with A
being Planck’s constant, is given by

HN = —h*8m)~ Z 4, _2 V() + 2 W(r;— ) (2)

i<lj=1

The Pauli principle for electrons will play a major role in our considerations
so we note its formn when electron spin is taken into account. Ihc relevant
Hilbert space is enlarged from LA(R®Y) to o7 = LA (R; C2V) — Yol L LHR3; C2),
where LY{R™; C*) is the set of square integrable functions on R™ with values in
C*, i.e., “functions of space and spin.” The operator (2) acts on 5#° and com-
mutes with the natural action of the permutation group % on . We are
interested in the operator Hy, restricted to M#hyys , the subspace of # on which
each 7 e % acts as multiplication by e, the signature of = In other words,
Hpuys 35 the N-fold antisymmetric tensor product of LA R3; C¥). We continue
to denote Ho™N I Hpyys by H Y or, when necessary, by H Mz, ..., 25 B; ..., B)).
We shall let E,2, the “ground state energy,” denote the infinum of the spectrum
of HoM. If N — | <Zj,;1 %, this infinum is known to be an eigenvalue of
H,V {79, 97]. The eigenvector is then called the ground state function. One of
the unsolved problems in atomic physics is how large N can be before the
infinum stops being an eigenvalue but this question will not concern us here.
Among our results (Sect. III} will be limit theorems on the behavior of Ey2 as
N — oo with z,/V constant and R, depending suitably on N; ie., varving as
N-153, Qccasionally, it will be useful to add the constant “internuclear potential
energy” > 2,2 Y[R, — Ry | to Hoand HpN.

We shall introduce the TF equation by describing two “derivations” of it
common in the physics literature. The reader may wish to omit these heuristic
considerations and merely take Eq. (3) and (7) as the definition of TF theory.

'The derivations are essentially the original one of Thomas [90] and Fermi [17]
and a slightly later one of Lenz [46}. Both are based on minimization of energy
and essentially the same approximate expression for the energy is invelved. They
differ in their way of deriving the energy formula: One depends on the semi-
classical ansatz for counting states while the other depends on a simple approxi-
mation in the Rayleigh-Ritz formula for the ground state energy. They also
differ in the methods of obtaining the minimizing solution once the energy 1s
given: The second method minimizes by appealing to an Fuler-Lagrange
cquation with subsidiary couditions handled by Lagrange multipliers; the first
is a more intuitive Fermi surface argument.

(Quantum mechanics enters the first derivation through the mystical postulate
that each particle fills up a volame %% in the ¥ — p phase space. Allowing for the
fact that there are two kinds of electrons {“'spin up’* and “spin down’"), a volume
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A% in x — p phase space can accommodate two electrons. The TF model views
the quantum system as a classical gas filling phase space, and which interacts
with itself (via the Coulomb repulsion W) and with the attractive potential .
We suppose that the gas fills a volume of total size (1) Ni? in such a way that
the total energy is minimized. This total energy has three pieces if we include the
kinetic energy. Thus, if S is a trial volume in phase space, we want to minimize:

@myt | prar [ [ @t 1x—y 1 drdr, — | Vix)dr,

subject to [ dr = N, where dr — (2h%) dxdp. Since the last two terms are only
dependent on the volume of the x-dependent slice, S, = {p |(x, p) € S}, and the
first term is clearly minimized by taking the slice to be a ball, the set .S, is clearly
{plip] < pula)). Define

plx) = 2h3(4m[3} ()",

Then p{x) is the density of electrons at x and we must have
[ pl@)ds = N. (3a)
ik

If we remove a small amount of gas from the surface of the Fermi sphere, S, ,
at point x, the change in energy per unit of gas so moved will be

(2m)™" pex)* — $x) = — (),

where

#(x) = Vx) — [ o(y) Wiz — ) dy. (3b)

If (x) were not a constant at all points with pg(x) > 0, we could lower the
energy of the gas by moving gas from a region of small y(x) to a region of larger
Y(x). Thus ¢(x) must be a constant ¢y, at least at points with pg{x) = 0. If
pr(x) =0, we can demand —¢(x) > —¢,, for otherwise we could lower the
energy by moving some gas to x. Thus:

plx) =0 if §{x) < &y, (3¢}
cp?P(x) = (o) — dy  H H{x) =y, (3d)

where
¢ = K%(2m)~1 32/3(8ary215, (3e)

The integral equations (3b-3d) with ¢, adjusted so that (3a) holds are the TF
equations. Henceforth, we choose units so that ¢ = 1 and so that ¢, given by (3e),
is 1. At times we shall introduce e, = —¢,, the TF chemical potential or Fermi

energy.
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We note that the nonlinear TF integral equation clearly implies the nonlinear
partial differential equation

i

(4m) 1 A — [max(d — g, , O — Y =3 — R)), (36)

desl

and in particular on any open set £ disjoint from {R,,..., R;} and on which
¢ > g
Ad = An(d — $o)*7. (3g)

The second derivation of the TF equations is based on a crude variational
approximation to E,2. If we insert any antisymmetric variational wave function
B{ry sy Py 307 e, op) nte the relation E @ < (b HV ) for any || ]! — 1,
then only three “partial traces™ of ¢ enter: the one-body density

“(x) e Z z f [y ey Xy g 0 Xy X pq aeees Xy 5 O 4eery Oy

I =]L]
i=L,.

X dxey oo dy_qdxg g e dxy

=N 2’1 fl*l’(’c Ry yeonr By § O dg oo day (4)

which enters in the attractive potential energy, the two-body density

PR D) = NV = 1) T [ 13, % 35 02 diy g

o;=x1

which enters in the interelectron repulsion, and the “off-diagonal one-body
distribution’:

Puod) = N T [ 94 5 3 0 g s 0) ity

a==+1

which enters in the kinetic energy term. Thus
y A ~ .
G Hoy = e | Vo Vipinl, ) de— [ V() p0(v) dv

+3 f p@(x, ¥) W(x — y) dx dy.

The TF approximation then rests on the ansatz that for 4 that minimizes
{4, HV> (or nearly minimizes it when E,? is not an eigenvalue but only the
bottom of the continuous spectrumy}

p2(x, ¥) 2 piP(x) p (W) (5)
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and

2
G, | Ve Vo) de e e [ 0P () v (6)
where ¢ is the constant (3e)

The ansatz (5) for pi’ clearly has no hope of being vahd except in a large
N limit since [pi(x) dx = N while [p{’(x, ¥)dedy = N — N, but in the
large N limit the idea that p'® has no correlations is quite natural, and so the
first half of the ansatz is most reasonable. The assumption (6) is obviously more
subtle. It is based on the fact that for a cube of length L, if we take the p associated
to the ground state of —4 (with either Dirichlet, Neumann or a variety of other
boundary conditions) then, as N -— o0, the left side of (6) is asymptotic to

INBAL,

We prove this basic result (IT11.3) where we need it in our proof of the quantum
mechanical limit theorem. We will also prove that as N — <0, the p{}' associated
with the box ground state approaches the constant p, = N/L3, Thus (6) holds as
N — o when ¢ is the ground state for —4 in a box. The ansatz (6) is not
unreasonable if J7 is “slowly varying” so that we can think of p as a “locally
constant” density, Of course ¥ is not slowly varying near R;, and this will
present a problem which requires a separate argument (Sect. i1I. 4). See Note 2,

With the above ansatz and our choice of units so that ¢ = 1, the energy is a
functional only of p of the following form:

8i V) = 3 [ s s — [ V) o)+ 3 [[ B8Rty )

One recognizes the TF equation (3) as the Euler-Lagrange equations for
minimizing (7a) with the subsidiary conditions

f pl{x}dx = N, ‘ (7b)
p =0 (7c)

We shall refer to &(p; V) as the TF functional. Notice that in minimizing &
subject to (7b, 7c¢), ¢, enters as a Lagrange multiplier for the equality (7b); where
p(x) > 0, (7c) is not restricted so the variational derivative 86 /8p(x) must be
zero, giving (3d) but when p = 0, we only have 88 /8p(x) = 0 giving (3c).

This variational formulation of the TF equations due to Lenz [46] has several
advantages:

(1) It reduces existence questions to establishing that £(:; J') takes its
minimum value subject to (7b, 7c). Alternatively, if we are given p, and define
¢ by (3b) and then p, by (3¢, d), and thus view the TF equations as a fixed point
problem, we have just learned that the map so defined is a gradient map and
such maps are known to have special properties,
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(2) It links up with the Rayleigh-Ritz principle for the ground state
energy, £y, of the quantum theory thereby providing the basis for the connec-
tion with quantum mechanics which we will prove in Section III.

(3) It provides a starting point for a variety of further corrections to the
TF theory [55].

1.2, Scaling and the Quantum Mechanical Limit Theovem

We define the Thomas—Fermt energy by
ETE(N; V) = inf{&(p; 1) f p(x) dx = Nj p = O). (3)
»

(We shall be more explicit about restrictions on test functions, p, in IL1. where
we shall prove that £7F is finite.) As in the quantum case, we shall occasionally
wnte ETE(A; 3y oy 2 5 Ry e, Ry) if we wish to indicate explicitly that Fx) =
Z, 1% | x— R, ] -1, We shall refer to the p that minimizes (8), if it exists, as
the T'F density, prelx).

On the basis of the Lenz derivation of the TF theory, one might expect that
as N — oo, EyQ/ETF — 1, at least if the 2, and R; are made suitably N dependent.
The choice of “suitable” N-dependence is based on:

Traeorem L1, Fix Z > 0. Let Vy(x) = Z*8 V{Z 3x) and p(x) = Z3p(Z1 ).
Then:

Elpz V) = 278 6(p; 1) (%)
and

[ ooty ds = 7 [ plx) d (9b)

Remarks. (1) V', is so defined that when F{x) = 2 1% X — Ry,
then F{x) — zlﬁl 24 | x — Z7Y3R, |71, Thus all charges, both nuclear (the
z;'s) and electron ([ p,), are scaled up by Z, and distances scaled down by a
factor of 21/,

(2) 'This scaling law is certainly not new (see, c.g., [55]). If one did not
know about it, it could be discovered quite naturally in the case V{x) = | x [~' by
trying a transformation p — Z*p(Z%x); | x| *-> Z | x |~'. Demanding that each
term in (7a) be scaled by the same factor Z7, one arrives easily at o = 2, § = 1/3,
y — 7/3.

(3) 'This theorem clearly implies that

EYF(IN; 2,Z,..., 2,7, Z-\BR, ..., Z-VBR,)

w2 ZEBETE(NG 3y o, 25 Ry vy Ry) (9c)
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and that
prE(X; 3120, 3pZy Z71B3Ry ., ZTIRR,  ZN)
— Z2ore(ZV%; 2y, 21 Ry ey Ry 3 N). (9d)

Proof. A direct change of integration variable in each term of (7a). [

Equation (9¢) suggests what the variation of the R, should be in the quantum
mechanical limit theorem; the main result of Section III will be that
EQ(3N,..., 2"N; RION-1B, | RON-13)/NT3 approaches the TF energy
ETFQx; 20, 2 R,..., R™). Similarly, the appropriately scaled quantum
density N—2p2(N-1/3r) will approach the fixed TF density corresponding to
2{ and R{". Moreover, in line with the ansatz of the Lenz derivation, we will
prove that the m point quantum density, suitably scaled, approaches a product
p(xy) - p(xy) of TF densities.

In the above, if one scales only the z,s and N but holds the R/’s fixed, then,
as will become clear, something trivial happens in the N — co limit, Namely,
both the quantum and the TF systems approach that of isolated atoms, at least
on the level of fotal energy and density. In other words, in this large N limit,
both py? and pry become concentrated within a distance ~N—173 of the various
nuclei.

L3. Summary of the Main Results: Open Problems

Let us conclude this introduction by summarizing the content of the remainder
of the paper, and by discussing what we regard as some of the more significant
open questions in TF theory and allied subjects, given our work here.

The basic existence and uniqueness theory for the TF equations appears in
SBection II. The most important result is that when ¥ has the form (1), then the
TF equations have a unique solution when N <{ Z = ZLI %, and no solution
when N > Z. We prove this by discussing minima and extrema for the TF
functional &(p; V') given by (7). After establishing various properties of &
{Sects. I1.1-11.3), we prove in Section IL.4 that there is a minimizing p for & with
the subsidiary condition [p == N replaced by [p < N, The ideas here are
similar to methods used by Auchmuty and Beals [1] in their study of equations
similar to the TF equations. In Section II.5, we prove that this minimizing p has
Jp =N (resp. fp < NYif N < Z (resp. N > Z). The difficulty we overcome
in Section IL.5 is associated with the infinite volume allowed for the interaction;
there is no analog of this problem in the Auchmuty and Beals work where their
equation is effectively on a compact set, or in the work of Hertl, ef al. [30, 31]
{discussed below) where their interaction region is explicitly finite. The re-
mainder of Section II concerns itself with various additional techniques of use
in studying the TF energy and the chemical potential, e, = —¢ , as a function
of N = [pdx. In particular, we prove that it is monotone, strictly increasing
and concave as a function of N.
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The basic result of Section III is the quantum mechanical limit theorem
which we indicated in Section 1.2 above. Precise statements appear in Section [11.1
where we also show that the convergence theorem for the energy proved for
¥’s more general than (la) implies a convergence theorem for the densities,
essentially because 3E/8F(x) = p(x). Of course, pointwise convergence of E
does not imply convergence of the derivative without some additional argument,
but a rather simple convexity argument turns out to suffice. The proof of the
limit theorem for the energies is found in Section IIT.5 putting together ideas
from Sections [T1.2-111.4.

The key element in the proof of the quantum mechanical limit theorem is the
technique of Dirichlet-Neumann bracketing (1I1.3). This technique is based on
two facts: First, in a quantum mechanical problem, adding a Dirichlet {resp.
Neumann) boundary condition on some surface raises (resp. lowers) ground
state encrgies. Second, either type of boundary condition decouples in the sense
that if C is a surface in B* which divides R”® into two components, £, and 2, ,
then —A with Dirichlet (or Neumann) boundary conditions is a direct sum of
operators on LA(€,) and L¥£2,). This method of Dirichlet-INeumann bracketing
is the basis for a proof of Weyl's theorem on the asymptotic distribution of
eigenvalues by Courant and Hilbert [13] and for a variety of other problems:
Sce Lieb [47], Martin [56], Robinson [72], Guerra, Rosen, Simen [26], or Hertl,
Narnhofer, and Thirring [30] who have used this technique to prove a quantum
limit theorem for the thermodynamics of a large number of particles with
gravitational and ¢lectrostatic interactions (I'F model of White Dwarf stars). Our
arguments in Section 111 are patterned in part on this earlier work. See Note 3.

Dirichlet-Neumann bracketing allows one to reduce the quantum mechanical
problem to a problem involving particles in boxes. In all boxes except %, the
potentials are approximately constant and can be controlled casily (Sect. I11.2).
But in the k& boxes including some R;, there is a strong attractive Coulomb
singularity. We need a separate argument to show that the system does not
collapse into these “central boxes™ and this argument appears in Section I11.4,
We remark that Hertl ef al. [30, 31] also have a Coulomb singularity to worry
about. At first sight, their singularity which is produced by a large number of
particles with resulting large gravitational attraction seems less severe than our
singularity which is produced by a fixed number, &, of electrostatic attractors
which are made large, but their method of controlling the singularity also works
in our case. We give a slightly different argument which we feel exhibits the
mechanism behind control of the singularity more explicitly, namely, an “angular
momentum barrier.”

In Section I'V we discuss properties of the T'F density p. In the purely Coulomb
case (17 given by (la)) with N = Z we prove that p is real analytic away from
the R; and that p(x) — (2; | & — R; |71/ is continuous at » = R;. We also
prove that | x {8 p(a) — 27fa% as | x| — 0.

In Section V, we give a proof of the theorem of Teller [89] that the sum of

6o7/23/1-3
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the TF energy of a neutral system plus the internuclear potential, which we
denote by 7F is always lowered by taking any subset of nuclei infinitely far from
the others. Our proof is essentially a careful transcription of Teller's with one
important difference; since we have been careful in Section II to use methods
which allow ¥ to have Coulomb singularities, we do not need to cut off the
Coulomb singularities as Teller does. This allows us to avoid criticisms of
Teller's proof (mentioned in [3]). We also extend Teller’s theorem to the non-
neutral case.

In Section VI we consider the following problem. Let A be a finite subset of
73 C 2. Place a unit positive charge at each point in A. Let p, be the TF density
for the neutral system and e, the corresponding TF energy. One is interested
in letting /1 increase to all of Z® and proving that p, and e,{] A ] have limits. We
do this and prove that the limits are associated with a ‘‘periodic boundary
condition” T'F theory in a unit cube. Our resuits hold when Z° is replaced by
any lattice in R® and when the unit charge at the lattice sites is replaced by any
fixed configuration of charges in each occupied cell. In addition to answering
a natural question, our work in Section VI provides some justification for an
approximation used in applying TF theory to solids under high pressure,
Hawever, the problem of solids at high pressure is not the same as solids with
infinitely large nuclear charges. There is some question about the validity of TF
theory in the former case. We also point out that our results in this case are only
in the TF theory itself, i.e., we first take Z — oo and then A — co rather than
the other way around. In Section VII, we discuss another problem in solid
state physics: the screening of an impurity by electrons.

Let us summarize some of the open problems which are raised by our develop-
ments in this paper:

ProBLEM 1. Establish an asymptotic expansion of £y¢ in the atomic case
with Z = N, to order Z53. We conjecture that the formalism discussed in [55]
is correct in that

BN ~ aZ/5 4 bZSP + cZ5B, (10)

where a is given by TF theory (as we prove), b is an inner shell correction (which
we discuss shortly) and ¢ is related to exchange and other possible corrections.
The reader can consult [55, Table 1] to see rather impressive agreement between
(10) with theoretically computed constants and experimental total binding
energies of atoms, even with rather small values of Z. This is much better than
the purely Z7/3 term which is off by more than 7 %, even for Z = 80 [29].

The exchange term, ¢Z3/, has been considered in the physics literature from
the very earliest refinements of TF theory (see [15]). The 8Z2 term is more subtle
and was first noticed by Scott [77]. The innermost electrons in a large Z atom
each makes a contribution of order Z2 and there is no reason to expect TF
theory to get the energy of these inner electrons correctly. In fact, one can
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explicitly solve the quantum mechanical model in which W is made zero, i.e.,
clectron repulsion is ignored, and find an explicit 5,2 correction to the TF
model with W =0. We conjecture with Scott that & = b, for if the 0{Z%)
corrections are, in fact, due to the innermost electrons, these electrons should
not be affected by the repulsion of the outer electrons.

We regard Problem 1 as an outstanding problem in the mathematical theory
of large Z atoms. We note that since our relative errors in Section 111 can be
seen to be of order Z-¢ for some positive ¢, we have more information than
EQ|Z713 — g, However, since adding Dirichlet or Neumann boundary con-
ditions automatically introduces O(Z-1/3) errors, we cannot hope to see the next
term in (10) with our methods, even should we improve control of some of the
other errors we make.

Directly related to Problem 1 is:

ProBLEM 2. Prove that the Hartree—Fock total binding energy is correct up
to order Z57 in the large Z limit for E?. Hssentially by our construction in
Section III, we know [51] that the Hartree—Fock energy is correct to leading Z7/2
order. Since the Hartree—Fock energy seemns to have both exchange and correct
inner shells built into it, we expect it to be correct to order Z573,

ProsLEM 3. Does Hartree-Fock give ionization energies and/or molecular
binding energies asymptotically correctly in the Z — oo limit? The TT theory
docs not describe the outer shell correctly so we would not expect it to give
ionization or binding cnergies correctly (see Sect. 1V.3). This is seen most
dramatically by Teller’s theorem (Sect. V.2} that molecules do not bind in the
TT model.

Prosrem 4. In Bection IL.7, we prove that the TF density maximizes a
certain variational problem. Prove that it is the unique maximizing solution.

ProBLEM 5. Prove that the Fermi energy of an ion, €x{}), has the property
that lim e {A}/(Z —— A2 exists as A 1 Z (see IV.3).

ProBLEM 6. Prove superadditivity of the TF kinetic energy £ § p3® when
VeV 4+ Ty, each V; being the attractive potential of a set of nuclei. An
affirmative solution of Problem 6 would solve Problems 7 and 8; see Section V.2
for details.

ProBLEMm 7. Extend Teller’s theorem in the sensc that eTF(z) oy 25
Ry ..., Ry} decreases under dilatation, R, — IR, {{ > 1). This was shown to be
truc by Balazs [3] when £ =2 and 2, = z,.

ProBrLem 8. Show that the pressure and the compressibility are positive
for the TT solid.
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We wish to note here that T'F theory can be extended by using our methods
to two additional cases of physical interest. We shall content ourselves with
merely pointing out these possibilities here, and will not expand on them further.

The first extension replaces the single TF density p(x) by % densities
p1(#),..., pr(x). The electrostatic interactions are given as in the usual TF energy
with p = p; + ... + p; . The kinetic energy § [ p% dx is replaced by

g 22 ): [ ey ds.
=1
The physically interesting case is & — 2, where p, and p, can be interpreted as
“gpin up” and “spin down” electrons. One easily sees by convexity that the
minimum of this modified energy occurs with p, == p, = - == p;, = pfk. This
observation expresses the fact that there is no ferromagnetism in TF theory.

The second extension allows some of the “nuclear’ charges 3; in (la) to be
negative. Of course, real nuclei do not have negative charges. However, in some
applications, the “nuclei” are really nuclei together with core electrons and when
impurities are present, the total charge of the nucleus and core can be negative;
see the discussion in Section VII. The results of Sections II and III carry over to
this case with only one major change: It is still true that if \ < Zf 2; , then
thereisa solutlon of the TF equations with [ p dx = ), but there can be solutions
with {p > Z&l z;. For example, if some z; > 0, there are solutions with
[p >0, even if 3 2; < 0. The results of Sections IV, VI, and VII also require
a change, namely that the absolute minimizing p need not be positive everywhere.
Indeed, p will vanish identically in 2 neighborhood of the negative nuclei.

II. Tae TF ENERGY FUNCTIONAL

In this section, we study the TF energy functional &ip; V) given by (7a) and
use this study to establish existence and uniqueness of solutions of the TF
equations, We also present some related results about the chemical potential
€ = —¢y. One of our main tools will be the use of the Lebesgue spaces
Lo(R%), 1 < p < o0, and we first summarize some of their properties that we will
need. If p << co, LP(R?) is the set of measurable functions from R? to C with the
property that

[ £l = (] f)]P depir < co. (11)

L=(IR3) is the family of essentially bounded functions, i.e., functions which are
bounded after modification on a set of measure zero, and || ||, is the essential
supremum of f. Two useful relations between L? spaces are Hélder’s inequality:

7 b < [ 1l i & lia (122)
if
le=ptb g Lip,gr< oo (12b)
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and Young's inequality:
. If* gl <1 flls)lgl (13a)
g l+rt=pr+qg?y 1<pgqgr= w (13b)
In (12), (f£)(x) = f(x) g(x) and in (13)

(f * &) = | F(2) gl — 3) d.

For any p with | < p < oo, the dual index p' is defined by: p~1 -+ (p'}! =1
or equivalently p* — p/(p — 1)

Two notions of convergence on L7{R?) will concern us. f, — f in LP-norm if
and only if | f, — fll,— 0 as #— w. f, — f weakly or LP-weakly for p = oo
if and only if for all g & L*" (p’ the dual index of p) [ f,(%) g(x) dx — [ f(x) g(x) dx.
Two consequences of Hélder’s inequality are useful in this context: First norm
convergence implies weak convergence and second if sup, | f, ', < w0, then
fn->f weakly if [f(x)g(x)dx- [ f(x) g(x) for all g in some norm-dense
subset of L¥(R%. For example, if p 5= 1, ge C;=(R%), the C= functions of
compact support will do. Note that feL? 15 p < g implies that felr,
p<r<gq

We need one deep property of the weak topology on LY R, p == 1:

Turorem [1.1. Let { f,} be a sequence of functions in L*(R®) (p +: 1) with
sup,, || fnliy << c0. Then there is a subsequence { o), and an f € L?(R3) so that
futy —f in the weak L? topology.

This theorem is a consequence of fairly standard theorems in functional
analysis: the duality theory for L? spaces, the Banach-Alaogiu theorem and the
separability of L?". The Banach-Alaoglu theorem can be avoided by appealing
to a diagonalization argument. For details of this theorem and other properties
of L? spaces, the reader may consult a variety of functional analysis texts, e.g.,
[16, 66, 67, 96].

The symbol L¥ + L7 denotes those functions which can be written as a sum
of an L7 function and an L7 function. For example, f(x) = | x|~ is not in any
LP(R* but it is easily seen to be in LARY) + L(R3) ifp < 3 < q. IV, , Vel?+
L9, we say IV, — V in L? 4- Lnorm if and only if V, - V" | V&LV =
PO @ with | PV - VO 0and | V — @), — 0.

The main results of Section II are Theorems I1.6, 11.10, I11.14, 1T.17, TL.18,
11.20, 11.30, 11.31.

11.1. Basic Properties

We recall that the TF energy functional é{p; 1) is given by:

S 1) = 3 [ i) s [ Vs + 3 [ L2 gy,
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We emphasize that with our convention, ¥V = 0 is attractive and IV < 0 is
repulsive. It is clear that to define &(p; V') we need p € L3/% and, given the nor-
malization condition [ p(x) dx = A, it is natural to require p & L'. We thus define
the sets:

S = {pel! NLSHRY) p >0},

-”a:gpefffpdxéf\‘,

Sy = ;peﬂfpdx; ,\%.

We first have:

Tueorem 11.2. Let Vel + L* and let &(p; V') be given by (7a}). 'Then:
(a) Ifpef, &p, V) exists.

(b) If pu,pcF and [ip—pullys +1lp —pulli—0 then &p,; V) —
éa(p; V).

(c) On eack & (A << ), E(p; V') is bounded from below

(d) Fix A, E,. Then there is a C << o0 so that pe F, with &(p; V) < E,
smplies that || p |5 < C.

Remarks. (1) Henceforth we shall glways take Vel’? + L*. We note
that ¥ of the form (la) is certainly in L5/2 - L=. We do not assume V' > (.

(2) For V" of the form (la) we shall shortly see that & is bounded from
below on alf of & '

Proof. Write V =V, + V, with V,eL5? and V,cL™ Similarly write
| % |7t = Wy(x) |- Wax) with W,eL® and W,eL= Then by Holder's
inequality {12):

[ 1oV 1dx << Vil pllis =1 Vo lko ol » (142)
and by Hélder’s and Young’s inequalities (12, 13):
o e ds <1 plh 01 Wil o s 1 Wl pl),  (14b)
and of course:
[ dx =g plEh. (14c)
(a) follows from (14} and (b) follows from similar estimates, e.g.,
[ G Whpa— [ @ W | = | [ How—0) + Wipn + )

Llpw — el (| Willse i pw + pllsis | Wallo Il pa = o ln)-



THOMAS~FERMI THEORY 37

To prove {c), (d), we note that [(p+ ! x[)p == 0 for any p € .# so, by {14,a,c):

E@ V) =z 2plia — e liplsm — & (15)

on each %, where ¢, is A dependent (A|| Vyl'p) and ¢ is A-independent
(I V1 |l5/2)- Since 472 — cx is bounded from below on [0, <), (c) follows. Simi-
larly, {d) follows from (15) and the fact that {x | #%° — ex <{ d} is bounded for
each fixed ¢,d. |

From our eventual analysis of minima for & on sets of the form 4, , it will
follow that when }" =37, 2, | x — R; |71, &(p; V') has a minimum on all of .#
and this occurs for a p with [pd® — 37, 2;. In particular, for V' of this form,
& is bounded below on all of .#. While this will follow from our detailed minimum
analysis (Sects. I1.4, I1.5), it seems advisable to present an elementary proof
at this stage. We emphasize that we will not need the following result or its
proof in the remainder of this paper.

Turorem 13, Let F(x) = Y5 2 |o — Ry [T withz; 2> Oand Y5 1 5 = L
Let pe & with X = |iplly,y . Then

5/6
(i V) > %Xﬁfﬂ 3 (%) (8113 X510,

)" - 6987,

(s

inf &(p; V) 2 — 5

Remarks. (1) By scaling (Sect. [.2), there is a result for any 3}, =; .

{2) This lower bound is not incorrect by an absurd amount. The correct
value of the TF energy for an atom (& = 1, Z] = 1), is found numerically* to be
[22] —0.7687 [(3#%)2/3/2] - —3.679. By Theorem V.4 among all }7’s and p’s
considered in Theorem I1.3, the true minimum occurs in this neutral atemic
case.

Proof. Tt is obviously sufficient to prove that for any p € .# that
Co e L p)ely) L g2y 1/3 Y'5/6
Wip) Jx]f2.’.lx—y]7 3(5) CORER S (16)
Fix R = 0. Let

L= playix|ds I,?J p(x)/] x | dx.
R lrl<R

“le gz

i The first numerical estimate of the energy of a TF atom is in Milne [59] whose answer
is off by about 159%,. Baker [2] obtained an answer correct to better than 1 % and also gave
graphs of the 'T'F potential in the neutral case and for several icns.
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Let f(x) = (1/47) 8| x| — R). Then

e g

On the other hand, since

f@ds 1

= R,
EETIRE] 7]
we have that
J(x) p()
I = At e dy,
- J-iyl}tﬂlx_'yl ahed
Let p(y) = p(») if | ¥ | = R; p(y) =0if | y | < R. Then:

L[ CDOC I 4oy 0
x—y
S0

Lorg [ aa = [T - -

On the other hand, by Hélder’s inequality

—RH\ N I pllsss = (BmRY2RAX,

where y is the characteristic function of the ball of radius R. Thus, for any R:
W(p) = —(1/2R) — (8m)*/5 X R/,
Choosing R85 = (5/2)[(8=)2/* X]7, (16) results. [

Dermvition.  E(X V) = inf{é(p; ¥} | p e F).

Prorosition, 1.4, If VeL%2 - L? for some 5/2 < p < oo, then E(A; V) =
inf{&(s; V)| p < 5

Proof. Note that | x [~'eL?2 4 L7 for some p with 52 <p << (any
p > 3 will do!). Hence, by mimicking the proof of Theorem I1.2(b), we se¢ that
for some 7> 1 if [|p — pallyss + 1 pu — plls— 0 then &(p, ; V)= &(p; V).
Given pe C*(R% N 4, we claim we can find p,e.%, with | p, —pllss +
lp — pnll-— 0. Take p, = p -+ n'xa where y, is the characteristic function
of 4 and A, is a set disjeint from supp p with measure n(A — || p il,). Thus

inf{E(p; V)| p e T} < inffé(p; V)| pe S, N CF)
—inf{(p; V)| pe A}
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The last inequality follows from Theorem I1.2(b) and the density of C* in
L' N L3, The inequality

inf(&(p; V)| pe £} < infl6(p; V) p et}

is, of course, trivial.

CororLary LL3.  E(}; V') is a monotone nonincreasing function of A whenever V
obeys the hypotheses of Proposition 11.4. |}

Remark. What Corollary IL5 says is that if "eL%?2 4 L?(p < o), then
increasing A decreases E(A; 17) because one can always place any unwanted piece
of p “at infinity” without having to increase the energy. If p == oo, this would
not necessarily be true. Note that V7 eI5?2 4 L¥(5/2 < p << o0) implies
Veldz L L=

I1.2. Strict Convexity

The TF functional has an elementary property which bas the important
consequence of unigqueness of solutions of the TF equation:

Tueorem H.6. Fix V. Then &(p; V') is a strictly convex function of p e #,
that is, if py , py € F with py #= p, (by which we mean that p; — p, 15 nonzero on a
set of positive measure) and 0 <2t << 1, then

Eltpr + (1 — 1 pa) < 16(p,) + (1 — 1) 6o (17
Proof. Write
£ = K(p) — A(p) + R(p) (18)

corresponding to the threc terms in the definition (7a) of &(p). A(p) is linear,
K(p) is clearly strictly convex since f(x) — x%® is strictly convex on [0, ).
Finally R(p) is strictly convex since | x|~ is strictly positive definite, i.e., its
Fourier transform is strictly positive. ]

Remark. TFor the theory of Hertl et al. [30, 31], where gravitational forces
are considered, one loses strict convexity and thus a simple proof of uniqueness.

Theorem I1.6 has two immediate corrollaries which will imply uniqueness of
solutions of the TT equation once we formally establish the equivalence of
stationarity of & and solutions of the TF equation {(sce Section IL3).

CoroLLArRY 11.7. There is at most one pye 5, with &(py; V) *—infﬁ,"
&(p; V). This statement remains frue if F, is replaced by &, &, or any convex
subset of 5.

CoroLLaRY IL.8.  Suppose that p,c .9, is a stationary point of &(p; I') as a
Junctional on Fy, , fe., (dldt)Etpy + {1 — £y p 3 V) =0 for any p, €, .
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Then &(py; V) =inf. 5 &(p; V). This statement remains true if 5, is replaced
8
by S, &, or any convex subset of £,

Remark. For convex subsets of # specified by inequalities, such as %,
stationarity in the above sense generally implies much more than just minimiza-
tion on the given convex subset. For example, a stationary point in ., is actually
a stationary point in .# and thus a minimum in .

Strict convexity also has implications for the study of E(A; I):

CoroLLARY I1.9. Suppose that V e L5  L? with p > 5/2. Then:
(a) If py minimizes &(p; Vyon 9, and [ pydx <Ny, then EQA; V) = E(d 3 V')
for all X > Ay, when p < .
(b) If &(p; V) has a minimum on B, for all A <Z Ay, then E(X; V) is strictly
convex on [0, Ag).
In particular, E(A; V) is convex in A.

Proof. (b) 1s a direct consequence of strict convexity and (a) follows by
noting that p; must be a minimum for &(p; V) on all of £, |

Remarks. (1) For V of the form (la), this corollary will imply that E(A; 77)
is strictly convex on [0, A;] and constant on [};, 00} where A :Z;;l z;; see
I1.5.

{2) For V() = ¢ | x| (TF atom), one can prove that —(—A"L3 E{(x; 1)1/
is concave and monotone, nonincreasing. This has been proved for quantum
mechanical atoms by Rebane [65] and Narnhofer and Thirring [61]. Thirring
{private communication) has remarked that the same proof applies to TF theory.

11.3. Connection with the TF Equation

We have already seen a formal connection between the TF equation (3) and
stationarity of &(p; V) with the subsidiary condition [p dx = N. Our goal in
this section is to make the formal connection rigorous. This sort of connection
is fairly standard in the calculus of variations [60].

Tueorem 11.10.  (a) If p obeys the T'F equations (3a-3d) {with W(x) — | x |71)
for some ¢y and if [pdx = N, then
E(pi V) = E(N; V).
E(A; V) is differentiable at A = N and
—er =By == —PE(N; D)o oy - (19)
In particular, if ¢y = 0, then p minimizes & on all of #.

(b) If peby and &(p; V) = E(N; V), then p obevs the TF equations
(3a-3d) and ep is given by (19).
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Remark. 1t is because of (19) that we interpret e; : —d, as a chemical
potential.
Proof. For pe.#, define
(5 [30()) — p*7(x) — (o), (20s)
where ¢, is given by (3b), Le.,
bix) = V@) — [ le—y o) dy. (20b)

Then {3c), and (3d} are equivalent to

(B8/3p(x)) = —hy i€ pl®) >0, (21a)
(6/3p(x) =~y if plx) = 0. (21b)
Morcover, it is casy to see that for p, p' & .2

% E(tp" - (1 — Dp)lpy = J‘ o' (x) — p(xY] gf)_(é;) dx, 22)

where the derivative on the left side of (22} is a limit as 2 | Q.
Now suppose that p satisfies {21a, 21b). Then since (p" -— p)(x) = 0 whenever
p(x) = 0 we conclude that

(@j60) &0t + (1= Moo > (—d) [[ (') = plomyas].  (23)

Let us first apply (23) when p" 5= p is also in %, . Then (23) implies that the
derivative from the right satisfies

(8Jét) St + (1 — 1) p)leca 2 0.

Strict convexity then implies that £{p") = &(p), so we conclude that if p obeys (3)
and thus (21), then p minimizes & on .5, .
To prove (19) we again appeal to strict convexity to deduce

) — 8(0) = () [[ (') = pla) d]
from (23). We conclude that

EQ) - B(N) 2 (—do)(A — N) (24)

for any A.
Using (22) with p” — 2p we see that

(@/at) &Gty + (1 — 1))y = (--deY2N — N)
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s0 8(tp’ -+ (1 — 1) p) = (o) + H—do)(N) + O(#2). Thus
E(1 + 1) N) — E(N) < —t,N + 0(2)
Similarly taking p’ = 1p, we find that:
E((1 ~ ) N) — E(N) < toN -+ 0(22).
(24) and (25) imply (19). This concludes the proof of (25a).

{25a)

(25h)

To begin the proof of (b), we suppose that p € Ay with £(p; V) = E(N; V).

Then by (22)
| f@sesp()] =0

for f obeying
feltn L5

f f(x)dx =0,
pt+aof =0 for all small positive a.

Now suppose B is any measurable set obeying:

(26a)

(26b)
(26¢)
(26d)

(i) There are constants ¢; > 0, ¢, 80 that ¢ << p(») <C ¢y for all x € B.

(i) |86 /8p(x)] < e, forallxe B
(i) The Lebesgue measure of B is finite.

For any function f e L=(B) with [fdx =0, both f and —f obey (26b-26d).

Thus
| ds f(s)8€8p(x)) — O

(27)

for all f € L*(B) with [ f dx == 0. Since 86'/8p(x) is bounded on B, (27) holds for

any f € LX(B) with [ fdx = 0. Define ¢, by:
b5 = — fB 8¢ [5p(x) dx/ .
Given g e LY B), let
J=g- xa U gdx/ xxdx],
where yy is the characteristic function of B. Then (27) implies that
| )16 3p(x)) dx = —gy [ g(a) d

for any g e L'(B), i.¢.,

a&

—— = — a.e., xeB,
O

(28)
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Given B, , B, obeying (1)-(iii) above, so does B, U B, , and b5, =g un, bz, »
1.e., ¢p is a constant independent of B. Call it .

Now p e Ll is finite a.c. and, by Young's inequality, 6&8/8p € L3/® - L= s0 it
is finite a.e. It follows that {x | p(x) >> 0} is a union of countably many sets
obeying (i)-(111). Thus 8&/8p(x) == —d, for almost all x such that p(x) = 0.

Given any g in .# with [g(x) dx -= N, f == g -~ p obeys (26b-26d) so

| e)ae o0 du 22—y [ p(x) dx = -4y [ g) dv.

T'hus 8¢ /p(x) Z: —dy a.¢. x. Thus p obeys the TF equations. In particular, we
<an appeal to the argument in (26a) and conclude that (19) holds. |

Applying Corollary I1.7 and "Theorem IL.10, we have:

Cororrary IL11. Fix N and VeL3? 4 L> Then there cannot be two p's
in Sy obeving the T equation (3a—3d) (with W(xy = | x |7Y) even with distinct
values of ¢y .

Using (19), Corrollaries 1.5 and I1.9, we have;

CororLary I1.12. If VeL5% = L? for 5/2 < p <7 o, then &, = 0 for any
solution of (7a—7d) and moreover:

(1) 1If ¢g =0, then p is an absolute minimum of &(p; 1) on 5.

(it} If py . py are two solutions of (3) with different values of N (say N; and N,)
and corresponding values of dy(say &5 and i) then s < & if Ny > N, .

Remarks. (1) Once we know that there is a mimmizing p on each %
(see Sect. IL.4), Corollary IL.9 implies that we can improve (7b) to read ¢ < ¢
(see also Sect. I1.8).

{2) This corollary is quite natural in terms of the Fermi sea picture
(electron gas m phase space) discussed in Section L

11.4. Minimization with [ p =< A

Due to Theorem I1.10, the existence problern for the TF equation is equivalent
to finding minimizing p's for &(-; ) as a functional on %, . We shall investigate
this existence question in two stages In this section, we shall establish the
existence of a minimizing p € .4, , i ¢, for any A we shall find p with &(p; I) —
E(X; V) and [pdx << A In the next section, we shall investigate when this p
obeys [pdx - A This two part approach is natural for two reasons:

(1) If Fis given by (21) and Z = Zf;l z; , then folk theorems assert that
¢ == 0 when A = Z. If this folk theorem is valid (and indeed we will prove it in
I1.5), then our analysis above (especially Corollaries I1.9 and I11.12) implies
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there is no p € %, with &{p; I’y = E(A; V) if A > Z. But for such a value of A
there is a p € 5, with £(p; V') = E(A; V'), namely, the p with ¢y = O and [pdx =
Z, By dividing our existence analysis in two stages, we only have to consider
the mechanism distinguishing A <{ Z and A > Z after developing some properties
of the putative solutions.

{ii) From a mathematical point of view, %, is more natural than %, since
S, is closed in the weak L3/ topology while %, is not, We shall use the weak
L5 topology is an essential way.

The natural way of showing that a function has a migimum on a set is to prove
that the function is continucus in a topology in which the set is compact. We
have already seen that &(-; 1) is continuous in the L33 M L! norm topology
(Theorem II.2b) but alas, ., {or even {pe.% | £(p; V) < £y} is not compact
in this norm topology. On the other hand, by Theorems II.1 and II.2(d),
{p e | €(p; V) < Ey} lies in a set which is compact in the weak L5/ topology,
but alas, £(-; V} is not weakly continutous as the following example shows:

ExampLE. Suppose that Feld? L L?; 5/2 < p < oo, Pick any pe.f
and let p,(x) == p(x — r,) where r, is a sequence of vectors with r,, — c0. Then
pn— 0 weakly in L83, [Vp,d% >0 but [pi%x)d% = [p55%(x)dx;
J(pn* | 2™ p, d® = [(p | x |72} p dx for all n. Thus:

Elon; V)3 [ pP) dx + 3 [ (v |61 Mpds > 0 = 8(0; V).

-

Fortunately, there is a hopeful sign in this example for lim,,_ . &(p,; V) =
&(lim p,, ; V') so one might hope for a semicontinuity result which would suffice
for establishing existence of a minimum. Such semicontinuity ideas are not
uncommon in the calculus of variations [60] and, in particular, have been used in
a problem similar to ours by Auchmuty and Beals [1]. In our case, we have:

Tueorem I1.13. Let V eL8/3 L2 (5/2 <2 p < 00). Then &(-, V) is lower
semicontinuous on each S, (X << o) in the weak L57 topology, ie., if p,—p in
weak L5 with sup,, || py | << o0, p €LY, p, . p = 0, then

&p; V) <lim Sp, 5 V). (29)

Moreover, if £(p; V) =1lim&(p, ; V), then | p, — pllss— O and each term in
&(p,, ; V) converges to the corresponding term in &(p; V).

Proof. By passing to a subsequence, we can suppose that lim &(p,, ; V)
exists and we may as well suppose the limit is finite since (29) is trivial otherwise.
Then, by Theorem IL2(d), sup, || p, lls;5 << oo (alternatively this follows from
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the weak convergence and the uniform boundedness principle if we only concern
ourselves with sequential continuity). We prove (29) by showing

lim | pr i 2 i s (30a)
lim oub j oV, (30b)
fim [ Gon 151 pn 2 [ (% [ |p- (30¢)

{30a) follows from the fact that balls in L3/ are weakly closed (which, in turn,
follows from the Hahn—Banach theorem). Or, we can be more explicit and note
that p2/3  L3/2, so by the definition of weak convergence and Hélder’s inequality,

f p*Pd% == lim f pap®* d%x

IPI\s/a Lm || py llsss -

To prove (30b), write ¥V = V', 4 Vy with V, e L32, I/, eL? (512 < p << w).
Clearly, [ Vp, converges to {Vip. We claim that since sup, || paly < @,
pn— p in weak L1 < ¢ = 5{3) and, in particular, for g the dual index to p.
This claim clearly implies that [ Vyp, — | Vsp completing the proof of (30b).
The claim follows by remarking that L32 LY is dense in LY and that
sup || p, lly << 00 by the inequality

WAl < A1 A1

g = ap? 1 (] —a)r 0 <a<l.

Finally, to prove (30c), we use positive definiteness of | x [ and the resulting
Schwarz inequality. Since pell! and |x | 1els? L L px |x1els? | L2
by Young’s inequality. Since p, — p both in weak L5/% and weak L3/ (by the
above), [(p* | x| p,— [(p* x| p. Therefore

*T(:)_P(;? dxdy — L{{g w-—pl(;)_'i";l)l-)— dx dy
< lim (U p(x) p(y) du d ]”2 U pr(x) Pl 4o ]”2)

which proves (30c} and so (29).

{30a-30c) imply that if &(p; ') = lim &(p, ; V), then each term of &(-; 1)
converges and in particular lim|[ p, lis;3 = |l pllsrs - Since L5/3 is uniformly
convex [12, 43] convergence of the norms and weak convergence implies norm
convergence. |
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As a consequence of the lower semicontinuity just proven, we have:

TueoreM IL14. Let Vel®? - L? (5/2 < p << wo). Then for each A, there
exists a unique p € F, with

8oy V) = inf (3 V) = E; V).
D'E A

Proof. Pick p,e% so that &p,; V)— E(}; V). By Theorem IL.2(d},
SUP,, || pr lis/z << 0 30 by Theorem IT.1 we can find p e L3/ with p, — p in weak
L35, Since | gll, —sup{[fe | fe L5 AL | fllo < 141l ply < im | paly < X
Since g 2= 0 if and only if [gf =0 for all fe Cy™ with £ 0,p 2 0. Thus
p €4 . It follows from Theorem I1.13 that

Sl V) <lim (e, 3 V) = X V).

Since p e, , &p; V) = E(; V). Thus &(p; V) = E(; V). |}

The semicontinuity results and the methods employed in their proof can be
used to say something about the ¥ dependence of E(A; V) for A fixed:

Tueorem IL15. If V,— V in L52 + L? (5[2 < p << oo) then for any fixed
A E(x; V) — E(X; V). Let p (resp. p,,) be the unique density that minimizes &(-; V)
(resp. E(5; Vo)) on S, then || py — plisss— 0 and || p [y < Lim | py |y -

Remarks. (1) Since &(p; V) is linear in ¥, E(A; V) is a coneave function of
I and it can be shown to be bounded on bounded subsets of L3/2 - L7, This
can be used to provide an alternative proof that E(a; -} is continuous.

(2} 1t can happen that || p||; is strictly less than lim | p, ||, - For example,
if V,(x) is zero for |x| <{n and |x | for | x| >> n, then our results in
Section I1.5 below show that for A = 1, [ pn [, = 1 (all ). But ¥V, > 0 in L3/2
L4 norm so p =0,

Proof. Note first that sup,, || p, |55 << o2 by arguments similar to those in
Theorem I1.2. By a simple argument, it is enough to prove that || g, — pll;;5 — 0,
E(pn; Vo) = E(p; V), and | p|l, < lim||p, |, for any weak L5 convergent
subsequence p,, . Suppose that p, — p, in weak L5/, Then, as in the proof of the
last theorem, p, £.% . By a simple modification of Theorem IL.13, &(py; V) <
lim &(p,, ; ¥,) = E,, . On the other hand,

Ep; V) = lim &(p; V) = Tim &(py; V)
by the minimizing property of p,, . Thus by the minimizing property of p:

Elp; V) < &lpy 3 V) < Lim (py 5 Vo) <Tm Epy s Vi) < E(p; V).
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It follows that &(p, ; V,) == E(A; V,} — &(p; V) == E(A; V) and that pn 2.
As in Theorem I1.13, convergence of &(p,, ; Vo) to&(p; Fyimplies| p, — plisss —>
0 and, as in Theorem [L.14, | p|l; < lim || p . 1

FTueorem 11.16. Let V, Y el32 4+ LP(5/2 << p << o0). Let p, be the unique
minimizing p for §{-; V + oV on £, . Then the function > E(A; UV + o) 05
continuously differentiable, and the derivative is given by

(EEjen) — — [ Y(x) pofa) d. (31)

Remarks. (1) Equation (31) is essentially a TF version of the Feynman-
Hellman theorem.

(2) Although it is somewhat obscured in the proof, the central reason for
differentiability for alf « isthe uniqueness of minima. Concavity of a—
E(x; I - a¥) only implies the existence of the left- and right-hand derivatives
evervwhere and their equality only a.e. In essence, the left- and right-hand
derivatives should be of the form — [ p,#(x) ¥{(x) dx for some minimizing p *(x).
Uniqueness then requires that p. 7 = p,™.

Proof. By Theorem IL.15, a+ p, is continuous in the L*/? norm topology.
Since || pylly <A, e [ ¥(x) pJ(x) dx is continuous so it suffices to prove
ab> E(A; V 4 aY) is differentiable with derivative (31). Clearly we need only
prove differentiability at « = 0. Now for & > 0:

WE@) — BO)) < ooy s U+ ¥) = Epy s VY] = — [ ¥(9) po) s
by the minimizing property of p, . By the minimizing property of p, :

WAE() — BO)] 3 a8 (p, 1 V- V) — 6oy V)] = — [ V() pul) d.

Since [ Y(x) p(x) — [ Y(x) po(x), we have that
lim o[B(s) - EO)] = — [ pos) Y(x) d.
A similar argument controls lim_,,.

IL5. Minimization with [p = A

We now examine the question of when the minimizing p in % actually lies
in .%; . Our main results involve potentials of the form

k

V) = Y | — R Pl

i=1

3

;= 0. (32)

Go7/23/1-4
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Tarorem I1.17. Let V iuwe the form (32) with Ve L3 and Vy of compart
support. Then for A £ Z = Zj 1 %;, the mintmizing p for &(-; V Y on A has
fpdx =2

Tueorem 11.18. Let V have the form (32) with Vy(x) << 0 all x, V' of compact
support and Vyel®? L L7 (52 < p < oo) Then for A >Z= 2;=1 2, the
minimizing p for £(; V) on S, has [pdx =

Remarks. (1) We shall later present an example showing that fpdx > Z
is possible if Vy(x) Is positive.

(2) The condmons A > Z vs A << Z enter naturally because the formal

large x behavior of Z,A gla—R |t —fp(3) | x —y[dyis(Z—X) x|t

Proof of Theorem 11.17. Suppose that the minimizing p has [p dx = A < A.
Then, by Corollary I1.9, p is a minimizing p for &(; ') on all of £, so
by Theorem I1.10, the corresponding ¢, is 0. Thus p obeys:

p(x) = max(4(x), )2, (33a)

$(x) = V{x) — J p() | —y [ dy, (33b)

f p(x) dx = Ay < Z. (33c)

Choose R so that R > | R, |,f = I,..., & and so that supp V,C{x | | x| < R}.

For » > R, define
($1r) == (14m) [ 4(2) a2

Then, by the well-known formula
(1fdm) [ 170 =31 42 = [maxC, 13 DI
and (32), (33b),
[#10) = 2 [ p() fmaxtr, | 3 I dy (34)
= 7t — [ oyt dy = (Z — W, (35)

Now, let [p](r) = (4m)"" [ p(r£2) d2. Then, by (33a) and Hélder’s ineqality, we
have for r > R:

[pl(r) = | max(§(r<2), 0)¥/2 (dQfdn)

> ([ max(p(2), O)d2am)
= [6l(r )32 = (Z — A P/or-812
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by (35). Thus
| prydr - 4z f [pl(r)r2dr = oo

violating {33¢). This cstablishes a contradiction and thus allows us to conclude,

that j‘p de — A |

Proof of Theorem 11.18. Suppose that [pdx -- X > Z. As above define
[#](r}. Then, by (34),

B < (27— | plwyds)r
el er ;
so [$](r) < 0 if 7 ts sufficiently large. This violates the lemma below. [

Lemma [L19. Let $(x) = V(x) — [p(y) i — v | 1, where V' has the form
(32) with Vy(x) =210, and suppose p =— max{d — ¢, , P* with ¢, = 0. Then
P(x) — Vo(x) 2= 0 for all x.

Proof. Let f = ¢ — F,. Since pelS®NLY px| x|t is continuous and
goes to zero at infinity (see Theorem IV.1). Hence ¢ — o0 as x - any R, and
is continuous away from the R;. Thus 4 == {x ] (x) << 0} is open and disjoint
fromthe B; . On A, ¢ : - - V, <<0s0¢ — ¢, <<0. Thus p — D on A, so s is
harmonic on 4. Clearly ¢{x) — 0 as x — o0 and ¢ vanishes on 4. It follows that
$--0o0n A4, s0 A is empty. Thus {x) 7= 0 for all x. ||

Remarks. (1) The use of harmonic function methods in TF theory goes
back at least as far as the work of Teller [89]. We will use these ideas extensively
in Sections IV-V1,

(2) Theorem IL.18 is false if the restriction I, =70 is removed as the
following example shows.

ExamPLE.  Choose F(x) == | 2| y(,.0(x), where y¢, »(¥) is the character-
istic function of the spherical shell {x | @ < | x| <2 §}. By a simple modification
of the argument, 17, can be made C=. As a preliminary consideration, let I be
the potential which is ix |1 if | x| <aeand 2| x| if | x| 2= a. By Theorem
1117, there is a § minimizing &(-; W) on f;, and |5 dx = . Since there is
also a minimizing p on .4, with { p dx = 2, the ¢, for § is strictly positive. Now,
by the spherical symmetry of I and uniqueness of solutions, § is spherically
symmetric, so by our arguments in the proofs of Theorems I1.17,I11.18, qg(r) — 0
at infinity. Since ¢y >0, and § = 0 if §(r) < ¢, we see that §has compact
support. Choose b > @ so that 5 has support in {x ]| x| =2 b}. We claim that
g minimizes &(-; | x |71 -4 V) on 5, thereby exhibiting the need for I, <2 0
m Theorem IL18. Since & |+ Vy << W, we have that for any pe fy,
Elps | 317+ V) 3 o3 W) = 83 W) — (33 | % | + Vo).
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We close this section by summarizing the situation for V" of the form (la):
Taeorem I11.20. Ler V(x) :Z:-;l 2zl x— R;|™ with 2, >0 and define
Z = 21;1 2, If A < Z, then there is a unigue p with [ p(x) dx = X such that
p(x) = max($(x) — by, 0/
$) = V) — [ 12—y 7 o) dy
Jor some ¢ . Moreover:
() IfA=2Z¢y=0,andif \ < Z,¢, > 0.
(i) g i given by (19).

(iii) The function E(X; V) is strictly monotone decreasing on [0, Z], constant
on [Z, o) and convex on [0, w).

In particular, for all p € .#,
Elp; V)= E(Z; V).

For Vs of the form (1a), we introduce the notation ETF(A; 2, ..., 2 ; By .-y By)
and the notation pre(¥; 2y s-r.y By 3 By 5ees Ry 3 A) for the minimizing £ and p on
£, (50 pre(e-s A) = prele; Z) if A 2= Z). We denote the negative of the associated
by by ex(X; 2 4o, 215 Ry poeny R

11.6. Components of the Energy

In this section, we discuss the components of &(p; V), Ve L3? 4
Ly(5]2 < p << 0):

Kip) = 3 [ p@PPds;  Rp) =13 [ la—y17p(x) p() dv dy;

Alp; V) = [ plx) V() dn.
We also define:

B, o, i ) — inf [<K(p) — (o) + pR(p))

Turorem IL.21.  E(x, a, p; A) is C1 for «, p > 0, « real. Moreover:

oF .
—a? Kk=x~=u=l o K(P)'
oE

ol — —A(),
ol (8)
Zi LR,
dlu‘ H=te=pu=1

where j is the mimimizing p for (-3 V)on F, .
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Proof. We have already proved 96/dn = —A(p) in Theorem IL.16. The
method of proof of Theorems I1.15, 16 can also be used to prove the remainder
of this theorem. ||

When p is the TF density for an atom, molecule, or ion there are some simple
relations among K(p), A(p), and R(p). The first of these relations is a virial
theorem, first proven by Fock [21]; sce also Jensen [36], Gombds [24], and
Fliigge [22]. The second relation, which is special to 'I'F theory, seems to be
due to Gombas [24]; sec also Fliigge [22]. Our proof of the virial theorem is
patterned after one in quantum mechanics [20, 93]. See Note 4.

Trrorem [1.22 (TT virial theorem). If V{(x) = Z | x| and if p minimizes
&5 VY on any 5, |, then

2K(p) = Alp) — R(p)- {36)

Proof. Let p,(r) = p’p(ur) so that p, €S, . Then K(p,) = p*K(p), Alp,) =
wA(p), R(p,) = pR(p). Now by the minimizing property for p, u*K{p) — pA(p) +
uR(p) has a minimum at u = 1 frem which (36) follows. [

The second relation is obtained by Gombas [24] using properties of the TT
equation rather than via minimization, as we do:

Tueorem I1.23. Let p minimize &(-; V) on all of F. Then, for V given by (1a)

3 K(p) = Alp) — 2R(p). 37)
Proof. Let pgr) = Bp(r). Then the minimizing property of p implies that
358K {p) — BA(p) + B2R(p) has its minimum at 8 = 1 from which (37) fellows. J

CoroLLary 11.24 (Gombds [24]). In the atomic case, let p minimize
E( 7 x| Von S Then K(p) : A(p) 1 R(p) —3:7: 1.

Proof. 'The result follows from (36} and (37). {

11.7. Min-Max and Max—Min Principles for the Chemical Potential

The quantity ep() = dE(X; V)/éA is of some importance in the TF theory.
It is the chemical potential in the electron gas picture of the 'T'F theory and is
the TF prediction for an ionization potential (although we emphasize that the
picture we establish for the connection between TF theory and quantum
mechanics suggests that the TF theory will not correctly predict ionization
energies). Thus far we have seen that eg(}) is the negative of the ¢, associated
with the minimizing p on 4 . This description of ¢ is sufficiently complex
to be of little direct use. In this section we obtain some alternative character-
izations of €z(A) in the case where V(x) == z;;l z; | & — R; |7t and, in the next
section we study the properties of e in this case,
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Given any putative electron density p, we can think of forming an electron
gas in phase space by filling a region {{x, p>| | p | << pp(%)} such that the asso-
ciated x-space density is p{x). With our units, the energy at the surface of the
gas at x is p>/*(x) — ${x), where, as usual,

box) = V) — [ p(3) [ —y [ dy. (38)

As we have seen, the TF p has p23(x) — ¢,(x) constant at points where p(x) # 0,
and that constant is precisely e, . Our basic results say that for any other trial p,
p23(x) — &,(x) has values both larger and smaller than e . While this is intuitively
obvious for p’s differing from the TF p by a small local perturbation, it is a
subtle fact in general. We need three preliminary results.

Lemma 1125, If fel¥R®), g e LYR®) with p, ¢ dual indices different from
1 and oo then f + g is a continuous function going to zero at infinity.

Proof. 'This result, which improves the Young’s inequality result that
f*gel®, is standard. See, e.g., [73]. To prove it, note that if f, g € Cy=(R3),
then f g € Cy™ s0, by a density argument and the fact that || fx g |, <[ f1lxll 21l
for any f, g we know that f«g is in the || - ||, —closure of Cy=. These are
precisely the continuous functions going to zero at infinity. [

Levma 11.26. Let p,, ps be positive functions in LYR®). If Syx) = do(x)
(with ¢; given by (38) with p = p,) for all x, then [ py(x) dx 2= [ py(¥) dx.

Proof. (g —$)() =[x — 7|y — pr)(3) dy. By the arguments in
Section IL.5, lim,., r(dm) [o ($; — o)(rR2) dQ2 — [(p, — p)(¥) dy. |

LemMa 1127,  ex{R) és a continuous function of A.

Proof. Since eg(A) = Oon [Z, ), itis clearly sufhictent to prove ¢ continuous
on [0, Z]. Now, by Corollary IL.9, E(A; V) is convex in A. Thus E(}) has right
and left derivatives at each point and the right (resp. left) dervative is continuous
from the right (resp. left). This latter fact follows from

Ex(0) = inf (R() — EO))jx = inf {inf (E(x + ) — E()/x}
— inf {inf (E(x +3) — B(y)/} = inf E¥ ().

By Theorems I1.10 and IT1.20, E(2) is differentiable on [0, Z] and thus the left and
right derivatives are equal for all A € [0, Z]. We conclude that E(A) is continuously
differentiable, so by (19), eg(A) = 2E/eA is continuous. J

Turorem 1128, Let V(x) =, 2 | x — R; |™Y 2, = 0. For pe 7, let
T(p) = ess inf [p*/*(x) — py(x)]- (39;
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Then
() = sup T(p). (40)

S )

Remarks. (1) The proof will show that ep(A} is actually also equal to the
sup ovet all p in .# (thus providing another proof that e, is monotone non-
decreasing).

(2} Since ¢ x)—0 at iohnity (by Lemma 11.25), T{p) <0 for all p
thereby proving once more that e, =2 0.

(3) If A <C Z, then clearly the TF p has €g(A) -« T(p), so the sup is realized
by the TF p. We conjecture that for A = Z this is the unique p € .4, with T(p) : :
¢, . However, for A 2= Z, if p is the sum of the TF p with A =- Z and any positive
o', then T(p) — O so there are many p’s with T'(p) = ¢,. This is in contrast to the
minimization problem for which there s no p in 4, with &(p; V) = E(A; )
if A > Z.

Proof. As we have remarked above, if A 7 Z, then it 15 easy to see that
SUP,es,. T(p) = 0 == ex(A) so we consider the case A << Z. Suppose that
T{p) > ex(A). By continuity of ez(-), T(p) == <z{A") for some X & (A, £). Let pyp
be the minimizing p for &(-) on %, . We shall prove that [pdx > X’ thercby
proving (40) (using Remark 3 above). By Lemma I1.26 we need only prove that
drp = ¢, so let f — @, — ¢y which is continuous by Lemma I1.25. Thus B —
{x | ¢ = 0} is open. Now, for x € B, ¢ither prp(x) = 0 in which case p(x) = prp(x)
or prp(x) > 0 in which case p¥Xx) — dre(x) = +ep(A). Thus for almost all
x € B N {x | pre(x) = O}, p25(x) 2= dfx) + Tp) = brsla) + $(x) + (Y) =
pYE(x), so p = prp on almost all of B. Tt follows that the distributional Laplacian
Ay = 4n(p — prg) = 0 on B so that ¢ is subharmonic on B. Thus ¢ takes its
maximum value on ¢B W oo, At o0,  — 0 (by Lemma I1.25) and by definition,
Yy — 0 on dB. Thus << 0on Bso Bisempty. This establishes that¢re = 6, . §

Treorem 11.29. Let V(x) =, %, | 5 — R; |4 2, > 0. For pe F, let

S(p) = ess sup [p*/3(x) — P (%)}

{rlo{x)>0
Then
ex() = inf S(p). @1
il a’\

Remarks. (1) Our method of proof shows that in (41}, J%, can be replaced
by (pes | [ > AL
(2) For A < Z, the TF p's obey S(p} = ex{A) and we conjecture they are
the unique such p’s. For A > Z, there is no obvious p with S{p)} = €z{A) == 0
and our proof shows that there is none.
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Proof. We first claim that
er(A) = a;gfa AS(P)- (42}

For A < Z, just take p to be the TF minimizing p. For A > Z, proceed as follows.
Let 5 be the minimizing p for A == Z. We can find pe %, with | p — 5|, and
lp — Bllsss arbitrarily small. But then, by Young’s inequality, |[¢, — ;5]\, is
small so | S(p) — S(p)| can be made arbitrarily small.

Given (42), we need only show that S(p) < €4(1) implies that [pdx <A to
complete the proof. Suppose that S{p) <C ex(A). By continuity, we can find
A <A so that S{p) <C €p{A’). Let prp be the minimizing p on £ so that
| predx = min(X, Z). We claim that [pdx < [ pyrdx. By Lemma I1.26, we
need only show that ¢, 2= ¢drp . Let i =, — dppand let B = {» | 4 << 0} which
is open. Now for x € B either p(x) = 0 in which case pyp 2= p, or else p(x) > 0
in which case (a..): p2(x) < (x) + S(p) < erld) + (x) + dre(x) < e5(2) +
bre(x) < p¥E(x) since prp = max(y + ex, 0”2 Thus prr = p on B, so 4 =
4m(p — prr) = 0. ¢ is superharmonic and thus takes its minimum value on éB.
As in the proof of Theorem 11.27, B is empty so ¢, 2> ¢y ae. |

11.8. Properties of the Chemical Potential

Turorem I1.30. Let ex(A; 2y 00 253 By ey By) be the chemical poteniial
for V=S5 2| x — R; |7\ Then:
{iy In the region 0 <<A<Z EZLI 2, eels %3 Ry) 5 comtinuous,
negative, strictly monotone tncreasing and concave, and lim,,; ex(A) = 0.
(i) Ford =2, e, =0.
(i) For fixed R; and A, ez is monotone decreasing as any =; increqses.

Proof. (i) Wehave already seen that e, 1s negative and monotone increasing.
Concavity will imply continuity and, since ¢x << 0 for A < Z and ¢y =0 for
A = Z, strict monotonicity. T'o prove concavity, let p; , g, minimize &(+; 1) on
Iory > o, - Letp = tp) + (1 — t) p . Then [p = Ay + (1 — ) \yand for any

() — (%) 2 1oy (%) — d,(x)) + (1 — ) () — ,,(w))
Ztep(A) + (1 — ) ep(Ay)

since ¢, is linear in p and &+ 42/ is concave. As a result, T{p) 2= t ex(X)) -
(1 — ) €p(Ay), so by Theorem I1.27, ex(#A, +— (1 —#) Ay) 2= £ ex(dy) + (1 ~£) ep{As).
(ii) follows from Theorems II.10 and II.13.

(ii) As %, increases, the corresponding ¢, increases for any fixed p. Thus
T{p) decreases, so by Theorem T1.27, ¢, decreases. ||
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Taeorem 11.31. Let exlAs 2y, zk,R -y Ry) be the chemical potential
Jor V=30 z|x— R\ Let o = Y1 3% ,9 — sup; z; and b = (4/\/712&)2/3
Then for small A, ep = ﬁb‘l 4+ 0(1). More precisely, when A < wB™2 and b <
min; | R, — Ry | (2 + 2;)7Y, then

€p Hblmax

~1 6N — 3 (s — M) TR — &m+m{,

FE

€p . /blmln

1 + Az — 3 (3 A R — Ry lfb — =],

dAd

with A; = 2. In the atomic case,
— 21 — AZVAAT) 2R < ep <L —ZY(1 — 6N Z) 4N )R
when A < Z.
Proof. Atomic case: (k — 1,2 = Z, R, = 0). For b = 0, let

o) = (2| ¥ — PR, x| < 2,

be a trial function. Since I = ﬁ, (1 — xpP2 a2 de = 7[16, [p = Z3 B3P %4 = X
Let d(x) = [p(y) [ % — 3 | dy. sup, flx) = (0} = 0112 Z2 3m*[2 = 6X(Zb) ™,
since _[0 — xR x 1 dy = 61, For x == Zb, i(x) = A | x =% Thus
e(x) = p¥x) — Z | 217 4 la)
== —hl 4 i), | x| < Zb,
=—(Z— A %, | &1 = Zb.
Thus, for A << Z,
T(p) = —(Z — NZH,
Sp) = —(Z — 6} Zb),
and the theorem is proved using Theorems I1.27 and 11.28.

Molecular case: Choose b > () as before and let

P(x) z Pi(‘x — R},

pls) = (s w7 B, ] <,

) = [ o) 15—y |7 dy.
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Then A = [p; — 22 b*2 74, Choosc b such that A = %% A, ie, b —
{4)/7%x)?3, and suppose that A is sufficiently small such that the balls B, -
{x!]|x— R;| < zpb} are disjoint, ie., b <{min, ;| R; — R; (2 + =, We
also suppose that A; <C 2, e, A < oS~ With (x) = p*/3(x) — ¢,(x), one has
that in B;

@) = —b b s — RY— Y (3 A) [ & — R, L.

InB,, |R,— R/ | —=zb<|x— R,| <| R, — R;| + 2. Therefore,

S(p) << &' max {—1 + 6Afz; — Z {z; — AN [| Ry — R; |/ +- 2,7

J=i

Turning to T(p) we note that e(x) is superharmonic in B; and thus has its
minimum on ZB;. In K = RA\U; B;, p(x) =0 and —d,(x) is harmonic and
thus has its minimum on ¢K. Since A; < z;, this minimum is again on the
boundary of some B;. Therefore,

116) 3 0 min | =1+ Vs, — ¥ (=) 1R Ryljp— 57,

it
The use of Theorems I1.27 and I1.28 concludes the proof. |

From the properties of €x(A), we can read off properties of ETF(A; 2;; R,) (we
have already proven (i) and (ii) by alternative means):

Tusorem 11.32. E™8(A; z;; R)), the mimimum of &(-, ELI Flix— R 7Y
on #, , has the following properties:
(i) For 0C<AL =Zf=1 z;, ETF(X) s CY, negative, strictly monotone
decreasing and strictly convex.
(i)  ETF(}) is constant for A = Z and C? near A = Z.
(i) For X small, E™FX)~ M2 in the sense that lim,  ETF(A)A2 =
—3(m Ty atAPE.
Rema;rk. Some results on ETF(A; Z) for the atomic case when A ~ Z can be
found in Theorem IV.12,

ITI. QuanTum MEecHANICAL LIMIT THEOREMS

In this section we shall prove a variety of theorems that assert that as the
nuclear charges go to infinity, quantum mechanics and TF theory become
identical. While we could allow more general potentials than those of the form
(1a), in Section I11.1 we shall state the limit theorems for the density (44) when V'
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is of the Coulomb type (1a). We shall reduce the proof of the limit theorems for
densities and energies to a single limit theorem for the energy but with F of a
more general form than (la). Baumgartner [5] has recently found an alternative
proof of the limit theorem announced in [49] (Theorem III.1 below). His proof
uses the Hertl et al. bound [29] and Martin’s limit theorem [56].

With our choice of units (setting the ¢ of (3¢} equal to 1), Hy (of Eq. (2))
becomes:

N N
HPN = —(n)20 Y 4 =Y Vo) + 3 [r—nlh @)
i=1 i1 i<

where F{x) — ELI z; | x — R; | *. We remind the reader that 5,V is considered
on Hpuys » the space of antisymmetric spinor valued functions described in
Section 1.1. We introduce the notation E,%(z, ,..., 2, ; R, ,..., R;) to denote the
infinum of spec(Hg") on Hpyys . If P2y, 07,55 %y, 0y) Is any element of
Honys we define pi(x, ..., x; ;) for § < N by

PAXL ey 355 1) =] (N) ) j'hb(xn-wx;,yl,u-,y..v_;;v)lzd‘”*“y- (44)

J ap=11

II1.1. Basic Theorems and Reduction to the Energy Theorem
Tueorem I1L1.
lim EY(azy ..., azy ; 4 VPR ..., @ FPRY)@7P = BN 55 R, (45)

Remarks. (1) In(45) a goes through values with aA integral. More generally
if R™, N, , =™ are given such that 2*/Z" — 2, (with Z™ :2;-;1 2™,
RM[ZW3 — Ry, N, [Z" — ) and Z9 -» o0, then Eﬁn(z}“); R Z0]-7/5
E'F(X; z; 5 R;). This result is a consequence of the fact that as our proofs below
show, the limit (45} is uniform. All the other limit theorems below have an
extension to this more general setting.

(2) As explained in Section 1.2, Theorem III.1 says that
Ef;(zj-a; Ra V™ E™(A\a; z,a; Rja™*) —1 as a— .

{3) As we also explained in Section I our methods also handle the case
where the R{™ arc constant or, more generally, where (R{™ — RM™)a'/8 — oo
(all 7 + 7). In that case EZ(za; R{™) — NG 38,200 et £ (A5 355 0). In
other words, the system breaks up into isolated atoms or ions.

To state our other theorems we infroduce a notion of “‘approximate ground
states.”
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DerFiNiTioN.  Fix 2;, R(j = 1,..., B), and A, For N = 1,...,..., let Aay = N,
and let Hp" be the Hamiltonian (43) with z;N’ = zay ; RV = Rag*®, A
sequence of normalized vectors iy € #puys is called an approximate ground
state if and only if

[(dy » HON‘PN) - ENO] aifm —0.

HigZ = Z;;l %;, it is known that Hy" has an isolated eigenvalue at the
bottom of the spectrum [4, 79, 97], and the corresponding eigenvectors form an
approximate ground state. This ground state may well be degenerate, however.
In interpreting the results below, the reader should keep this example in mind.
We consider the more general approximate ground state, first because of the
uniqueness question; second to have a result in the case A = Z (where we expect,
at least for all large N, that there is not an eigenvalue at the bottom of the
spectrum); and third, to be able to say something about excited states where, in a
suitable sense, not many electrons are excited.

Turorem 111.2. Let {f} be any approximate ground state. Write H N =
— A" 4+ RN corresponding to the three terms in (44). Then

(W » Ko"y) ay'™® —> Kip),
Gy » Ag") ay'"® — Afp),
(&, Rg"4hy) &y — R(p),

where P is the unique function in 5, mimimizing the 'TF energy function
&(; 23_1 |l — Ry ™) and K, 4, R are the functionals of §11.6. In particular,
if by is the ground state of a neutral atom (i.e., N electrons, V({x) = Nl x|,
then as N — oo:

(b » Ko"w) 1 (s ANy} 1 Py RgMy) —>3:7: 1.

Remark. The final statement in the theorem follows from the first part of
the theorem and Corollary [1.24.

Turorem ITL.3.  Let {¢} be any approximate ground state. Let p,(x; ,..., x; ; ¥y)
be given by (44). Let

P peees 85) = A p oy ., ) (46)
and let pyp(x) be the minimizing p for &(-; 2;;1 Zlx — Ry ™) on S, . Then as
N— o0,

NBA® 0oy ) = pre(#y) pre(e) - pre(ay) = P!I'F(x)
in the sense that for any bounded set D C R¥:;
lim [ pi(a) din = | phew) . (47)
b D

Now
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If A 7= ZLI 2;, then the restriction that D be bounded can be removed from
(47 and

NPy (%)~ prela)
in the weak-Lt sense.

Remarks. (1) p is normalized so that

AT

‘R:s: wPi(a) d'x = ay j! (:)

As N— o, JR:}; vy diz — M. Tf A« Z, then JM‘?J PH«‘ (x) dix ==X (by
Theorem 11.20), so the part of Theorem IH 3 following equation (47} follows
from (47) and Lemma IT1.4 below.

(2) One part of this theorem 1s the assertion that as ¥ - o0 there are no
correlations among any finite number of electrons; in particular, one has an
a posterior justification of the ansatz (5), just as Theorem II1.2 provides an
a posteriori justification of the ansatz (6).

(3) For the case of a neutral atom, (x) — [ x|Land A - - 1, if we take
7 =1, then (47) says:
z [

Y
Yeez W3p

polei Z)ds — | pre(x) d, (48)

where po(x; Z) is the one-body density in the quantum atom of charge Z and
prr 18 the charge | TF atom. Equation {48) of course says that the fraction of
charge in Z-1/3 D is given by the TF theory, and, in particular it says that in a
definite sense the bulk of large Z atoms shrinks as Z-1 as 7 -~ o0. We shall say
more about this in Section TV.

Lrvma 1.4, Let p,, , p e LY{R"™) with p, (%), p(x) 2= 0. Suppose that
| pnlydx— | plx) d (49)
“p "D

as it — o for D) bounded and for I) equal to all of R*. Then (49) holds for any D,
and p,, — p in weak LY{R").

Proof. Given ¢, find a bounded D, with jRn\D p(x) dx = /4. By (49) we
have that [pup p(%) 4% = [gn pul®) dx — Ib, pm(x) dx— [gnp p(x) dx. Hence
there exists an M such that _[R,.\D () dx < /3 for all m > M. Let D be
arbitrary and write D = D, U D, with D, C D, and D, C R"\D, . By hypothesis,
for suitable A, , m ~= M, implies that

l l (pm — p)dx 1 =l €/3.
Ip,
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Since fp P 52 Iﬂn\p pw and similarly for p, m > max(A{, M) implies that
| _[D(Pm p) dx | < . Since finite linear combinations of characteristic functions

are dense in L= and sup,, || p,, [l; << o0, by hypothesis, we have weak L' con-
vergence. |

In the remainder of this subsection, we want to show how to prove (47) when
J =1, from a suitably strengthened version of Theorem ITL.1. The remainder of
Theorem II1.3 and also Theorem II1.2 follow from different strengthenings of
Theorem III.1 which can be proved by our methods in Sections ITL.2-IIL.5 (see
the remarks below). The strengthened energy theorem we will need is:

Tueorem II1.5. Let V be of the form
ik
Vi) = Y 5l x— By [ U, (50)

=1

where 2; == 0, and U e Cy®(R®). Given X, N let a, be defined by da, = N. Let
E\©C be the infinmum of the spectrum of

—(32) 2 Z 4, — Z Vo lrd -+ 3 iri— 1y (51a)
i=1 i<
where
V(x) = a*® Via'3x). (51b)

Let ETF(X) be the minimum on F, of €(-; V). Then
Jlim E Olal® = ETF).
Remarks. (1) This is the theorem we need in order to prove Theorem II1.3

when j = 1. For general j, one must consider a I of the form Ztgl Fle— R
and an additional term in (51a) of the form

- Z UaN(r‘sl N ri,—),

unequal

where U is a symmetric function in Cy®(R%). The TF energy functional is then
replaced by

31p 3 — [ o) V() ds — [ Ul ey 2) pla) -+ o)) di

+3 [ o= p(3) | % — v [ dx dy.



THOMAS-FERMI THEORY 6l

With these two changes, Theorem IILS holds (by the methods of Sects.
1I1.2-TI1.5) and this new theorem implies Theorem I11.3 with f arbitrary (by the
methods we discuss immediately below). We note, however, that three points
are somewhat more subtle for this modified TF problem. First, the j-body
interaction, I - [ U(x, ..., %;) p(%;) " p{x;), can destroy convexity of the energy
functional in p, and consequently the minimizing p may not be unique. However,
the minimum energy for U replaced by «U 1s still concave in « and differentiable
at o == 0. The diffcrentiability follows by the methed of Theorem I1.16 and the
fact that the minimizing p is unique when « .- 0. Second, in proving the existence
of a minimizing p, we must exploit the fact that if p,, — p in weak L?{R"), then
Pu(21) o pales) — p(g) - pl;) in weak LP(R"7). This follows from the density
of sums of product functions in L#(R™) in the norm topology. Third, || is
bounded by | p |l || Ull, << 20 since Ue C,»(R¥) and p e 4, .

(2) Theorem ITI.2 follows by the methods below and a theorem of type
II1.5 but with E}F replaced by E(x, x, p, A) (see Sect. [1.6) and with

N N &
Hy" - — (3" Z - Z Z |#; — “NUSR [t Z |y 17
i=1 i=1 j=L i<i
With these two changes Theorem I11.5 still holds {by the methods in Sects.
TIT.2-I11.5). In obtaining Theorem III.5 from this theorem, the differentiability
Theorem I1.21 is needed.

(3) By scaling covariance of both the quantum and TF theory we can and
shall suppose henceforth that A — 1 and hence that g, = N.

Proof of (47), j — 1 from Theorem I11.5.  Since w4, and p™F are both functions

with L1 norm at most |, it suffices to prove that

| i) Uw) ds = [ pre(x) Uy d (52)

for all U e Cy=(R®). Before giving the proof of (52} let us give the intuition in the
special case where i is a sequence of ground states rather than just approximate
ground states and where we suppose each H " has a simple isolated eigenvalue
at the bottom of its spectrum. After undoing the scale transformation,

[ wpr(xy U(x) dx is equal to N773(d]dw) B, 9(V))

where
.

Z gl — Ry |1+ ali(x).

Now, by Theorem IIL5, N-73 E, (1) converges to E'F(T), so (52) is equiva-
lent to the convergence of derivatives of certain functions which we know
converge pointwise. In general, of course, pointwise convergence does not imply
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convergence of derivatives but if all the functions are concave (as they are in this
case) and the limiting function is differentiable (as it is by Theorem IL.16} then
the derivatives do converge (the use of this fact in mathematical physics has
been emphasized by Griffiths [25]). It is this mechanism that is central in the

proof we now give for approximate ground states.
Let E, %) be the infimum of the spectrum of Hz¥(a) of the form (43) with

k
Vie(x, o) = Z 2N {x — RN-IB |71 L o NABU(N13y)
i=1
and let fN(cx) N —"V'SENQ(a) Let f,(«) be the minimum of the TF functional
:{CH ZJAI 2| ® — R; it + a U(x)). We begin by computing | v, (x) U(x) dx

in terms of expectations with respect to i .

(b » [Hg(e) — HNO)lw) = 3 Z anJ' UN' ) | (s, X 5 0)[Pdx

o =1

— a4/ j U(N1Bx) op(x) dx
(53)

= al#e [ U(NYR) [Ny (N1 )] ds
= V' [ U() wpi(y) dy-
Thus by the Rayleigh-Ritz principle, for any o« > 0:
N-"Pa By 9(e) — ExO(O)] < [ U(3) wa(y) dy + o« N TRBEQ)], (54)

where
3E(a) = (hy . [H"(a) - Ex9oliy)-

By definition of approximate ground state, N-733E(Q) — 0 as N — o0. Letting
N — oo in (54) and using Theorem IIT.5, we have:

SHET(V,) — ET(V)] < lim [ Uy) wpo) dy; >0, (553)

Similarly for « << 0 (using the fact that multiplication by &' reverses the sign
of inequalities):

T[E(V,) — B = T | Uy) wh(v) de; a0, (55b)
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Since ETF(J,} is differentiable at o = 0 with derivative [pTF(x) U(x) dx by
Theorem IL.16:

Tm [ U0 wpu(2) dy < [ 5™() UGs) dv

<lim [ UG) vpi(y) dy

v

/8

proving {52). |1

The remainder of this section is devoted to the proof of Theorem III.5
(with A = 1, @), == N)and in the remainder of this subsection we want to sketch
the overall strategy.

Since the ansatz (6) is based on an intuition of noninteracting particles in
boxes, our first step will be to compare the Hamiltonian H," with certain
Hamiltonians which force particles to stay in boxes by adding suitable boundary
conditions on the box boundaries. It turns out one can “bracket Hy" between
operators with Dirichlet and Neumann boundary conditions. (For additional
application and pedagogic discussion of the method the reader may consult [68].)
Because of the intuition of Section 1.2, we choose boxes whose sides shrink
as N1/% as N - o0,

"The sccond step is controlling the Dirichlet and Neumann boundary condition
ground states inside boxes. We prove the necessary estimates in Section IT1.3.

If the attractive nuclear-electron potentials were bounded below, the proof
of Theorem ITL5 ¢ould be completed on the basis of the two steps just described.
"The problem is that inside the “central” boxes containing the nuclei the potential
becomes very large indeed due to the N ;| r — R, | ! singularity (note the N).
We thus will need a separate argument to “pull the Coulomb tooth.” We shall
first prove the following:

Treorem 1IL6. Fix o, 6 > 0 and let | x|3" be the function which is | x|

if x| >0 and 0 if | x| < 8. Theorem 1115 remains true with the following
changes:

(i) Replace the V in (50) by:

k

Vi(x) = Z z; e — Ry Is_l -+ U(x) (56)

i1
in both the quantum and TF problems.

(i)  Replace the constant (37°) 2 in front of the kinetic energy term (i.e., —24)
i HaN by (37%) -2/

(ili) Replace the term 35 [ p3 in the TF energy functional by § o [ po/3.
This theorem will be proved by the box methods of Sections I11.2, I1L3. The
proof of Theorem III.5 will be completed by showing that by choosing & > 0

boy/a3/r-5
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and « suitably, we can make arbitrarily small errors in ETF and N—72E,Q in
comparison with the § = 0, & = 1 theory.

II1.2. Insertion of Boxes

In essence, we prove that E @/N7/%— 8 as N — oo by finding ay , by with
ay/N'3— 8 and by/N'B— 8 such that ay <X Ey? < by . The basis of the
bounds on E,? will be the Rayleigh-Ritz principle in the following sense [68]:

Prorosition IIL7. Let H be a self-adjoint operator which is bounded from
below. Let Q(H) be its quadratic form domain and let-C be a form core for H. Then
{weclxﬁbfugl} {$, Hy) = inf spec (H).

Remarks. (1) By definition, Q(H) is those ¢ for which [ | x | d(ib, Eab} < c0,
where dE, is the spectral decomposition for H. For ¢ =Q(H), (4, HY) =
fx d(, Egy (which is equal to the inner product of ¢ and Hy if € D(H) =
] [ x[? dQh, Egdh) < o))

(2) A form core is a subspace C C Q{H) such that for any € OQ(H), there
is some sequence i, € C with | — .|| — 0 and (( — ¢,), H{S — ,)) = 0.

To apply this version of the principle we need the following technical result
which follows from standard operator perturbation theory [40, 67, 80].

Prorasition IIL8. If H, is Zfil —A4, on Hpyys and V. Hpuys — Houys
is @ multiplication operator that is a sum of bounded functions and two-body Coulomb
forces, then Q(H) = Q(H,) and any form core for IIy is a form core for H.

Remark. In fact, by a classic theorem of Kato [38], one has the stronger
result that D(H) = D(H,) and any operator core for H, is an operator core for [,

We could present the upper bound Ey? < ¢y as coming from a suitably
clever choice of trial wave function in Q(H,) for H,? but since the lower bound
requires us to appeal to connections with classical boundary value problems, we
discuss the upper bound in terms of a classical boundary value problem. For
simplicity, we discuss the classical boundary value problems only in the case
which we shall require, namely, for regions with flat boundary. By a coordinate
hyperplane, we mean a plane {¥ [ x; = &} in R*.

DerFINITION. Let {I;};; be a collection of coordinate hyperplanes in R®
such that for any compact « C R* only finitely many I7; intersect «. Let " =
Uier I - By Cr.p we denote the C functions of compact support whose support
is disjoint from I, and by Cp,y the functions of compact support which are C=
on "/I" and which together with their derivatives have boundary values as x
approaches T'; from either side (but the boundary values from the two sides need
not agree).
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Thus: ‘

Cr.p CCHRYC Cry . (57)
DrriNiTiON.  —Ap L (resp. —dry) is the operator obtained by defining

(b, Ay = [ | Vi |2 dx for b € Cp,p (resp. Cp,y) and taking the form closure.

Remark. 'That every closed positive quadratic form is associated to a self-
adjoint operator is a standard theorem; see [40] or [66]. To see that the form
r— [ ] Vi 12 dx is closable on Cr, p and Cr,y we note that for ¢ € Cp, we have
de D(B*) with [| Vi |2dx = || B%)i|?, where B is the gradient operator on
Cy*(R\.I). Since B* is a closed operator, 4 is closable as a quadratic form on
Cr,n and hence also on Cr .

One has the following classical boundary value description of —4p., and
—d .y (sec [40, 54, 68]):

Trrorem I11.9. Let I' divide R* into open regions {R}};c;. Let L{R®) =
D LAR;) under the association of feL¥R") with {f;};c;, where f; = fI R;.
Then —Ap. p (vesp. —Ap.n) leaves each R; invariant and a cove for —Ap. 1 LY(R;)
(resp. —dr.y | LAR;)) is the set of functions of compact support in R; which are C*
in B;, C= up to the boundary and obey y = 0 on dR; (resp. dpf — 0 on OR)).

DEFINITION.  ¢yp3b denotes the normal derivative.
Since Cy™ is a core for —4 (resp. Cp.p or Cpy for resp. —dp.p or —dpy),
(57) immediately implies the basic Dirichlet~-Neumann bracketing result:

inf spec(— 4,y + V) =2 inf spee(—4 -} 17}

. (38)
< inf spec{—Ar., |- V).

Notice: that in (58) we have compared —4 + I with operators that have boxes
built into them.

We are of course interested in operators on H#ppvs rather than LA(R*) and so
we must make some simple additions to the above arpuments. Let {y;},.; be a
collection of hyperplanes in R® and y = ;. Write {r ,..., 7y> € B® and let I”
be the collection of hyperplanes in R* with some r in some y; . Then €. 5 and
Cr.y are left invariant by permutation of the coordinates in LR, C2V).
Thus —drp and —dy.y leave Hpyys invariant. As operators on Hpyyy , lot:

N N
ON = —a Yy 4, =Y V) + 3 1ri—1;17 (59a)

i=1 i=1 i<
N N

Hip = —« Z diyp — Z Vir + Z fri—r;: |7, (59b)
=1 i=1 <
N N

Hpynw = —ay Ay — Y Vi) + 3 |y | (59¢)
=1 i=1 frg]

Then, as in (58):
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Traeorem II1.10. For any N and any y:
inf spec(Hg.y,N) < inf spec(H ON } = inf spec(H@m o)

The further development we require involves using product wave functions
as trial functions in (¢, H).

TureoreM IIL.11. Let w ,...,uy be N orthonormal functions in Q(—A4, . p).
Then:

N N
inf spec(H., p)) < —a Y (u;, du) — Y (u;, V)
-1 i

Y [ Iy T w@E a0 dedy. (60)

Remark. 'This theorem and its proof are valid in the Neurmnann case also but
we shall only need the Dirichlet.

Proof. Let Z, be the permutation group on {l,..., N} and for w e X, let
(—1)7 be its sign. Let

Py ooy By 5 015000 0n) = (V)72 3 (Dl 5 01) o ol 5 on)-

TEZ N
Then || ¢ || = 1 since the u; are orthonormal and by a simple computation:
(7, HY,,0¥) = right side of (60) — 1 Y [ [x — 3|7 1(¥)
i
sy} u(y) wi(y) dx dy.
By the positive definiteness of | x — v |~%, the exchange term
=3 [ e — 3 17 ) () () ()
i
is negative so inf o{H .. p)} < (¥, Hy, .pn'¥) < right side of (60). [
Tueorem I11.12. Let y divide R® into cubes {Cglg., . Suppose that —V is
bounded from below, and let V = SUPgec, Vixyand W,z = infmecy;kecﬂ [2—y] L

Let Ey{n) be the sum of first n eigenvalues of —ady,c, as an operator on L¥(C; ; C*).
Then

inf spec(Hy,, x) = inf {E({ndgea) | 3. 15 = N (60a)
8

Btssen = 3, Bolne) = X Vo +1 2 Woamm = § 3 Wy, . (60b)
8 L' ¥
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Proof. Let x, be the characteristic function of Cy and let A be the operator
given by
N ¥

H— —a Z 4, — Z 2 Vxa(rs) + Z Z Wa,xalrs) x,(rs)
i i-18 i< B
on all of LYR3N; C2¥) (rather than just the antisymmetric functions). let
Uy ,--., 4y be functions in L2(R?; C?) with each #; supported in some C; and cach
u;, an eigenfunction of ——AN:CB (with say —oady.on, == Eu). Then i -~
ufx, ; o)) - un(2y ; o) is an eigenfunction of H with eigenvalue

N
Z E;— Z VﬂnB + }J: Z H/v(invnﬂ - ?2 Z VVW"V
i=1 8 8.y ¥

and as »; runs through all possible eigenfunction of —AN;CB we get a basis of
eigenfunctions for A. Since /T commutes with permutations

inf spec(H | #ppys) = right side of (60a).
But clearly H}, 5., = H #oys - |

Theorems TIT.10-111.12 allow us to bound EL¢ in terms of eigenfunctions
for —4 in boxes with Dirichlet or Neumann boundary conditions. Note,
however, that for Theorem I11.12 to be applicable — I must be bounded below.
This restriction leads us to the considerations in Section I11.4.

111.3. Estimates for Boxes

In this section we prove some simple cstimates about eigenfunctions of —4
m a box of side & with D or N boundary conditions. For convenience we take the
box to be [0, @] x [0, a] < [0, a].

Turorem 11113, Let E P(n) (resp. E¥)) be the sum of the first n eigenvalues
of — (3224 on LY[0, a]?; C2) with Dirichlet (vesp. Neumann) boundary condi-
tions. Then for some constant C and all », a:

By — S| L Ot (612)
N 3 g2 | oo Onting2
E,Nny — §n5/’3a““ =L CatPg? (61b)

Proof. By scaling covariance F (n) — a~2E\(n) so we need only prove (61)
when a — 1. In that case, the eigenvalues of — A, {resp. —d) arc casy to
describe. Let 7. be the strictly positive integers and let N .- 7\ {0}. Eigen-
values of —d, (resp. —4y) are associated with points 2 e Z * (resp. W?) and the
associated eigenvalue is =2 | k|%. 'Taking spin into account we consider sets
{0V, EW) in 7, ® (resp. N3) with the property that no three A's arc cqual to each
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ather. Let 4,2 (resp. 4,") be the minimum vaiue of 3,_, | &% {2 as {A\V,...,k™)}
runs through all such sets. Then E,®(n) = (37%)2/724,7 (and similarly with
D replaced by N).

Let K, , T, be determined by:

Kﬂ
n=m| K, (622)
)]

Kﬂ
T,=m[ #adk, (62b)
&

50 that

Ty = § Grtftiatain,
Then (61) is equivalent to:
A2 T, | < e, (63a)
<

| AN — T, | < dntB. (63b)

Intuitively, (63) says that 4, is approximately obtained, up to a surface error,
in 4 continuum approximation by an octant of a ball,

Choose GL® (resp. G{™') to be 2 minimizing set for the problem defining
A,P (resp. A,N). Since GL™ is an acceptable trial set for the problem defining
AN we have:

AP = AN (64)

Next we claim that

su k| < anf®
.TceG'I:f)w el =

for some a; >> 0. This is so because a cube of side:2n'/? (= [#1/3] + 1 for all )
contains at least # points of Z,3. Hence G’ is clearly contained in a sphere of
radius 2(3)1/2n'53. Since {& -+ (1, 1, 1) | ke GV} is a valid trial set for 4,” we
have that

42< ¥ (kL L DR

xeG N
< AN+ QBPR) amt 4

S0
AP < AN + agnt, (65)

LetF, = Ukech) {1k << I, Ry + 157 =1, 2, 3} and let K, be the radius
of the smallest sphere containing F,, . Since K~ is minimal, some & € G% must
obey | k] = KN — 312, so that any keZ,® with k| << K, — 32 must



THOMAS-FERMI THEORY 69

appear twice in G by the minimizing property of G{¥. Thus F,, must contain
the octant of the sphere of radius K% — 3'/% so

KﬂN_glf'-f
" [ ke dk

0

from which we conclude that K,V = K, + 3%/2. Now clearly

B2 f K2k,
reg N Fu
80
K3t/

AN o j K dk
1]

= T, (1 + K7 (3 (66)

- 413
= T, Lo agndhi,

Similarly, let (G{)* be the doubly occupied sites in G and let B,
Dietcons {lk— 1 <Lk yi=1,2,3 Let K, be the radius of the
largast sphere whose upper octant is in B, . Then some k7.3 with [ k| <
K,.P + 3Y2 does not appear in (G42)*, and so no 2 with | & | = K,? + 32 can
appear in G by its minimizing property. Thus G'P) is clearly contained in the
sphere of radius K_,? + 342, so K, P > — 312 Since 3 .qm Az
2 [ R2d%: i

AL =T, — amt (67)

{64)-(67) clearly 1mply (63). 1
Choose an orthonormal basis, {u,(x; o)} for LA([0, 1]*; C*) of eigenfunctions
for —Ap ordered so that —Apu, = Eou, with By < E, < - (the only choice

is that due to the degeneracy of eigenvalues of —4, and the choice of spin
dependence for u,{x; o}). Define:

) = LT s (68)

As n — oo, we expect that p,, should approach a constant, which must be
pe(x) = . (69)

TrroreM [IT.14. Let A5 = p, — pu® 'y == ([oeton12 | pn — pn® |2YVP. Then
for all mn, p:

A, < fu5h, <p2 (70a)

A, < TR -1, < o (70b)

for a suitable constant f.
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Remarks. (1) A similar result holds with Neumann boundary conditions
but we only use the result with Dirichlet boundary conditions below.

(2) If p,., is the density in a box of side a so that

pra = na" (69)
then by scaling, (70) implies:

| pre — Pujally < frfffa=®30, 1 <L p <02, (70¢)

550 — ually < TN folom g ai0ls,  p . (704)

Proof. We can describe the functions %, by ordering the points in Z,5,
EWUED L with [ RV | < | B < -, with each point in Z,2 counted twice.
Let W(x) = (212 sin(k{™ mx) sin(k{™ wy) sin(kl m2) and wu,(x;0) =
Wo(%) cce(0), where w(o) = (21/2)1 for 0 = - 1, if £ has not appeared in the
list already, and «,(o) = (2V/2)~1 if &' has appeared once already. Thus, in

particular:
0 < pyfx) < 8n

and so
|l o — n” Hw < Tn, (71)

We first claim that given (71) it suffices to prove (70) for p = 2, for then when
I <p<2weuse

gl gl 1 ilapre—s =N & ll2
and for p =2

lelz—=[tel” = [l <nglz I}

Now, for &, ¢gcZ, :

j " sin®(kx) sin¥(mgx) = 11 + e,
4]

where 8, , is the Kronecker 8-function. Thus, since f palx) dx = p,™:

A2 = _le [ | weew wee — 1]
e .};;1 [(@) — 1],

where y(7, f) is the number of components which 2@ and &4 have in common,
ie,y =0,1,2or 3. For each ¢, let 8,(£) = #{j] (¢, /) # 0}. Then

Ay* < (3) n max B,(2).
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Now {kV,..., k'™} is a proper choice for the set G2 of the proof of Theorem
111.13 and thus | &% | < CHl# (for ¢ == 1,..., n) by the arguments in that proof.
It follows that for any ¢, B,(7) =0 3 - 2(Cnl B < Cyn®3. As a result

A2 =D s

from which (70} for p = 2 follows. |-

111.4. Pulling the Coulomb Tooth

In Section TI1.2 we encountered a difficulty occuring when I is not bounded
from below. This difficulty is not merely a technicality and must require an
additional argument. For by consideration of free Dirichlet and Neumann
eigenfunctions alone, one cannot hope to prove that atoms do not shrink at a rate
faster than the Z-17% gcale of T'F theory. What we shall do to prove this is to
show that cutting out the core of the Coulomb potential at a distance 821/
produces a small error on the Z7/3 scale:

Turorem IIL15. Let Vix;r)y=|x:"V if |xj<r and O of |x] =vr. Let
ea{ 7 15 &) be the infinum of the spectrum of the aperator

n n

—a Y A —ZY V(xr)

i=1 i=1

on Hpuys - Then for all n, Z, r, o
el 1y o) B — APl — 2RI, (72)

Remarks. (1) Tfr =3Z7173 then e, is very small on the level of 2772 if § 1s
very small.

(2) In place of our sharply cut oft I'(x; 7) we could use a Yukawa potential
e~#rly, for p small, as is used by Hertel et al. [30, 317 (this is in essence a Pauli-
Villars [63] regularization of the Coulomb singularity). We emphasize that the
angular momentum barrier which is basic to our argument is also basic to
theirs.

Proof. Let A; be the negative cigenvalues of A == —ad — ZF(x; 7). Then
for any n:

eZ ) 2223 A
f

If we consider % on the subspace of angular momentum /, then % is unitarily
equivalent to

d:!
— _}_

Cae
dx?

w{f 4 1)

x2

— ZV(x; 1)
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on L0, «0) with boundary condition (0) == (., The total effective potential is
clearly positive if al({ 4- 1) = Zr. Letting L be the smallest integer satisfying
this equation we cleatly have that

L < (Zrjei2 + 1 (73)

and that 4 has bound states only for [ <C L. For [ < L, we have that —ZV(x; r) >
—Z | x -1 s0 we can dominate each energy level from below by the corresponding
hydrogenic level. Thus a lower bound on ¥ A; can be obtained by taking the
energies of hydrogenic levels but with angular momentum / < L:

L -
YN foarz? ;Z it Y niLR
=1

neLi1
> — otz
since 3%, ; .y n72 < J 7% dx = L1, Therefore
e L 1y o) =2 —a 22
S —amlZt — o tRZSEAR, ]
II1.5. Putting It All Together

We are now prepared to prove Theorem TI1.5. We first prove the result for
cutoff potentials, Theorem IT1.6:

Proof of Theorem 111.6, Take A = 1. We first prove that

lim £x 0N < inf (6(e; V)| [ p < 1] (74)
It 1s clearly sufficient to prove
T EyOIN™R < &(p; V) (75)

for a dense set of p’s. We thus suppose that for some s, p is a constant p,, ., .
on each cube of the form [mys, (n;, + 1)5) X [mgs, (g + 1)s) < [ng8, (g + 1)s)
(for n;e Z) and that p has compact support. For fixed N, let mn; N)=
miny , iy, iy 3 N) = [Npy n, » 5%, where [x] is the largest integer less than x.
Thus
my == 3. m{n; N} <{N. (76)
neZ®
Let y be the union of the hyperplanes, x; = nsN-17 and let w, ,..., %, be the
eigenfunctions of the operator —4 ., consisting of the first m{n; N} Dirichlet
eigenfunctions in the box of side sN-1/2 with lower vertex nsN-1/, Then by
Theorem I11.11,
E,ﬁN <y aEfN_,,s(m(n; NY)

nez?

— [ Vil el 1§ [ A ) [ =y P dedy, (D)
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where E,P(n) is defined in Theorem 11113 and Fn(x) = 3% | ux)'2 Since
my, -2 N, the general analysis of Schrédinger operators [68] implics that [£,@ =
E?  Now

JH

Y Eusm) — §NP [ p(pi® d |

neg?

% ED ) — & w2

" nel?

L3N [ 1 p(eps — (NN | . (78)

As N —» 20, the second integral in (78) goes to zero, while by Theorem I11.13 the
first term is dominated by C(sN='3)2 Y mn; N3 <L Cs2 sz'"’(E min; N3 <
Cs~2N®73.'Thus the first term in (77) divided by N7/% converges to % « [ p3/3(x) du.
Similarly, using Theorem 111.14, and scaling, the other two terms in (77) d1v1ded
by N2 converge to — [ V(x)p(x)dx + 1 [p(x)p(¥) | ¥ — v | dx dv. This
proves (75) and so (74). For later purposes we note that this proof of (74) does
not use the fact that the 77 of Theorem IIL6 is bounded below and so we also
have half of the proof of Theorem TII.5.
Now let us prove that

lim EyO/N73 > inf iﬁ(p, et (19)

For fixed s, consider the hyperplanes y described above and write R¥y =1 J,C; .
Consider the TF problem obtained by replacing F{x) by V() == X, Vexa(%)
and | x — v |1 by 3 W xu(x) 1.(y) == W (¥, 3} (where x; is the characteristic
function of Cy, ¥V} = SUPzec, Vi), Wy, =infflx — 3| 1 |x e Cy,ve C,}). Let
& (p) be the corresponding T'E energy, 1.e.,

Ep) =3 [ p3) d— [ o) Vi) - § [ plo) pl(3) Wik, 3) v dy.

The minimizing functions for & (p) do not directly concern us, although we
rernark that by the methods of Section II, minimizing p’s do exist but they need
not be unique. What is critical is that as s | O

inf $6.60) | [ p = 1{ s inf gﬁ(p; S 1:

This is proved by the methods of Section II: One first shows that there exists a
constant D, independent of s such that &{p) << 1 4- inf{&,(p) | [p == 1} for
any s 1mplles that || plls:s << 0. Next one bhOWS that &' (p) — &(p; V) uniformly
in p for all p’s satl%fymg 'pllsry == D and | ply < 1. This is done by noting that
PP — b »0and TW — W, ||—0in L2 4- L*. Thus inf{€(p) | [p < 1}
can be sought among p's satisfying i pll; =2 D and the uniform convergence
implics the convergence of the infimum.
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By the above convergence result, it is sufficient to prove that
lim Eo/N" 2> inf |6,(p) | [ pdx < 1] (80)

for each fixed s. Let I" be the family of hyperplanes x; = suN-23(n e Z). Now
by Theorem II1.12 and (58).

ENOIN' 2 inf N“PB({ngyes) | ¥, ns = N|
with E({n,}) given by (60b). Now, by scaling,

N-TRE({ng}) = & (p) + error, (81)

where p is #,¥-157% on the cube N'/C,, The error term in (81) is

N-B [ W, n + Z E(n)— % ng/a(sN‘lf"‘)*?')] .
Now, for any y, W, = (sN~/331/2)~1
W, | << CNYB

while as above, by Theorem III.13:

1}3)—2 z n4/3 " const NG/:}

} 5. Bm) — 4Ny

Thus
Ey9/N7/ > inf 3é”s(p) | J p = 12 + O(N-1/3)

thereby proving (80) and thus (79) as well. ||

Proof of Theorem 111.5.  As in the proof of Theorem IIL.6, lim E,@/N7/2 <
inf{&(p; V)| [p < 1}. For fixed o >0, 8§ 20, let E(ot; 8) be the TF energy
associated with the functional «3 [p*® + 3 [J12— 5| (%) p(y) —
[(ha 2|2 — R ;' + U(x)) p(*). Then, by the methods of Section II,
lim,,; 50 £(a, 8) = E(1,0), so given ¢ we can find 4 <1 and D such that
4 < a<1,8 < Dimplies that | E(a, 8) — E(1, 0) | < ¢/2. Let Ey9(a, 8) be the
quantum energy which we know obeys Epy9e, 8)/N'? — E(x, 8) by
Theorem II1.6. Clearly, we need only find 8 <C D) such that

Hm (Ey? - Ex%(4, )N = —(e]2) (82)
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Now, for any operators, G and [ we have that

inf (G + J) 2= inf o(G) + inf o(]),

where o(B) = spectrum of B, Thus
k
Ey? = Ey9(4, 8) + 3 inf o(Jy),
F=1
where

N N
Jvi = —(l— Ak Y A= 5 Y V(e — R, ; 827119

i-1 =1
with V(x, ; r} given in Theorem I11.15. By that theorem,
inf o /) 2 ~- N3] — A) b — R3] — A)-3/2 SUENT T8,
&

Choose & <C D and & <C (3;_; 2%y %k-3(1 — A)(/2)%. Equation (82) follows,
thereby completing the proof of the theorem. ||

IV. ProperTIES OF TF DENSITIES

In this section we consider potentials I of the form (1a)

V@) =Y 5%~ R | (1a)

j=1

and study properties of the density p which minimizes &{p; ") on %, . Most of
our results concern the neutral case where A = 7 = ELI 2; , although we do
say something about the fonic case A < Z. We have already proved several
facts about p:

Tueorem IV.1. The function
1) = [ o) e —y i dy
is @ bounded continuous function going to zero at infinity with

Il 1Ly << (I2{5)(S7*)V8 | p RIS 1 p 175
In particular, d — V — v and p — [max($ — ¢, , 00*/2 vanish at infinity and are
hounded and continuous on any subset of R? which is a nonzero distance from all
the Ri .
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Proof. 'The statements about ¢ and p follow from those for n. That n is
continuous and vanishes at oo is a consequence of Lemma [1.25. The bound on 7
follows from Hélder’s inequality:

W) =[ v [y dy

Yyl ly
) . 2/5
<{[ 1) el + ey
lyl<r

Minimizing over all 7 leads to the claimed bound on 5. |

Throrem IV.2. (a) ¢ =V — p * | x| is nonnegative,
{(b) In the ionic case, p has compact support,

Proof. (a) is a special case of Lemma II.19. To prove (b), we need only
note that p = [max(¢ — ¢, , 0)]*/ for some ¢, > 0 and that $ — 0 at infinity
{by Theorem IV.1). |

The main results of this section concern the smoothness of p and its behavior
at infinity in the neutral case, We shall prove that  is strictly positive and that P
is real analytic away from the R; in the neutral case and on {x [ $(x) > &y, 2 #= R}
in the ionic case. In Section IV.2 we shall prove that | % p(x) — 27/73 as
| # | — oo in the neutral case.

IV.1. Regularity

We begin with:

TreoREM IV.3. ¢ is strictly positive and, in the neutral case, p is strictly
positive.

Proof. Consider the ionic case first. Since ¢ is continuous, S = {x | $(x) = 0}
is closed and, since ¢ > 0 near the R; , we need only show S is open to conclude
it is empty. But since ¢ is continuous, ¢(x,) = 0 implies that ¢(x) << S, for all x
near %, since ¢, > 0. Thus ¢ is harmonic near x,. A nonnegative harmonic
function cannot vanish at an interior point of its domain unless it is identically
zero in that domain. It follows that S is open.

Now consider the neutral case where ¢, = 0. Suppose no R, is zero and that
#(0) = 0. Given f Borel measurable on R?, define [f](#} for » € [0, o) by:

1169 = (1f4n) | £12) 2.
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A fundamental formula of potential theory tells us that for f{x) = | x — x, |1,
[f1(r) = [max{| x, |, )] *. Thus for » << min | R; | :

k

[41) = ). = | R 17 — [ p(ofmax(}x |, 1)} d

-

k o
::Zann4—fL[ﬂbﬂma@wrwmw%@.

J=1

It follows that [$](r) is monotone increasing in r for r < min | R; |. Moreover,
since [¢]{0) == 0 we see that

[410) = [416r) — [4100)
= [ =y 4.

Now, by Theorem IV.1, ¢(x} is bounded, say by C%, on{x || x| < Imin| R; [}
Thus for y < fmin | R; |:

[PI(5) = (1) [ $22(32) d2 << CTH1().

Since [¢] is monotone, for r << L min | R; |,

[910) << CUgl) [ (o - 7)) dy

2
= Z o).

It follows that {$){r) =0 for r << { mm | R, | and r << (3/27C)12. Since ¢ is
nonnegative and continuous, [¢#]{¢) == 0 implies that ¢(rf2) == 0 for all £. Thus ¢
vanishes near 0. We have just shown {x | ¢(x) = 0} is open. Therefore, as in the
first case, ¢ is strictly positive. Since p = $3/2, p is strictly positive. |

Levma TV.4 Let p7' g7t = 1,1 < p < o0, Let g e LY(R™) and fe LYR™).
Suppose that there exist n functions h - - (b} | in L{R") such that as y — O

f \f(x 1) — ) — < B 7 83)
[l )

Then f x g is @ C* function and

V(f xg) =k
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Proof. LetF = fxgand H = k * g. Then by Young’s inequality, for any @,

]F(w + ) — Fw) — {y, Hw)) ’
||

U|f(x + y) + f(x) — {3, Ax)>
|71

[4 dx] 1/

so F is differentiable and H is its gradient, A is continuous by Lemma I[1.25. |

=gy

Tarorem IV.5. (a) Near each R,
p(#) = 23" [ x — Ry | 4y [ — R, | 7% 4ol x — Ry |7

Jor suitable B; .

(b) In the neutral case, p is C* away from the R; .

{c) In the ionic case, p is C' away from the R; and C~ on {x | x # R; all j,
$(x) > o}
(@) plx)—0as x| > oo

Proof. Since peL? for all p between 1 and § and | x|~Lelsts & Li—,
p* | x!1is continuous and goes to zero at infinity by Lemma JI.25. In par-
ticular H{x) = 3;|x — R; |1 + y; - ofl) near R; from which p(x) =
2P x— Ry |32 + B; | x — R |71 + o| ¥ — R; |71/%) near R;, and p is con-
tinuous away from all the R; . This proves (a). Given x, 7= R, , choose ¢ € C*
with support away from all R;, and with ¢ identically 1 near x, . Let p; = ip.
Then ¢ =¥ —(p —px|a|Lt—p x|x] Now F—(p —p)x|xitis
harmonic near x, and thus is C™ near x, . p; is continuous on supp % and so is
bounded and thus is in every LP. Let n e Cy® with » == 1 near x = 0. Then
n{x) | x | & L with gradient in L' in the sense of (83) and (1 — 5(x)) | x| L4
with gradient in I# in the sense of (83). Thus p; * | ¥ [ =py x9(%) | x |71 +
pr*(1 —n) | x|"tis CL, and so ¢ is C*. It follows that p = [max(¢$ — ¢, , 0)]*2
is C1 away from the R, . Thus p, is C* and V(p; * | ® |=1) = (Vp,} * | x| L. Now,
as above, Vp, * | & |~1is CY, so ¢ is C% Thus p = [max(¢d — &, 0)]3% s C*on
{x | #(x) > $o}. Proceeding inductively, we complete the proof. (d) follows from
Theorem 1V.1 and the TF equation.

TuroreM IV.6. p and ¢ are real analytic away from all the Ry, on all of B3
in the neutral case and in {x | ¢(x) = ¢y} on the fonic case.

Proof. ¢ obeys the nonlinear elliptic equation (4x)1 4 = (p — ¢)*2 in a
neighborhood of any x, % R; with #(x,)) > ¢, . General theorems (see [60
Sect. 5.8]) then assert the real analyticity of ¢ and so also of p — (4n)1 4¢. |
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IV.2. Asymptotics at Infinity

Our goal in this section is to prove that | x |8 p(x) — 27/7° as | x| — oo for
any neutral TF density, independently of the distribution of the nuclear charges.
In the atomic case, such asymptotics (with different normalizations) were
predicted by Sommerfeld [85] partially on the basis that the only solution of
Ad — Az 372 of the form c|x [~ is $(x) == 97 2| 2 |~L. In the atomic case,
where the TF equation 4¢3/ = 4m{*/? — 8(x)) is equivalent to an ordinary
differential equation, Hille [32, 33] used methods of ordinary differential equa-
tions to prove the correctness of Sommerfeld’s prediction. We shall use sub-
harmonic function methods which allow us to handle the molecular case in
which V" is not spherically symmetric. As we have already mentioned, these
methods have been introduced by Teller [89]. We begin with a comparison
theorem:

THEOREM IV.7. Suppose that ¢, are continuous positive functions om
{x | x| = R} with the following properties:
(2) d,f—0as|x|— o0
(b) (dm)ytdd <32, (dm) LA = P2, where the derivatives and in-

equalities are in distributional sense.
(¢} &(x) = f(x) for all x such that | x| = R.
Then ¢(x) = P(x) for all x such that i x| = R,
Remarks. (1) Theorems of this sort have been used by Hartmann and
Wintner [27] and Protter and Weinberg [64].

(2) Motivated by our work, one of us has used the idea of this theorem to
study asymptotics of Schrodinger eigenfuctions [83].

Proof. Let S ={y!&(y) << 4(¥)}, which is open. Let f(v) = 4i(3) — $(3) on
S. Then on S-

(4m)2 Af — ()™ [ — 4] = g0 — 72 > 0.

Thus f is subharmonic on .S and thus takes its maximum on the boundary of S
or at infinity. But by (a), (c), and the definition of S, f <{ 0 at infinity and on 45.
It follows that S is empty and ¢(x) = (x) for all x. ||

Traeorem IV.8. Let & be a sphertcally symmetric solution of Ad = 4 in
{x | x| = Ry}, comtinuous in {x | x| = Ry} and going to zero at . Then, if
Rpd(Ry) == 972 (resp. < 9n =) then ri(r) is decreasing (resp. increasing) as r
increases and lim, ., v3(r) == 9n—2

Proof. Let $,(r) — cr % Then Ay, << 4mp2* if ¢ > 92, A, = dmh¥? if
¢ = 9n %, and Ay, = 4my?® if ¢ < 972 Thus, by Theorem IV.7 if Ry%(R,) =

6oy [23/1-6
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972 (resp. < 9n %), then rig(r) = 92 (resp. < 9=?) for all  with > R, (by
the comparison theorem with #,, ¢ == 97%). Thus, it suffices to prove that
rig(r) << Ry*$(R,) (resp. =) for r > R, . Let ¢, == Ry*¢(R,). Then the inequality
follows by comparing ¢ and b, -

Let A, = lim,, v*(r). The limit exists because of the monotonicity. Let
Bolr) = n'g(nr). Then A, = 4n(g 3% and limy e do(r) = A= = du(r)
uniformly on compacts of {0}, Thus as a distribution on C=(R3\{0}}, d¢., =
4nd¥?, s0 A, = 92 ||

THEOREM IV.9. Let R, and b be given. Then, there is a continuous function,
¢ on{x || x| = Ry}, which is spherically symmetric and satisfies A = 4nd3/2 and
such that ${Ry) = b and lim,._ (ré(r)) == 9=z~

Proof. If bR =972 take ¢(r) = 9n % Suppose next that dR} =
¢ <9772 Let n(r) be the neutral TF potential for V{r} =r-1. Then, by
Thecrem 1V.5, #inp(r) >0 as 7 — 0 and by Theorem IV.8, riy{r})— 972 as
r— o0. Thus for some r,, r%(re) = ¢. Take ¢{r) = (ry/Ry%) %(rro/Ry)- Then
H(Ry) Ry = ¢ and A¢ = 4¢3 Finally, consider the case in which ¢ = bR, >
972, Consider the problem of minimizing {p) = £ [p*2dx — Z, [| x |71 p(x) +
L [p(®) p(3) | 2 — v |1, where Z, = 4mwc32R;*3 but with the extra requirement
that p(x) =0 if | x| < R,. By the methods of Section II, the minimizing p
exists and has [pdx = Z;. Morecover, p obeys p =¢% ¢, =2Z,| x| —
Jiwise, | % — ¥ p(y) dy so that Ay, = dmgy®. Now, if rigr) <c for all
r>R,, then [pdx < 4w_f:0 (c/x*)312 &2 dx = (4m[3) B32Ry® = Z, . Thus, for
some, Ry, Ry%p(R)) =c. The choice d{r) = (RfR,)A $(rR,/R,) solves the
problem. ||

Turorem IV.10. Let p be the neutral TF density for V(x) = 21;1 Zlx—R,|-L
Then | x |8 p(x) —> 2773 as | x | — 0, uniformly with respect to divection.

Proof. Let R =2max;; .1 R;|. Then ¢ = p?/* obeys A¢ = 4?2 for
x| 2 R and ¢ — 0 at infinity. Now ¢ is continuous and strictly positive on
{xi| x| = R} by Theorems IV.3 and IV.5, so there exist numbers b. > 0 such
that & <{¢(x) <{ b, when | x| = R. Let ¢, be the solutions of d¢ = 4=/
which are spherically symmetric and obey ¢.{R) = b and rig.(r} — In-2.
Then, by the comparison theorem (Theorem IV.7), d_(| &) < d(x) <. x|
for all |x| > R. Thus |x|*¢(x) > 9=? and, since p(x) = $3*(x), p obeys
jaBp(x) >27n3%as |x| >o0. |}

IV.3, “lonization” Energies in TF Theory

Consider the Fermi energy eg(A) for the TF theory with V(x) =[x~ As
AT 1 we know that ex(A} T 0. Using the methods of Section I1.7 and the asympto-
tics of Section IV.2, we can say something about the rate at which ¢y{})
approaches zero.
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THEOREM 1V.11. Let e5(X) be the chemical potential for the TF theory with
potential V(x) = Si i ;| x — Ry |7 (S & = 1) and [ p(x) dx = X < 1. Then:

Hm ex(A)/(1 — A3 =< —3(#2/36)1/3/4,
atl
fm e()/(1 — A > —(m2[36)15,
a7l
Proof. Let p, be the neutral TF density. Define R(A) by

f pu(x) dx = (1 — A).
JxlzR(N)

Then, by Theorem IV.10,
lim ROV® (1 — ) = 36/ (34)

Now, let p,(x) be the density which is equal to py(x) if | x| <7 R(A) and is zero
otherwise. Let

B = PP — V) A [ ) 12—yt dy

so that

) == [ w3 x|ty if ] x] < R,

|yl R

e ()Y — j p M ix —ytdy  if x| > RQ).

lul> R0

From the first of these formulas, we find that (see(41))

Sy = — min [ px— e (s) dy
lzl€R(a} ¥ [ul3R()

~ — (1~ )RR
by Theorem IV.10. By the second formula (sce {39)),
T(py) ~ 45(py)/3.
The theorem now follows from (84} and Theorems 11.28 and 11.29. |
It is natural to conjecture, and we do so (see Sect. I}, that

lim e(N/(1 — A)* exists. (85)

Now, let E(A; Z) be the T'F energy for V(x) = Z ] & |"* with the subsidiary
condition [ p(x) dx = A. Let

SE(Z) = —[B(Z; Z) — E(Z — 1; Z)].
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TueoreM IV.12. (a) Tim,., 8E(Z) < (3/7)(=2/36)1/3
l;_m SE(Z) = (9/28)(=*/36)2;

(b) if the limit (85) exists and is —o, then
lim 8E(Z) = (3/7)a.

Proof. By scaling E(x; Z) = Z7BE(AZ; 1), and thus if €{A) is- the Fermi
energy in the Z = | problem, then
L
BE(Z) = —27 [ e() d.

If ex(X) ~ —af1 — A)*/3, then 8E(Z)} ~ (3/7) « from which the theorem follows. [

. 'The interesting feature of Theorem IV.i2 is that it is contrary to the usual
folk wisdom about the TF theory which says that jonization energies (and work
funetions in solids) are zero. Actually, the correct translation of the folk wisdom
is that the ionization energy is zero on the level of Z7/%. The more subtle analysis
above yields a prediction of nonzero, finite ionization energy. As we shall
explain in the next section there is some reason to believe that as Z —» o0, the
quantum mechanical ionization energy has a nonzero, finite limit but we see no
reason for the TF theory to yield the correct constant.

IV.4. A Picture of Heavy Atoms

We want to describe a picture of large Z atoms which helps explain certain
apparent paradoxes among which are the following:

(1) In real atoms, the wave function falls off exponentially [82], while, by
the above, the TF density falls off as | x |5, ‘

(2) The TF atom shrinks as Z-1/3. Atomic diameters as measured, for
example, in terms of Van der Waals parameters, tend, if anything, to increase
slightly [11].

(3) As we shall show below, molecules do not bind in TF theory but they
obviously do bind for real atoms. :

(4) In a real atom, the electron density at the nucleus is finite [39, 82],
while in TF theory it goes to infinity as (Zf | x |32

We picture the electron density of an atom as varying over five regions, The
innermost is the core region which shrinks as Z-1/3 and is described by the TF
density prg according to Theorem IIL3. The next region is the “mantle” of the
core which is described by the density (27/7%) Z¥(Z'3 |z |}* = (27/=%)| = |8
This density is correct to distances of order infinity on a scale of distance Z—1/2,
and in this second region the density is still of order Z2. As Z — oo, 100 %, of
the electrons lie in these two regions, What we have said about these two regions
has been rigorously proved in Section IIT and above in Section IV.2. Our
remarks about the density outside these regions is largely speculative.
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The fourth region is the “‘outer shell” to which we return shortly, Chemistry
takes place in the fourth region. The third region is a transition region between
the mantle of the core and the outer shell, The fifth region is the region of
exponential falloff outside the bulk of electron density.

It is hard to find really convincing evidence for a prediction of the radius of the
outer shell. In a model without electron repulsion, there are Z'/% filled shells and
the radius of the outer shell is of order (Z13)}/Z = Z-1/% In a model in which we
suppose that the sth electron is perfectly shielded by the first # — 1 electrons
and is put in the Bohr orbit for the ath electron in an atom of charge Zy; =
Z — n + 1, the last electron has a radius of order Z2/2. Our feeling is that the
most reasonable model has the last electrons shielded only imperfectly by the
last few shells. Since the outer shell contains order (Z'/2)? electrons, the outer-
most electrons see an effective nuclear charge of order Z2/ and thus has radius
of order (ZV/3y/Z23 =- 1. 'They have an energy of order | however, since the
total Coulomb potential is of order 1 at the atomic surface. It is striking that
this crude model predicts a constant lonization energy in the limit Z — co.
This agrees with the prediction of TF theory which has no reason to be a
correct picture of the outer shell!

In terms of our picture, the “paradoxes” discussed at the start of this section
are casy to understand. The exponential and »—% falloff describe different regions
of the atom. The other two “paradoxes” are explained by noting that size and
chemistry are determined by the outer shell and not the core which is the region
where 'T'F theory is valid.

Paradox (4) is explained by noting that the innermost, or K shell density alone
is proportional to Z® at the origin. Thus although the density is finite, on the
scale of Z* which is appropriate for TF theory {see Theorem II1.3), it is infinite.

V. Tug TF Turory oF MOLECULES

In this section we discuss the T'F theory of molecules or, more accurately, the
nontheory of molecules, since our main result asserts that the TT energy of a
collection of fixed nuclei and TT electrons always strictly decreases if we arhitrar-
ily separate the nuclei into groups which we then move infinitely far from
one another. It is essential that we include the internuclear repulsion
3iciciek 2525 | Ry — R; |7} in addition to the TF energy. Otherwise, as we shall
also prove, the opposite is true. Thus we define

BTF(-A; 21 ERRRE] zk ;Rl yrery Ri’c) = ETF(A; 21 ER] 2’]: > Rl e Rk)

+ Y zm | Ri— Ry

i iule

In Sections V.1 and V.2 we prove that:
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THEOREM V.1. For any strictly positive {z;}%_, , {RY:; , and j = 1 wk—1:
eTF(’\ Z‘ikal 21 ] .3‘1 yerry zic 1] Rl 1 Rk) > eTF(’\ Z:-l zi + 31 PRLEE] 2’, 3 Rj) +
eTF(A = Dimit1 i Bit1 s B s R;u+1 seeey Ry

In Section V.3, we prove that:

Tueorem V.2. For any smctly positive {35 1, any X > 0, any {R;}E, and
J=leu kb — 126X 2 0, 235 Ry ey Ry) > mingeyrcae™; % 50, 355
Ry yoees R,-) + eTFA — X 2ipq e 2 Rf+1 ees R

Remark. Theorem V.1 is obviously a special case of Theorem V.2. We state
it separately because it is needed in the proof of Theorem V.2.

These theorems have been stated by Teller [89] whose methods have motivated
our work in other parts of this paper. Teller’s proof has been questioned on two
points [3]: First, his use of infinitesimal charges leaves one uneasy. More
seriously, to avoid the puclear Coulomb singularity, he cuts off the nuclear
potential at shott distances and this technically invalidates his subharmonic
function arguments. Our presentation below is essentially a careful transcription
of his arguments into rigorous language and exploits the fact that we have shown
how to treat the Coulomb singularity in Section IL. We emphasize that our proof
in this section of Theorems V.1 and V.2 should be regarded as an exegesis on
Teller's work [89].

The inequality in Theorem V.2 is reversed if eTF(A; 2; ..., 2 ; By .o, Ry) I8
replaced by ET8(A; 2, ..., Z, § Ry ., Ry):

Tueorem V.3. For any strictly positive {2}t 1,:\ >0, {R; }151 , and
=l B— LETFX 2 00 2y By oy Bi) < ETF(X &1 ey 255 By ooy B) +

ETFR — X250 0oy 3 Rigq geens By) shenever 0 <X << A
Proof. As a preliminary, we note that if x, v = O:
(% L y)PR8 = (" + 3% + xy + yu)(x + y)1° L aB 350 4 2Py £zt (86)

Since ETF is monotone in A and takes its minimum value when the molecule is
neutral, we may assume that X’ <Ziz and A — A <Z;ﬂ+lz Let p'{x),
9x), EW (z =1, 2} be the TF densities, potentlals, and energies for the case
V®(x) = Zl ;| — Ry |7 and V®(x) = Z,_ﬂ z; | & — R; |71, Choose p(x) =

‘“(x) + p®{x} to be a trial function for the 'I'F problem with V(v)
32, | & — R; 7L Clearly, [ p(x) dx = X. Using (86), we have:

ETF(A; Ry yrees B s Rl 1y R.Tc)
< E(p; V) < BV | B2 |- f PU(x) [3 p(x)23 — V(x)] dx
+ J pB(x) [2 pD(x)2/8 — Vi(x)] dx
+ [ o) p9(3) L — y [ dv dy. (87)
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By the TF equation {Theorem I1.10) and the positivity of ¢:
0 < pH(a)P™ < i) = VOx) — [ phi(y) | ¥ — [ dy.

Therefore the right side of (87) is at most

B4 B ) [ o) p0) 15— vy
=3 [ (00 V) + p() T de < B L

Notice that the proof of this theorem, unlike that of Theorems V.1 and V.2,
does not use potential theory.

Theorem V.3 asserts, in particular, that the TF energy, ETF, increases if we
have fixed nuclear charges and move them infinitely far from one another, It is
an elementary consequence of concavity that if we move all the nuclei to one
common point, then ETF decreases, as we now show:

TueoreM V.4, Fix X > 0, {335, positive, and fix R, . Then E™F(X; 2, ,...,5 ;
Ry ..., R)) is strictly mintmiazed when R, = R, — - = R, =R, .

Proof.  Another way of stating this result is that ETF(A; 2,,..., 3,5 By ..., R)) >
ET]"'(/\;A‘_“‘?=1 2,0, 0, Ry ..., R) as long as some R; is different from R, .
Fix Ry ,..., Ry, A and let

Flzy s 3 = ET™ (A 2 ..., 2, s Ry ., RY).

As an infimum of functions linear in z,, f is jointly concave in (z,.., 2;).
If R; -~ Ry 1t is casy to see that it is strictly concave under changes in 2, and z;
only, since the minimizing p is then nontrivially dependent on z,/z; by virtue
of the TF equation, Theorem I1.10. The required inequality follows. |

Remark. 'Theorem V.1 states an irnportant fact about TF theory, namely,
that molecules do not bind, This is not a property of real molecules, i.e., the
solution of the true Schrédinger equation. Nevertheless, Theorem V.1 plays an
important role in the Lieb—Thirring proof [52, 53] of the stability of real matter.
It enters in two ways: (1) It leads to a lower bound on the expectation value of the
Coulomb repulsion among charged particle, i.e.,

(0 T s — 1)

= 4 [ o) s2(9) | % — v 17 d dy — (Const) N2 | g2 |2

for any i{antisymmetric or not), and where p{’ is given in the first line of (4);
(ii} After first showing that the TF energy {with modified constants) is a lower
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bound to the true Schrédinger energy, one uses Theorem V.1 to show that this
lower bound is greater than a constant times the number of atoms in the system.

V.1. Teller’s Lemma: Neutral Case

The basis of Theorem V.1 is a set of results of which the simplest is:

THeoreM V.5. (Teller’s lemma—neutral case). Let ¢, ,p; (resp. ¢y, ps)
to be the TF potential and density for a neutral system with potential

k P
Vix) = Z a;,|x— R, |-} (resP. Vix) = Z b;| x — R; |, same R,—’s).
il &
Suppose that b, 2> a; =2 0 for i = 1,..., k. Then for all x = {R}, dy(x) = (),
pox) = py(x).

Remarks. (1) We emphasize that ¢; = 0 is allowed.

(2} p;, which is determined only a.e, by minimization is fixed everywhere
by the TF equations.

Proof. By renumbering, suppose @y << by,..., @, < by, @iy = bpiy oo, @y =
by . Let 8§ = {x|dy(x) < y(x)}. Then § is digjoint from a neighborhood of
{R}7, since b, > afi =1,.,m) and ¢y(x)|x — R;|resp. ¢y(x) | & — R, |)
approaches d{resp. 4,) as x - R, . Since ¢, and ¢, are continuous away from
the R; , Sis open and 4 = ¢, — ¢, is continuous and negative on S. Its distribu-
tional Laplacian (4}~ 4 = $5'* — ¢3"* << 0 on S, so ¢ is superharmonic on S
and it therefore takes its minimum value on &5 U {co}. But ¢ — 0 at oo and
¢ =0o0n é8, 50y = 0o0n S Thus §is empty and ¢, == ¢, everywhere. ||

TrEoREM V.6. Under the hypotheses of Theorem V.5 suppose that b, > a;
for some { = I. Then

(a) dalx) > ¢u(x), polx) > py(x)
Jor all x = {R}}.
(b} If, in addition, b, = a; , then

lim (a0 — by ® — Ry 1) > lim (4(9) — as | 2 — By | ).

Proof. (a}) Clearly {x|¢dyx) = ¢{x)} is closed and not all of B3 since it
is disjoint from a neighborhood of R;. Thus we need only show it is open.
Suppose that 0 £ R;(j = 1,..., %) and that i(x) = ¢{x) — ¢,(x) vanishes at
x=0. Choose R, <<min{|R;[}, Ry >0, and let M = max|cz |¢sa} |-
Then, for | x| << R, :

[ o272 — y(2)*2 | < (B) MPM2f(x)
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so (x) obeys
0 << (4m) 1 A() < (3) M2(x) (88)

for | x| < R, . By mimicking the argument in the proof of Theorem IV.3, we
see that ¢ vanishes identically near x = 0; so S is open. This shows that S is
empty.

(b) Suppose that R; =={0. By Theorem IV.5, #{x) = do{x) — y(x) is
continuous at zero and we need only show ¢(0) == 0. By (a), ¢)(x) = 0 for x near 0.
A modification of the argument used in (a) shows then that 6(0) must be nonzero,
This modification consists in replacing the condition | ¢.(x}| =< M by | dy{x)| <<
A | x|, and replacing (88) by

0 < (dm)™ df(x) < (3/2) V2 | |72 (). (89)
One can still mimic the proof of Theorem IV.3. ]

V.2. No Binding: Neutral Case

Our goal in this section is to prove Theorem V.1I. This resuit of Teller [89]
is based in part on suggestions of Sheldon [78] who applied 2 motification of
TF theory, the Thomas—Fermi-Dirac theory, to the N, molecule and found
numerically that there was no binding. The reader should consult Balizs [3]
for a very different proof of Teller’s theorem in the homopolar diatomic case
(i.e., & =2, 2 — 2;). Balazs was able to prove the stronger result that ¢'F
decreased monotonically under dilatations of the molecule. The extension of
that result to general molecules was stated as Problem 7 in Section I. At the end
of this subsection we discuss the relation of Problem 7 to Problem 6.

Tix 2y ..., 3y strictly positive, R, ,..., R, , and f, and let e(o) = (A = ocZ:-C,zl 25
W ey 02 5 Ry ey Ry}, 60} = €TF(A = Y0, 25 5 062 4ens az, ; Ry ,..., Rjyand
e o) = e"F(A == O‘Zf:ju 2y 5 0%y e @8y Ry e, By) Define E(w), EW(),
E®(a) similarly. Let p, , p$ and p¥ be the corresponding TF densities and
by, 30, % the TT potentials. Finally, define

T}rx(l) - 11_)[}% [‘}’)a(x) — Ay i x — Ra ]—1]! i= ]s"" ks (903)
7)== lim [V(x) — o |x — R[], i = L, (90b)

72(0) = lim [P () — s |x — R, i =j+ Lok (90)

Then, the strong form of Teller’s lemma (Theorem V.6) says that for o > 0,

mld) > 020 i=1.j ) >02) =4 Lesk (91

Lemma V.7, Asa |0, e(a), eV{a) and e®(x) all go to zero. Similarly, E(w),
EMNa), and E*)x) go to zero, Furthermore, e(w) is differentiable in o for « == 0 and
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defda = $=1 2m ) Szmzlarly el {w) is differentiable and de"dx == Z:=1 2m(D),
8(2)/d(¥ - Zr—j—i—l lna (1)

Proof. We consider e(«); the argument for ¢/9(a) and E{a), E@{a) is similar.
e(a)isthesumof o® ¥, ; #,2; | R, — R; ' andaT'Fenergy. By Theorem I1.16,the
TF energy is differentiable and its derivative is — | pa('c)z 18| o — Ryl dx.
Thus

defde = 2 Y, ozyzy | Ry — Ry [ Efpa(x)z {x— R, |1 dx

k
- g | S o Ro Ry [ o) 17— R ] = 3, 2

Differentiability implies continuity.
¢(0) is clearly 0 and the corresponding p is 0. |

Proof of Theorem V.1, By Lemma V.6,
(dfdoefo) — eWHo) — D)) = z {ld) — 76

+ Z 34(n(3) — (). (92)

f=j4+1

By (91), this derivative is strictly positive for o > 0. Since e(e) — e®{ax) —
ey —> 0as o | 0, weconclude thate{la = 1) — eV =1) — (e =1) > 0. §

Remarks. (1) By Theorem IL.16,

dE(a) _ dEW(a) dE‘z‘(a)
do do de

— % [ale— R

=1

E o,
(pul) = PN dx — 3 | mlx — Ri [ (pul®) — p2()) d
deitl
which is strictly negative for « > 0 by Theorem V.6. We conclude that E{a) <
EM{y) 4 E®)(q), thereby providing an alternative proof of Theorem V.3 in the
neutral case,

{2) Consider a dilatation of the neutral molecule by [, ie., R, —IR,,
1e R*. Denoting the energy simply by ¢™{{), a scaling argument shows that
D =1"e(x==1). Thus B =de™({}}dl]|,_y = —Te(1) 4 3defdn |, .
Problem 7 is to show that B <{0. With U = ¢TF — ETF — nuclear-nuclear
energy, e(1} = K — A + R + U (cf. Sect. IL.6) and defda |,; — Fs_, zp(i) —
2U— A4 by Lemma V.7. By 'Theorem I1.23, R = A4/2 — 5K/6. Thus B =
—7K/6 — %Zz_l 2m(7). Let 7,(7) and K(7) be the values of 1, and K for an atom
of nuclear charge z; located at R; . By Theorem V.6, 7,(2) = 74(i). B = 0 for an
atom since —7K/6 -+~ A2 = 0 by Corollary I.24. Thus K(i} = 3z4,(i)/7, and
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therefore B =i —(7/6)[K -- 3% | K()]. We conclude that if K 2= >, K@) as
stated in Problem 6, then B < 0, and Problem 7 would be solved.

V.3. Teller’s Lemma and No Binding: Positive Ionic Case

"The proper generalization of Teller’s lemma, Theorem V.5, to the nonneutral
case involves comparing two TF problems with the same Fermi energy.

TueoreM V.8. (Teller's lemma: nonneutral case). Let ¢V, ptV (resp. ¢,
p™)  solve the equations: pV(x) = max($T(x) — fy, 02 (resp. p®(x} =
max($(x) — by, OF/ with the same ), $M(x) =T, a;le — R -
[p0(9) 2 — 3 1 dy (resp. $9{x) =iy b | v — R | — [p@() & — 3 |7 dy;
same R). If b; =2 a; i = 1,..., k then §¥(x) == $V{x} for all x.

Proof. Tdentical to the proof of Theorem V.6 once we note that whenever
$0(x) > ¢(), p(x) 2 p(x). |

Remark. The analog of Theorem V.6 does not hold when ¢, == 0, since
pM(x) = 0 = p®(x) can occur.

THEOREM V.9. Let p'*¥(x), $W(x), —¢", be the TF density, potential and
Fermi energy for a fixed potential V(x) =35 a;{x — R, "' with subsidiary
condition | p*¥(x) dx == A. Then, as X increases, p™(x) increases, $*V(x) decreases
and ¢ decreases.

Proof. We already know that —¢j"” is monotone increasing (see Theo-
rem 11,10 and Corollary I1.9). Let A, > A, and let pM(x), $2(x}, #7, and p?(x),
etc. stand for pt(x), cte. Let P(x) = ((x) — ¢i)) — (¢P(x) — ¢57). Then
¢ is continuous on all of R? including the R, and (dm)1 4y == ($M(x) — S§V)Y* —
($(x) — )2 (distributional derivative). Note that g(x) - » ¢ — 5 = 0.
as | x| = oo. Thus, S = {x | #(x) <2 0} is an open bounded set. Clearly A <{ 0
on .S, so i is superharmonic and thus takes its minimum value on 45, where
¢ = 0. Thus S is empty and 4§ 2> 0 everywhere. It follows that p(x) &= p®(x).
But since $0(x) = V(x) — [pV(3)l x — y [T dy, $"{x) < P(x).

TuroreM V.10. Let Vi{x) = Yo 2, &~ Ry 75 V(%) = 35y 55| % Ry
V®{x) :ZLHI 2; | % — R, |7\ Let —d, (resp. —d") be the Fermi energy for
V(resp. V) with [ p = A(resp. X9}, Suppose that Xk == AV 1 A®). Then —¢, <
max(— {0, —4{?).

Praof. Let p'" (resp. p*¥) be the TF density for the U, A0 (resp. 13, A
problem. Consider p = p™ + p* as a trial function for the 17, A problem in the
variational principle, Theorem I1.29. Then —¢ < €8s sUpPiy|,—gy [p(X)?> —
U (x) — H¥(x)]. Now, for a, b positive, (a + 8)%/? < a®/ + /3, s0

—ho < ess sup [pM(ERS — D) - pBEEP — gL (93)

{z]ptar}=0}
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If pM(x) 7 0 7 p'¥(x), then the right side of (93) is —@{F — #{. If pV(x) =
0 = p(x), then pD(xPA —$u(x) = —¢B while —F2(x) <0 (by
Lemma I1.19}, so the right side of (93) is at most —¢{" for such x. Similarly,
if p®(x) = 0 # p¥(x), then the right side is at most —¢!¥. It follows that

—do < max(—¢{", — (V). |l

As a final preparation for our proof of Theorem V.2, we need:

THEOREM V.11. Let F be a continuous function on D = [a, b] X [c, d] such
that:

(i} For every ye|c,d), F(-,y) &s a C* function on [a,b], and OF|0x is
bounded on D,
(1) Let f(x) == mingqyq F(x, ¥). Suppose that for each x € [a, ], there is a
¥(x) € (¢, d] such that
J(%) = Flx, y(%)),
(8 2)(x, 5(¥) < O.

Then f is continuous and monotone nonincreasing.

Proof. Let 5, < x, and y; = y(x;) ({ =0, 1). Then

Fls0) <Flo, 1) = flm) — [ (@F e, 3 d, (94a)
Flo) < Fa o) = fen) + [ (@FJas)(m, 30) d. (94b)
By (94):
| F9) — Fs)l < | m — % | sup | 8Fje |
Let

G, 2) = (1) [ (s, () du
for z > 0. Then
[ (1) — Flaa)} /(o — %) < Gl , 2 — )

and G is bounded with the property that, for each fixed x,, lim,,, G{x;, 2)
exists and is nonpositive.

Let hy(x) = (w8)~1/% exp(—«?/8) and extend f to R by making it constant on
(—o0, a] and [b, <¢). Let fo(x) = [ ko(¥) f(x — ¥) dy. Then, since fis continuous,
f» converges pointwise as & | 0 to f, so we need only show that each f; is mono-
tone. f; is differentiable so we need only prove that

iig}u [fa(21) — Folxa)}/ (2, — %) <O
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for each x,. But
[folx1) — folxo)]/ (2 — %) = J ho(¥) Glxy — v, x; — x,} dv. (93)

The right side of (95) has a nonpositive limit by the dominated convergence
theorem. ||

Proof of Theorem V.2. Fix {z,}, {R;}, and A. Let X’ be chosen to minimize
A 2y ey 3 Ry e, R+ ETF(A— X 2y e B Ripg 5o By) == FA).
Since eT¥(A; —) is differentiable for A > 0 and is O(A'/3) at A - = 0, one has that
near A" = 0, f(A') = f(0) — o' + o(A13) with « > 0. Therefore, the mini-
mizing value of A" is not at A’ == 0 or, by a similar argument, at A — A’ = 0. Thus
dfjdN — 0 at A, and —¢{" = —${P, where d(resp. ¢, ) and -, (resp.
—¢i, i) are the TF potential and Fermi energies for the full problem
(resp. Ay, A — Ay’ problems). By Theorem V.10, —¢, << —¢i == —¢*. Choose
A such that the TF potential ¢ for V= 2; 2; 1% — R;|" with [p = A has
Fermi energy —dy = —¢{. Since —¢y = —,, A = A, by Theorem V.9.
Again, by Theorem V.9, §(x) = 4(x), and, by Theorem V.8, Hx) 7= $(x). Thus

H(x) = () all x, 1 = 1,2, (96)

Now, without loss of generality suppose that 3°;_; # > A, since the theorem
follows from the neutral case if A <Y, ; %, . Define

Glo, X} == [6TFA; azy o, a5 RY)
+ T = A a2y e, o3y s R — €T @z, az; R

¢) = inf Gla, X).
DA <A
Then g(hfzzc:l z;) << 0 by the result for the neutral case. As in the proof of
Theorem V.1, (96} says that at A'(«), the point where G{w, A') is minimized,
0G/ox < 0. Tt is easy to verify the other hypothesis of Theorem V.11 for G.
As a result, g(a) is monotone on

I3
[/\/2 2, 1] so that g(1) < 0. |
. i=1 i

Another application of the foregoing potential theoretic ideas, which will be
useful in the study of the TF theory of solids in Section VI, is the following:

THEOREM V.12. Let VOW(x) =30_, 2,1 x~ R; |, ) — Zi‘lju g |a-R T
(el 2, > 0) and V —= VO L V. Let oB &) o o be the TF densities and
potentials for the three V's with a common Fermi energy —d,. Then ¢(x) < () +
(%), If g = O, this inequality is strict.
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Proof. Let y = ¢ — V) — ¢ which is continuous. In the distributional
sense, —(dm) P A = —p 4 p 4 p®, Let B = {x | (x) >> 0}, which is open.
Since §9(x) > 0, max(g(x) — do , 0) > max(BM(x) - g, 0) + max($(x) —
¢, 0) for x € B. Thus p?/¥{x) = pV(x)23 4 p®(x)2? on B and hence p(x) =
p1(x) -+ p¥(x) on B. Therefore i} is subharmonic on B and vanishes at infinity,
which implies that B is empty. If ¢, = O the methods of Theorem V.6 show
that {x) > 0. |

Remarks. Theorem V.11 is primarily of interest when ¢, = 0 (neutral case).
Then p(x)2? << pV ()2 + p(x)23. It complements Theorem V.6 which
asserts that p(x) = max(p(x), p?'(x)).

V1. The TF Turory oF SOLIDS

Thus far we have considered the TF theory of molecules consisting of a finite
number of nuclei. Here we wish to extend the theory to infinitely large, periodic
molecules; namely, to solids. For simplicity and notational convenience we shall
assume that the unit cell of the solid is cubic and contains one nucleus of charge
z > 0. Our analysis can be extended to more general situations. By scaling
(which will be discussed more fully in Sect. VI.3) we may assume the unit cell to
have unit volume. Thus the nuclei are situated in Z% e R®, the points with
integral coordinates,

To each finite subset, A of Z3, we associate the potential

Vi) =2 Y |x—ylt ©7)

yed

Since we want to take the limit | /1 | — oo, the total electronic charge must
cancel the bulk of the nuclear charge, and so we consider only the neutral
systern; consequently, & is the only parameter in the problem. Let e, and
pa(x) be the TF energy and density for the “molecule” A. A theory of solids
should be based on three facts: (i) e == lim 4.0 e4/] A exists; (ii) p(x) =
lim) ;... pa(x) exists; (iii} p has the same periodicity as the assumed periodicity
of the nuclei. We shall prove this in Section VI.1.

In Section VI.2 we shall prove that p is the unique solution of a medified
TF equation with a periodic Coulomb potential. One of the points to be empha-
sized is that the constant i, appearing in this equation is not a chemical potential,
as is often assumed because of its similarity to ¢, in (3). Rather, i, is the average
electric potential in the solid. In Section VI.3 some properties of the solution
will be discussed.

The TF theory of solids has been applied for many years [18, 92] to obtain
equations of state for real solids at high pressures. Our results are relevant to
such applications in that we show clearly what equation is to be solved and how
the answer is to be interpreted. In most calculations, the proper periodized T'F
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equation is crudely approximated by replacing the cubic cell by a sphere, and
the periodic boundary conditions by a vanishing normal derivative. In the
absence of numerical evidence, we do not know the accuracy of such an approxi-
mation. We also do not know whether the exact solution wiil yield a positive
pressure at all densities, although we believe it does. This is left as a conjecture.
A positive resolution of the general dilatation conjecture (Problem 7) would, of
course, imply positivity of the pressure. A second conjecture is that the com-
pressibility is positive; more generally one would expect that the TT energy for
molecules is a convex function of the dilatation parameter.

A natural question is whether TT theory correctly describes solids in the
limit | A ] — co and then z — . Our results, logically speaking, concern the
limit in the reverse order. One reason we cannot discuss the correct [imit is that
it is unknown how to prove even the existence of the thermodynamic limit,
tA|— oo, for real quantum mechanical solids. It is, however, possible to
establish this limit for “‘real matter’ [45)] and for jellium [48], but not for solids
in which the rotational symmetry is lost.

Assuming that the interchange of limits can be justified, a more serious
question concerns the applicability of TF theory to high density {i.e., high
pressute) solids. One wants to let the lattice spacing, a, tend to zero with z fixed,
whereas 'T'F theory is presumably justified in the limit & — 0 with &% fixed, as
explained in Section I1I. These are not the same, and we believe that TF theory
is largely irrelevant to the @ — 0, & fixed limit. In this limit the kinetic energy
dominates and p tends to a constant. TF theory (with @ — 0 and z fixed) correctly
describes this principal effect, namely, e — (3/5) p*/%. Sece Theorem VI7. The
interesting Coulomb corrections are of a lower order in p, and since the error in
the kinetic energy alone is 0(p?/2) (cf. Sect. II1), it would be fortuitous if TF
theory were correct beyond the leading p*/® term. If one is content with the
statement that TF theory is “approximately correct,” instead of “exact in some
limit,” then possibly TF theory is quite good when a is not too small and = is
large.

VI.i. Existence of the Thermodynamic Limit
We will use the following notation:

(i} A will always denote a finite subset of 7% and will be called a domain.
| /1] is the number of points in A,

i) If yeBT,={xcR| ) <x, —3, <% {=123}is the ele-
mentary cube centered at y.

rey =y r,. volll(A)= | TN =41
wed

~I" denotes the complement of I,

(il) With ¥, given by (97), ¢,, = ™A = x| A |; ¥,), cf. section V, and
pa s, denote the minimizing TF p and potential.



94 LIEB AND SIMON

Dermvirion VI1. A sequence of domains {/,}7, is said to tend to infinity
if the following holds:

M) o A, = 74, (98)
() A,,24;, (99)

(i) If A% is the set of points in R® whose distance to &I'(A) is less than
A then

lim | A}/ 4] =0  forany h > 0. (100)

We shall write simply 4 —» oo to denote such a sequence and shall write
tim ., f(A) in place of lim,,, f{1,).

Remark. 'T'his notion of A — o0 is a slightly modified version of Van Hove
convergence. Condition (99) is included so that we can use Teller’s lemma. It is
noteworthy that the proof of the existence of the thermodynamic limit for real
matter requires more stringent conditions en the 4, . Even for strongly tempered
potentials in the continucus case, more stringent conditions than in Defini-
tion VI.1 are needed. In Theorem VI.5 we shall in fact show that e,4/| 4 | con-
verges to a limit independent of the sequence for any conventional Van Hove
sequence, i.e., any sequence obeying only (100).

TueoREM V1.2, If A — oo, then

#(x) = lim (%) (101)

exists and is independent of the particular sequence of A's used. The convergence is
monotone increasing and uniform on compacts subsets of R¥Z*. More generally,
if K C 3 is compact

palx) — Y wlx—y|? (102a)

yeKmzd

converges uniformly on K (including K N 7%) to

) — ) alx—yi (102b)

yeKnE?

& ts periodic, i.e., d(x + ¥) = $(x), ¥ € 23, x € RM\Z2. Furthermore,

L«.,P — lim fru ps = %, (103a)
5/3 __ 1; _ 5/8

fro P = lim | A [, (103b)

$(x) —= 14‘3}) jAt Z dalx + ), {(104a)

yedl
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and the following limit exists:

lim{h(e) — =) Y = lim | A7 Y lmfp.e) — 2| ¥ — 3 [~1). (104)

yEA

Proof. By Theorem V.6,
4 (x) == p () for all x, (105)

when A’ D A. This implies that for any & such that lim, ., ¢{*) = ¢{x) cxists,
#(x) must be independent of the sequence. By Theorem V.12,

Palx) < 3, 4%z — ), (106)

wEA

where ¢ is the potential for a single atom with nucleus located at R = 0.
Now ¢*(x) 15 bounded above by o | # |~ on all of R? by Thecrems IV.8 and
IV.5, where ¢ == 97 % By extending the sum in (106) to all of Z* we see that
$.4{x) is bounded, uniformly in 4, on any subset, K, of R*Z® such that the
distance of K to A is positive. Thus, the limit in (10]) exists and is monotonic.
To prove the uniformity, we can apply Theorems V.6 and V.12 again when
A

0 <halx) —dal@y = X ¢(x ) (107)

yeZ '\

As A — oo this sum goes to zero uniformly on K, if K is compact, and hence
the functions ¢, are a Cauchy sequence in the sup nerm on K. Equation (107)
also implies that lim_4{¢(x) — 2 | # |" 1} exists and the uniform convergence of
{102a) to (102b). From (103) we see that ¢(x} —= sup ¢ 4(x}. For ¥ € 73, however,
dalx + ) == . y(x) which, together with monotonicity and (98), implies that
¢ is periodic. Likewise, if we define qu(x) = SUPyez PAx + V), then

B) = Em () and () > dalx). (108)
Since p; = ¢%%, lim 4., pa(x) = ¢3%x) = p(x). By monotone convergence,
I= J}o p = lim ., J}O o - Let A(a) CZ? be a cube of side 2¢ - [ centered at O
and let p,(x) be the p associated with A(a). Since cach A C A(a) for some 4, and
since A D Afa) eventually for all @, § = Hm,,,, [, , where I, = fpﬂ Py - Suppose
I, > z for some 4. By monotonicity and (100}, I'(A(j4)) contains
| A(j4)| — o(JA(GA))) elementary cubes I” for which [rp;, > 2. But.then
| A(7A) " [s ps4 => = for j sufficiently large, and this is a contradiction. Hence
I < z. Similarly, we have that L—u p83 < liminf ., | A |7 [ p%F and ¢(x) <
lminf,,, | 4|23 cata{x + ¥) and

lin(l}{qS(x) —zla| )< lir{l inf | A7) lin}{gb‘i(x) —z|x—y|
X A-w ged P

607/23/1-7



96 LIEB AND SIMON

The inequalities established thus far use only monotenicity and an elementary
“conservation” argument. To prove the opposite inequalities we have to show
that p, and ¢, do not “leak out to infinity.” The proof of (104) is easy. From
(108), ¢(x} == sup,c 1 $alx + ¥). Hence

lig(pe) — 2 ) 2 1410 T limthale) — = x =31,

$x) = | A Yhalx +y)

yEA

and (104a) and (104b) are proved. To prove (103a) and (103b) we use the bound
{(106).

[t <] T ¢ —3) =B

A} yeA

Let ¢ = [z ¢° and let ¢, = [}5, $7(x) dx. Cleatly, ¢, <C 8/h for some 8 < o
because ¢%x) < o|x|% Thus, for k=24, B<|A|ey+ | A%| s 2and,
using (100) together with the fact that % is arbitrary, we have that

msup |4 [ 44 =0.

~I(A)
iikewise, forany p > [,
lim sup | 4|1 f $a7 =0 (109)
A-+o ~lA)

because, as was mentioned before, ¢, is uniformly bounded on ~I'(A). Since

$(x) = sup Falx + ),

f ¢? 2= limsup | A |! 4P
I A-x A

=lims A1 ; - P
asup |41 60— [

> lim sup | A f $.* — limsup | 4 |2 j b7
Asn " A0

~r(1)
— 1 -1 P
— lim sup | 4 | fma $a

by (109). 1

Remark. Since p, and ¢, are monotone increasing in A, p, — p, ¢4 — ¢ for
any sequence of bounded regions with the property that any bounded subset of
Z3is eventually in /1. The limit function ¢ is the same as the one in Theorem VL.2.
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Tueorem VI.3. If A - oo and ¢, p are the limiting potential and density, then
the limit
m ¢,/| A | = e(z)
exists, and

@) = 1 [ o S limid) — = ]

Praof. p, satisfies the TF cquation (3) with g — 0, .., é, = p4%. Hence

30 5 1 1 1,
"A'ngjPfﬂls—EJ.PA‘ﬁA—EJPA4VA+'2'3“ Y lx—yl?

¥.¥€1
Y

L osm, R : -
= mJ P'AR’:‘E %1 l;fg{‘ﬁzl(x)'* la—y ™

Theorem VI.2 establishes the result. ]

Theorem VL3 can be extended to more general regions by an argument more
closely patterned after the usual methods of controlling energies per unit volume
in statistical mechanics [74]. The argument does not use Theorem VI.3 and so
provides an alternative proof of the convergence of e,4/|4 | as A -» 0.

TueorEm VI4. As A — o, eyf| A converges to a [mii e(z). Moreover,
for any region A,
g5 | A e(3).

Proof. Let us make the z-dependence explicit in ¢, , ¢tc. By Lemma V.7,
for any A

(dJdz) ex(z) = ¥, limigw 3) — = | x — ¥ )
yeA
i AR
<A mfh(; 2) — 5 | w7
by monotonicity. By (104b), if 4 — oo,
A1 (dJdz) egfa) — Bmid(e 5) — 2 | 5[4,

By the dominated convergence theorem it follows that

AT s> [ limis(s ) — w0 i) dw

and that
eq 5 | Afe(z) for any A. ||
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TueoreM VL5, Suppose that A converges to 73 in Van Hove sense [74], i.e.,
only (100) is assumed to hold. Then | A |7 () — e(2).

Proof. By theorem VI4, lim | 4 |1 e (z) < e(2). On the other hand, by a
standard argument [24], lim | A |"L e,4(2) = | A(e)| ! e1a)(2) for any cube Afa).
Taking the sup over a, lim | 4 | L e (2) = e(2). |

VI.2. The Periodic TF Equation

The Periodic Coulomb Potential. 'There is no Green function for —4 on the
torus, i.e., there is no periodic function on RS satisfying —Af =3, 8(- — ¥),
essentially because —Af = g(periodic) implies that ¢ vanishes at 2 =0 in a
Fourier series. However, one can find a function on the unit torus satisfying.

—AG — 4n(5 — 1). (110)
Equivalently, G': R? — R satisfies
4G —3) = 417(-1 LY A —y))

yeZd
and G is periodic. Obviously, G is determined only up to an additive constant;

a specific choice we shall make is

Gx) =2 Y | k|2 exp[2mi(k, )]. (1)
kep?
k#0

G is bounded on I except for a singularity at ¥ =0, G(x) = G(—x) and
M'zlgng Glx) — | x| (112)

exists. To see that M exists, we note that f(x) = fpo [ — v |1 dy is continuous
and that G{x) — | » {7 -} f{x) = T{x) is a distribution whose Laplacian is zero.
T is therefore harmonic, and thus C=, even at ¥ = 0 [67].

THEOREM VL.6. Let A — o0 and let ¢, p be the limit functions of Theorem V1.2,
Then there exists a constant |, > O such that

$(x) = 2G(x) — | Gl =) p(3) + - (113)

Ty
Alternatively,

(@) = 4r |5 T 5 =) — ol (114)

yeZh
Furthermore, ¢ and p are real analytic on R¥Z3.

Proof. Let ¢ denote the right side of {(113) with ¢, =0. As pel2<(I}),
Gel3<(l,), for all ¢ >0,Gx*p is a well-defined continuous function on
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R%73 (cf. Lemma I1.25). ¢ is periodic and satisfies (114) since [r, p = 2. Let
fe C*(R%). Then

IA_%Ifi Y 8(: *V)—pA%—ﬁMT

vel

Y- —p

yeIE3
= [ (48 = [ (—a1.
On the other hand,
= [ fl—ady = [ (=ang, =5 [ (-4,

Thus, == ¢ — ¢, which is periodic, bounded, and continuous by Theorem VI.2
and (112), is harmonic. Therefore it is a constant, ¢, . If we integrate both sides
of (113) over I', we obtain

bo = Loqb = 0. (115)

By Theorem VI2, p and ¢ are C' on R¥Z3 and are strictly positive
since ¢ > ¢, = 0. The bootstrap argument of Theorem IV.5 as well as the
proof of Theorem IV.6 arc applicable here. |

LEquation (113), together with the conditions

[ P& p == 953”21
r,
is the periodic TF equation we have been secking. To establish uniqueness we
recast (113) as a variational problem.
Consider the following functional on

g = §p o LX) NI, [ =2, p 0]
L o !

Glps =y =3 | PP — J PG + 3 ﬂ p(¥} G(x — v} dx dy.
(116)

Although G is not positive as a function (its integral vanishes), it is nevertheless
true that G(x — ) is the kernel of a positive, semidefinite operator. Consequently
the arguments and conclusions of Section II apply to &, . In particular
pr>&4{p; 3} is strictly convex, so the minimizing p is unique. That such a p
exists follows either from a repetition of the arguments of Section TI or else,
more directly, from the analog of Theorem I1.10 together with the fact that we
have already demonstrated at least one solution to the wvariational equations
(113) and (116).
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It is important to note that
E,(z) = min{&(p; 2) | p e F7}

is not. the same as the limiting energy per cell, e(z). From the definitions, one
finds that

efz) = E (=) + 22 M[2, (117)

with A defined in (112). ¢, does not enter (117). Adding a constant ¢ to G(x)
changes none of the quantities or equations except for three things: M — M + ¢;
Edp: 8) — & {p; ) — ¢2¥2 on F7; E () — E (3) — c52/2,

VI.3. General Remarks

A, Nomcubic Bravais Lattices. If the underlying Bravais lattice, L, of the
crystal is not cubic, but is specified by three primitive, linearly independent
translation vectors, &, , 4, , @; € R then (111) must be replaced by

G(x) = (V)1 Y | k[ exp[2mi(k, x)], {118)
%
where V' = vol(a, , a4, @)} = | @; - {ay X a;)| and L* is the lattice reciprocal

toL,i.e,L* = (b, ,b,, b)) and (b, , @;) = 8§, ; . With this modification all of our
theoty goes through as before mutatis mutandis.

In addition, with trivial modification one can allow more than one nucleus
per unit cell,

B. The Madelung Potential and its Stgnificance. In I place a uniform charge
distribution of total negative charge one, and also place a positive delta function
at 'the origin. The ordinary potential this charge distribution generates is

fey=1xp7— [ Ix—y 1ty (119)

]

The Madelung potential, F(x), in I is defined to be the potential of an infinite
periodic array of such charges, i.e.,

Fix) = % flx—). (120)

yeg?
Since f has no quadrupole moment, f(x) =0(} 2 |™*) as | x | — oo, so (120) is
absolutely convergent. The Madelung constant, M, is defined by
M = lagraF(vc) —Ja L (121)

If the same is done for an arbitrary Bravais lattice, L, f(x) will have a quadrupole
moment in general, and the analogous sum for F(x) will not be absolutely
convergent, and hence will depend on “shape.”
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The point we wish to make is that even for the cubic lattice, only differences
F{x) — F(x") have significance. Consider the sum in (120) restricted to a large,
cubic domain, A € Z3. In the outermost cells of A replace the constant negative
charge distribution by a nonconstant one of the same charge, —1. As the reader
can easily convince himself, in the limit A — oo, the sum (120) will converge to
F(x) + ¢, where ¢ is a constant depending on the assumed distribution in the
outermost cells. Likewise, M’ — M’ <. ¢, and j}uF — _[F“F - ; thus M’ is
unstable under “changes in the charge at the bounnary.”

We mention this fact for two reasons. One is that in the solid state physics
literature M’ is purported to have some physical significance. The second reason
is that TF theory illustrates the foregoing remark insofar as

Bw) = 3, #lx =) +d, (122)
where
gy = s a2 — [ Ja—y12p(y). (123)

o

The constant, d, in {122) is not zero precisely because p,(x) % p{x) in the outer-
most cells of A, ef. (127) et. seq.
Let us calculate the relation of M’ to M. Let f(k) be the Fourier transform
of f(x). Then the Fourier series coefficients of F are given by
Py =f(ky, ko= 2mn,nec?? (124)
In particular,

F(0) = Yim f(k)

(125)
o 27 f xidx = [ F(x) dx.
w5y "y
Since —(4w) AF ~ &8(x) — 1in Iy, and [ G =0,
F(x) = G(x) -+ 2 | a?dx.
vy
Thus
M M 2m [ st (126)
o

Now we shall apply the same analyses to the TF ¢. Clearly ¢’ == 3,2 g(x — 4)
satisfies —(4m)t A’ = 28(x) — p = —(4n) L dd, so ¢ =4’ + d. Proceeding
as in (125),

o= [ b =d 1 2m [ pla)etdu. (127

Iy
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We wish to show that d 5 0 in general. Otherwise, (127) would give a fortuitously
simple expression for ¢, . As # — { it is clear that p — the constant function z,
and ¢ — p¥/? = 22/%, We shall prove this later. Thus

= 2+ o(s?)
whereas

J- p(x)x® dx = zf x*dx + ofz).
r r

a o

Hence, € +# 0 for small =,

C. Significance of iy . As remarked earlier, i, = _[Fog& is the average electric
potential in the crystal. It is not the thermodynamic limit of the chemical potential.
The chemical potential, €5 4, for a finite system is always zero, and hence
Hmy o, epq =0

Since ¢ = p?/4, Holders inequality yields

o< ([ )" = (128)

As 7 — 0, (128) becomes an equality, as we shall prove later.

D, The Limits 2 — 0 and = — o0

Turorem VI.7. As 2 — 0:

F7 = 1 + 021/, (129)
|22 — 11, = 0(z1),  1<p<3, (130)
J2tp — 17, =0(z"53), | <p<2, (131)

where || - |, i the L (I'y) norm. Moreover,
e{z) = (3/5) 23 -+ (=2). (132)

Remark. As we shall see in the next section, the limit # — 0, I, fixed is the
same as z fixed, | I'y | — 0. This is the high density limit and (132) says that the
total energy approaches the ideal gas value, namely, (3/5) p/2. Equation (132)
validates the assertion made at the beginning of Section VI that the corrections
to TF theory beyond the leading term are of the same order as the quantum
mechanical kinetic energy corrections.

Proof. =z-23¢(x) = A(x} + B(x) - €, where A(x) = 2PGx), B—
—RGx (37lp), C = 223, . Since Geld < all ¢ >0, and | 2o = | we
have that for 1 <p <3,/ 4|, —0(='%) and || B/, = 0(z'/). Hence
228 — ', — 0(22/3). In particular, taking p — 3 and using the fact that
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cxEAG L, b, C =14 0(2/%), thus proving (129), (130). The fact that
p == ¢%* implies (131}. To prove (132) we use Theorem \'I 3 f pW’IO =
FBI0 - 0(22) by (131). (2/2) lim,, {d(x) — 2| ¢ |7t — &M} = (22 L ——7;)\<
6) dy -+ 2. As [ e 0(z) by (131) and G €LI(TY), Jo. GL—3) o) dv =
O(z}). Thus efz) == [(1/10) + (1/2)] =°/ |- 0(=*). |

Tueorem VL8, Let ¢°4(x; 2), p®(x; 2), and e*4(2) be the TF potential, density
and energy respectively for a neutral atom with a mucleus of charge x located at
R = 0. (Recall that ¢%(x; 2) — 2338 (218%; 1) —= p™(x; )% and e™(2) =
27 Be(1).y Then there exist b, ¢, d < oo such that for all 3

[ —¢*il, =, Lempssoc, (133)
Lp—p®l, Sds®, 1 aip i3, (134)
where [ - ||, &5 the L {1} norm, and
[0 — =2 [ g yav| o, (135)
R:l
Moreover, as x — 0,
e(z) -— e"(z) = 0(2). (136)

Remark. 'This says that as z — oo the crystal consists essentially of isolated
atoms, in agreement with the fact that z— oo is the same as the lattice
spacing — 26, as we shall see in the next section. Equation (134) should be
compared with the fact that [ p ||, = 2, and (136) should be compared with the
fact that 7z} ~ 37/,

Proof. By Theorems V.6 and V.12,

#1(r: 3) ) < T, 45— 35 9).
yeg”
By Theorems IV.8 and TV.5, d%{x; 2) <Za | x "4, 6 == 972 on all of B% (0}
These facts imply (133) for p - oo, and, since I has finite volume, they imply
{133} for all p. Now p =432 and (a @ 6P =L &% — (312) ba + B2 for
a, b 72 0. Thus
0 p— p < (3/2) o,

where ¢ is given by {133}, Since || ¢/ [ == 215, and {1+, = |, all p, (134)
follows. Since tho c g, [y — 17l | <X c. However, "¢t — [t ==
JNF dHelaf r xl 4 dx. This provcs (135). To prove {136) usc Theorem VI3

o~ 47y <y b — 1 ez and Ko - p)det | ) p - [y B gL
Turthcrmun _fr ptidat . jms put‘qguf - O(1) since  p™{x) hot(x) =l o2 |y |10,
Hence || p1, — ‘p(bﬂl ---- Jm {p®)%/? & O(2). Fmally, & lim,_Jé{x) -2 v -1} —
bm, {7 (x) — = ta "M 2] limy, ofd(a) — SN T e
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E. Scaling Relations and Pressure. Suppose the unit cell I is isotropically
dilated by a factor [, t.e.,

Ty— T, ={lx|xeT,).

Denote by a2 subseript ! the dependence of the various quantities of interest on /.
Note that e,(2) is the encrgy per cell, not per unit volume. One easily finds that:

Gy(x) — PG,
M, =11M,
di(x; 2) = I 1x; 132), (137)
pike; 2) = I-%(1%%; 7)),
e,(z) — Fe(l%2).
The pressure is, by definition,
P=— 14111:) (8feT e, , (138)

where V= | I'(A)] =1 A)P. We will interpret 8/@V to mean the derivative
with respect to isotropic dilatations. Thus

P = (3B lim (8fel)es,]| . (139)

If we can interchange the derivative and the limit in (139) then:

THEOREM VI.9.
P = (311 (8/00) efz) = [(7]3) e{I*z) — 213%(13%)] I8, (140}
where (€)(2) = de(2)/dz.

To validate the interchange in (139) we argue as follows: For a finite system,
specified by /1, the scaling relations (137) also hold. Thus, (139} reads

P = o lim | A [[(7/3) es{f) — #1° €,(I%)].

However,
Lim‘ | AL e {32} = e(%)

and, by Lemma V.7,
é‘-l(z) = Z 1;3}{961(90) —zlx—y Epl}:
veA X

whence
lim | A7 é4(z) = limip(e) — = x ) (141)

Ao

by (104b). Thercfore, to complete the justification of (140) we need the following
lernma.
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Lemma VI10. The energy per cell, e(z), for the periodic TF system satisfes
é(2) = de(z)jdz = 1331}(}{({;(&) — 2| x|, (142)
where ¢ is the periodic T'F potential.
Proof. By applying the methods of Section IT to the energy functional
&,{p; ), (116), one can prove the analog of Theorem 1116, ie.,
dE (2)dz = — Lu Gp + o

Using (117),
de(2)jdz = sM — JF Gp +

— Bmg(v) — 2 | x )
by (113) and (112). ||

Remark. Using Theorems VI.3 and VI.9 we obtain another formula for the
energy:

1 5 [
@) = I fr., P 1 5 w(3). (143)
‘This gives us an alternative formula for the pressure:
P = F(3) e(B%) + (3) JF Pl (144)

From (144) we see that P > O whenever e = (), which proves part of our con-
jecture,
The compressibility, x, is defined by
(k) = — | Iy | @Pje(| Iy |)
= —({/3) oP[ol
= I"%[(14/3) e(I*2) — (10/3) Pzé(32)
+ (3=)% &(P%2)].

(145)

VII. Tae TF THECORY OF SCREENING

Another interesting solid state physics problem is the TF theory of the
screening of an impurity in a solid by the electrons in the solid. T'he simplest
model is to treat the impurity as the Coulomb potential of a point charge, and to
replace the nuclei of the selid by a uniform background of positive charge.
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The electrons are treated as a gas which will partly “screen” the Coulomb
potential of the impurity. The TF theory of this problem has been widely
studied, see e.g., Kittel [42]. Only the positive impurity case will be discussed
although, as in the remark at the end of Section I, we could do the other case as
well.

Here we shall put the TF theory on a rigourous basis, but we shall not attempt
to justify the 'I'F theory as the limit of a proper quantum theory. We are not
certain that a justification is possible, but even if one is, it would not seem to be
accessible to our methods of Section ITI. Those methods depend on energy
considerations, and the encrgy of the impurity is finite while the total enerpy of
the background is infinite. On the other hand, if one considers a large number of
impurities, proportional to the size of the solid, the methods of Section ITI
might be applicable. In any event, for real solids the TF theory of screening is
nat considered to be very realistic; as we shall see, the screened Coulomb field
of the impurity falls off exponentially fast with distance, whereas in real selids
the fall-off is believed to be much slower and is also oscillatory. This effect is due
to the sharpness of the electron Fermi surface [42].

The formulation of the problem is the following. Let A be a bounded, mea-
surable set in R3 in which a uniform charge density p; > 0is placed. In addition,
there is a nucleus of positive charge 2 located at x —= 0. The total electric potential
generated by this configuration is

Vaes 2) = 2% [ 4 pn [ |x =y db. (146)

The TF energy functional is

Eupiz) =3 [ o~ [ V(s o) dx + 3 [ [p@p(y) | v —y [ dxdy (147)

These integrals are over all of R3, and hence the support of p is not confined to A.
We could make a theory in which supp p C 4 but the results, both physical and
mathematical, would be the same apart from an overall shift in the average
potential caused by the boundary effects (cf. Sect. VI.3 and the remark after
Theorem VIL2). The formulation (147) is simpler and, on physical grounds,
preferable.

We shall only be concerned with the neutral case. Thus, by the methods of
Sections II, IV, and V, there is a strictly positive p 4(x; 2} which minimizes (147)
and satisfies

[ pai ) = pp 14|+, (148)
le(x; 3)2/3 = ¢’A(x; z), (149)
$alx ) = V(e 3) — [ pal33 ) |z — 3 dy, (150)

If AD A and 5 2= 2’ then p{x; 2) = py(x; 2°), (i51)
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with strict imequality if N4 £ @ or 2 > 2. Equation (151) 1s Teller’s lemma
suitably modified for the case of a smeared out background. We use the special
notation pa(x), V 4(x), and ¢ 4(¥)} to denote these quantitics when z =

We shall adopt an extremely weak notion of /4 — oo and it is remarkable
that the theory goes through for such a sequence. One reason for this is that we
are not interested in evaluating the total energy.

DrrinitioNn VIL1. A sequence {/,});; of bounded measurable domains in
[R3 is said to tend to infinity {symbolically A --» o) if every bounded subset of R*
is eventually contained in /1.

We first study the 2 = 0 case.

TuaroreM VIL2. Let A— oo and 2 - 0. Then

lim (%) == p® (152)
and the limit is uniform on compact subsets of B>,

Proof. By monotonicity and the remark after Theorem VI.2, lim 4, ¢,(x) —
Sup ., é4(x) == ¢(x) exists. As in the proof of Theorem VI.2 we see that ¢{x) is
periodic for every period; hence ¢(x) is a constant, . Let I'; be a cube of side one,
centered at 0, as in Section VI, and let ¢! be the TF potential when /1 = TI,.
The estimate (106) holds if ¢ is replaced by ¢7, and &7(x) <o x| ? by
Theorems IV.7, IV.8, IV.9. Thus, as in the proof of Theorem V1.2, ¢ < oo and
the limit is uniform on compacta. Taking the limit 4 — oc in the equation
— 44,,(x) == drpy — p.(x)), one has that 0 — —A¢ — dr(py — 7). |

Remark. When 2 = 0, if (147) is minimized subject to supp p C /, then
it is easy to show that the minimum occurs for p4(x) == pg, all x € /1, and all A,
and ¢ ,(x) = 0. Therefore the boundary effect is precisely to lower the potential
by p¥*. Compare the remarks in Section VI.3B.

We next turn to the 2 > 0 case. We want to show that

lim ¢ (% 2) — p5” =~ f(x3 2),

Hm p(x; 3) — pp = g(v; 2) (153)
exist and that they satisfy the obvious TT equation:
[ sy =z xl i [ 1y —y [ g2 dy, (154)
(037 + FF — o = g, (155)
[ ey dv = s, (156)

Of course, the existence of f implies that of g and also (155).

6ayf23/1-8
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Turorem VIL3. Let A— oo and 5 > 0. Then f exists and (154){156) hold.
Moreover

(1) 0 < flw; 2) << f%(x; 2).

(ii) The Emits in (153) are uniform on compact subsets of R¥{0}.

(i) gelln LA

(iv) fand g are strictly positive and real analytic on R¥{0}.

(V) Ifx = 2 then f{x; 2) == f{x; &), all 5.

(vi) Assuming only that g € L' N I8 and that f(x) = —pk®, there is only
one solution to (154) and (155) (without assuming (156)).

Progf.  Let £4(x;2) (resp. ga(v; 2)) = $a(x: 8) — o3 (resp. pal; %) — pu)-
By monotonicity, f, converges to some f, and by Theorem V.12,

Bal®) << Fuls ) + 0 < bal®) + (s 2).

This, together with Theorem VIL2 proves (i). By mimicking the proof of
Theorem V1.2, (ii) is also proved.

Tao prove (iii), apply the inequality (x + B)°*/2 — o/ <Z () Bx + B)'/* with
w = pi® B = falx; 2) < $o4(x; 2). Thus

galw; 2) < (3]2) (; 2) [$(x; ) + p5°1",

and g, is dominated by an L N L5/3 function. The dominated convergence
theorem implies (iii). It also implies (156) since [ g(x; 2) dx = # by neutrality.

Equation (154} follows from the fact that since g,— g in L1 N L33 we can
take the limit 4 — oo in the distributional equation

—Af 4(%; 2) == dnad(x) — g4(x; 2)].

Then f is given by the right side of (154) plus a harmonic function, /. Since
f—0as |x]|— o0 by (i), £ =0 Condition (iv} follows by the methods of
Theorems 1V.3, IV.5, and IV.6. Condition (v) follows from the monotonicity
property (151).

To prove (vi), suppose that (f7, ¢') is another solution to (154), (155). By the
now familiar subharmonicity argument, B = {& | f'{x; 2) > f(x; 2)} is empty
because x € B implies that g'(x; 2) > g(»; 2) which implies that f* — f is sub-
harmonic on B. But both /" and f — 0 as | x | — o0 by Lemma II.25 and the fact
that g and g" =11 M L5/, Likewise, {x | f'(x; 2) < f(x; 2)} is also empty. ||

Remark. By the uniqueness of the solution to (154)—(156), both f and g are

spherically symmetric functions of x, Le., f(x; 2) == f(y: 2) when x| =]»|.
There is a scaling relation for this problem. If we write
flx; ) = p&°Flpy*x; p5'"*2), (157)

1/

#lx; ©) = paG(pl; pz"%), (158)
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then (154) and (155) become
P ) =z|x[ 7= [l =y P Giday, (19
(I +Fyr—1 =G, (160)
while (156) becomes
| Gt 2 dx = 5. (161)

Henceforth we shall deal only with the scaled quantities F and G. It is con-
venient to define # € R and Y: R* — R by

f = (6a/* ~ 4.342 (162)
Y() = | % et (163)

whence
— () P AV () = 8(x) — (3/2) ¥ (x). {164)

It is sometimes said [42] that f(x; 2) ~ 2¥ (%) as | & | -» co. While the factor
Y is correct, the factor z is definitely too large as we shall now show. Physically,
one may say that the effect of the nonlinearity of ‘UF theory is to over sereen the
unpurity.

Tueorem VIL4.  The real analytic function q: (0, o) < (0, w0) — (0, )
defined by
F(x; 5} = q(] x3; 2) ¥Y{x} (165)
satisfies
{1y  g(r; 2) is monotone decreasing in r and monotone increasing in 2.
(1) ¢{0; 2) =~ lim,.o g{r; 2) = 2.
(iil) Ofz) = lim,.,, g(r; %) exists and 0 < O(z) < &.
(iv) O(z) is monotone increasing in = and lim sup, ., O()(02)2 < 1, with
b=

24[a)it (5 + 5112)/32 ~ 1.039.

Lemma VILS. Let T:R— R be spherically symmetric (le., |x|-=]|y]|
implies T(x) — T(v)) and satisfy T(x} x 12l e LYR®), Let I ~ Y = 7. Then
1 is spherically symmetric and

I(x) == Li{x} — Ly(x),
Iy(x) = 40 | x|yt e01ei [ s T(s) sinh(0s) d,

T(x) = 4=(f | 2 ) J.‘: s T(s) sinh[8(s — | x |)] ds.
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Proof. Use bipolar coordinates, i.c.,

70— petyndy =2l [Tassfe [ egtan

[a|—sl

withf=T,g=Y7. |
Proof of Theorem VIL4, We can rewrite (159) as

—(4m) L AF + (3{2) F = 28(x) —
where g (166)
T(x; 3) = G(x; 2} — (3/2) F(x; 2).
AsO (1 a2 —1—(32)a=Ca**whena > 0,0 T < F32 Thus

F=zY—-YxT (167)
and hence
Flx; 2) < 2Y(x), (168)
By (168) 2/ satisfies the hypotheses of Lemma VIIL.5 and hence

(¥ = THx; z) = A(z) Y(x) — H(x; 2),
where (169)
A() = (4rf6) [ 5 T(s; 2) sinh(bs) ds

and where T(s; z) = T(x; ) for | x| =s. H is given by I, in Lemma VILS,
Since 0 < T ={ F3* < 22RY32, 2 simple estimate [, yields 0 < H Y™
with B8 << co.

Define O(2) == 2 — A(=) and ¢(r; 2) by {165). Then we have that

4(r; z) — Q) +L(7; 2)

with (170)
L{r; ) = (2m/6) f s T(s; 2) {ef — eR0T-09) 45,

As T:>0, L is monotone decreasing in r. As L = H/Y < V12
n, . L(r 2) == 0. This, together with Theorem VIL3(v) proves (i} And the
existence of the limit in (iii) with O(z) == 5 — A(z). To prove (ii) it is sufficient
to note that by Lemma I1.25, ¥ # T, which appears in (167), is continuous and
hence finite at x = 0.
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1fO(z) = =z, then A(z) =0and0 = T - G — (3/2) F,a.e. ThenF = G =0,
and (161) would not hold. Now suppose that Q(z) =0. Then F — If —= YL,
whence T <] F3/2 = V32L3/2 Then from (170) and the monotonicity of L,

Lir; 2) < (2n/0) j TRL(5; ) e RSRghs — (OT-9)

< (2mj6) | " 18 L sy B2 ds

< (mff) Lirs 22 [ sz v ds

r

Since F = YL, (168) implies that I, < z, and since the last integral goes to zero
as r— o0, we conclude that there exists an ry such that L{r; 2) = 0 when
r > r, . This contradicts Theorem VIL3(iv) and hence (iii) is proved.

The monotonicity of ((z) is implied by (i). To obtain the bound, we note
that x— (1 + x)*2 — 1 — 3x/2 is monotone increasing for x = 0. Thus,
since F2ORY, T2 +0=YP?—1-30=Y2=T. If OF) i
bounded there is nothmg to prove. Otherwise, insert 7" into (169) and, by
dominated convergence,

lim inf A(z) Q(2)2 3> (4x/0) f " §112g-90%12 sinh(6s) ds == 1.

Since A(2) = 2 — Ofz), (iv} is proved. ||

We are grateful to Dr. J. F. Barnes for providing us with the accompanying
two figures. The first is a plot of O(2) (labeled O and Z, respectively). The second
figure is a plot of the function g¢{r; 2} (labeled ue®) for 2 — 53.6988. The
corresponding Q(=) = 8.0.
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Notes Added in Proof.

1. A simplified account of the analytic methods of this paper was given in [98] and a
summary of the results, together with some applications, was given in [99].

2. It has been shown [52] that the right side of (6), with a smaller (c), is 2 lower bound
on the left hand side of (6).

3. The reader may consult [68, 100] for further discussion of Dirichlet-Newmann
bracketing.

4. In [21, 24, 36], Theorem I11.22 is generalized to the molecular case: 2K{p) =
Alp) — R(p) + U, U = internuclear repulsion, provided the total energy eTT(}) =
ETE()) + [J is stationary with respect to variations of the R;. We do not give this result
here, because, as shown in Section V, ¢T¥(}) has no absolute, and probably no local
minimum as a function of the R; .
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