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of existence and uniqueness of solutions of the nonlinear Thomas-Fermi 

equations as well as the fact that these solutions minimize the Thomas-Fermi 

energy functional, (2) a proof that in a suitable large nuclear charge limit, the 
quantum mechanical energy is asymptotic to the Thomas-Fermi energy, and 

(3) control of the thermodynamic limit of the Thomas-Fermi theory on a 
lattice. 

contents 

I. Intro&.&ion. 1.1. The TF equation and the TF energy functional. 1.2. Scaling and 

the quantum mechanical limit theorem. I.3. Summary of the main results: open problems. 

II. The TF Energy Funrtional. 11.1. Basic properties, 11.2. Strict convexity. 11.3. 
Connection with the TF equation. II.4. Minimization with sp < h. II.5 Minimization 

with s p = h. 11.6. Components of the energy. II.7. Min-max and max-min principles 
for the chemical potential. 11.8. Properties of the chemical potential. 

III. Quantum Mechanical Limit Theorems. 111.1. Basic theorems and reduction to the 

energy theorem. III.2. Insertion of boxes. III.3. Estimates for boxes. III.4. Pulling the 

Coulomb tooth. 111.5. Putting it all together. 

IV. Properties of TF Densities. IV.]. Regularity. IV.2. Asymptotics at infinity. 
IV.3. “Ionization” energies in TF theory. IV.4. A picture of heavy atoms, 

V. The TF Theory of Molecules. V.l. Teller’s lemma: neutral case, V.2. No binding: 
neutral case. V-3. Teller’s lemma and no binding: positive ionic case. 

VI. The TF Theory of Solids. VI.1. Existence of the thermodynamic limit. VI.2. The 

periodic TF equation. VI.3. General remarks. 

VII. The TF Theory of Screening. 

References. 

* Work partially supported by National Science Foundation grant MPS 71-03375 A03. 
t A. Sloan Foundation Fellow; research partially supported by the U.S. NSF. under 

grant MPS-75-11864. 

22 
Copyright 0 1977 by Academic Press. Inc. 
All rights of reproduction in any form resewed. ISSN 000-8708 



THOMAS-FERMI THEORY 23 

I, INTRODUCTION 

From the earliest days of quantum mechanics, it has been clear that one could 

not hope to solve exactly most of the physically interesting systems, especially 
those with three or more particles. Thus, by 1930 (only 5 years after the advent 
of the “new” quantum theory), a large variety of approximate methods had been 
developed such as the time-independent perturbation theory contained in some 
of Schrodinger’s original series of papers [76], the time-dependent perturbation 
theory developed especially by Dirac [14], the high-accuracy variational methods 
by Hylleraas [34], the Hartree approximation [28] and its improvement by 
Fock [19] and Slater [84], the Thomas-Fermi (henceforth TF) approximation 

[17, 901 and the WKB method [35, 94, 8, 441. 
There has been a great deal of work on rigorous mathematical problems in 

quantum theory, most of it on the fundamentals (beginning with von Neumann’s 
great treatise [62]) and on the relevant operator theory (see 1411 for a review up 
to 1966). Until recently, the only approximation methods treated in the mathe- 
matics literature were the variational methods (for which much of the mathe- 
matical theory predates quantum mechanics; see the treatise of Stenger and 
Weinstein [X6] for recent developments) and perturbation theory starting from 

the pioneering work of Rellich [70] on time-independent perturbation theory. 

(See also [37, 40; 811 for a discussion of time-dependent perturbation theory.) It 
is not surprising that the other approximation methods have not been so exten- 
sively discussed. Perturbation theory is “linear” and variational methods are 
“basically linear” and the past 40 years have been the age of linear functional 
analysis. ‘l’he other techniques are basically nonlinear. They are, in fact, a 

particularly fascinating class of nonlinear problems. It is not uncommon for one 
to approximate basic nonlinear equations arising in a physical context by linear 
ones; in contradistinction the TF and Hartree-Fock methods involve approxi- 

mating a linear system in a large number of variables by a nonlinear system in a 
few variables! 

Recently, with the popularity of nonlinear functional analpsis has come some 
work on the nonlinear methods. Maslov [57] has studied WKB methods in 
detail. (See [9, 56, 58, 88, 911 for other WKB results.) The results obtained thus 
far for the Hartree, Hartree-Fock, and TF methods are of a more meager sort. 
These methods lead to nonlinear differential and/or integral equations and it is 
not obvious thit these equations even have solutions. For the Hartrce equation, 
this was established for helium by Reeken [69] using a bifurcation analysis. 
(See [75, 871 for related results.) For general atoms, Wnlkowsky [95], using the 
Schauder fixed point theorem, proved the existcncc of solutions to the Hartree 
equation in the spherical approximation. Solutions of the Hartree-Fock cqua- 

tions for a class of potentials excluding the Coulomb potentials has been estab- 
lished hy Fonto, K’Iignani, and Schiffrer [23]. Solutions of the time-dependent 
Hartree-Fock equations have been studied rccentty by Rove, DaPrato and Fano 
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[7] and Chadam and Glassey [lo]. Using in part methods of the present paper, 
we have established the existence of solutions of the Hartree and Hartree-Fock 
equations with Coulomb forces. These results, announced in [50], will appear 

elsewhere [51]. 
The TF theory, which is the topic of this paper, has an enormous physics 

Iiterature (see, e.g., [6, 24, 551) and few rigorous results. Existence of solutions 
of the nonlinear or&ary differential equation associated with the TF atorn was 
shown by Hille [32, 331 ( see also Rijnierse [71]) who also established Sommer- 

feld’s asymptotic formula [X5] for sph erically symmetric solutions (see Sect. IV. 

2 below). At least three important questions were left open: (i) the existence of 
solutions of the nonlinear pa&d differential equation that arises in the TF 
theory of molecules when rotational symmetry is lacking; (ii) the much more 
important question of the connection of the TF theory with the original quantum 
system it was meant to be approximating; (iii) the rigorous connection between 
the TF equation and the TF energy functional of Lenz [46]. It is these questions, 
among others, that we wish to answer in this paper. We consider questions 
(i) and (iii) in Section II and question (ii) in Section III. In Sections IV-VII, 

we discuss further elements of the theory. Among our most significant additional 
results are: (iv) extension of Sommerfeld’s formula to the molecular case; (v) 
a rigorous transcription of Teller’s result [89] that molecules do not bind in the 
TF theory; (vi) a proof that the TF theory of a large system with charges at points 
in a lattice is well approximated by a TF theory in a box with periodic boundary 
conditions; (vii) a proof of concavity of the chemical potential in TF theory 

as a function of electron charge. 
In the remainder of this introduction, we shall describe the TF approximation, 

establish some of its formal properties that we need later and summarize our 
results. Some of our results were announced in [49, 98, 991. See Note 1. 

We would like to thank J. F. Barnes for stimulating our interest in the problem, 
W. Thirring for valuable discussions, and N. Kuiper for the hospitality of the 
I.H.E.S. where this work was begun. We would also like to thank Dr. Barnes for 
providing two graphs relating to the TF theory of screening (Section VII). 

We begin by describing the quantum mechanical problem that will concern us. 
We consider a system of iV “electrons” of mass na and charge -e < 0 moving 
about $xed positiw charges of magnitude aie,..., z,e at positions R, ,..., R, E W. 
Then the classical Hamiltonian (energy function) is given by 

IT& ,...) p, ; Y1 ,..I) Yh;) = (2m)-1 ;: ,$ Pi3 +%$ v, - Yl> ~ : VA (1) 
is1 

where 

(li1) 
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and 
W(r) = 522 1 T f-1. 

The corresponding quantum mechanical operator acting on L”(W”‘), with h 
being Planck’s constant, is given by 

The Pauli principle for electrons will play a major role in our considerations 
so we note its form when electron spin is taken into account. The relevant 
Hilhert space is enlarged fromL2(WN) to X = L”(Iw”“; C”“) : 6&L2([w3; CT), 
where L”(W’; C”) is the set of square integrable functions on Iw”” with values in 
Q, i.e., “functions of space and spin.” The operator (2) acts on X’ and com- 
mutes with the natural action of the permutation group ZY on S’. We are 
interested in the operator H, restricted to XpnYs , the subspace of S on which 

each x E YN acts as multiplication by E, , the signature of r. In other words, 

JGTlYS 1. ‘5 the N-fold antisymmctric tensor product of Le(R3; C). We continue 
to denote Ho” ? &‘&vs by F1,” or, when necessary, by 11o”(.s, ,..., z,~; R, ,..,, I&). 
Wc shall let E.,*o, the “ground state energy,” denote the infinum of the spectrum 

of Ho”. I f  N -- 1 < -&, Zj ) this infinum is known to he an eigenvalue of 
Ho,” 179, 971. The eigenvcctor is then called the ground state function. One of 

the unsolved problems in atomic physics is how large N can he before the 
infinum stops being an eigenvaluc but this question will not concern us here. 
Among our results (Sect. III) will be limit theorems on the behavior of EJvQ as 
N+ CC with ZJI$ constant and Ki depending suitably on N; i.e., varying as 
N-l/“. Occasionally, it will be useful to add the constant “internuclear potential 
energy” xiij xisj e”/lRi ~ Rj 1 to fIC and Ho”. 

We shall introduce the TF equation hy describing two “derivations” of it 
common in the physics literature. The reader may wish to omit these heuristic 

considerations and merely take Eq. (3) and (7) as the definition of TF theory. 
‘I’he derivations are essentially the original one of Thomas 1901 and Fermi 1171 

and a slightly later one of Lenz [46]. Both are based on minimization of energy 

and essentially the same approximate expression for the energy is involved. They 
differ in their m-ay of deriving the energy formula: One depends on the semi- 
classical ansatz for counting states while the other depends on a simple approsi- 
mation in the Rayleigh-Ritz formula for the ground state energy. They also 
differ in the methods of obtaining the minimizing solution once the energy is 
given: The second method minimizes by appealing to an E&-Lagrange 
equation s:ith subsidiary conditions handled by Lagrange multipliers; the first 
is a more intuitive Fermi surface argument. 

Quantum mechanics cntcrs the first derivation through the mystical postulate 
that each particle fills up a volume ha in the x ~ p phase space. Allowing for the 
fact that there arc two kinds of electrons (“spin up” and “spin down”), a volume 
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he in x - p phase space can accommodate two electrons, The TF model views 
the quantum system as a classical gas fiIling phase space, and which interacts 
with itself (via the Coulomb repulsion IV) and with the attractive potential I/. 
We suppose that the gas fills a volume of total size (4) NP in such a way that 
the total energy is minimized. This total energy has three pieces if we include the 
kinetic energy, Thus, if S is a tria1 volume in phase space, we want to minimizer 

(2V j 9’ do + js js (k)e’ I x - y  1-l d7,dT, - js V(x) dam 
s 

subject to ss dr = N, where dr = (2hp3) dxdp. Since the last two terms are only 
dependent on the volume of the x-dependent slice, S, = {p 1(x, p) E S}, and the 
first term is clearly minimized by taking the shce to be a ball, the set S, is clearly 

IP I i P I G P&41. Define 

p(x) = Zh-3(47T/3) PF(X)? 

Then p(x) is the density of electrons at x and we must have 

s Iws 
,CJ(X) dx = N. 

If we remove a smaI1 amount of gas from the surface of the Fermi sphere, S, , 
at point x, the change in energy per unit of gas so moved will be 

where 

(2WPF(@ - $44 = -SW, 

d(x) = w - j P(Y) wx -Y) 4Y. 

I f  #(x) were not a constant at all points with pp(x) > 0, we could lower the 
energy of the gas by moving gas from a region of smaI1 #(x) to a region of larger 
$(x). Thus $(x) must be a constant +0, at least at points with pF(x) # 0. If 
pF(x) = 0, we can demand -$(x) > +,, , f or otherwise we could lower the 
energy by moving some gas to x. Thus: 

where 

c = hy2m)-l3v(844i*. (34 

The integral equations (3b-3d) with & adjusted so that (3a) holds are the TF 
egzurtioons. Henceforth, we choose units so that e = 1 and so that c, given by (3e), 
is 1, At times we shall introduce Ed = -&,, the TF chemical potential or Fermi 

energy. 
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We note that the nonlinear TF integral equation clearly implies the nonlinear 
partial differential equation 

and in particular on any open set 52 disjoint from (R, ,..., R,} and on which 

+ >&I: 
flfjb = 4P(c$ - +“)w. c%) 

The second derivation of the TF equations is based on a crude variational 
approximation to EN*. If  we insert any antisymmetric variational wave function 

Pk 1 ,..., TdV ; q ,a-., qV) into the reIation ENQ < <vi HoN #> for any II 4 II - 1, 
then only three “partial traces” of t,!~ enter: the one-body densit! 

which enters in the attractive potential energy, the two-body density 

p;)(x, y) = N(N ~.- 1) c 
0,=+1 

j I t/(x, Y, x3 ,..., xN ; u)l’ dx, .n+ dxxN 

which enters in the interelectron repulsion, and the “off-diagonal one-body 
distribution”: 

&.&, y) L= A’ 1 
oi=+l 

j 4*(x, x2 ,...I xN ; u) I&J, x2 ,..., ; 0) dx, .‘a dx, 

which enters in the kinetic energy term. Thus 

+ ; j #(xv Y) w(x - Y) dx dr. 

The TF approximation then rests on the ansatz that for I,!I that minimizes 
(#, HoN#) (or nearly minimizes it when E,Q is not an eigenvalue but only the 

bottom of the continuous spectrum) 

$0$)(x Y) gg p(‘)(x) p(l’( y) ,d N N (5) 
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where c is the constant (3e). 
The ansatz (5) for p$) clearly has no hope of being valid except in a large 

N limit since s&t(x) dx = N while s&)(x, .y) dx dy = N2 - N, but in the 
large N limit the idea that p 12J has no correlations is quite natural, and so the 

first half of the ansatz is most reasonabIe. The assumption (6) is obviously more 
subtle. It is based on the fact that for a cube of length L, if we take the p associated 
to the ground state of -d (with either Dirichlet, Neumann or a variety of other 
boundary conditions) then, as N-t co, the Ieft side of (6) is asymptotic to 

We prove this basic result (III.3) wh ere we need it in our proof of the quantum 
mechanical limit theorem. We will also prove that as N+ 00, the p$’ associated 

with the box ground state approaches the constant p0 = N/Ls. Thus (6) holds as 
N-+ co when $ is the ground state for -d in a box. The ansatz (6) is not 
unreasonabIe if V is “slowIy varying” so that we can think of p as a “locally 
constant” density. Of course P is not slowIy varying near Ri , and this wilI 
present a problem which requires a separate argument (Sect. III. 4). See Note 2. 

With the above ansatz and our choice of units so that c = 1, the energy is a 
functional only of p of the following form: 

b(p; V) = $ j P(x)~/~ dx - 1 V(x) p(x) + 9 /l~$~~~ dx dy. (7a) 

One recognizes the TF equation (3) as the Euler-Lagrange equations for 
minimizing (7a) with the subsidiary conditions 

I 
&) dx = N, F’b) 

p > 0. (74 

We shaI1 refer to &(p; V) as the TF functioraal. Notice that in minimizing & 
subject to (7b, 7c), & enters as a Lagrange multiplier for the equality (7b); where 
p(x) > 0, (7~) is not restricted so the variational derivative S&/&(X) must be 
zero, giving (3d) but when p = 0, we only have 68&1(x) > 0 giving (3~). 

This variational formulation of the TF equations due to Lenz [46] has several 
advantages: 

(1) It reduces existence questions to establishing that 8( .; V) takes its 
minimum value subject to (7b, 7~). Alternatively, if we are given p0 and define 
4 by (3b) and then pi by (3c, d), and thus view the TF equations as a fixed point 
problem, we have just learned that the map so defined is a gradient map and 
such maps are known to have special properties. 
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(2) It links up with the Rayleigh-Ritz principle for the ground state 

energy, BNo, of the quantum theory thereby providing the basis for the connec- 

tion with quantum mechanics which we will prove in Section III. 

(3) It provides a starting point for a variety of further corrections to the 
TF theory [55]. 

1.2. Scaling and the Quantum Meckanicab Limit Theorem 

We define the Thomas-Fermi energy by 

(We shall be more explicit about restrictions on test functions, p, in II.1. where 
we shall prove that ETF is finite.) As in the quantum case, we shall occasionally 
write ETF(h; z1 ,..., zic ; R, ,,.., R,) if we wish to indicate explicitly that V(X) = 

CF=, zj ] x - Rj 1 -l. We shall refer to the p that minimizes (8), if it exists, as 
the TF density, &x)- 

On the basis of the Lenz derivation of the TF theory, one might expect that 
as N + 00, ENQ/ETF + 1, at least if the zj and Hj are made suitably N dependent. 
The choice of “suitable” N-dependence is based on: 

r 
pZ(x) dx :~ Z p(x) dx (9b) - 

Remarks. (1) Vz is so defined that when Y(r) = xi”=, xi 1 x - R,. i-l, 
then L’,(x) : xr-, .ziZ 1 x - Z-lPRIC I- l. Thus all charges, both nuclear (the 
zi’s) and electron (spz), are scaled up b\: Z, and distances scaled down by a 
factor of E-l13, 

(2) This scaling law is certainly not new (see, c.g., [55]). I f  one did not 

know about it, it could be discovered quite naturally in the case V(X) = / x I-* by 
trying a transformation p -+ Z*p(Zex); 1 x 1 1 - Z ) 3: l-1. Demanding that each 
term in (7a) be scaled by the same factor Zr, one arrives easily at (Y = 2, @ --~. l/3, 
y  -- 713. 

(3) This theorem clearly implies that 

(9c) 
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and that 
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pTF(x; z,Z ,I.., zkZ; .FJ3RI ,..., Z-l13R, ; ZN) 

z Z2pTF(Z1/3x; z1 ,.,a, zk ; R, ,..., R, ; IV). (94 

Proof. A direct change of integration variable in each term of (7a). 1 

Equation (SC) suggests what the variation of the R, should be in the quantum 

mechanica limit theorem; the main result of Section III will be that 
E&(zI*‘N,..., $‘N. R;O)N-1/3 

FF(A; q,..., zp; kp ,... , I*.- 

, Rf$JW3)jN7/3 approaches the TF energy 
RL’)). Similarly, the appropriately scaIed quantum 

density Np2p*(N-lj3r) will approach the fixed TF density corresponding to 
,$“’ and Rio’. Moreover, in line with the ansatz of the Lenz derivation, we will 
prove that the m point quantum density, suitably scaled, approaches a product 
p(xl) .e* p(x,,J of TF densities. 

In the above, if one scales only the zd’s and N but holds the Ri’s fixed, then, 
as will become clear, something trivial happens in the N-+ co limit. Namely, 
both the quantum and the TF systems approach that of isolated atoms, at Ieast 

on the level of to&l energy and density. In other words, in this large N limit, 
both plvo and pTF become concentrated within a distance mN-lj3 of the various 
nuclei. 

1.3. Summary of the Main Results: Open Problem 

Let us conclude this introduction by summarizing the content of the remainder 
of the paper, and by discussing what we regard as some of the more significant 
open questions in TF theory and allied subjects, given our work here. 

The basic existence and uniqueness theory for the TF equations appears in 
Section II. The most important result is that when V has the form (la), then the 
TF equations have a unique solution when N < Z = & By and no solution 
when N > Z. We prove this by discussing minima and extrema for the TF 
functional b(p; V) given by (7). After establishing various properties of d 
(Sects. III-II.3), we prove in Section II.4 that there is a minimizing p for B with 

the subsidiary condition sp = N replaced by f~ < N. The ideas here are 
simiIar to methods used by Auchmuty and Beals [l] in their study of equations 
similar to the TF equations. In Section II.5, we prove that this minimizing p has 
sp = N (resp. jp < N) if N < Z (resp. N > Z). The difficulty we overcome 
in Section II.5 is associated with the infinite volume allowed for the interaction; 
there is no analog of this problem in the Auchmuty and Beals work where their 
equation is effectively on a compact set, or in the work of Hertl, et aZ. [30, 311 
{discussed below) where their interaction region is explicitly finite. The re- 
mainder of Section II concerns itself with various additional techniques of use 
in studying the TF energy and the chemical potential, Ed = -$,, , as a function 
of N = sp dx. In particular, we prove that it is monotone, strictly increasing 
and concave as a function of N. 
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The basic result of Section III is the quantum mechanical limit theorem 
which we indicated in Section I.2 above.Precise statements appear in Section III.1 

where we also show that the convergence theorem for the energy proved for 
v’s more general than (la) implies a convergence theorem for the densities, 
essentially because EL!?/sI~(x) = p(x). Of course, pointwise convergence of B 

does not imply convergence of the derivative without some additional argument, 
but a rather simple convexity argument turns out to suffice. The proof of the 
limit theorem for the energies is found in Section III.5 putting together ideas 
from Sections III.2-III.4. 

The key element in the proof of the quantum mechanical limit theorem is the 
technique of Dirichlct-Neumann bracketing (III.3). This technique is based on 
two facts: First, in a quantum mechanical prohIem, adding a Dirichlet (resp. 
Neumann) boundary condition on some surface raises (resp. lowers) ground 
state energies. Second, either type of boundary condition decouples in the sense 
that if C is a surface in [w” which divides Iw” into two components, Q1 and Sz, , 

then --L3 with Dirichlet (or Neumann) boundary conditions is a direct sum of 
operators on L3(Q1) and L2(LQ. This method of Dirichiet-Neumann bracketing 
is the basis for a proof of Wcyl ‘s theorem on the asymptotic distribution of 
eigenvalues by Courant and Hilhert [ 131 and for a variety of other problems: 
See Lieh [47], Martin [56], Robinson [72], Guerra, Rosen, Simon [26], or Hertl, 
Narnhofer, and Thirring [30] who have used this technique to prove a quantum 
limit theorem for the thermodynamics of a large numher of particles with 
gravitational and electrostatic interactions (TF model of White Dwarf stars). Our 

arguments in Section III are patterned in part on this earlier work. See Note 3. 
Dirichlet-Neumann bracketing allows one to reduce the quantum mechanical 

problem to a prohlcm involving particles in hoses. In all boxes except k, the 
potentials are approximately constant and can hc controlled easily (Sect. 111.2). 
But in the K boxes including some Rj , there is a strong attractive Coulomb 
singularity. We need a separate argument to show that the system does not 
collapse into these “central boxes” and this argument appears in Section III.4. 
We remark that Herr1 et al. [30, 311 also have a Coulomb singularity to worry 
about. At first sight, their singularity which is produced hy a large number of 
particles with resulting large gravitational attraction seems less severe than our 

singularity which is produced by a fixed number, K, of electrostatic attractors 
which are made large, hut their method of controlling the singularity also works 
in our case. We give a slightIS different argument which we feel exhibits the 
mechanism behind control of the singularity more explicitly, namely, an “angular 
momentum barrier.” 

In Section IV we discuss properties of the TF density p, In the purely Coulomb 
case (I/ given by (la)) with N 2 Z we prove that p is real analytic away from 
the Ri and that P(X) - (zzi ! IZ’ - Ri j-1)3/2 is continuous at x =: Ri We also 
prove that ] x j6 p(x) + 271~” as 1 x 1 + co. 

In Section V, we give a proof of the theorem of Teller [89] that the sum of 

607/23 II-3 
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the TF energy of a neutral system plus the internuclear potential, which we 
denote by eTp is always lowered by taking any subset of nuclei infinitely far from 
the others. Our proof is essentially a careful transcription of TeIler’s with one 
important difference; since we have been careful in Section II to use methods 
which allow I/ to have Coulomb singularities, we do not need to cut off the 
Coulomb singuIarities as Teller does. This allows us to avoid criticisms of 

Teller’s proof (mentioned in [3]). We also extend Teller’s theorem to the non- 
neutral case. 

In Section VI we consider the following problem. Let A be a finite subset of 
P C R3. Place a unit positive charge at each point in A. Let pA be the TF density 
for the neutral system and eA the corresponding TF energy. One is interested 
in letting A increase to all of J? and proving that pA and e$ A ] have limits. We 
do this and prove that the limits are associated with a “periodic boundary 
condition” TF theory in a unit cube. Our results hold when .J? is replaced by 
any Iattice in Rs and when the unit charge at the lattice sites is replaced by any 

fixed configuration of charges in each occupied cell. In addition to answering 
a natural question, our work in Section VI provides some justification for an 
approximation used in applying TF theory to solids under high pressure. 
However, the problem of solids at high pressure is not the same as solids with 
infinitely large nuclear charges. There is some question about the validity of TF 
theory in the former case. We aIso point out that our results in this case are only 
in the TF theory itself, i.e., we first take Z+ co and then A --f co rather than 

the other way around. In Section VII, we discuss another problem in solid 
state physics: the screening of an impurity by electrons. 

Let us summarize some of the open problems which are raised by our develop- 
ments in this paper: 

PROBLEM 1. Establish an asymptotic expansion of ENQ in the atomic case 
with Z -= N, to order Z513. We conjecture that the formalism discussed in [55] 
is correct in that 

E,” - aZ’i3 + bZBi3 + cZ513, (10) 

where a is given by TF theory (as we prove), 6 is an inner shell correction (which 
we discuss shortly) and c is related to exchange and other possible corrections. 
The reader can consult [55, Table l] to see rather impressive agreement between 
(10) with theoretically computed constants and experimental total binding 
energies of atoms, even with rather small values of 2. This is much better than 
the purely Z7j3 term which is off by more than 7 y0 even for 2 = SO [29]. 

The exchange term, cZ5i3, has been considered in the physics literature from 
the very earliest refinements of TF theory (see [ 151). The b.?? term is more subtle 
and was first noticed by Scott [77]. The innermost electrons in a large 2 atom 
each makes a contribution of order ,Y and there is no reason to expect TF 
theory to get the energy of these inner electrons correctly. In fact, one can 
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explicitly solve the quantum mechanical model in which W is made zero, i.e., 
cIectron repulsion is ignored, and find an explicit 6,Z2 correction to the TF 
model with W = 0. We conjecture with Scott that b = b, , for if the O(.??) 

corrections are, in fact, due to the innermost electrons, these electrons should 
not be affected by the repulsion of the outer electrons. 

We regard Problem I as an outstanding problem in the mathematical theory 
of large Z atoms. We note that since our relative errors in Section III can be 

seen to be of order ZmE for some positive C, we have more information than 
#pjpl~ 4 a. However, since adding Dirichlct or Neumann boundary con- 
ditions automatically introduces 0(2-i/s) errors, we cannot hope to see the next 
term in (10) with our methods, even should we improve control of some of the 
other errors we make. 

Directly related to Problem 1 is: 

PROBLEM 2. Prove that the Hartree-Fock total binding energy is correct up 
to order Z5/3 in the large Z limit for E 0. EssentiaIly by our construction in 
Section III, we know 151) that the Hartree-Fock energy is correct to leading Z7j3 
order. Since the Hartree-Fock energy seems to have both exchange and correct 
inner shells built into it, we expect it to be correct to order Z5j3. 

PROBLEM 3. Does Hartree-Fock give ionization energies and/or molecular 
binding energies asymptotically correctly in the Z+ co limit? The TF theory 
dots ntrt describe the outer shell correctly so we would not expect it to give 
ionization or binding cncrgies correctly (see Sect. IV.3). This is seen most 

dramatically by TelIer’s theorem (Sect. V.2) that molecules do not bind in the 
TF model. 

PROBLEM 4. In Section 11.7, we prove that the TF density maximizes a 
certain variational problem. Prove that it is the unique maximizing solution. 

PROBLEM 5. Prove that the Fermi energy of an ion, Ed, has the property 
that lim cJA)/(Z - h)4/3 exists as h t 2 (see IV.3). 

PROBLEM 6. Prove superadditivity of the TF kinetic cncrgy % sps:3 when 

I/ : VI + ST, ) each Yi being the attractive potential of a set of nuclei. An 
affirmative soiution of Problem 6 would solve Problems 7 and 8; set Section V.2 

for details. 

PROBLEM 7. Extend Teller’s theorem in the sense that eTp(z, ,..., zlc ; 
R r ,.,,, Rk) decreases under d&nation, Ri -+ IR, (1 > 1). This was shown to be 
true by Balazs [3] when K = 2 and zi = z2. 

PROBLEM 8. Show that the pressure and the compressibility are positive 
for the TF solid. 
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We wish to note here that TF theory can be extended by using our methods 
to two additional cases of physical interest. We shall content ourselves with 
merely pointing out these possibilities here, and will not expand on them further. 

The first extension replaces the single TF density p(x) by JZ densities 
p,(x),..., pk(x). The electrostatic interactions are given as in the usual TF energy 
with p = p1 + .._ + pr . The kinetic energy % Jp5is dx is replaced by 

The physically interesting case is k = 2, where p1 and pa can be interpreted as 
“spin up” and “spin down” electrons. One easily sees by convexity that the 
minimum of this modified energy occurs with p1 = pZ = ... = pk = p/R. This 
observation expresses the fact that there is tie ferromagnetisnz in TF theory. 

The second extension allows some of the “nuclear” charges zj in (la) to be 
negative. Of course, real nucIei do not have negative charges. However, in some 
applications, the “nuclei” are really nuclei together with core electrons and when 
impurities are present, the total charge of the nucleus and core can be negative; 
see the discussion in Section VII. The results of Sections II and III carry over to 
this case with only one major change: It is still true that if h < &, zf , then 
there is a solution of the TF equations with rp dx = A, but there can be solutions 
with Jp > Clk_l zi . For example, if some xi > 0, there are solutions with 
sp > 0, even if C zi < 0. The results of Sections IV, VI, and VII also require 
a change, namely that the absolute minimizing p need not be positive everywhere. 
Indeed, p will vanish identically in a neighborhood of the negative nuclei. 

II. THE TF ENERGY FUNCTIONAL 

In this section, we study the TF energy functional tp(p; V) given by (7a) and 
use this study to establish existence and uniqueness of solutions of the TF 
equations. We also present some related results about the chemical potential 
Ed = -#s, One of our main tools will be the use of the Lebesgue spaces 
D’(KP), 1 < p < co, and we first summarize some of their properties that we will 
need. If p < co, D([ws) is the set of measurable functions from 03s to C with the 
property that 

Ilf IIP = CJ I f@v 41’p < ax. (11) 
La(lP) is the family of essentially bounded functions, i.e., functions which are 
bounded after modification on a set of measure zero, and lIfllm is the essential 
supremum off. Two useful relations betweenD spaces are Holder’s inequality: 

if 
ilfg IL < llf /IP II g II* (12a) 

r-1 -p-l + q-1; 1 <P,q,rQ co, (13b) 
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and Young’s inequality: 
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-t For any p with I ~2 p 3; CCI, the dual index p’ is defined by: p-l 
or equivalently p’ : p/(p ~ 1). 

(134 

(13b) 

(a’)-’ 2 1 

Two notions of convergence on Lp(R3) will concern us. fn -+ f  in D-norm if 
and only if ilfn Pfjl, -+ 0 as ~2 --+ W. fm -+f weakly or Lp-weakly for p :+ 03 
if and only if for all g t L”’ (p’ the dual index of p) sfn(x) g(x) dx --* j f(x) g(x) dx. 

Two consequences of Holder’s inequality are useful in this context: First norm 
convergence implies weak convergence and second if sup* / fn iiD < ~7$, then 

ff l  +f weakly if sjJ~)g(x) dx + Jo g(x) for all g in some norm-dense 
subset of Lp’(EP). For example, if p + 1, g E CUa(R3), the C”; functions of 
compact support will do. Note that f~ LI’ n I,q, p < q implies that f e L’, 

p < Y < q. 
\\‘e need one deep property of the weak topology on L1’(R3), p + 1: 

This theorem is a consequence of fairly standard theorems in functional 
analysis: the duality theory for I;” spaces, the Banach-Alaoglu theorem and the 
separability of L”‘. The Banach-Alaoglu theorem can be avoided by appealing 
to a diagonalization argument. For details of this theorem and other properties 
of Ln spaces, the reader may consult a variety of functional analysis texts, e.g., 

[lb, 66, 67, 961. 
The symbol L>’ + L* denotes those functions which can he written as a sum 

of an Lp function and an L” function. For example, f(x) : ; x 1-l is not in any 
L*‘(W) but it is easily seen to be inLJ’(R3) + L”(R3) ifp < 3 < q. If  V, , P-F Lp + 
L”, WC say li, + I’ in 1,~’ + Lrf-norm if and only if I’, - ,‘:‘I I I’$‘); V :-: 
I’(l) -I- I’“’ with I! C’h” -.. I/“11 IIn + 0 and 11 V$” - Vf2111Q+ 0. 

The main results of Section II are Theorems II.& 11.10, 11.14, 11.17, TT.18, 

11.20, 11.30, II.31. 

11.1. Bush- Properties 

We recall that the TF energy functional b(p; 1’) is given by: 
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We emphasize that with our convention, V > 0 is attractiw and V < 0 is 
repulsive. It is clear that to define I@; V) we need p E La/3 and, given the nor- 
malization condition sp(x) dx = X, it is natural to require p ELI. We thus define 
the sets: 

THEOREM II.2. Let V EL~/~ + Lm and let &(p; V) be gakn by (7a). Then: 

(a) 1j p E I, Q(p; V) exists. 

(b) Jf pn , p E 3 and I/ P - pn i!5,3 + I! P - pa IL+ 0 then &P, ; V) - 
qp; V). 

(c) On each YA (A < cm), B(p; V) is bouded~om bebw 

(d) Fix A, E, . Then there is a C < co so that p E J$ m’th b(p; V) < Z$, 
implies that 11 p j15,3 < C. 

Remarks. (1) Henceforth we shall always take V gL5/” + L”. We note 
that V of the form (la) is certainly in L5j2 + L”. We do not assume V > 0. 

(2) For V of the form (la) we shah shortly see that d is bounded from 
below on all of S. 

Proof. Write V 7-7 Vi + Vz with V, EL”/? and Vz ELM. Similarly write 
1 x 1-l = IV1(‘l(x) + b,(x) with WI eL51Z and W, E Lm. Then by Hiilder’s 
inequality (12): 

J I pr’ 1 dx < /I ff, llm II P llm t 2 6’2 II- II P 1~1 1 (144 

and by Hiilder’s and Young’s inequalities (12, 13): 

a i (P * I x i-‘)P dx G II p!h [II wl llsiz II p IL,3 + II W, I!m v p IGI, (14bI 

and of course: 

.I p5’” dx : /; p I!;;; (I4c) 

(a) follows from (14) and (b) f 0 11 ows from similar estimates, e.g., 

/ j (Pn * VPn - j (P * WP 1 2 1 j [(Pm - PI * vhl i- P) ( 

G II Pn - P Ill (II w !15/2 II Pn -t- P IIs/ + I! w2 IL II Pn + P Ill). 
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To prove (c), (4, we note that s(p 8 I .X I-r)p ;: 0 for any p E .Y so, by (14,a,c): 

on each & , where c, is A dependent (A 11 I’, I’,) and c1 is h-independent 
(11 r1 I!&. Since x5j3 - cx is bounded from below on [0, co), (c) follows. Simi- 
larly, (d) follows from (15) and the fact that {X 1 x5j3 - cx .< d) is bounded for 
each fixed c,d. [ 

From our eventual analysis of minima for rf on sets of the form $A , it will 
follow that when 1,. = Cj”=, zj 1 x - Rj l-l, B(p; V) has a minimum on all of 9 
and this occurs for a p with Jpd3x ~- ET=, zj . In particular, for I/ of this form, 
8 is bounded below on all of .Y. While this will follow from our detailed minimum 
analysis (Sects. 11.4, II.5), it seems advisable to present an elementary proof 
at this stage. We emphasize that we wiI1 not need the following result or its 
proof in the remainder of this paper. 

Remmks. (I) B; 5 scaling (Sect. I.2), them is a result for any xF=, zj 

(2) This lower bound is not incorrect by an absurd amount. The correct 
value of the TF energy for an atom (K .-:: 1, Zi = l), is found numerically1 to be 

[22] -0.7687 [(3+)a/3/2j -3.679. By Theorem V.4 among all V’s and p’s 
considered in Theorem 11.3, the true minimum occurs in this neutral atomic 
case. 

Proof. It is obviously sufficient to prove that for any p E 4 that 

Fix R > 0. Let 

1 The first numerical estimate of the energy of a TF atom is in Milne [59] whose answer 
is off by about 15 Oh. Baker [ZJ obtained an answer correct to better than 3 yb and also gave 

graphs of the TF potential in the neutral case and for several ions. 
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Let J(x) = (114~) S(l x i - R). Then 

On the other hand, since 

we have that 

Let p(y) = p(y) if 1 y  ] >, R; aj(y) = 0 if ] y  j < R. Then: 

(p” - f)b> @ -f)(Y) dx dy 2 ,, 
1X-Y) 

so 

On the other hand, by Holder’s inequality 

/ I- I cl j! $ /j5,* j] p li513 = (87TR1~2)2~5X, 

where xR is the characteristic function of the baI1 of radius R. Thus, for any R: 

W(,) 3 -(l/22?) - (SX)~/~ XR1j6. 

Choosing R6l5 =.(5/2)[(8~)~/~ Xl-l, (16) results. m 

DEFINITION. E(h; Y) = inf(b(p; V> ) p E &}. 

PROPOSITION. II.4. If V EL~/Z + Lp f or some 512 < p < 03, then E(h; V) = 

inf{&(p; V) I p t 9A). 

Proof. Note that 1 x 1-l ED/~ + Lp for some p with S/2 <p < 00 (any 
p > 3 will do!). Hence, by mimicking the proof of Theorem II,2(b), we see that 
for some r > 1 if 11 p ~ pn l161y + i! pn - p l/V -+ 0 then &(pm ; I’) + b(p; V). 
Given p E C,~(QP) n JA, we claim we can find pr E & with (( pn - p ((5,3 + 

IIP -dII.+O. Take pm = p + nmlxa. where xa is the characteristic function 
of A and A, is a set disjoint from supp p with measure n(h - 11 p iii). Thus 
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The last inequality follows from Theorem 11.2(b) and the density of C,,W in 
L1 R L6j3. The inequality 

inf{b(p; V) 1 p E 9Aj : : inf{S(p; T’) ! p E &] 

is, of course, trivial. 1 

COROI.LARY 11.5. E(A; T,-) is a monotone no&creasing function of h whenemr 1,. 
obeys the h>lpotheses of Proposition 11.4. [ 

Remark. What Corollary II.5 says is that if I’EEL~:~ + L?) (p < m), then 

increasing A decreases E(h; I’) because one can always place any unwanted piece 
of p “at infinity” without having to increase the energy. If  p = ‘;o, this would 
not necessarily be true. Note that JV~L5j2 + Lr’ (5/2 < p < m) implies 
J,J f  L&l” + Lm * 

11.2. Strict Convexity 

The TF functional has an elementary property which has the important 
consequence of uniqueness of solutions of the TF equation: 

THEOREM 11.6. Fix V. Then .8(p; 1’) is a strictly convex function of p f  I, 

that is, if pi , pz E S with p1 # pz (by which we tnean that p1 - pz is nmzero 011 a 
set of positive measure) and 0 < t < 1, then 

qtp1 + (1 - t> Pa) < WPl) + (I - 4 b(pe). (17) 

Proof. Write 

44 = K(p) -- 4) + R(P) (18) 

corresponding to the three terms in the definition (7a) of b(p). A(p) is linear, 
k’(p) is clearly strictly convex since f(x) - x5j3 is strictly convex on [0, co). 
Finally R(p) is strictly convex since 1 x I-l is strictly positive definite, i.e., its _ 
Fourier transform is strictly positive. 1 

Remark. For the theory of Hettl el’ al. [30, 311, where gravitational forces 
are considered, one loses strict convexity and thus a simple proof of uniqueness. 

Theorem II.6 has two immediate corrollaries which will imply uniqueness of 
solutions of the TF equation once we formally establish the equivalence of 
statinnarity of 8 and solutions of the TF equation (see Section 11.3). 

COROLLARY 11.7. There is at most one p0 t yB;h with 8’(po ; F) 7 infPEgA 
6(p; I’). This statement remains true if .YA is replaced by Y, & or any convex 
subset of .F. 

COROLLARP II.&. Suppose that p. E .& is a stationary point of L?(~; I’) RS a 
fun&ma1 on J& , i.e., (dldt) b(tp, + (1 - 1) p1 ; I’) ItL1 -7: 0 for any p1 E $& _ 
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Then $(pa ; V) = infPEgaA b(p; V). This statement remains true if #& is replaced 
by I, $A or any com~x subset of 1. 

Remark. For convex subsets of I specified by inequalities, such as XA, 
stationarity in the above sense generahy implies much more than just minimiza- 
tion on the given convex subset. For example, a stationary point in YA is actually 
a stationary point in 4 and thus a minimum in 1. 

Strict convexity also has implications for the study of E(h; I’): 

COROLLARY 11.9. Suppose that k’ E Lh+ + Lp with p > 5j2. Then: 

(a) Ifp, &z&&es &(p; V) on ,YA, and f  pOdx < A0 , then E(X; V) = E(A, ; V) 
for all X > A, , when p < a. 

(b) 1f Q(p; V) has a minimum on dab for all X < A,, then E(A; V) z’s strictZy 
conoex on [O, AJ. 

In particular, E(h; V) is convex in A. 

Proof. (b) is a direct consequence of strict convexity and (a) follows by 
noting that pa must be a minimum for b(p; I’) on all of 9. 4 

Remarks. (1) For V of the form (la), this corollary will imply that E(h; V) 
is strictly convex on [0, A,,] and constant on [A,, 00) where A0 = Cj”=l zj ; see 

11.5. 

(2) For V(x) = c) r]-l(TF t a om , one can prove that -( -hW3 E(h; V))lri ) 

is concave and monotone, nonincreasing. This has been proved for quantum 
mechanical atoms by Rebane [65] and Narnhofer and Thirring [61]. Thirring 
‘(private communication) has remarked that the same proof applies to TF theory. 

11.3. Connection with the TF Equation 

We have already seen a formal connection between the TF equation (3) and 
stationarity of &I; V) with the subsidiary condition sp dx = IV. Our goal in 
this section is to make the formal connection rigorous. This sort of connection 

is fairly standard in the calculus of variations 1601. 

THEOREM 11.10. (a) 1ffp obeys the TF equations (3a-3d) (with W(x) = 1 x 1-l) 
for someq$, and if$p dx = N, then 

B(p; V) = E(N, V). 

E(h; V) is d#eermtiabZe at h = N and 

-FF = 4” = -.?E(X; vya#l IAGN. (19) 

In particular, if+, =z 0, then p m&nixes & on all of 1. 
(b) If  p EJ$ and b(p; V) = E(N; V), then p obe-vs the TF equations 

(3a-3d) and Ed is &~WZ by (19). 
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N~zark. It is hecause of (19) that we interpret eI; 
potcntia1. 

Proof. ITor p E J, define 

(Sd/Sp(x)) y- p(x) - I&(x), 

where $, is given by (3h), i.e., 

&(x) = k’(.r) - [ I x - y I .-l p(y) dy. 

Then (3c), and (3d) arc equivalent to 

if p(x) ) 0, 

if p(x) = 0. 

WM”~)) -= -$o 

(sa/sp(x)) -‘: -$b,, 

>Iorct>ver, it is easy to see that for p, p’ E .a 

41 

f/j, as a chemical 

(20a) 

(20b) 

(2la) 

@lb) 

where the derivative on the left side of (22) is a limit as t 10. 
Now suppose that p satisfies (2la, 21h). Then since (p’ -- p)(x) y:,: 0 whenever 

p(x) = 0 we conclude that 

(;,;a) Q(tp’ + (1 - t)p)lt,, > (-&) [j- (p’(x) - p(x)) &I. (23) 

Let US first apply (23) when p’ + p is also in J$,. Then (23) implies that the 
derivative from the right satisfies 

(iqcq cqtp’ + (1 - t) p)ltEu > 0. 

Strict convexity then implies that &I’) :, Z(p) , so we conclude that if p obeys (3) 
and thus (21), then p minimizes E on &, . 

To prove (19) we again appeal to strict convexity to deduce 

a(,‘) - a(,) :2 (-c$(J [J (p’(s) ~- p(x)) dxj 

from (23). We conclude that 

for any A. 

E(A) - E(N) ‘2 (+$“)(A -- IV) 

Using (22) with p’ -- 2p WC see that 

(24) 
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so &(tp’ + (I - t)p) = 8(p) + t(+,)(N) + O(P). Thus 

J-q1 + t) N) - E(N) < -t&N + O(t2). 

Similarly taking p’ = jp, we find that: 

E((l - t) N) - E(N) < t&Jv + O(P). 

(254 

(25b) 

(24) and (25) imply (19). This concludes the proof of (25a). 
To begin the proof of (b), we suppose that p E J& with B(p; V) = E(N; V). 

Then by (22) 

s fbw%4~)1 k 0 w4 

for f obeying 
f E Ll f-l LS/3, (26b) 

s 
f(x) dx = 0, (269 

Pt-d>O for a11 small positive a. cw 

Now suppose 3 is any measurable set obeying: 

(i) There are constants c, > 0, ca so that c1 < p(x) < ca for all x E B. 

(ii) 1 &F/&7(x)/ < cp for all x f 3 

(iii) The L b g e es ue measure of B is finite. 

For any function MEL” with Jfdx = 0, both f and -f obey (26b-26d). 
Thus 

I 
dx f(r)(S&/Sp(x)) = 0 (27) 

for allfEL=(B) with Jfdx == 0. 5 ‘ince S&/S,(x) is bounded on B, (27) holds for 
anyfELl with Sf d.r = 0. Define +B by: 

+B = - jE SrZ/Sp(x) dx/j dx. 
B 

Given g E Ll(B), let 

.I=~--~~[~~~JIJ‘~~~~]~ 
where xe is the characteristic function of B. Then (27) implies that 

j d#WW)l dx = -4~ j g(x) dx 

for any g ELI(B), i.e., 

86; 
i@j = -vJB a.e., XEB. C-W 
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Given B, , B, obeying (i)-(iii) above, so does B, u B, , and #B, = &,,,D, : &:, , 

i.e., #B is a constant independent of B. Call it& 
i\Tow p E L1 is finite a.c. and, by Young’s inequality, Gd/Sp fLzi2 + Lm so it 

is finite a.e. It follows that {x 1 p(x) > 0} - is a union of countably many sets 
obeying (i)-(iii). Thus M/S,(x) = --CD f  or almost all x such that p(x) > 0. 

Given any g in .y with jg(.x) d x .2 -V, f --_ g ~- p obe!?s (26b-26d) so 

Thus &Z/Z+(s) T:: -bO a.e. x. Thus p obeys the TF equations. In particular, we 
can appeal to the argument in (26a) and conclude that (19) holds. 1 

Applying Corollary II.7 and Theorem 11.10, we have: 

COROLLARY II.1 1. Fix N and I’- EL”/~ +L’-. Then there cannot be two p’s 
in & obeying the ‘1’F equation (3a-3d) (wit/~ W(X) = i ,X I-r) Eden z&h disrinct 

values of #* 

Using (19), Corrollaries II.5 and 11.9, we have: 

COROLLARY 11.12. If V ELLS + Lp for 512 <p < M, then 4” 0 for any 
solution of (7a-7d) arrd moreover: 

Remarks. (1) Once we know that there is a minimizing p on each yj,, 
(see Sect. X4), Corollary II.9 implies that we can improve (7b) to read 4:‘) < #I 
(see also Sect. 11.8). 

(2) This corollary is quite natural in terms of the Fermi sea picture 
(electron gas in phase space) discussed in Section I. 

Due to Theorem 11.10, the existence problem for the TF equation is equivalent 
to finding minimizing p’s for &“(-; K) as a functional on &, . We shall investigate 
this existence question in two stages In this section, we shall establish the 
existence of a minimizing p EyA , i e., for any X we shall find p with B(p; V) 2 
E(h; V) and sp dx < A. Tn th c next section, we shall investigate when this p 
obeys -[p rlx A. This two part approach is natural for two reasons: 

(i) I f  I,- is given by (21) and Z = xi=, zi , then folk theorems assert that 
&, := 0 when X -== Z. If  this folk theorem is valid (and indeed we will prove it in 
II.5), then our anaIysis above (especially Corollaries II.9 and 11.12) implies 
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there is no p E Y& with &‘(p; I;) = E(A; V) if A > 2. But for such a value of X 
there is a p E #A with &(p; V) = E(h; Y), namely, the p with#, = 0 and Jp dx = 
2. By dividing our existence analysis in two stages, we only have to consider 
the mechanism distinguishing h < 2 and h > 2 after deveIoping some properties 
of the putative solutions. 

(ii) From a mathematical point of view, YA is more natural than .& since 
$A is closed in the weak L5/3 topology while $& is not. We shall use the weak 
L5i3 topology is an essential way. 

The natural way of showing that a function has a minimum on a set is to prove 
that the function is continuous in a topoIogy in which the set is compact. We 
have already seen that 8’(-; I’) is continuous in the L5i3 CT L1 norm topology 
(Theorem II.2b) but alas, 9A (or even {p fXA 1 &I; V) < E,J) is not compact 
in this norm topology. On the other hand, by Theorems II.1 and II.2(d), 

bE4lGJ; V~~ol~ ies in a set which is compact in the weak L5/3 topology, 
but alas, b(.; V) is not weakly continuous as the following example shows: 

EXAMPLE. Suppose that V E L61z + Lp ; 5/2 <p < co. Pick any p fXA 
and let pn(x) = p(x - r,) where r, is a sequence of vectors with r, + CD. Then 
pa -+ 0 weakly in L5j3, J- VP, d3x - 0 but J-p:“(x) d3x = J-P6/3(~) dx; 
J (pm * 1 x 1-l) pn d3x = s (p * j x 1-l) p dx for all a. Thus: 

qpn ; V) --, 9 j p5+) dx + d j (p i 1 x I-l)p dx > 0 = b(0; V). 

Fortunately, there is a hopeful sign in this example for Iim,,, QJ, ; V) G: 
b(lim pn ; V) so one might hope for a semicontinuity result which would suffice 
for establishing existence of a minimum. Such semicontinuity ideas are not 
uncommon in the calculus of variations [60] and, in particular, have been used in 
a problem similar to ours by Auchmuty and Beals [I]. In our case, we have: 

THEOREM 11.13. Let VEL~/Z + LP(5/2 <p < co). Then b(*, V) es lower 
semicontinuous on each YA (A < 00) in the weak Ls/3 topology, i.e., if pn - p in 
weak Lfii3 with supn 11 pn III < co, p E L1, pa , p 3 0, then 

cqp; V) < lim qpn ; V). 

Moreover, if b(p; Y) = lim b(p, ; Y), then. I/ pn - p &,8-+ 0 and each ternz in 
b(p, ; V) converges to the corresponding term a7a b(p; V). 

P~+ooj. By passing to a subsequence, we can suppose that lirn b(p, ; V) 
exists and we may as we11 suppose the limit is finite since (29) is trivial otherwise. 
Then, by Theorem IL2(d), supn 11 pn [&,a < CC (alternatively this follows from 
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the weak convergence and the uniform boundedness principle if we only concern 
ourselves with sequential continuity), 1’ve prove (29) by showing 

(3W 

lim j bn * 1 x]-l)pfl Q? 
J - b * I x I-%- (3Oc) 

(3Oa) follows from the fact that balls in L5c3 ate weakly closed (which, in turn, 
fo1low.s from the Hahn-Banach theorem). Or, we can be more explicit and note 
that $13 E L5/2, so by the definition of weak convergence and HGlder’s inequality, 

To prove (30b), write I/’ = VI + k’s with VI EL~/~, V, EL” (S/2 <p < a). 
Clearly, s I:p, converges to [ VIp. IVe claim that since supm I] prr II1 < co, 
pm + p in weak L”(1 < e 6 5/3) and, in particular, for 4 the dual index to p. 
This claim clearly implies that J Vsp, -+ J Vap completing the proof of (30b). 

The claim follows by remarking that Ls/2 nV’ is dense in Lp’ and that 
sup /I pn j/q < 00 by the inequality 

if 9-r 7: $-1 + (1 - W.)r-1; 0 < 01 < 1. 
Finally, to prove (~OC), we use positive definiteness of / x I-1 and the resulting 

Schwarz inequality. Since p E Ll and I x j-1 E L5/2 + L4, p * I x j--l fL5i2 -I- L4 
by Young’s inequality. Since pn - p both in weak L5f3 and weak L413 (by the 

above), l (p * ( x I.-l) pn + s (p * / x 1-r) p. Therefore 

s Pb) PM 

lx--Y1 
dx dy = Iii 

I 
fb) h(Y) dx dy 
IX-Y1 

which proves (30~) and so (29). 
(3Oa-3Oc) imply that if &(p; V) = lim &I, ; V), then each term of 8(.; J’) 

converges and in particular lim 1’ pn )/5,3 = I/ p jJsiJ . Since Lb/3 is uniformly 
convex [12, 431 convergence of the norms and weak convergence implies norm 
convergence. i 



46 LIEB AND SIMON 

As a consequence of the lower semicontinuity just proven, we have: 

THEOREM 11.14. Let V EL / 5 L + L?’ (512 <p < co). Xhen for each h, there 
exists a unique p f  #A with 

c”(p; V) = hfA d(p’; V) - E(h; I;). 

Pr@. Pick pla ~9~ so that I&, ; 6’) + E(h; V). By Theorem 11.2(d), 
supa 11 pn lj5,3 < CQ so by Theorem II.1 we can find p ELVIS with pn -+ p in weak 
L6J3. Since 11 g III = sup(JJg ] f EL5j2 n La; iJf[l= < 1>,11 p II1 < lim 11 pn II1 < A. 
Since g 2 0 if and only if sgf > 0 f or all f~ C,,a with f > 0, p > 0. Thus 
p E YA . It follows from Theorem II.13 that 

Since p E 9A, b(p; V) > E(h; V). Thus &(p; V) = E(A; V). 1 

The semicontinuity results and the methods employed in their proof can be 
used to say something about the V dependence of E(X; V) for h fixed: 

THEOREM 11.15. If V, -+ V th L6ra + LP (512 < p < KJ> thm for airy $xed 

X, E(h; V,) -+ E(A; V). Let p (resp. p,J be the unique d&z.@ that mi&iae~ 8( a; V) 

(resp. 4.; VA) on 4 , then II pn - p 115,3 -+ 0 ad II P III < lim II pn IL . 

Remarks. (I) Since b(p; V) is linear in V, B(h; V) is a concave function of 
V and it can be shown to be bounded on bounded subsets of L5J2 + Ln, This 
can be used to provide an alternative proof that E(h; *) is continuous. 

(2) It can happen that 11 p III is strictly less than lim I/ pm &. For example, 
if V-(x) is zero for 1 x [ < 7~ and 1 x 1-l for 1 x 1 > n, then our results in 
Section II.5 below show that for A = 1, I/ pn II1 = 1 (all n). But V, + 0 in L5iz + 
L4 norm so p = 0. 

Proof. Note first that sup, 11 pn 1l5,3 < 0~) by arguments similar to those in 
Theorem 11.2. By a simple argument, it is enough to prove that 11 pfa - p l&/3 - 0, 

&‘(pm ; V,) + &(p; V), and 11 p ]I1 < lim \I pa III for any weak L5j3 convergent 
subsequence pn . Suppose that pn + p,, in weak L6j3, Then, as in the proof of the 
last theorem, p0 ~9~ . By a simple modification of Theorem 11.13, &(p,, ; V) < 
lim B(p, ; V,) = E, . On the other hand, 

cY(p; V) = li,m b(p; V,) > E b(p, ; V,) 

by the minimizing property of p,, , Thus by the minimizing property of p: 

qp; V) < qpLl ; v> 6 lim fqp, ; V,) < Ei qp, ; V,) < qp; 0 



THOMAS-FERMI THEORY 47 

It follows that b(p, ; I’,) = E(h; I/‘,) ---f &‘(p; I’.) -G E(h; I’) and that p,, z~ p. 
As in Theorem 11.13, convergence of &(pn ; V,) to &(p; I’) implies 11 pn - p t,5iB --+ 
0 and, as in Theorem II.14, 1~ p III < lim il p.,$Ii. .-I 1 

THEOREM II.16 Let If, YEL~J” -+ L” (512 <p < co). Let p, be the unique 
minimizing p for I?(.; C’ + nY) on YA . Then the function CCL+- E(X; b- + La) is 
continuously diferentiable, and the derivative is given by 

Remarks. (1) Equation (31) is essentially a TF version of the Feynman- 

Hellman theorem. 

(2) Although it is somewhat obscured in the proof, the central reason for 
differentiability for all 1~ is the uniqueness of minima. Concavity of cy - 
E(h; I’ + aY) only implies the existence of the left- and right-hand derivatives 
everywhere and their equality only a.e. In essence, the left- and right-hand 

derivatives sho& be of the form -jp,A(~) Y(X) dx for some minimizing P,*(X). 
Uniqueness then requires that P,%+ = P; _ 

Proof. By Theorem II.1 5, 01++ po: is continuous in the L5i3 norm topology. 

Since 1: poi !I1 < h, B k+ J Y(X) p*(x) d T is continuous so it suffices to prove 

cr N E(A; V + CLY) is differentiable with derivative (31). Clearly we need only 
prove difkrcntiability at ti = 0. Now for a > 0: 

a-l[E(ol) - E(O)] .< d[b(pn ; v ‘-. al-) - c’(po ; I’)] 1= - f  Y(x) &) d.y 

by the minimizing property of pR . By the minimizing property of p0 : 

h: -‘[E(u) - E(O)] 2 ++m ; E; 1 aY) - d’(p, ; V)] = - [ Y(x)&) day. 

Since s Y(x) p,(x) + s Y(X) p,(x), we have that 

h$ a--l[E(a) - E(O)] = - J p&) Y(X) dX. 

A similar argument controk lim,,, , 1 

We now examine the question of when the minimizing p in xJ actually lies 
in J& . Our main rest&s involve potentials of the form 

607/23/I-l 
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THEOREM 11.17. Let V have the fovm (32) with V, fL5i2 and F’O of compact 
support. Then for A < Z s cFsl zj , the minimizing p fur a( .; V> on YA has 
jpdx =A. 

THEOREM 11.18. Let Phase theform (32) with Vu(x) < 0 nZ1 .x, I’, ofcomf~act 
su@n’t and VO E L5J2 + L” (512 < p < 03). Then for A > Z = cjk_l zj , the 
milaimizing p for a( .; 17) on YA has s p dx = Z. 

Remarks. (I) We shall later present an example showing that j’p dx > Z 
is possible if V,(x) is positive. 

(2) The conditions A > 2 vs A < Z enter naturally because the formal 
large x behavior of ~~~. zi 1 x - Ri l-1 - j p(v) 1 x - y 1-r dy is (2 - A) 1 x 1-r. 

Proof of rizeorem 11.17. Suppose that the minimizing p has sp dx -- & < A. 
Then, by Corollary 11.9, p is a minimizing p for b(.; V) on all of 4, so 
by Theorem 11.10, the corresponding #+, is 0. Thus p obeys: 

p(x) = m=+(x), O)3/2, (334 

9(x> = W - j P(Y) 1 x -Y IF1 4, (33b) 

I 
p(x) dx = A, < z. (334 

Choose R so that R > 1 Rj j,j = I,..., k and so that supp V,C{x 1 1 x I <R). 
‘For r > R, define 

[41(r) = (1 !b) Jsz W-4 dQ. 

Then, by the well-known formula 

(l/44 Is2 I KQ - Y I--l dQ = Cmax(r, I Y l)l-’ 

and (32), (33b), 

[d](r) = ~-r-l - f p(y) [m&, I y I)]-’ 4 W 

> 25-l - s p(y)r-1 dy = (2 - h&-l. (35) 

Now, let [p](r) = (4n)-1 Jp(r.Q) dQ. Then, by (33a) and Hiilder’s ineqality, we 
have for r > R: 

t-PI@) = J- max(+(&), 0)3/2 (dQ/4x) 

> (j max($(rQ), O)(dQ/4n)J3” 

> [#](r)V 2 (Z - &J3/3r-312 
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by (35). Thus 

J ,I(Y) dr ~~. 47r 
.i 

[p](r)r2 dr = m 

violating (33~). This estahlishcs a contradiction and thus allows us to conclude, 
that j-p dx ~~~ A. 1 

Pwof of Xheorern II.18 Suppose that sp dx .-- X :r %. As above define 

[d](r). Then, by (34) 

so [#l(r) < 0 if r is sufficientIy large. This violates the lemma below. 1 

Proof. Let $ :- l$ - I I<, . Since p EL”/~ nL1, p + 1 N 1 ~1 is continuous and 

goes to zero at infinity (see Theorem IV.1). Hence Q!J + a as x -+ any Ri and $ 
is continuous away from the Ri . Thus A := (x 1 Z/J(X) < 0) is open and disjoint 
from the R, On il, +5 I/J ./ I’,, < 0 so 4 -- $,, < 0. Thus p :m 0 on A, so # is 
harmonic on A. Clearly $(x) - 0 as x + CD and $ vanishes on i-1,4. It follows that 
4’, 0 on -4, so rl is empty. Thus #(x) ._ : 0 for all ,x. m 

Renlarks. (I) The USC of harmonic function methods in TF theory goes 
hack at least as far as the work of Teller [X9]. W e wiI1 use these ideas extensively 
in Sections IV-VI. 

(2) Theorem II.18 is false if the restriction P’s :.< 0 is removed as the 
following example shows. 

k&AMPLE. Choose I;,(X) == j x 1-l X(n,Oj(~)r w h ere X(&X) is the charactcr- 
istic function of the spherical shell (x 1 a < 1 x 1 < 6). By a simple modification 
of the argument, IT0 can be made Cm. As a preliminary consideration, let W be 
the potential which is j x lm 1 if ~ x 1 <. cl and 2 1 x’ 1-I if 1 x ; Q: a. By Theorem 
11.17, there is a ,? minimizing &(.; W) on Y..,s and jj? & := !. Since there is 
also a minimizing p on &A with J”p dx = 2, the do for p” is strictly positive. Now, 
by the spherical symmetry of IY and uniqueness of solutions, p” is spherically 
symmetric, so by our arguments in the proofs of Theorems II. 17, II. 18, B(r) + 0 
at infinity. Since $,, > 0, and p” = 0 if J(r) < +,, we see that p” has compact 
support. Choose b :> a so that p has support in {x 1 1 x 1 + b). We claim that 
fi minimizes a(*; I x’ 1-t !- l/s) on 8&s , thereby exhibiting the need for I-,, 2:: 0 
in Theorem 11.18. Since 1 ,I’ 1-l t I/, < W, we have that for any p E Y& , 
&II; 1 x p-1 i V,,) 3 b(p; W) > qp”; W) 7 S@; 1 x I--1 + V,). 
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We close this section by summarizing the situation for P of the form (la): 

THEOREM 11.20. Let V(x) = CF-, za 1 x - R, j--l with xi B 0 and dejine 
Z = &, zi . I f  X < Z, t&es2 there is a u&p p wit!2 J p(x) dx = X sucR that 

p(s) = max(+(x) - &, O)3/2 

$w L T4 - j I x - Y 1-l P(Y) 4 

for some 4, . Moreover: 

(i) Ifh~Z,~,=O,andbfA<Z,~,>O. 

(ii) & is given by (19). 

(iii) The function E(X; V) is strictly monotone decreasing on [0, Z], corutarrt 
on [Z, co) and convex on [0, CO). 

In particular, for all p E 9, 

b(p; V) 3 E(Z; V). 

For V’s of the form(la), we introduce the notation ETF(h; z, ,..., zk ; R, ,..,, Rk) 
and the notation p&x; z, ,..., zti ; R1 ,..., R, ; A) for the minimizing E and p on 

eYA (so PrF(...; A) = ,oTF(...; z) if h > Z). W e d enote the nega&x of the associated 

h, by d’; ~1 ,.a., zk ; R, ,‘-.> Rd. 

II.6. Components of the Energy 

In this section, we discuss the components of E(p; li’), I/’ F L’(’ -i- 

LP(5/2 < p < co): 

P&J) = ; j p(x~13 dx; R(p) = + j I x - y  I-$(x) p(y) dx dy; 

/&-i; V) = j p(x) V(x) dx. 

We also defme: 

THEOREM II.21. E(u, a, p; A) is Cl fur K, p > 0, a real. Moreover: 

where jj is the miraimizing p for IF( *; V) on .fA . 
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Proof. We have already proved &?‘/A = ---A@) in Theorem 11.16. The 
method of proof of Theorems II. 15, 14 can also bc used to prove the remainder 

of this theorem. 1 

When p is the TF density for an atom, molecule, or ion there are some simple 
relations among K(p), A(p), and R(p). The first of these relations is a virial 
theorem, first proven by Fock 1211; see also Jensen [36], GombPs [24], and 
Fliigge 1221. The second relation, which is special to TF theory, seems to be 
due to Gombis 1241; set also Fliigge [22]. Our proof of the virial theorem is 
patterned after one in quantum mechanics [20, 931. Set Note 4. 

THKIREM II.22 (TF virial theorem). If  V(x) = 2 ] x 1-l and if p minimizes 

fq’; I’) on an?, YA , then 

=i(P) = 4) ~ %J)- (36) 

Proof. Let p,(r) = $p(p~) so that pU E.Y* . Thon K(p,) := p’“K(p), A(p,) = 
@l(p), Rb,J = $2(f). Now by the minimizing property for p, $K(p) - PA(P) + 

pR(p) has a minimum at p = I from which (36) follows. 1 

The second relation is obtained by Gombis [24] using properties of the TF 
equation rather than via minimization, as we do: 

THEOREM 11.23. Let p minimize c?(.; V) on aEE of 4. Then,for I;giwn by (la) 

+ K(p) = *4(p) ~ 2R(p). (37) 

Proof. Let pB(~) = jg&). Th cn the minimizing property of p implies that 

jP:“K(p) - /M(p) + f12R(p) has its minimum at p = 1 from which (37) follows. 1 

COROLLARY II.24 (Gombas [24]). 1~ the atomic case, Zet p nzinimixe 
a(.; z 1 x I-‘) on 1. Then K(p) : A(p) : R(p) =: 3 : 7 : 1. 

Proof. The result follows from (36) and (37). 1 

11.7. M&Max and Max-Min Principles for the Chemical Potential 

The quantity am = %(A; P’)/ZA is of some importance in the TF theory. 
It is the chemical potential in the electron gas picture of the TF theory and is 
the TF prediction for an ionization potential (although we emphasize that the 
picture we establish for the connection between TF theory and quantum 
mechanics suggests that the TF theory wiI1 not correctly predict ionization 
energies). Thus far we have seen that e,(h) is the negative of the &, associated 
with the minimizing p on YA. This description of eF is sufficiently complex 
to be of little direct use. In this section we obtain some alternative character- 
izations of e,(A) in the cast where V(X) --.:x;=, zj 1 x - R, 1-l and, in the next 
section we study the properties of Ed in this case. 
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Given any putative electron density p, we can think of forming an electron 
gas in phase space by filhng a region ({x, p}l 1 p 1 < pr(x)) such that the asso- 
ciated x-space density is p(x). With our units, the energy at the surface of the 
gas at x is P”‘~(x) - A(X), where, as usual, 

w”) = w4 - j P(Y) I x’ - Y 1-l 4Y. (38) 

As we have seen, the TF p has pz’3(~) - #,( x constant at points where p(x) i: 0, ) 
and that constant is precisely l F . Our basic results say that for any other trial p, 
pals(x) - &(x) has values both larger and smaller than l F . While this is intuitively 
obvious for p’s differing from the TF p by a small local perturbation, it is a 
subtle fact in general We need three prehminary res.uIts. 

LEMMA II.25 If YELP, g tLQ(W) with p, q dual indices d@rent from 
1 and m then f * g is a continuous function going to zero at in$nzly. 

Proof. This result, which improves the Young’s inequality result that 
f *g EL”, is standard. See, e.g., [73]. To prove it, note that if f, g E C,~(lP), 
thenf t g E Corn so, by a density argument and the fact that ]I f *g lIrn < IIf II,lI g Ijo 

for any f, g, we know that f * g is in the Ij . ljm -cIosure of C,=. These are 
precisely the continuous functions going to zero at infinity. [ 

LEMMA 11.26. Let p1 , p3 be positive funchon~ in L1([w3). I f  C&(X) ,>r &(x) 
(with $$ giwen by (38) with p = pi) fog ali x, then sp2(x) dx 3 s pi(x) dx. 

Proof. (& - $a)(~) = s j x - y Ipl(pz - pJ(y) dy. By the arguments in 
Section 11.5, lim,, r(477)-l Js,(+I - M~J4 dQ =-. J bn - PRY) 6 I 

LEMMA 11.27. E#) is a c~ntGtuousfunction of X. 

Proof. Since <r(A) E 0 on [Z, co), it is clearly sufficient to prove cF continuous 
on [0, Z]. Now, by Corollary 11.9, E(h; V) is convex in X. Thus &J:(h) has right 
and left derivatives at each point and the right (resp. left) dervative is continuous 
from the right (resp. left). This latter fact follows from 

EL(O) = inof (E(x) - E(O))jx = in; {ini (E(x + y) - E(y))jx} 

By Theorems II. 10 and 11.20, E(h) is differentiable on [0, z] and thus the left and 
right derivatives are equa1 for all X E [0, Zj. We conclude that E(h) is continuously 
differentiable, so by (19), <r(X) = aE/?J is continuous. t 

THEOREM 11.28. Let Y(X) = xFE, zj ) x - Rj I-1; zj > 0. For p G .Y+ let 

T(p) = essxinf [psj3(x) - $o(~)]. (39: 
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Then 

Remarks. (1) The proof will show that cF(h) is actually also equal to the 

sup over all p in .YA (thus providing another proof that eF is monotone non- 

decreasing). 

(2) Since g5,(x) + 0 at infinity (by Lemma II.25), T(p) < 0 for all p 
thereby proving once more that er C: 0. 

(3) I f  h < Z, then clearly the TF p has fF(h) T(p), so the sup is realized 
by the TF p, We conjecture that for X 2:: Z this is the unique p E JA with T(p) : : 

However, for X > 2, if p is the sum of the TF p with X z~ 2 Z and any positive 
i’, ihen T(p) - 0 so there are manv p’s with T(p) = Ed. This is in contrast to the 
minimization problem for which-thcrc is no p in & with c”(p; Y) = E(A; V) 
ifh>Z. 

Proof. As we have remarked above, if h ~2 Z, then it is easy to see that 

=%E.PaA T(p) : 0 = am so WC consider the cast X < Z. Suppose that 
Tfp) > cp(A). By continuity of cF(.), T(p) 2:: am for some A’ E (h, X>- Let p-rP 

be the minimizing p for a(*) on &, We shall prove that sp dx > A’ thereby 
pro\iing (40) (using Remark 3 above). By Lemma II.26 we need only prove that 

4TP>$Ds~letrb-.$,-h which is continuous by Lemma 11.25. Thus B = 
(x ! 4 >, 0) is open. Now, for x E B, either p&x) = 0 in which case p(x) 1~ P&X) 
or p&x) > 0 in which case &~(x) -&(x) = -+<Jh). Thus for almost all 
x E 3 n {x 1 p&) I:- O}, p*/3(x) > c&(x) + T(p) > &(X) i #(x) + Efi(X) > 
&F”(x), so p ;:: pTF on almost afl of 3. It follows that the distributional Laplacian 
&!I = 4+ ~ pTF) T;-- 0 on B so that J/J is subharmonic on B. Thus (CI takes its 

maximum value on %B u XI. At W, $ + 0 (by Lemma II.25) and by definition, 

$ -- 0 on aB. Thus # ,< 0 on B so B is empty. This establishes that $TF & $, . 1 

Remarks. (1) Our method of proof shows that in (41), & can be replaced 
by{pE<PjJp,=:h}. 

(2) For A < 2, the TF p’s obey S(p) = cg(X) and we conjecture they are 
the unique such p’s For X > Z, there is no obvious p with S(p) = E&) 7 .: 0 
and our proof shows that there is none. 
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Proof. We first claim that 

(42) 

For X < 2, just take p to be the TF minimizing p. For A > 2, proceed as follows. 
Let p” be the minimizing p for A = Z. We can find p E 98,, with 11 p - p lirn and 

11 p ~ p” &,s arbitrarily small. But then, by Young’s inequality, II+,, - $b 11~ is 
small so 1 S(p) - S(p)1 can be made arbitrarily small. 

Given (42), we need only show that S(p) < l F(h) implies that sp dx < h to 
complete the proof. Suppose that S(p) < <r(h). By continuity, we can find 
h’ < A so that S(p) < cp(A’). Let prp be the minimizing p on .&, so that 
Jprr dx = min(A’, Z). We claim that sp dx < JprF dx. By Lemma 11.26, we 

need only show that 4, > & . Let $J = q$, - #TF and let B = (x 1 # < 0} which 
is open. Now for x E B either p(x) = 0 in which case prF > p, or eIse p(x) > 0 

in which case (ax.): p2+) < $Jx) + S(P) < ~~(4 + #(x) + &F(X) < er(h) + 

#TF(x) & p?$) since PTF = max($F •t zF, O)3/2. Thus pTF 3 p on B, so A# = 
4x(p - pTF) < 0. # is superharmonic and thus takes its minimum value on X?. 

As in the proof of Theorem 11.27, B is empty so & > +rF a.e. 1 

11.8. Properties of the Chemical Potential 

THEOREM 11.30. Let r,(h; x1 ,..., zk ; R, ,,,,, RR,) be the chemical potential 
for V = I;=, zj j x - Rj I-1. Then: 

(i) hz the region 0 < h < Z = &, xj , EJ-; xj ; RJ is continuous, 
negative, strictly monotone increasing and concave, and lim,,, E&) = 0. 

(ii) For X > Z, cF = 0. 

(iii) For jixed I+ and A, Ed is monotone decreasing as any .q increases. 

Proof. (i) We have already seen that eF is negative and monotone increasing. 
Concavity will imply continuity and, since fF < 0 for h < Z and fF = 0 for 
h = Z, strict monotonicity. To prove concavity, let pi , pa minimize &‘(a; V) on 
&, , 9sahs . Let p = tpl + (1 - t) pz . Then J p = tX, + (1 - t) A2 and for any X: 

since 4P is linear in p and x t+ x2/3 is concave. As a result, T(p) 2 t E&) + 
(1 - t) E&), so by Theorem 11.27, eF(th, + (1 - t) h,) > t E& + (I - t) E&Q 

(ii) follows from Theorems II. 10 and II. 18. 

(iii) As zi increases, the corresponding 4, increases for any fixed p. Thus 
T(p) decreases, so by Theorem II.27, Ed decreases. 1 
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THEOREM II.31. Let E&: z1 ,.,., zk ; R, ,..., X,) be the chemicuZ potential 

for 1’ = -&, zj / x - Rj j-1. Let cy. = .j$=, xj3, /3 = supi zj and b = (4h/7?~r)~~~. 
Then for small A, cF = --b-l + O(1). h4ore preciseZy, when h < c$-~ and b < 

rninicj 1 Ri - R, j (zi + zj)-l, then 

-Z2(1 - h/Z)(4+rz)-2j3 :$ .cF :; -2211 - t5A/Z)(4h/n~)-“~3 

whm A < Z. 

Proof. Atomic case: (k : 1, z1 = Z, R, .--: 0). For b > 0, let 

p(.y) := (Z 1 x I--1 - b-l)V, 1x1 <Zb, 

= 0 > 1x1 >Zb, 

be a trial function. Since I z Ji (1 - X) 3t$1'2& z27j16,Jp zZSb313$/4z A. / 

Let i(x) = Jp(y) 1 x - y I-'dy. 

since Jk (1 -- X)~/~ 
sup0 I&) = 4(O) 7: b*/z Z2 3?/2 = 6h(Zb)~1, 

X-I/~ dx = 61. For x >. Zb, #(x) = A 1 x j--l. Thus 

e(x) I p2i3(x) - % j x i-l -+ #(x) 

z -b-l -1.. $(x), I x I < Zb, 

= -(Z - A)] x j-1, I x1 >.Zb. 

Thus, for X < 2, 

T(p) = -(Z - h)(Zb)-l, 

S(p) = -(Z - 6h)(Zb)-I, 

and the theorem is proved using Theorems II.27 and II.28. 

MoZecuZar case: Choose b > 0 as before and let 
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Then ha = spi = z: b3j2 n2/4. Choose b such that h = &, hi , i.e., 6 = 
{4A/z-%)2/3, and suppose that X is sufficiently small such that the balls B, = 
(x j 1 x - R, 1 < z$} are disjoint, i.e., b ,< rninicj 1 Ri - Rj I(+ + zj)-l. We 
also suppose that A, < xi, i.e., X gi c$-~. With C(X) = p’/“(x) ~ &p(x), one has 
that in Bi 

E(X) = --b-l + z,b,(x - R,) - c (zj ~ AJ 1 x - Rj j--l. 
liii 

In Bi, j R, - Rj ! - z,b < 1 x - R, 1 < 1 R, - R, / + z$. Therefore, 

S(p) < b-l max 
d I 

- 1 + 6A/as - 1 (zi - Aj) [ 1 Ri - Rj 1 jb 4. ~d]-l * 
j#i i 

Turning to T(p) we note that e(x) is superharmonic in B, and thus has its 
minimum on LY$. In K = [w3\ut Bi, p(x) = 0 and -4,,(x) is harmonic and 
thus has its minimum on SK. Since Ai < zi , this minimum is again on the 
boundary of some Bi , Therefore, 

T(p) > b-1 lrp I- 
1 

1 + h/zi - c (q - AJ [I Ri - Rj I/b - zi]-’ . 
j#i I 

The use of Theorems II.27 and II.28 concludes the proof. 1 

From the properties of E&), we can read off properties of p(A; Zj ; Rj) (we 
have already proven (i) and (ii) by alternative means): 

THEOREM 11.32. ETF(h; zj ; R,), the minimuTn of b(., C;=, zj 1 x - Rj 1-l) 

on .RA , has the following properties : 

(i) FOT 0 < h < Z = & zj , ETF(X) is Cl, negathe, strictly monotone 

decreasing and strictly convex. 

(ii) F”(A) is constant for h 2 Z and Cl near h = Z. 

(iii) For A SW&, ETP(X) N Pi3 in the sense that hmAL, E”F(h)/A1/3 = 
-3(7? &, a;-3/4)3/3. 

Remark. Some results on JP’(h; Z) for the atomic case when X - 2 can be 
found in Theorem IV.12. 

III, QUANTUM N~ECHANICAL LIMIT THEOREMS 

In this section we shall prove a variety of theorems that assert that as the 
nuclear charges go to infinity, quantum mechanics and TF theory become 
identical While we could allow more general potentials than those of the form 
(la), in Section III.1 we shall state the limit theorems for the density (44) when 1’ 
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is of the Coulomb type (la). WC shall reduce the proof of the limit theorems for 
densities and energies to a single limit theorem for the energy but with I; of a 

more general form than (la). Baumgartner [5] has recently found an alternative 
proof of the limit theorem announced in [49] (Theorem III.1 below). His proof 
uses the Hertl eb al. bound [29] and Martin’s limit theorem [%I. 

With our choice of units (setting the c of (3e) equal to I), -T-I, (of Eq. (2)) 
becomes: 

where C’(x) - CF=, zj 1 x - Rj , i. We remind the reader that Ho’\’ is considered 

on JCpHys , the space of antisymmetric spinor valued functions described in 
Section 1.1. We introduce the notation &o(zi ,..., z,; ; R, ,..., R,) to denote the 

in&urn of spec(HoN) on zP,,,, . I f  #(xi , pi ,;...; .y.V , uN) is any element of 
3 PJlYS we define pj(x I ,..,, ,zj ; 4) for j c:.: N by 

III. 1. Bask Theorems and Reduction to the Eneqy Theorem 

TIIEOREM 111.1. 

lim E~Juz, ,..., azk ; a’m1.‘3R1 ,..., ~-~‘~R~)zk)i!u~‘~ = ETF(A; zi ; R$). a->z (45) 

Remarks. (1) In (45) a goes through values with aA integral. Alore generally 
if Rjn), JV, , zjn’ are given such that z(i’)/Zrn) + zj (with Z(ri) = Cf=, .z:“r), 
RyJ[Z(n)]-lP -> Rj, N,/Zfn) --f A, and Z(‘a’ --+ CO, then E$ (zjn’; Rj”‘)[Z(n)]mm’i3 + 

fl’F(X; zj ; R,). This result is a consequence of the fact &at as our proofs below 

show, the limit (45) . 1s uniform. All the other limit theorems below have an 

extension to this more general setting. 

(2) As explained in Section I.2, Theorem III.1 says that 

E,B,(z,a; Rju-1’3)/ETF(ha; X~U; Rja-1’3) + 1 as a + CO. 

(3) As we also explained in Section I our methods also handle the case 
where the Rj.“) art: constant or, more generally, where (Ry) - Ry)) ali3 + iy) 
(all i + j). In that case EE(zja; Ry’) - min(,+lC+~,+,) &i ErF(X; z, ; 0). In 
other words, the system breaks up into isolated atoms or ions. 

To state our other theorems we introduce a notion of “approximate ground 
states.” 
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DEFINITION. Fix a;-, R,(j = l,.,., A), and A. For N = l,,..,..,, let h a, = N, 
and let HON be the Hamiltonian (43) with ~j”’ = ~,a, ; RjN) = &u$/~. A 
sequence of normalized vectors $N E 5 PHYS is called an approximate ground 
state if and only if 

[Oh , HQ~&) - &q a;7’3 - 0. 

If A ,< Z == Ci=, zj, it is known that H ON has an isolated eigenvalue at the 
bottom of the spectrum [4, 79, 971, and the corresponding eigenvectors form an 
approximate ground state. This ground state may well be degenerate, however, 
In interpreting the results below, the reader should keep this example in mind. 
We consider the more genera1 approximate ground state, first because of the 
uniqueness question; second to have a resuIt in the case A > 2 (where we expect, 
at least for a11 large N, that there is not an eigenvalue at the bottom of the 
spectrum); and third, to be able to say something about excited states where, in a 
suitable sense, not many eIectrons are excited. 

THEOREM 111.2. Let {JJ~) be any approximate ground state. Write H,fl =z. 

KoN ~ A/ + R,” corresponding to the three term in (44). Then 

(4~ > K$hd G”~ + KM, 

Cfb I bNIG,) aG”3 * A(P), 

(4, Rzh) ai? + R(p), 

where p is the unique function in $A nainimizing the TF enerf~ function 
&(a; CL1 q 1 x - Rj 1~‘) and K, A, R are the JmctionaZs of $11.6. In particular, 
if I,!J~ is the ground state of a neutral atom (i.e., N electrons, V(x) = N 1 x I-l), 
then as IV-+ co: 

Remark. The final statement in the theorem follows from the first part of 
the theorem and Corollary 11.24. 

THEOREM 111.3. Let (z+~] be any approxitPnategroundstate.Letpj(X1 ,..., xj ; #N) 

be given by (44). Let 

~bj(X~ ,..., Xj) = a~2$,(a~1’ax, ,.. ., t7G1’3Xj) (46) 

(47) 
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!f A : % Lx I;;, zj , then the restriction that D be bounded cm Oe revved fmn 
(47) and 

d,(X) + PI&) 

in tJze ueuk-L1 sense. 

Remarks. (1) p” is normalized so that 

As N - 22, s R3, Npj(x) djx ---F Aj. I f  X :< 2, then JRaj P&(X) d’x 2: hj (bj 
Theorem 11.20), so the part of Theorem III.3 folIowing equation (47) follows 
from (47) and Lemma III.4 below. 

(2) One part of this theorem is the assertion that as N --+ 3~) there arc no 
correlations among any finite number of electrons; in particular, one has an 
a posteriori justification of the ansatz (5), just as Theorem III.2 provides an 
a posteriori justification of the ansatz (6). 

(3) For the case of a neutral atom, l’(x) --- : s I-* and A 1, if we take 

j y  1, then (47) says: 

where po(.x; Z) is the one-body density in the quantum atom of charge Z and 
pTF is the charge 1 TF atom. Equation (48) f  o course: says that the fraction of 
charge in %- ‘la D is given by the TF theory, and, in particular it says that in a 
definite sense the bulk of large Z atoms shrinks as %- 1!3 as Z --+ XI. We shall say 
more about this in Section IV. 

(49) 

as nt + x fvp D bounded and for II equal to all of PP. Then (49) holds for any I), 

and pnr + p in zueak L1fIW”). 

Proof. Given c, find a bounded D, with JKnIDO p(x) dx 5;: ~14. By (49) we 

have that lEniD, p,Jx) dx = _rogn p,,>(x) dx - JD,p,,(x) dx - lR,clD,, p(x) dx. Hence 
there exists an M such that sR,,,oOp,,, (x) dx < e/3 for all m > M. Let D be 
arbitrary and write D 7 D, u D, with I), C Do and D, C R’c\D, . By hypothesis, 
for suitable !M1 , ~1 1.: M, implies that 

( j-D (P,,~ - p) d.v 1 .: r/3. 
I 
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Since SD, P,,, < SRniDo pPrr and similarly for p, m 2 max(M, M1) imphes that 

1 lD(pln - p) dx 1 < l . Since finite linear combinations of characteristic functions 
are dense in L” and sup,,< 11 pm III < CO, by hypothesis, we have weak L1 con- 
vergence. 1 

In the remainder of this subsection, we want to show how to prove (47) when 
j F 1, from a suitably strengthened version of Theorem III. 1. The remainder of 
Theorem III.3 and also Theorem III.2 follow from different strengthenings of 
Theorem III.1 which can be proved by our methods in Sections 111.2-III.5 (see 
the remarks below). The strengthened energy theorem we will need is: 

THEOREM III.5 Let V be oj the form 

V(x) = i zj 1 x - Rj I-1 + U(x), 
j=l 

whme zj > 0, and U E C,,m(W3). Given A, N let aN be defined by Au, = 
ENQ be the injnmum of the spectrunz of 

(50) 

N. Let 

where 

(514 

V,(x) = a4i3 V(&“x). PW 

Let FF(A) be the minimum on JA of a(.; Y). Then 

lim E,Q/a$s = ET’(A), 
N+m 

Remarks. (1) Th is is the theorem we need in order to prove Theorem III.3 
whenj = 1. For generalj, one must consider a V of the form zfsl zl j s - R, 1-l 
and an additional term in (51a) of the form 

where U is a symmetric function in COm(W3j), The TF energy functional is then 
replaced by 

St. II P I!% - j p(~) V(X) dx - j U(X, ,..., xi) &) ... ~(5) djx 

+ % j PM P(Y) I E - Y I-’ dx dy. 
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With these two changes, Theorem III.5 holds (by the methods of Sects. 
III&111.5) and this new theorem implies Theorem III.3 withj arbitrary (by the 

methods we discuss immediately below). We note, however, that three points 
arc somewhat more subtle for this modified TF problem. First, the j-body 
interaction, I J U(x, ,..., X,) p(xl) .‘. p(Xj), can destroy convexity of the energy 

functional in p, and consequently the minimizing p may not be unique. However, 
the minimum energy for U rcptaced by al: is still concave in 01 and diEerentiahle 
at 0; -: 0. The diffcrentiahility follows by the method of Theorem II.16 and the 

fact that the minimizing p is unique when a: ~~ 0. Second, in proving the existence 
of a minimizing p, we must exploit the fact that if pm + p in weak P(W), then 

P7~(~1) . ‘. Pvt(xj> + P(xi) ’ ’ ’ dxj) in weak Ln(lW”j). This follows from the density 

of sums of product functions in W(W’) in the norm topology. Third, 111 is 
bounded by 11 p lllj 11 U l~57 < m since U E C,)-(W) and p E $A . 

(2) Theorem III.2 follows by the methods below and a theorem of type 
III.5 but with ETF replaced by E(K, LY, p, X) (see Sect. 11.6) and with 

With these two changes Theorem III.5 still holds (by the methods in Sects. 

111.2-111.5). In obtaining Theorem III.5 from this theorem, the differentiability 
Theorem II.21 is needed. 

(3) By scaling covariance of both the quantum and TF theory we can and 

shall suppose henceforth that X ~~ 1 and hence that a, : X. 

F’YOC$ of (47), j ~ 1 from Theorem 111.5. Since ,& and PTF are both functions 
with L1 norm at most 1, it suffices to prove that 

1 N{l(S) U(s) Js --f 1 p*F(x) U(x) d&Y (52) 

for all Li E C<(LF). Before giving the proof of (52) let us give the intuition in the 
special case where $s is a sequence of ground states rather than just approximate 
ground states and where we suppose each Ho N has a simple isoIated eigenvalue 
at the bottom of its spectrum. After undoing the scaIe transformation, 

where 

T’,(,r) :.-- >$ zj 1 s - Rj I .l j- u7’(x). 

Now, by Theorem 111.5, N--5/3 E;,,Q( I,‘,) converges to E”F( P-J, so (52) is equiva- 
lent to the convergence of derivatives of certain functions which we know 
converge pointwise. In general, of course, pointwise convcrgencc does not imply 



42 LIEB AND SIMON 

convergence of derivatives but if all the functions are concave (as they are in this 
case) and the limiting function is differentiable (as it is by Theorem 11.16) then 
the derivatives do converge (the use of this fact in mathematical physics has 
been emphasized by Griffiths [25]). It is this mechanism that is central in the 
proof we now give for approximate ground states. 

Let E,,,Q(a) be the infimum of the spectrum of H/(a) of the form (43) with 

and let fN(a) = N-7/aENo(~). Let fZ(a) be the minimum of the TF functional 
,P(*; cj”=l z, 1 x - Rj [pl + 01 U(X)). We begin by computing J&(X) U(X) dx 
in terms of expectations with respect to $J~. 

== &“I” s U(W3x) NjTl(x) dx 

(53) 

~ aN4j3 -- 
s 

U(N113x) [N2Nfi1(N1/3x)] dx 

Thus by the Rayleigh-Ritz principle, for any ol > 0: 

N-‘kl[E,Q(a) - ENQ(0)] < 1 U(y) &(y) dy + a-‘N-‘/3[8E(0)], (54) 

By definition of approximate ground state, IP-‘/~~E(O) -+ 0 as N + co. Letting 
N+ cc in (54) and using Theorem III.5, we have: 

d[ETF( V,) - ETF( V)] < lim j U(y) $q y) dy ; a > 0. (5% 

Similarly for iy. < 0 (using the fact that multiplication by a+ reverses the sign 
of inequahties): 

a -l[ETF( [,;) - ETF( v)] 2 li;;i [ U(y) N&(y) dx; a c< 0. t-b) 
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Since ErF(vm) is differentiable at 01 = 0 with derivative JpTF(x) U(X) dx by 
Theorem II. 16: 

proving (52). 1 

The remainder of this section is devoted to the proof of Theorem III.5 
(with X = 1, uN = N) and in the remainder of this subsection we want to sketch 
the overall strategy. 

Since the ansatz (6) is based on an intuition of noninteracting particles in 
boxes, our first step will be to compare the Hamiltonian Ho” with certain 
Hamiltonians which force particles to stay in boxes by adding suitable boundary 
conditions on the box boundaries. It turns out one can “bracket HpN between 
operators with Dirichlet and Neumann boundary conditions. (For additional 
application and pedagogic discussion of the method the reader may consult [68].) 

Because of the intuition of Section I.2, we choose boxes whose sides shrink 
asN 1/3asN+rJ3. 

The second step is controlling the Dirichlet and Neumann boundary condition 
ground states inside boxes. We prove the necessary estimates in Section III.3. 

I f  the attractive nuclear-electron potentials were bounded below, the proof 
of Theorem III.5 could be completed on the basis of the two steps just described. 
The problem is that inside the “central” boxes containing the nuclei the potential 
becomes very large indeed due to the N zj j I ~- Rj 1m-i singularity (note the N). 
We thus will need a separate argument to “pull the Coulomb tooth.” We shall 
first prove the following: 

THEOREM 111.6. Fix a, 6 > 0 and Zet j x Ii1 be the function whkh is 1 x j-1 
if 1 x j > 8 and 0 if 1 x j < S. Theorem III.5 remains true with the followiy 

changes : 

(i) Rephce the V in (50) by: 

in both the quantum and TF problems. 

(ii) Replace the constant (3~~)~~~~ infront of the kinetic energy term (i.e., ---A) 
in HQN by (3972)-2~3a. 

(iii) Replace the term 315 sp 5/3 in the TF energy functional by + OL Sp5p. 

This theorem will be proved by the box methods of Sections III.2,111.3. The 
proof of Theorem III.5 will be completed by showing that by choosing 6 > 0 

607!23/1-5 
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and 01 suitably, we can make arbitrarily small errors in ETF and W7/sE,o in 
comparison with the S = 0, a: = I theory. 

111.2. Imertion oj Boxes 

In essence, we prove that ENQ/IV/3 -+ ,f? as N+ 03 by finding a, , bN with 
aN/N7~3 -+ p and bNliV7/3 ---f /3 such that a, < ENQ < bN . The basis of the 
bounds on ENQ wilI be the Rayleigh-Ritz principle in the following sense [68]: 

PROPOSITION 111.7. Let H be a self-adjoint operator which is bounded from 

below. Let Q(H) be its quadratic form domain and 1erC be a form core for H. Then 

Remarks. (1) By definition, Q(H) is those 4 for which 11 x 1 d($, I?&) < CO, 
where dE* is the spectral decomposition for H. For # EQ(H), ($, H#) = 

.b d&4 -W) ( w ic 1 is equal to the inner product of # and H# if #J t D(H) = h 1 
I# I J- I x I2 44, Ez$) < aH- 

(2) A form core is a subspace C C Q(H) such that for any # E Q(H), there 
is some sequence & E C with [I I/ - & ]I + 0 and ((4 - I/J, H($ - &J) -+ 0. 

To apply this version of the principIe we need the folIowing technical result 
which folIows from standard operator perturbation theory [40, 67, SO]. 

PROPOSITION 111.8. If H, is xrxl -A, on tipHYS axd V: ZpHYS + ~pHYS 
is a muitiplication operator that is a sum ojboundedjunctions and two-body Coulomb 

forces, then Q(H) = Q(H,) and anyf arm core for HO is a foym core for H. 

Remark. In fact, by a classic theorem of Kato [38], one has the stronger 
result that D(H) = D(H,) an d y  p an o erator core for HO is an operator core for H. 

We could present the upper bound EN0 < aN as coming from a suitably 
clever choice of trial wave function in Q(H,) for HNQ but since the lower bound 
requires us to appeal to connections with classical boundary value problems, we 
discuss the upper bound in terms of a classical boundary value problem, For 
simplicity, we discuss the classical boundary value problems onIy in the case 
which we shall require, namely, for regions with flat boundary. By a coordinate 
hyperplane, we mean a pIane {x ] xi = a] in [w”. 

DEFINITION. Let (ri}iEl be a collection of coordinate hyperplanes in [Wn 
such that for any compact K C Iw” only finitely many ri intersect K. Let T’ = 
uir, rL . By Cr:, we denote the Cs functions of compact support whose support 
is disjoint from r, and by Cr;, the functions of compact support which are Cm 
on lP/r and which together with their derivatives have boundary values as x 
approaches rj from either side (but the boundary values from the two sides need 
not agree). 
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Thus: 
cp, c C,“‘(W) c cp, . (57) 

DEFINITION. --Ario (rcsp. -d,;,) is the operator obtained by defining 

(#, A#) - ] 1 04 I2 dx for 4 E C,:, (rrsp. C,,,) and taking the form closure. 

Remark. That every closed positive quadratic form is associated to a self- 
adjoint operator is a standard theorem; see [40] or [66]. To see that the form 

$ - s j V$ I2 dx is closable on C,;, and C,;, we note that for # E C,;, we have 
4 E I)(B*) with J 1 V# I2 fLx = 11 B*# I:?, where B is the gradient operator on 
C,%(K”\IJ. Since B* is a closed operator, A is closable as a quadratic form on 
CI.;N an d hence also on C,;, . 

One has the following classical boundary value description of -drio and 
--dp,y (see [40, 54, 681): 

THEOREM 111.9. Let 7 divide [w” into open regions {Rj}jeJ. Let L”(W) = 
@L2(Rj) under the association of f  ELM with (fj;jEJ , where fj : f r Rj . 
Then -Arzo (ye+ -A,:,) Zenaes ench Rj im.~ariurzt and rl corefor -AC. rLz(Rj) 

(wsp. -A,;, rLZ(R,)) . h t f f  t 1s t e se o uric ions of compact support in Rj which are C” 
in Rj , CK up to the boundary and obey $ = 0 on aRj (resp. F,$ =-: 0 on 8Rj). 

DEFINITION. a,# denotes the normal derivative. 
Since Corn is a core for -d (resp. C,;, or C,:, for resp. -A,:, or --drL,), 

(57) immediately implies the basic Dirichlet-Neumann bracketing result: 

inf spec(-dr,, + t’) ::, inf spec(-A -I- G’) 

<.z inf spec(-A,;, -I- t;). 
(53) 

Notice that in (5X) we have compared -A + I/’ with operators that have boxes 
built into them. 

JVc are of course interested in operators on X&v, rather than L”(R”) and so 
we must make some simple additions to the above arguments. Let {vj)ie, he a 
collection of hypcrplanes in R3 and y  : ujyj . Write <rr ,..., rrv) E l!W and let r 
he the collection of hyperplanes in WN with some r in some yj . Then C,;, and 
c I’:&” are left invariant by permutation of the coordinates in L”(R3N; ~2~“). 
Thus -d,;, and --LI~;,~ leave tiPHYS invariant. As operators on Xe,,, , let: 

Then, as in (58): 
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THEOREM 111.10. For any N and any y: 

inf spec(Hz,,,,) < inf spec(HoN) < inf spec(Hz,,,n). 

The further development we require involves using product wave functions 
as trial functions in (#, H$). 

THEOREM 111.11. Let pi ,..., u, be N orthonorwd functions in Q(-A,,,). 
Then: 

inf spec(H&,)) < -a : (q , flu<) ~ % (q , VU,) 
1=1 i=l 

+hEji x N-Y I-’ I T(x)I” / dY)I” dxdY- (60) 
i.5 

Remark. This theorem and its proof are valid in the Neumann case aIso but 
we shall only need the Dirichlet. 

Proof. Let Enr be the permutation group on (l,,,., N} and for ?r~Zl,,, , let 
(-lp be its sign. Let 

Then II+ 11 = 1 since the ud are orthonormal and by a simple computation: 

(Y, f&.,Y) = right side of (60) - i c 1 1 x - y 1-l q 
i.5 

* u&) %? ~YI dx dy. 

By the positive definiteness of 1 x - y I-l, the exchange term 

- ; j I a! -Y I-' 44 44 4Y) %(Y) 

is negative so inf cr(H&)) < (Y, H&Y) < right side of (60). 1 

THEOREM III.12. Let y divide Wa into cubes (CO}BEA . Suppose that -V is 
houndedfrom below, and let V, = SU~,,,~ V(x) and W,, = inf,,CY;kScs 1 x - y j--l. 
Let E,(n) be the sum ofjiust n eigenvalues of -d,;cB as ara operator on E2(C, ; C”). 
Then 

inf spec(H$,,,) 3 inf E({Plg}& I C np = N (604 
B 
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Proof. Let xB be the characteristic function of C, and let fi he the operator 

given by 

on all of Lz(~S~v; PV) (rather than just the antisymmetric functions). Let 
ur ,..., u,~ bc functions in L*(W; 6=“) with each zli supported in some C;, and each 

ui an eigenfunction of -fl,., *, B (with say --EA,~;, u, == .&r+). Then $ -: 

UI(X1 ; q) .‘. U,(XN ; Do) is an etgenfunction of A with eigenvalue 

and as ur runs through all possible eigenfunction of -d,V;,B we get a basis of 
eigenfunctions for A. Since 17 commutes with permutations 

inf spec(fl r RiPnYs) = right side of (6Oa). 

But clearly H&:, : : I? r X&rYs . 1 

Theorems III.l~III.12 allow us to bound ENo in terms of eigenfunctions 
for -d in boxes with Dirichlet or Neumann boundary conditions. Note, 
however, that for Theorem III. 12 to be applicable -- F’ must be hounded below, 
This restriction leads us to the considerations in Section 111.4. 

111.3. Estimates for Boxrs 
In this section we prove somr simple estimates about eigenfunctions of -d 

in a box of side a with D or N houndary conditions. For convenience we take the 

box to be [0, a] \ [O, a] x [0, u]. 

THEOREM 111.13. Leb EaD(n) (resp. EUN)) be the sum of the.first A eigenvalues 

(of -(~x~)-~/~L! on L2([0, a13; C”) with DirichZet (wsp. Neumann) boundary condi- 
lions. Then for some constamt C and ali n, a: 

1 fi 3 
u “(n) - - n5/3(+ 

5 

&N(n) - ; .5/3,-e :.:; f34/3u-?, @lb), 

I’mof. By scaling covariance EJn) ~~~ a--“&;(n) so WC need only prove (61) 
when a - 1. In that case, the eigenvalues of -,A, (resp. -A,) arc easy to 
describe. Let Z+ be the strictly positive integers and let FS .-- Z+ u (0). Eigen- 
values of -da (resp. -AN) are associated with points k E Z +a (resp. W) and the 
associated eigenvalue is d 1 K Ia. Taking spin into account we consider sets 

{W’ ,...,P)} in HA3 (resp. N3) with the property that no three k’s arc equal to each 
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other. Let A,n (resp. AmN) be the minimum value of c:=r 1 I&J’) I2 as {Wl,...,Pl} 
runs through al1 such sets. Then ErD(n) = (3712))2WA,D (and similarly with 
D replaced by N). 

Let K, , T,, be determined by: 

s 
K* ?z=?r k2 dk, 

0 

T, = T I” k4 dk, 
0 

PI 

Wb) 

so that 

Then (61) is equivalent to: 

I AtaD ~ Tn 1 < crw, F3a) 

14AN- Tn 1 < dn413. W3b) 

Intuitively, (63) says that A, is approximately obtained, up to a surface error, 
in a continuum approximation by an octant of a ball. 

Choose GhD) (resp. GiN’) to b e a minimizing set for the problem defining 
AnD (resp. AnN). Since G, (DJ is an acceptable trial set for the problem defining 
AWN we have: 

AnD 2 A I+ n . (64) 

Next we claim that 

sup j k ) .< agN3 
7CEGkN’ 

for some a, > 0. This is so because a cube of sideb2n1i3 (2 [n1i3j + 1 for all n) 
contains at least n points of 2,s. Hence GLN’ is clearly contained in a sphere of 
radius 2(3)1W/3. Since {K + (1, 1, 1) 1 k E GiNI} is a valid trial set for AnD we 
have that 

5~ A,N + Q(3)‘/“) LZ,~“/~ + 31~ 

Let F, = Lh,, (N) {E 1 ki < li < ki + 1; i = 1, 3, 3) and let K,” be the radius 
of the smallest sphere containingFW . Since KnN is minimal, some k E GLN) must 
obey 1 k ] 2 K,,N - 3r12, so that any k E Z,3 with ( k 1 < K,N - 311” must 
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appear twice in GLN) by the minimizing property of GkNN). Thus F, must contain 
the octant of the sphere of radius K,lv - LPI”, so 

from which we conclude that ICm” :G k;, $ 31/2. Now clearly 

SO 

s 
K,t31’? A,N ::;, rr k4 dJz 

n 

-7 T,(l + A-;-’ (3)1/Z)” (66) 
r.:: T, + a,n4i3. 

Similarly, let (GAD))* he the doubly occupied sites in GLDP’ and let B, = 

WfMG (II))* {I 1 ki ~ I .< Zi ::.< ki ; i =: 1, 2, 3. Let KnD be the radius of the 
largcs; sphere whose upper octant is in B, . Then some k ~2,~ with 1 k 1 .< 

KqrD + 31i2 does not appear in (GtP’)*, andsonokwithlkI>Knn+31pcan 

appear in G, CD) by its minimizing property. Thus GkD’ is clearly contained in the 

sphere of radius ICrLD + 3lp, so KqiU >- & - 3l1”. Since xktc(~) k2 3 
2 JR. k2d3k: 

li 

ArbD ]‘- T,, ~ a&la. (67) 

(64)-(67) clearly impI>* (63). 1 

Choose an orthonormal basis, {uJx; c)) for P([O, 113; C”) of eigenfunctions 
for -A, ordered so that --.dDu,& --- Z$,U~ with EI < E2 5: .” (the only choice 
is that due to the degeneracy of eigenvalues of -A, and the choice of spin 

dependence for u,(.v; u)). Define: 

(68) 

As II + CO, we expect that p4) should approach a constant, which must be 

fur u suital3le constant f. 
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Remarks. (1) A similar result holds with Neumann boundary conditions 
but we only use the resuIt with Dirichlet boundary conditions below. 

(2) If pfiia is the density in a box of side a so that 

co 
PT2.U z na-3 (69') 

then by scaling, (70) implies: 

II PZ - pn,a yp < frz5&-3+3/p, 1 <pp2, (704 

!I PL - pn,n IID ::< 71-2lpf2lpnl-1/3Pa-3~31~, P 22. w-9 

Proof. We can describe the functions u, by ordering the points in Z+3, 
w, K(2),..., with 1 k(l) 1 < 1 K(z) j < 0.. with each point in E.,3 counted twice. 
Let W,(x) = (21/g)3 sin(kr) TX) sinikr’ fly) sin(K$“’ TM) and u,(x; u) = 
W,(X) a,(a), where OIL = (29I for u = & I, if K’“) has not appeared in the 
list already, and a,(~) = 4219-l if k(n) h as appeared once already. Thus, in 
particular: 

0 < p-(x) < Xn 

and so 
II ppa - prim llm G 7n. (71) 

We first claim that given (71) it suffices to prove (70) for p = 2, for then when 
I <p,<Zweuse 

andforp 22 

IIGJ = 1 lg lP = j gz Ig lDp2 < llgllr IL&II;’ 

Now, for k, q E Z, : 

where ak,* is the Kronecker a-function. Thus, since jp,(x) dx = prim: 

where y(i,j) is the number of components which kt*) and PI have in common, 
i.e., y = 0, 1, 2 or 3. For each i, let pn(i) = #{j j r(i,j) # O}. Then 
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Now {k(l),..., Un)) is a proper choice for the set GkD’ of the proof of Theorem 
III.13 and thus 1 Pi) 1 < &l/s (for i :x l,..., n) by the arguments in that proof. 
It follows that for any i, p=(i) < 3 . ~(C?Z~/~)~ < C,n2!3. As a result 

from which (70) for p = 2 follows. 1. 

III.4. Pulling the Coulomb Tooth 

In Section III.2 we encountered a difficulty occuring when V is not bounded 
from below. This difficulty is not merely a technicality and must require an 

additional argument. For by consideration of free Dirichlet and Neumann 
eigenfunctions alone, one cannot hope to prove that atoms do not shrink at a rate 
faster than the Z-l/3 scale of TF theory. What we shall do to prove this is to 
show that cutting out the core of the Coulomb potential at a distance SZ-1/3 
produces a small error on the Z7/3 scale: 

~‘HEOREM 111.15. Let V(X; Y) = 1 x j-l if 1 x j  :< Y  and 0 if j  x 1 2. T .  Let 

e,(Z; r; cc) be the injinum of the spectrum of the operator 

*n &HYS Then fur all n, Z, r, (Y: 

Remarks. (1) If  Y = SZ-l/s, then e, is very small on the level of Z5r3 if 6 is 
very small. 

(2) In place of our sharply cut off l-(x; r) we could use a Yukawa potential 
e-pp,‘r, for p small, as is used by Wertel et al. [30, 311 (this is in essence a Pauli- 
Pillars [63] regularization of the Coulomb singularity). We emphasize that the 
angular momentum harrier which is basic to our argument is also basic to 
theirs. 

Proof. Let A,, he the negative cigcnvalues of h ::= --ard - ZV(x; r). Then 
for any n: 

en(Z; r; a) ;2 2 z Aj . 

I f  we consider h on the subspace of angular momentum I, then h is unitarily 
equivalent to 
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on L’(O, XI) with boundary condition 9(O) = 0. The total effective potential is 
clearly positive if aZ(l + 1) 2 2%. Letting L be the smallest integer satisfying 
this equation we clearly have that 

L < (zya)lJ2 + 1 (731 

and that h has bound states only for I <L. For E <L, we have that -ZV(x; r) 2 

-2 1 x 1-i so we can dominate each energy 1eveI from below by the corresponding 
hydrogenic level. Thus a lower bound on C hj can be obtained by taking the 
energies of hydrogenic levels but with angular momentum I <L: 

i’ Cxj > - t orlzz i,zl nL2n2 + j2$+, nm3Lz/ 

;,> - 4 a-lZ2L 

since rEwZ-,+, n-2 < JT x-~ dx =L-r. Therefore 

e,(Z; r; 01) > -a-IZ2L 
2 -&z” - ,-3/2Z5Pr1/=. 1 

III.5 Putting It All Together 

Wc are now prepared to prove Theorem 111.5. We first prove the result for 
cutoff potentials, Theorem 111.6: 

Proof of Theorem 111.6. Take A = 1. We first prove that 

%% &Q/N7’3 G inf I&; v) 1 j p e 11. 

It is cIearly sufficient to prove 

(74) 

iii-ii ENQ/N’J3 < cqp; i-q (75) 

for a dense set of p’s, We thus suppose that for some s, p is a constant pdl,n2,R3 
on each cube of the form [n,s, (n, + 1)s) x [PQJ, (n2 + 1)s) % [#a$, (na + 1)s) 
(for ni E Z) and that p has compact support. For fixed N, let m{n; ;V) = 

4% t a2 3 n3 ; N) = [NPnl.w2,11g s3], where [x] is the largest integer less than X. 
Thus 

m.~X c m(n;N)<N. (76) 
nsLP 

Let y  be the union of the hyperphmes, xi = n&V1/3 and let ui ,..., u,~~ be the 

eigenfunctions of the operator -A,:, consisting of the first m{n; Nf Dirichlet 
eigenfunctions in the box of side &-Ii3 with lower 
Theorem 111.11, 

vertex nsN-li3. Then by 
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w11e1.u R,,“(n) is defined in Theorem HI.13 and ,?.y[~) 7:: Cy?i , Us”. Since 
??z y  .” 
F’Q 

.‘1:, the general analysis of SchrGdinger operators [6X] implies that l?‘yQ ’ 

‘l?‘,T Sow 

As X ---t x, the second integral in (78) g oes to zero, while by Theorem III.1 3 the 

first term is dominated by C(sW7/“)-’ C m(n; iV)B/3 :< Cs--“N”~3(~ m(n; N))4p < 
CSK~W/~. Thus the first term in (77) divided by 111’71” converges to 3 01 J$!“(,x) dx. 
Similarly, using Theorem III.14, and scaling, the other two terms in (77) divided 
by ;ViP converge to .- s J’(X) p(x) dx + 1 s p(x) p(u) 1 x - j’ 1 m1 dx d>j. This 

proves (75) and so (74). E’or later purposes we note that this proof of (74) does 

not use the fact that the P of Theorem III.6 is hounded below and so we also 
have half of the proof of Theorem III.5. 

Now let us prove that 

lim ESh.Q/W13 1::: inf l$(p; t‘) 1 /” p ..- I (. tw 

For fixed s, consider the hyperplanes y  described above and write RsJy = uBCB. 

Consider the TF problem obtained by replacing Y(x) by ~J’,~(x) = ZtiVBxs(x) 
and 1 x - y  I~.1 by 2 WfirxB(x) x,(v) :I Ws(x, ~1) (where xa is the characteristic 
function of C, , TTfl = s~p,,,~ r/(x), W,,, = inf{l x - J* 1-l I .y E C, . ?’ E C..]). Let 
E,<(p) be the corresponding TF energy, i.e., 

The minimizing functions for C,(p) d o not directly concern us, although we 
remark that by the methods of Section II, minimizing p’s do exist but the>: need 
not be unique. Jirhat is criticat is that as s 1 0 

inf j/F,(r) 1 J” p 5; 11 + inf I#(r; 1;‘) I i p :-I 1 ( . 

This is proved by the methods of Section II: One first shows that there exists a 
constant D, independent of s such that t”,(p) .< 1 -!- inf{a,?(,) 1 sp :-; 1) for 
any s implies that 11 p I& < D. Next one shows that E,(p) * &(p; V) uniformly 
in p for all p’s satisfying I! p & :X D and ~1 p !I1 < 1. This is done by noting that 
1’ E. ~ C’, I! f- 0 and ‘I 15’ - WY 11 --• 0 in L5j2 + L”. Thus inf{a,q(,) I sp ;< 1) 
can he sought among p’s satisfying j p & :s Z< D and the uniform cnnvergencc 
implies the convcrgcnce of the infimurn. 
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By the above convergence result, it is sufficient to prove that 

for each fixed s. Let r be the family of hyperplanes xi = snN-li3(n EZ). Now 

by Theorem III.12 and (58). 

ENQ/N7i3 2 inf N-‘/3E({n,),,,) 1 c ns = N 
I 

with E({n,}) given by (60b). Now, by scaling, 

N-7/sE({n8)) = b,(p) + error, (81) 

where p is ngN-1$-3 on the cube WKJ,, . The error term in (81) is 

N-i/3 - c W,,,7s, + ; (E&) - 2 n;/3(sN-1/3)-2) . 
Y 1 

Now, for any Y, IV,., = &V-1/331/2)-1 

while as above, by Theorem III. 13: 

( T E,(n,) - Q T$P(sN-~/~)-~ / < C(SN-~P)-~ c ~$1~ < const ?W3. 

Thus 

thereby proving (80) and thus (79) as well. 1 

Proof of Theorent f11.5. As in the proof of Theorem 111.6, i%ii ENo/N7i3 .< 
inf{&(p; I’) 1 sp < l}. F or fixed 01 > 0, 6 > 0, let E(cu; 6) be the TF energy 
associated with the functional a: $ s ,@ + + jj j x: - y  I-$(X) p(y) - 
s(zfE1 zj ( x - Ri ];I + U(r)) p(x). Then, by the methods of Section II, 

lim,+l,6Lo E(or, S) = E( 1, O), so given E we can find A < I and D such that 

A < (Y < 1,s < 13 implies that j E(ol, 6) - E(1, 0) 1 < ~12. Let &o((~, 8) be the 
quantum energy which we know obeys ENQ(cy, S)/N’/” --f E(a, 6) by 
Theorem 111.6. ClearIy, we need only find S < D such that 

iim (E,O - E,Q(,4, S))/rV7/3 > -(cjZ) - VI 
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Now, for any operators, G and J we have that 

inf o(G + J) 2 info(G) + info(J), 

where a(B) K spectrum of B. Thus 

where 

i=l 61 

with l’(xj ; Y) given in Theorem III.15. By that theorem, 

inf u(J,j) 2 -wq(l - A)-1 k - k3/3(1 - &q--3/3 g/qr7/3q/3, 

Choose 8 < D and 6 < (x:j”=, ~i’~)-~k-~( 1 - JI)~(E~~)~. Equation (82) follows, 
thereby completing the proof of the theorem. 1 

IV. PROPERTIES OF TF DENSITIES 

In this section we consider potentials 1’ of the form (la) 

and study properties of the density p which minimizes B(p; I-) on .YA . Most of 
our results concern the n.ezsfrraE case where h = Z = CF=, zj , although we do 

say something about the ionic cme h < 2. We have already proved several 
facts about p: 

THEOREM IV-l. The function 

~(4 = j P(Y) I x - Y 1-l dy 

is a bounded continuous function going to zero at injnity with 

.h pa~ticuh~, 4 = Y - v  and p 7 [max($ - $,, , O)]s/” vanish at infinity and ore 
bounded and continuous on any subset of R3 which is a nonzero distance from all 
the Ri . 
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Prooj. The statements about # and p foIlow from those for 7. That v  is 
continuous and vanishes at co is a consequence of Lemma 12.25. The bound on q 
follows from Holder’s inequality: 

T(J) = j,y15p I Y t--l P(X - Y) dr + j,v,>v I Y 1-l P(X - Y) dy 

Minimizing over all Y leads to the claimed bound on ‘I. 1 

THEOREM IV.2. (a) + = V - p * 1 x 1-l is nonnegative. 

(b) In the ionic case, p has compact support. 

Proof. (a) is a special case of Lemma H.19. To prove (b), we need only 
note that p = [max($ - ~$a , O)]“/” for some +,, > 0 and that 4 --f 0 at infinity 
{by Theorem IV.]). I 

The main results of this section concern the smoothness of p and its behavior 
at infinity in the neutral case. W.z shall prove that + is sdvictly positive and that p 
is real analytic away from the Rj in the neutral case and on {x 1 b(x) > $a , x # RJ 
in the ionic case. In Section IV.2 we shall prove that 1 x j6 p(x) -+ 27/4 as 
1 x 1 - co in the neutral case. 

IV. 1. Regularity 

We begin with: 

THEOREM IV.3. $ is strictly positive and, in the neutral case, p is strictly 

positive. 

Proo$ Consider the ionic case first. Since4 is continuous, S = (x j&x) = 0} 
is closed and, since 4 > 0 near the Ri , we need only show S is open to conclude 
it is empty. But since 4 is continuous, +(x0) = 0 implies that d(x) < &, for all x 
near x0 since $a > 0. Thus # is harmonic near x,, . A nonnegative harmonic 
function cannot vanish at an interior point of its domain unless it is identically 
zero in that domain. It follows that S is open. 

Now consider the neutral case where 4* = 0. Suppose no Rj is zero and that 
#J) = 0. Givenf Bore1 measurable on llP, define v](r) for r E [0, co) by: 
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A fundamental formula of potential theory tells us that for f(x) = 1 x - JC, l-l, 
If](r) = [max(l x,, 1, r)]~‘. Thus for I < min 1 Rj 1 : 

It follows that [+1(r) is monotone increasing in Y for r < min 1 Ri 1. Moteovcr, 
since [Q](O) L 0 WC see that 

1W) = Cblk) - k403 

= ad (y-l - +)~I(Y)~~TY~) dy. i 

Now, by Theorem IV. 1,4(x) is bounded, say by C2, on (X 1 1 x j < 4 min 1 Rj I). 
Thus fory <I min 1 Rj I: 

Since [+] is monotone, for Y < 4 min 1 Ri ~, 

Ed(~) G CW+) jur (Y-’ - r--Y4799 dy 

It follows that [$](P) = 0 for r < 4 min 1 Ri ] and r < (3/2r~5’)~~~. Since 4 is 
nonnegative and continuous, r+](y) :: 0 implies that $(rQ) = 0 for all 0. Thus 4 

vanishes near 0. We have just shown {x l+(x) = 0) is open. Therefore, as in the 
first case, 4 is strictly positive. Since p 7 +a/3, p is strictly positive. 1 

LEMMA IV.4. Let p-l + 4-l = 1, 1 < p < oz. Let g ED’(W) and f f LQW$ 
Suppose that there exist n functions h {h,>;zl in LQ(W) such that as y  - 0: 

f tx + Y) - fk) ~ (Y7 &+ ’ dx - 0 
IYI (83) 

Then f  * g is a Cl function and 

V(f*g) =h *g. 
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Proof. LetF = f + g and H = h * g. Then by Young’s inequality, for any w, 

I 
F(w + Y) - F(w) - <VP w4j 

IYI 

so F is differentiabIe and H is its gradient, H is continuous by Lemma 11.25. 1 

THEOREM IV.5. (a) Near each R, 

p(x) = $2 1 x - Rj I-‘/’ + /?j / x - Rj j-I” + o(l x - Rj I-“‘) 

jot suitable /3, . 

(b) IFJ the neutral case, p is Cm away from the Rj. 

(c) In the ionic case, p is Cl away from the Rj und Cm on (x I x # Rj all j, 

41x1 > 401. 
(d) P(x) + 0 us j x I+ 00. 

Proof. Since p EL” for all p between 1 and $ and 1 x j--l E L3+< + L3-r, 
p * I x 1-l is continuous and goes to zero at infinity by Lemma 11.25. In par- 
ticular +(x) = z, I x - Rj j--l + yj + o( 1) near Rj from which p(x) = 
~j3’~ I x - R! l--3/2 + Bj 1 x ~ Rj l-1/S + o(l x - Rj j--1/2) near R,, and p is con- 
tinuous away from all the Rj . This proves (a). Given x,, # RI , choose t/ E C,,= 
with support away from all Rj , and with # identically 1 near x0. Let p1 = 16p. 
Then + = V - (p ~ pJ * I x 1-l - p1 * 1 x 1-I. Now J’ - (p ~ pl) * 1 x 1-l is 
harmonic near x0 and thus is Cm near x0 . p1 is continuous on supp $ and so is 
bounded and thus is in every LP. Let 7 E Corn with 77 = 1 near x = 0. Then 
q(x) I x 1-l ELI with gradient in L1 in the sense of (83) and (1 - I) j x 1-l fL4 
with gradient in L4 in the sense of (83). Thus p1 * 1 .2: 1-l = p1 * T(X) I x j--l + 

p1 * (1 - 17) lx I-l is Cl, and so 4 is Cl. It follows that p = [max(+ - &, , O)]“/” 
is Cl away from the Rj . Thus p1 is C1 and V(p, + I x 1-l) = (Vp,) * 1 x 1-l. Now, 
as above, Vp, + I x 1-l is Cl, so 4 is C2. Thus p = [max(r$ - &, O)]“‘” is C2 on 

ix I w > #LA p roceeding inductively, we complete the proof. (d) follows from 
Theorem IV.1 and the TF equation. 1 

THEOREM IV.6 p and + are real analytic away from all the R$, on all of W 
in the neutral case and in {x 1 b(x) > QO} on the io7aic case. 

Proof. 4 obeys the nonlinear elliptic equation (4~)~~ d$ = ($ - +J3/* in a 
neighborhood of any x0 # Rj with 4(x,,) > &, . Genera1 theorems {see [60 
Sect. 5.81) then assert the real analyticity of 4 and so also of p = (477)-l 04. m 
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IV.2. Asymptotics at Infbity 

Our goal in this section is to prove that ( x I6 p(x) + 27/x” as 1 x 1 4 m for 
any neutral TF density, independently of the distribution of the nuclear charges. 
In the atomic case, such asymptotics (with different normalizations) were 
predicted by Sommerfeld [X5] partially on the basis that the only solution of 
d4 -- 4r$3/2 of the form c 1 x I+ is 4(x) = 9+ 1 x l--4. In the atomic case, 
where the TF equation d+3/2 = 4~-($3/~ - S(x)) is equivalent to an ordinary 

differential equation, Hille [32, 331 used methods of ordinary differential equa- 

tions to prove the correctness of Sommerfeld’s prediction. We shall use suh- 
harmonic function methods which allow us to handle the molecular case in 
which v  is not spherically symmetric. As we have already mentioned, these 
methods have been introduced by Teller [89]. We begin with a comparison 
theorem: 

THEOREM IV.7. Supp ose that 4, 4 are continuous positive functions on 
{x I 1 x / > R} with the following properties: 

(a) 4, I/J + 0 as 1 x 1 + m. 

(b) (437-l d+ < $3/2, (4~)-~fl# 2: y!~~/~, where the derivatives and in- 
equalities are in distributional sense. 

(c) -+4(x) > z)(x) for all x such that I x 1 = R. 

Then 4(x) > 4(x) for all x such that j x I 2 R. 

Remarks. (1) Theorems of this sort have been used by Hartmann and 
Wintner [37] and Protter and Weinberg [64]. 

(2) Motivated by our work, one of us has used the idea of this theorem to 
study asymptotics of Schr6dinger eigenfuctions [X3]. 

Proof. Let S == {v ~ d(y) < $(y)), vh’ h u IC IS 0 p en. Let f  (y) = $(y) ~ 4(y) on 
S. Then on S: 

Thus j is subharmonic on S and thus takes its maximum on the boundary of S 
or at infinity. But by (a), ( c , and the definition of S, j < 0 at infinity and on iiS. ) 
It follows that S is empty and C+(X) ::> $(x) for all x. 1 

THEOREM 11’.8. Let $ Ire a spherically symmetric solutioon of 04 = 4+3/z in 

(X : 1 x I > R,}, continuous in {x / I x 1 >> R,) and going to zero at CO. Then, ;f  
Ro4~(R,) > 9xm2 (resp. < 9~“) then r”+( I is decreasing (resp. increasing) as r ) 
increases and lim,,, r’+(r) =- 97+. 

Proof. Let &(r) : CT m4. Then OZ/J~ ,( 47r$~~‘~ if c > 9x-2, &JC = 4n#zi2 if 
c : 9+, and A#, ;a b& 3’2 if c < 9~~. Thus, by Theorem IV.7 if R,4$(R,) 2 
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9c2 (resp. < 9~3, then r”#(r) > 9=-2 (resp. < 9r-2) for al1 z with r > A, (by 
the comparison theorem with 4,) c = 9n-2). Thus, it suffices to prove that 

A$(r) d Ro4$(Ro) (resp. 2) for t > R, . Let c,, = Ro4+(Ro). Then the inequality 
fohows by comparing 4 and (Ge, . 

Let h, = Iim+, r4+(r). The limit exists because of the monotonicity. Let 
a,,(y) = le4$(nr). Then 04, = 4~(+,)~/~ and limn+W$Jr) = &r-4 G &(T) 
uniformly on compacts of i&P\(O). Th us as a distribution on Csm(W3\{O}), d$, = 
47&2, so A, = 971-z. 8 

THEOREM IV.9. Let R, and b be given. Then, there is a continuous junction, 
4 on {x 1 1 x 1 3 R,}, whiclr is sph erically symmetric and satisfies A$ = 4+i2 and 
such that $(R,) = b and lim,.,~(r%$(r)) = 9w-2. 

PYOO~. I f  6R04 = 97~f, take 4(r) = 9~~~4. Suppose next that bR,4 = 
c < 9c2. Let 7(r) be the neutral TF potential far V(r) = r-1. Then, by 
Theorem IV.5, Y”?(F) + 0 as r +O and by Theorem IV.8, #7(r)- 9~2 as 
Y -+ CO. Thus for some rO, ra4q(ro) =y: c. Take $(I) = (ro/Ro4) ~(rr,/R,). Then 
$(R,) Ro4 = c and 04 = 47~$3/~. Finally, consider the case in which c = b&4 > 

9n- 2. Consider the problem of minimizing b(p) = Q jp5/3 dx - Z,, s 1 x I-1 p(x) + 

4 .~P(x) P(Y) I x - Y 1-l) w h ere 2, = 4~15’~~R~“/3 but with the extra requirement 

that p(x) - 0 if 1 .1c 1 < R, . By the methods of Section II, the minimizing p 
exists and has sp dx = 2, . Moreover, p obeys p = &‘2, $,, = &,I x I-1 - 

JI~IJR,, j x - y  IP1p(y) dy so that A#, = 47r+~‘2. Now, if Y~$,,(Y) < c for all 
r > R,,, , then sp dx < 4x ]zO (c/x4)3/z 9 dx = (&r/3) c~I~R;~ = 2, , Thus, for 
some, R, , RP&(R,) = c. The choice r/(y) = (R~~R~,)~~~~YR~~R~) solves the 
problem. 1 

THEOREM IV.10. Let p be the neutral TF densityfor V(x) = & ~~lx---R~!-l. 
Then j .x I6 p(x) - 27@ as 1 x / - 03, uniformly euith respect to direction. 

PYOC$ Let R .= 2 max+i ,,__, k ; R, 1. Then 4 = p2J3 obeys A$ x 4~qW for 

1 x 1 2 R and # + 0 at infinity. Now 4 is continuous and strictIy positive on 
{X i 1 x 1 = R} by Theorems IV.3 and IV.5, so there exist numbers b+ > 0 such 
that bP <4(x) < b, when ) x 1 = R. Let & be the solutions of a+ = 4n-#3j2 

which are spherically symmetric and obey 4+(R) = b+ and Ye& - 9~s. 
Then, by the comparison theorem (Theorem IV.?‘), #-( 1 x 1) < $(x) < ++(I x I) 
for all 1 x 1 3 R. Thus / x l”+(x) + 9x-2 and, since p(x) = $3’z(~), p obeys 
j x I6 p(x) -+ 27r3 as 1 x ) - co. 1 

N-3. “Ionization” Energies in TF Theory 

Consider the Fermi energy <r(X) for the TF theory with V(X) = 1 x 1-l. As 
A T I we know that E&) t 0. Using the methods of Section II.7 and the asympto- 
tics of Section lV.2, we can say something about the rate at which <r(X) 
approaches zero. 



THOMAS-FERMI THEORY 81 

THEOREM IV.1 1. Let EJX) be the chemicaZ potential for the TF theory with 
potentiuz V(x) := g=, zi 1 x - Ri 1-l (& zi = I) and s p(x) dx = h < 1. Then: 

iii% t,(h)l(l - X)4/a < -3(x”/36)‘/3/4, 
ATI 

z-ii <,(A)/(1 - )04/a >- -(d/36)‘/“. 
IT I 

Proof. Let pi be the neutral TF density. Defme R(h) by 

Then. by Theorem IV.10, 

iii R(A)3 (1 ~ A) :-- 36/7?. (84) 

Now, let P,,(X) be the density which is equal to pi(x) if I x 1 :: R(A) and is zero 
otherwise. Let 

so that 

if 1x1 >R(h). 

From the first of these formulas, we find that (see(41)) 

by Theorem IV.10. By the second formula (see (39)), 

Q%) - 4%)/3. 

The theorem now follows from (84) and Theorems II.28 and II.29. 1 

It is natural to conjectltre, and we do so (see Sect. I), that 

ljTy ~~(X)j(l - X)4/3 exists. W 

Now, let E(A; Z) be the TF energy for V(X) = Z 1 x 1-l with the subsidiary 
condition sp(x) dx = A. Let 

m(Z) = -[E(Z; Z) - E(Z - 1; Z)]. 
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THEOREM IV.12. (a) Eiiz+m SE(Z) < (3/7)(f/36)l/3 

pm SE(Z) > (9/28)(,s/36)1@; 
+ 

(b) ;f  Ure limit (85) exists and is --a, then 

g-5 SE(Z) = (3/7)or. 

Praoj. By scaling E(A; Z) = Z7i3i3(A/Z; I), and thus if l F(h) is the Fermi 
energy in the 2 = 1 problem, then 

SE(Z) = -Zii3 j-;,-l cF(h) dh. 

If 44 - --1y(1 - A)‘/3, then L%!?(Z) N (3/7) IY f  rom which the theorem follows. 1 

The interesting feature of Theorem IV.12 is that it is contrary to the usual 
folk wisdom about the TF theory which says that ionization energies (and work 
functions in solids) are zero. Actually, the correct translation of the folk wisdom 
is that the ionization energy is zero on the level of Z7j3. The more subtle analysis 

above yields a prediction of nonzero, finite ionization energy. As we shall 
explain in the next section there is some reason to believe that as Z- CO, the 
quantum mechanical ionization energy has a nonzero, finite limit but we see no 
reason for the TF theory to yield the correct constant. 

IV.4. A Picture of Heavy Atoms 

We want to describe a picture of large 2 atoms which helps explain certain 
apparent paradoxes among which are the following: 

(1) In real atoms, the wave function falls off exponentially [82], while, by 
the above, the TF density falls off as 1 x 1~~. 

(2) The TF atom shrinks as Z-1/3. Atomic diameters as measured, for 
example, in terms of Van der Waals parameters, tend, if anything, to increase 
slightly [ll]. 

(3) As we shall show below, molecules do not bind in TF theory but they 
obviously do bind for real atoms. 

(4) In a real atom, the electron density at the nucleus is finite [39, 821, 
while in TF theory it goes to infinity as (Z/ 1 x ])3~2. 

We picture the electron density of an atom as varying over five regions, The 
innermost is the core region which shrinks as Z--lj3 and is described by the TF 
density pTF according to Theorem KII.3. The next region is the “mantle” of the 
core which is described by the density (27/d) Z2/(.Z1j3 1 x l)e = (27/+)] x I-‘! 
This density is correct to distances of order iniinity on a scale of distance Z-1’3, 
and in this second region the density is still of order Z2. As Z+ CO, 100 y0 of 
the eIectrons Iie in these two regions. What we have said about these two regions 
has been rigorously proved in Section III and above in Section IV.2. Our 
remarks about the density outside these regions is largely !%peculative. 
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The fourth region is the “outer shell” to which we return shortly. Chemistry 

takes place in the fourth region. The third region is a transition region between 
the mantle of the core and the outer shell. The fifth region is the region of 
exponential falloff outside the bulk of electron density. 

It is hard to find really convincing evidence for a prediction of the radius of the 
outer shell. In a model without electron repulsion, there are PI3 filled shells and 
the radius of the outer shell is of order (.Z1/3)2/2 = Z-.1/3. In a model in which we 
suppose that the nth electron is perfectly shielded by the first n - 1 electrons 
and is put in the Bohr orbit for the nth electron in an atom of charge Z,rr = 
Z ~ ~1 + 1, the last electron has a radius of order 22/3, Our feeling is that the 
most reasonable model has the last electrons shielded only imperfectly by the 

last few shells. Since the outer shell contains order (Z1/3)2 electrons, the outer- 
most electrons see an effective nUChJ charge of order 22/3 and thus has radius 
of order [Z1/3)2/Z2/3 = 1. They have an energy of order 1 however, since the 
total Coulomb potential is of order 1 at the atomic surface. It is striking that 
this crude model predicts a constant ionization energy in the limit Z- cc. 
This agrees with the prediction of TF theory which has no reason to be a 

correct picture of the outer shell! 
In terms of our picture, the “paradoxes” discussed at the start of this section 

are easy to understand. The exponential and Y+ falloff describe different regions 
of the atom. The other two “paradoxes” are explained by noting that size and 
chemistry are determined by the outer shell and not the core which is the region 
where TF theory is valid. 

Paradox (4) is explained by noting that the innermost, or K shell density alone 
is proportional to Z3 at the origin. Thus although the density is finite, on the 

scale of Z” which is appropriate for TF theory (see Theorem III.3), it is infinite. 

V. THE TF THEORY OF MOLECWES 

In this section we discuss the TF theory of molecules or, more accurately, the 
nontheory of molecules, since our main result asserts that the TF energy of a 
collection of fixed nuclei and TF electrons always strictly decreases if we arbitrar- 
ily separate the nuclei into groups which we then move infinitely far from 
one another. It is essential that we include the internuclear repulsion 
rlcidjzR zL.zj 1 Ri - Rj 1-I in addition to the TF energy. Otherwise, as WC shall 
also prove, the opposite is true. Thus we define 

eTF(h; z1 ,... , zk ; R, ,..., Rlc) =- ETF(h; zI ,..., z, ; A, ,,,., Rh.) 

In Sections V.l and V.2 we prove that: 
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THEOREM V. 1. 
$F(A +‘i 2:~ 

For UB~ strictly positive (z~}~-~ , (R& , undj = l,..., k - 1: 

tl 1, 1 ,*-‘I %k I * RI ,..a, Rk) > eTF(X = rzsl z, ; xl ,..., xi ; R, ,..., R,) + 

eTF(h = CdJ+l Xi ; a;-,, I-.., zk ; Ri,, ,a..> Rk). 

In Section V.3, we prove that: 

THEOREM V.2. Fm any strictly positiwe {zJ% , any A > 0, any {Ri}el and 

‘H= lv.v 
k - 1: eTF(;\; z1 ,..., Xk ; RI ,..., Rk) > min,G,,G,[eTF(h’; Z~ ,..., Zj ; 

1 ,..,, RJ + eTF(A - A’; z++~ ,. .., zk ; Rj+l ,..., R,J. 

Remark. Theorem V.l is obviously a special case of Theorem V.2. We state 
it separately because it is needed in the proof of Theorem V.2. 

These theorems have been stated by Teller [X9] whose methods have motivated 
our work in other parts of this paper. Teller’s proof has been questioned on two 
points [3]: First, his use of infinitesimal charges leaves one uneasy, More 
seriously, to avoid the nuclear Coulomb singularity, he cuts off the nuclear 
potentia1 at short distances and this technically invalidates his subharmonic 
function arguments. Our presentation below is essentially a careful transcription 
of his arguments into rigorous language and exploits the fact that we have shown 
how to treat the Coulomb singularity in Section II. We emphasize that our proof 
in this section of Theorems V.1 and V.2 should be regarded as an exegesis on 
Teller’s work [X9]. 

The inequality in Theorem V.2 is reversed if eTF(A; z, ,..., zR ; R, ,..., Rle) is 
replaced by ETF(h; z1 ,..., Z, ; Ri, ,..., R,): 

THEOREM V.3. For any strictly positive {q>%, , X > 0, {Ri}t5:51 , and 
j = l,..., k - 1: ETF(A; z1 ,..., Z~ ; R, ,.a., R$ < ETF(h’; x, ,..., zj ; R, ,..a, RJ + 
ETF(h - A’; ++I ,..., xl ; R,+= ,..., R,) whenever 0 < A’ < A. 

Proof. As a preliminary, we note that if x,y 2 0: 

(x +y)5i3 = (x” +y2 + xy + yx)(x + $I/3 < x&j3 + y5/3 + x”/“y + xy2/3. (86) 

Since ETF is monotone in A and takes its minimum value when the molecule is 
neutral, we may assume that A’ <xi xi and h - A’ < x,“,1 zp . Let p”‘(x), 
+ti)(~), E(i) (i = 1,2) be the TF densities, potentials, and energies for the case 
P(x) = xi xi 1 x - Ri I--1 and v(a)(x) = xi+1 zt 1 x - Ri I-l, Choose p(x) z 
p(l)(x) + p(2)(x) to be a trial function for the TF problem with v(s) = 
Ct z1 1 x - R, 1-l. Clearly, sp(x) dx = A. Using (86), we have: 

ETF(X ; z1 ,..., zg ; R, ,. . . , R,) 

< b@; V) < E(ll + E(2t + j p’l’(x) [$p’2’(x)2/3 - P(x)] dx 

+l 
p’(x) [g p’l’(x)2/3 - W(x)] dx 

+ jjpYx) p'*'(y) I x - Y /--I dx dy. (87) 
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By the TF equation (Theorem 1X.10) and the positivity of C#J: 

Therefore the right side of (87) is at most 

Notice that the proof of this theorem, unlike that of Theorems V.l and V.2, 
does not use potential theory. 

Theorem V.3 asserts, in particular, that the TF energy, IZTF, increases if we 
have fixed nuclear charges and move them infinitely far from one another, It is 

an elementary consequence of concavity that if we move all the nuclei to one 
common point, then ETF decreases, as we now show: 

THEOREM V.4. Fi,v h > 0, {zJ~~, positive, and5.v R, . l’hen ETF(A; z, ,...,zic ; 
R, ,..., R,) is strictly mihaized when R, =- R, m: ... 2 R, = R, . 

Proof. Another way of stating this result is that ETF(h; pi,..., z,.; R, ,..., R,J > 
E=“(h;&, q , 0 ,..., 0; R, ,..., R,) as long as some Rj is different from R, _ 
Fix R, ,,.., R,, A and let 

f(z, I..., zp) :z ETF(X; z1 ,..., zg ; R, ,..., R,;). 

As an infimum of functions linear in zi , f  is jointly concave in (zi ,..., zJ, 
I f  Rj # A, it is easy to see that it is strictly concave under changes in xi and zj 
only, since the minimizing p is then nontrivially dependent on z,/z~ by virtue 
of the TF equation, Theorem II. 10. The required inequality follows. 1 

Remark. Theorem V.1 states an important fact about TF theory, namely, 

that molecules do not bind. This is not a property of real molecules, i.e., the 
solution of the true Schrodinger equation. Nevertheless, Theorem V. 1 plays an 
important role in the Lieb-Thirring proof [52, 531 of the stability of real matter. 
It enters in two ways: (i) It leads to a Iower bound on the expectation value ofthc 
Coulomb rep&ion among charged particles, i.e., 

> Ji I p:)(x) p:‘(y) 1 x - y  1-1 dx dy - (Const) WI2 ]I&) \\z$ 

for any #(antisymmetric or not), and where p g) is given in the first line of (4); 
(ii) After first showing that the TF energy (with modified constants) is a lower 
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bound to the true SchrBdinger energy, one uses Theorem V.l to show that this 
lower bound is greater than a constant times the number of atoms in the system. 

V. 1. Teller’s Lemnaa : Neutral Cause 

The basis of Theorem V.l is a set of results of which the simplest is: 

THEOREM V.5. (Teller’s lemma-neutral case). Let +l , p1 (resp. & , pJ 
lo be the TF potential and density for a neutral system with potentiaE 

V(X) = i ai 1 x - R, 1-l resp. x - R, )-I, same Ri’s . 
i-1 kl 

Rmarkr. (I) We emphasize that a, = 0 is allowed. 

(2) pi, h’ h . w IC IS determined only a.e. by minimization is fixed everywhere 
by the TF equations. 

Proof. By renumbering, suppose aI < 6, ,,.., a, < b,, a,,, = b,,, ,..., a, = 
b, . Let S = {x 1 q&(x) <&(x)), Th en S is disjoint from a neighborhood of 

RIE, since bi > q(i = I,..., 4 and A(4 I* - R, I rev M4 I * - Ri I) 
approaches bi(resp. ai) as x -+ R, . Since 4s and +r are continuous away from 
the Ri , S is open and $ = +JZ - $1 is continuous and negative on S. Its distribu- 
tional Laplacian (47~)-l A$ = &‘” - 4:‘” < 0 on S, so 4 is superharmonic on S 
and it therefore takes its minimum value on 23 u (co). But (ir -+ 0 at cg and 
$ = 0 on as, so # > 0 on S. Thus S is empty and 4% > 4r everywhere. 1 

THEOREM V.6. Under the hypotheses of Theorem V.5 suppose that b, > ai 
for some i = I. Then 

(4 +2(4 > 9d4, f2(4 > d4 

ffW all X # (Ri). 

(b) If, in addition, 6, = aj , th 

Proof, (a) CIearly (.z 1 &(E) = &(x)} is closed and not a11 of R3 since it 
is disjoint from a neighborhood of RI. Thus we need only show it is open. 
Suppose that 0 # Rj (9 = l,..., R) and that #(x) x&(x) - #r(x) vanishes at 
x = 0. Choose RLo < min(lR, I>, R. > 0, and let M = maxl,(gR, 1 &(x) 1. 
Then, for 1 x 1 < R. : 
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so 4(x) obeys 

for 1 x 1 < R, . By mimicking the argument in the proof of Theorem IV.3, we 
see that # vanishes identicaby near x = 0; so S is open. This shows that S is 
empty. 

(h) Suppose that Rj = 0. By Theorem IV.5, (G(x) =4%(x) - &(x) is 

continuous at zero and we need onIy show $(O) f  0. By (a), #J(X) + 0 for x near 0. 
A modification of the argument used in (a) shows then that Z/J(O) must be nonzero. 
This modification consists in replacing the condition ] &(x)1 < M by 1 $2(x)I < 
A 1 x j-l, and replacing (88) by 

0 < (47r)-l AZ/+) < (3/2) All” 1 x l-lj2 z&t). 

One can still mimic the proof of Theorem IV.3. 1 

V.2. ATo Binding: Neutral Case 

(89) 

Our goal in this section is to prove Theorem V.I. This result of Teller [89] 

is based in part on suggestions of Sheldon [78] who applied a motificatian of 
TF theory, the Thomas-Fermi-Dirac theory, to the N, molecule and found 
numerically that there was no binding. The reader should consult Balks [3] 
for a very different proof of Teller’s theorem in the homopolar diatomic case 

( i.e., h == 2, zr :- ~a). Balks was able to prove the stronger result that eTF 
decreased monotonically under dilatations of the molecule. The extension of 
that result to general molecules was stated as Problem 7 in Section I. At the end 
of this subsection we discuss the relation of Problem 7 to Problem 6. 

Fix or ,..., zk strictIy positive, R, ,..., K, , andj, and let e(a) = eTF(h = aC:,=, zi; 
cq ,..., crzk ; R, ,..., Rk), e(r)(,) = eTF(h = 01 xi=;, zi ; azr ,..., GIN ; R, ,..., R,) and 
-o(a) = .P(h = L&Ej+l %i ; oizj+l )...) azk ; Rj+l ,..., Rk). Define E(a), W)(a), 
.W(ol) similarIy. Let pa, p’,” and p, w be the corresponding TF densities and 
&, , $(,“, +c’ the TF potentials. Finally, define 

i = l,..., k, (90a) 

?lJl)(i) z j+%, [Q(x) - mi 1 x - Rj l-l], i = l,...,j, (gob) 

?jp(i) =$g [yp(x) - orzj 1 x - R< I-11, i = j + l,..., k. (9Oc) 

Then, the strong form of Teller’s lemma (Theorem V.6) says that for tl > 0, 

r],(i) > d%); i = I ,..., j; ?l&) > d:’ (1); i = j + l,..., k. (91) 

LEMMA V.7. As oi 1 0, e(a), .@(a) and C)(a) all go to zero. SimiZarZy, E(m), 
Efl)(~), and IP(or) go to zero. Furtlawmore, e(a) is dz#eereatiabb in cI1 for cx > 0 and 
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Proof. We consider e(a); the argument for .&‘(a) and E(m), ,?F)(oL) is similar. 
e(cx)isthesumof u”& Z~Z, 1 Ri - Rj 1-l andaTFenetgy. By TheoremII.lG,the 
TF energy is differentiable and its derivative is - J” p,(x) & .x* 1 r - R, 1-l dx. 
Thus 

Differentiability implies continuity. 

e(0) is clearly 0 and the corresponding p is 0. 1 

Proof of Theoum V. 1. By Lemma V.6, 

(d/dor)[e(ar) - e(l)(u) - e’“‘(a)] = i zj{7jufi) - 77,$‘(i)) 
i=l 

By (91), this derivative is strictly positive for CC > 0. Since e(a) - e(l)(a) - 
.@)(a) --f 0 as (x JO, we conchrde that e(o1 = 1) - .#(DI. = 1) - @)(a = I) > 0. fl 

Remarks. (1) By Theorem 11.16, 

w4 dE(l)(a) dE’2’(cvJ 
- - - - ___ = - gl j  zi 1 x - Ri I-1 

dct dot dol 

(P&) - d%) dx - j, f  zi I x - Ri 1-l (d-4 - P%)) dx 

which is strictly negative for 01 > 0 by Theorem V.6. We conclude that E(m) < 
E(l)(m) + Et2)(cx), thereby providing an alternative proof of Theorem V-3 in the 
neutval case. 

(2) Consider a dilatation of the neutral molecule by I, i.e., Ri -+ ZRi , 
I E R+. Denoting the energy simpIy by eTF{t), a scaling argument shows that 
e’“(Z) = E-7 e(o! = 13). Thus B = deTF(E)/df 1 T=l = - 74 1) + 3dejda jacl . 
Problem 7 is to show that l3 < 0. With U = eTF - ETF = nuclear-nuclear 
energy, e(l) = K - A + R + I/ (cf. Sect. 11.6) and de/da lx+ = & ZETA = 
2U - A by Lemma V.7. By Theorem 11.23, R = A/2 - 5Kj6. Thus B = 
-7K/6 - Q & q~(i). Let qr(z’) and R(i) be the values of y1 and K for an atom 
of nuclear charge .q located at R, . By Theorem V.6, VI(i) > %&(i). B = 0 for an 
atom since -7@6 + A/2 = 0 by C orolIary II.24. Thus J?(i) = 3z&(i)/7, and 
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therefore B < -(7/6)[K - C%, R(i)]. W e conclude that if K ;s zf=, R(i) as 

stated in Problem 6, then 3 .< 0, and Problem 7 would be solved. 

V.3. Teller’s Lenma and No Binding: Positive Ionic Case 

The proper generalization of Teller’s lemma, Theorem V.5, to the nonneutral 
case involves comparing two TF problems with the same Fermi energy. 

THEOREM V.8. (Teller’s lemma: nonneutral case). Let 4(l), p(l) (resp. #I’“), 
p) solw the equations: #l’(x) = max(+(l’(x) ~ +a , 0)3/2 (resp. P’~)(x) ::= 

max(+($‘(x) - +0 , O)s/z with the same da), @l’(x) ~- & ai j x - R( j--l -- 

JfP’(y)t x - y  1-1 dy (Ftq. p’(x) = g=, 6, f  x - Ri 1 - fp’2’(y)J x ‘“- ?’ I-’ dy; 
same Ri). I f  hi >? ai , i = I ,..., k then +(“‘(x) 2 f$(1)(x) for all x’. 

Proof. Identical to the proof of Theorem \-A once we note that whenever 
p(x) > p’(x), p(x) ;3 fly+ 1 

Remark. The analog of Theorem I’.6 does not hold when &, > 0, since 
p’“‘(x) = 0 = pf2’(r) can occur. 

THEOREM V.9. Let P’~‘(x), $(A’(x), -+0 , IA) be the TF density, potential and 
Fermi energy for a $xed potential V(x) = CfE, ai / x - Ri l--l with subsidiary 

condition UP dx :-: A. Then, us X increases, p(“)(x) increases, $‘A’(.x) decreases 
and $t’ decreases. 

Proof. We already know that -&“I is monotone increasing (see Theo- 
rem II. 10 and Corollary II.9). Let A, > A, and let prl’(~), +m(;r), $:I’, and pr”fx), 
etc. stand for p’“‘(x), etc. Let $(x) = (@r’(x) - #‘) - (+(“‘(x) ~ 4:“‘). Then 
$ is continuous on all of W including the Ri and (4,)-l 04 ‘1.: ($“)(x) - $a’)$‘” - 
($G’(x) - j#‘,)~~’ (distributional derivative), Note that 4(x) - l $$ - 4b1’ Y 0. 

as 1 x I-+ co. Thus, S = {k 1 #(x) < 0} is an open bounded set. Clearly A$ :< 0 
on S, so # is superharmonic and thus takes its minimum value on AS, where 

Q!J = 0. Thus S is empty and 4 2 0 everywhere. It follows that p(l)(x) > P(~)(X). 
But since +‘“‘(.Y) 2 V(X) - j’p’A’(y)l x ~~ y  1-l dy, @1’fx) < #“j(x). 1 

THEOREM V.10. Let V(x) = J& zi ; x - R< I- 1; P(x) = -& zi t x ~ Ri I.-‘; 
1.‘(2)(x) = CFEj+, zi t x - Ri 1-l. Let -&, (resp. -I#$‘) be the Fermi energy JOY 
V(resp. Vi)) with Jp = h (resp. Afi)). Supp ose that X = A(l) + A@). Then ---+,, SYS 

ma++A”, -&:‘). 

Proof. Let pu’ (resp. p[“‘) be the TF density for the I”l), Ati’ fresp. Z’e’, Au’) 
problem. Consider p = p(r) + pt2’ as a trial function for the v, A problem in the 
variational principle, Theorem II.29. Then -$0 $: ess ~upi~l~(~‘=,,i [p(~)“‘~ - 
+(I)(X) - +“(x)]. Now, for a, b positive, (a + b)2/3 ::G 213 f  bzj3, so 

-+ < ess sup Ip(i’(~)“/~ - +(I)(X) + p(2’(x)2/3 - #“‘(X)]. 
(slPc)+d 

(93) 
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I f  p(l)(x) # 0 # p’2J(~), then the right side of (93) is -+a’ - $A*). I f  #l’(x) # 
0 = $*)(x:), then p(1)(~)2i3 ~ +(lt(~) = -#I while +*~(x) < 0 (by 
Lemma 11.19), so the right side of (93) is at most --+a) for such X. Similarly, 
if p(l)(x) = 0 # p@)(x), then the right side is at most -#,“‘. It follows that 
-& < max(-#I, --$~“‘). 1 

As a final preparation for our proof of Theorem V.2, we need: 

THEOREM V.ll. Let F be a continuous function on D = [a, b] x [c, d] such 
that: 

(i) For every y  E [c, d], F(.,y) i s a Cl function on [a, 61, and aFlax is 
bounded on D. 

(ii) Let f (,$ = rnineGUsd Ffx, y>. Suppose that for each x E [a, b], there is a 

y(x) E [c, d] such that 

f(x) = F(x, Y(X)), 

(WWX, Y(X)> d 0. 

Then f  is continuous and monotone nonincreasing. 

Proof. Let x,, < x1 and yi = y(q) (i = 0, I). Then 

By (94): 

Let 

G(x, z) = (l/z) /=+’ (8Fjax)(w, y(x)) dw 
D 

for z > 0. Then 

and G is bounded with the property that, for each fixed x,, , limzJ,, G(x,, , z) 
exists and is nonpositive. 

Let h,(x) = (n6)-1/2 exp(--x2/8) and extendf to R by making it constant on 
(- 00, u] and [b, co). LetfB(x) = s h,(y)f(x ~ r) dy. Then, sincefis continuous, 
f8 converges poiniwise as S JO to f, so we need only show that each fs is mono- 
tone. fs is differentiable so we need only prove that 
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for each x0, But 

The right side of (95) has a nonpositive limit by the dominated convergence 
theorem. m 

Proof of Theorem V.2. Fix {q}, {RJ, and A. Let A’ be chosen to minimize 
eTF(h’; z1 ,..., xj ; R, ,.a., RJ + P(h ~ A’; z~+~ ,..., zk ; Rj+l ,..., Rk) d f(h’). 
Since erF(h; -) is differentiable for h > 0 and is O(W) at X - 0, one has that 

near h’ = 0, f(h’) =f(O) - arX’lj3 + ~(h’l/~) with a > 0. Therefore, the mini- 
mizing value of h’ is not at h’ == 0 or, by a similar argument, at X - X’ = 0. Thus 
df/dh’ ~~ 0 at &,‘, and -c#’ == -Qr’, where $(resp. #*), 4’“)) and -&, (resp. 

-cbl?, $i;“‘) are the TF potential and Fermi energies for the full problem 
(resp. A,;, A - h,’ problems). By Theorem V.10, -c,/J~ < -9:‘) :: -+j,‘). Choose 
x such that the TF potential 6 for v  = Ci zi / x - Ri I-1 with J’$ Y- x has 

Fermi energy -q$ = -#‘. Since -q$, > -& , x 2: h, bv Theorem V.9. 
Again, by Theorem V.9, J(X) > #I(S), and, by Theorem V.8, q(i) > &i)(~). Thus 

&) > P’(4 all X, i = I, 2. (96) 

Now, without loss of generality suppose that &, xi > A, since the theorem 
follows from the neutral case if A < zETr Z, Define 

G{a, A’) _Y [eTF{h’; CLZ, ,..-, my5 ; Ri) 

+ e+“(A ~̂ A’; CYZ~+~ ,.a., mk ; Rd) - cTF(X, cyl ,..., cxxp ; R,)] 

g(cu) L.: inf G(ol, X’). 
OS-h’<h 

‘Then g(h/&l Xi) < 0 by the result for the neutral case. As in the proof of 
Theorem V.l, (96) says that at h’(a), the point where G(cz, h’) is minimized, 
aG/& < 0. It is easy to verify the other hypothesis of Theorem V. 11 for G. 
As a result, R(OI) is monotone on 

so that g(l) -: 0. 1 

Another application of the foregoing potential theoretic ideas, which will be 
useful in the study of the TF theory of solids in Section VI, is the following: 

'THEOREM V.12. Let Vcl)(x) 7 C:=, z1 j x - Ra I-l, V2)(x) 2 Crsj+, zi 1 x - Ri 1-l 
(all zi > 0) and t’ 7 Y(l) + Vz). Let p’$‘, CJP), p, 4 be the TF densities and 
potentiah fzw the three V’s with a common Fermi energy -$,,, Then $(s) < $“)(x) + 
&z1(x). ff& 2 0, this inefpdify is strict. 



92 LIEB AND SIMON 

Proof. Let $ = 4 - $(l) - qP), which is continuous. In the distributiona 
sense, -(4n)-1 d$ : -p + p(l) + p (%). Let B = {x ] #J(X) > O}, which is open. 
Since $(i)(~) > 0, max($(x) - & , 0) > max(#i’(x) - #s, 0) + max(#2)(x) ~ 
&, 0) for x E B. Thus ~“‘~(3) 2 p’r’(~)~/~ + $2)(x)2/3 on B and hence p(x) 2 
p(r)(x) + p’2’(x) on B. Therefore 4 is subharmonic on B and vanishes at infinity, 
which implies that B is empty. If  $0 = 0 the methods of Theorem V.6 show 

that I/(X) > 0. 1 

Remarks. Theorem V.ll is primarily of interest when $,, = 0 (neutral case). 
Then p(~)~/~ < p’1)(~)2/3 + p(z)(x)2/3. It complements Theorem V.6 which 
asserts that p(x) > max(po)(x), p’zJ(~)). 

VI. THE TF THEORY OF SOLIDS 

Thus far we have considered the TF theory of molecules consisting of a finite 
number of nuclei. Here we wish to extend the theory to infinitely large, periodic 
molecules; namely, to solids. For simplicity and notational convenience we shall 
assume that the unit cell of the solid is cubic and contains one nucleus of charge 
z > 0. Our analysis can be extended to more genera1 situations. By scaling 
(which will be discussed more fully in Sect. VI.3) we may assume the unit cell to 
have unit volume. Thus the nuclei are situated in 2s E Iw3, the points with 

integral coordinates. 
To each finite subset, (1 of P, we associate the potential 

v&g =y .a c 1 x - y I--I. (97) 
V6‘1 

Since we want to take the limit 1 A 1 -+ 00, the total electronic charge must 
cancel the bulk of the nuclear charge, and so we consider onZy the neutral 
system; consequently, z is the only parameter in the problem. Let en and 

pn(x) be the TF energy and density for the “molecule” d. A theory of solids 
should be based on three facts: (i) e : limi.I,, en/‘] /I 1 exists; (ii) p(s) = 

lim lnl4 pJx) exists; (iii) p has the same periodicity as the assumed periodicity 
of the nuclei. We shall prove this in Section VI. 1. 

In Section VI.2 we shall prove that p is the unique solution of a modified 
TF equation with a periodic Coulomb potential. One of the points to be empha- 
sized is that the constant #s appearing in this equation is not a chemical potential, 
as is often assumed because of its similarity to +,, in (3). Rather, $,, is the average 
electric potential in the solid. In Section VI.3 some properties of the solution 
will be discussed. 

The TF theory of solids has been applied for many years [18, 921 to obtain 
equations of state for real solids at high pressures. Our results are relevant to 
such applications in that we show clearly what equation is to be solved and how 
the answer is to be interpreted. In most calculations, the proper periodized TF 
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equation is crudely approximated hy replacing the cubic cell by a sphere, and 
the periodic boundary conditions by a vanishing normal derivative. In the 
absence of numerical evidence, we do not know the accuracy of such an approxi- 
mation. We also do not know whether the exact solution will yield a positive 
pressure at all densities, although we believe it does. This is left as a co@clure. 
A positive resolution of the general dilatation conjecture (Problem 7) would, of 
course, imply positivity of the pressure. A second copljec&e is that the com- 

pressibility is positive; more generally one would expect that the TF energy for 
molecules is a convex function of the dilatation parameter. 

A natural question is whether TF theory correctly describes solids in the 

limit 1 n 1 -+ cc, and then z - r~3. Our results, logically speaking, concern the 
limit in the reverse order. One reason we cannot discuss the correct Limit is that 

it is unknown how to prove even the existence of the thermodynamic limit, 
\ /l 1 + CD, for real quantum mechanical solids. It is, however, possible to 
establish this limit for “real matter” [45] and for jellium 1481, but not for solids 
in which the rotational symmetry is lost. 

Assuming that the interchange of limits can be justified, a more serious 
question concerns the applicability of TF theory to high density (i.e,, high 
pressure) solids. One wants to let the lattice spacing, a, tend to zero with z fixed, 
whereas TF theory is presumably justified in the limit cz - 0 with a3z fixed, as 
explained in Section III. These are not the same, and we believe that TF theory 
is largely irrelevant to the a ---f 0, z fixed limit. In this limit the kinetic energy 

dominates and p tends to a constant. TF theory (with a + 0 and z fixed) correctly 
describes this principal effect, namely, e - (3/5) p5i3, See Theorem VI.7. The 
interesting CouIomb corrections are of a lower order in p, and since the error in 
the kinetic energy alone is O(p413) (cf. Sect. III), it would be fortuitous if TF 
theory were correct beyond the Ieading p 5/3 term. If  one is content with the 
statement that TF theory is “approximately correct,” instead of “exact in some 
limit,” then possibly TF theory is quite good when a is not too small and 2 is 
large. 

\‘I. 1. Existence of the Thermo(ynamic Limit 

We wit1 use the following notation: 

(i) R will always denote a finite subset of Z3 and will he called a domain. 
1 .4 1 is the number of points in fl. 

(ii) I f  y  E L3, r, = {X E a83 1 --. A < X; ~ ~1~ < $, i = 1, 2, 3) is the ele- 
mentary cube centered at 3’~ 

r(A) =-: w r, . \d(r(n)) :~ 1 r(n)I = 1 A 1. 
j/E.1 

-,r denotes the complement of I’. 

(iii) Rith vA given by (97), e, +: eTF(h = z 1 A 1; V,,), cf. section V, and 
pAi, c)., denote the minimizing TF p and potential. 



94 LIE3 AND SIMON 

DEFINITION VI.1. A sequence of domains {/lJ~t is said to tend to infinity 
if the foIlowing holds: 

(i) ij (li = Z3, (98) 
i=l 

(ii) A,+, 1 /Ii , (99) 

(iii) I f  Ah is the set of points in FP whose distance to X(.4) is less than 
A then 

firI 1 Aih I:‘1 fli 1 = 0 for any h > 0. (100) 

We shall write simply A - CC to denote such a sequence and shall write 
lim,,,f(A) in place of lim,-.mf(LIJ. 

Remark. This notion of A -+ 03 is a slightly modified version of Van Hove 
convergence. Condition (99) is included so that we can use Teller’s lemma. ft is 

noteworthy that the proof of the existence of the thermodynamic limit for real 
matter requires more stringent conditions on the Ai . Even for strongly tempered 
potentials in the continuous case, more stringent conditions than in Defini- 
tion VI.1 are needed, In Theorem VI.5 we shall in fact show that en/l /i 1 con- 
verges to a limit independent of the sequence for any conventional Van Hove 
sequence, i.e., any sequence obeying only (100). 

THEOREM VI.2. 1jA --+ 00, t&n 

d(4 = 2% 4/i@) (101) 

exists and is independent of the particular sequence of A’s used. The convergence is 
monotone zkcreask~ and uniform on compacts subsets of R3\Z3. More generally, 
if K C [w3 is compact 

$A(4 - ,Epc,,, z I x - Y 1-l (102a) 

converges uniformly on K (including K n HS) to 

d(4 - ,,& z I x - Y k--l* (102b) 

+ is periodic, i.e., +(x + y) = 4(x), y  E 23, x E W\Z3. Furthermore, 

(103b) 
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Proof. By Theorem V.6, 

$A@) :’ +A(4 for all x, (105) 

when A’ 3 d. This implies that for any x: such that lim,,, $,,(s) E 4(x) exists, 
+(x) must bc independent of the sequence. By Theorem V.12, 

where #@ is the potential for a single atom with nucleus located at R = 0. 
Now #@(x) is hounded above by a 1 x /-4 on all of R3 by Theorems IV.8 and 
IV.5, where D = 9~~a. By extending the sum in (106) to all of Z3 we see that 
$n(x) is bounded, uniformly in fl, on any subset, K, of W\P such that the 
distance of K to il is positive. Thus, the limit in (101) exists and is monotonic. 
To prove the uniformity, we can apply Theorems 1’.6 and V.12 again when 
A’3 A: 

As il --+ co this sum goes to zero uniformly on K, if K is compact, and hence 

the functions +n are a Cauchy sequence in the sup norm on K. Equation (107) 
also implies that lim,,,{+(x) - .z 1 x 1” ‘> exists and the uniform convergence of 
(102a) to (102h). From (105) we see that C(X) 7: sup $),(x). For y  E Z3, however, 
$A(~ + y) = +4n+iv)(x) which, together with monotonicity and (9X), implies that 
$ is periodic. Likewise, if we define Bn(x) = supvsh3 +n(x + v), then 

I G jr, p = lim,,, Jr0 p,, _ Let .4(u) C P be a cube of side 2n -6 1 centered at 0 
and let p,(x) be the p associated with .4(u). S ince each il C A(a) for some a, and 
since il3 A(u) eventually for all a, I = hm,,, I,, , where I, = Jr pa . Suppose 
IA > z for some A. By monotonicity and (IOO), r(il(j>)) contains 

I &4)1 - 4l44) e ementary 1 cubes r for which srpj,, > z. But then 
1 Q&4)]-’ J-m8 pja > z for j sufficiently large, and this is a contradiction. Hence 
I < z. Similarly, we have that Jr, ~513 < lim inf,,,, 1 il 1-r SW3 p%a and +(x) < 
lim inf,,, I A I-lC~G~$n(x + Y> and 

607l23/r-7 
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The inequalities established thus far use only monotonicity and an elemehtary 
“conservation” argument. To prove the opposite inequalities we have to show 
that pn and +n do not “leak out to infinity.” The proof of (104) is easy. From 

VW, 64 2 supvf~$& + Y). Hence 

and (104a) and (104b) are proved. To prove (103a) and (103b) we use the bound 
(106). 

s -~cl) $A(4 ( j&“) c P”(x -Y) = B- 
WA 

Let c = lws #@ and let c h = ~jolZh$Ot(~) dx. Clearly, ch < 6/h for some 6 < cc 
because p”(x) < u I x 1-4. Thus, for h 2 4, B < I A I ch + I Ah I c112 and, 
using (100) together with the fact that h is arbitrary, we have that 

liyzp I fl 1-l jm,,,, $A = 0. 

likewise, for anyp 3 1, 

liy:p I A 1-l I,,,, $2 = 0 (109) 

because, as was mentioned before, q5d is uniformly bounded on -r(A). Since 

VW 3 zz +A@” + Y), 

Remark. Since pn and $n are monotone increasing in A, pn - p, +n 4 C#J for 
any sequence of bounded regions with the property that any bounded subset of 
Z3 is eventually in A. The limit function# is iheiame as the o;e in Theorem VI.2. 
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THEOREM VI.3. If A -+ co and +, p are the limiting potential and density, then 
the limit 

$+T, eni1 A I ~= 44 

exists I and 

e(x) _ :o Jo p5/3 .t ~ ~~I~(~, - J / x I~‘). 
0 

Pvoof. ,D/, satisfies the TF equation (3) with (be 7 0, i.e., $n .= pzn/“- Hence 

Theorem VI.2 establishes the result. 1 

Theorem VI.3 can be extended to more general regions by an argument more 
closely patterned after the usual methods of controlling energies per unit volume 
in statistical mechanics [74]. The argument does not use Theorem VI.3 and so 
provides an alternative proof of the convergence of e.,/lA 1 as A -+ a. 

'I~EOREM VI.4. As A + 03, en/i A canaerges to a limit e(z), A%rea7.w, 

jar any region A, 
e/j :< 1 A I e(z). 

Proaj Let us make the z-dependence explicit in bn, etc. By Lemma 77.7, 
for any A 

(djdz) e&) = zd $$+.&; 4 - z I .L- - Y I-‘] 

:.; 1 A 1 Iii{& 2) - z 1 s ]-I} 

by monotonicity. By (104b), if il + m, 

1 A ]-.I (d/dz) e,(a) + li$+(~; z) -- z 1 x 1-l;. 

By the dominated convergence theorem it follows that 

1 A I--l e,](z) .--, jo* lii[+(x; w) -. w 1 9 I-‘] dw 

and that 

e/l G I n I 44 for any A. 1 
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THEOREM VI.5. Suppose that A converges to Z3 in Van Hove sense [74], i.e., 
ody (100) is assumed to hold. Then 1 /I 1-l en(z) + e(z). 

Proof. By theorem VI.4, l& 1 /l [--I eA(zf < e(z). On the other hand, by a 
standard argument [24], lim 1 II 1-l e,(z) 2 1 (1(a)/-’ e,(,)(z) for any cube A(a). 
Taking the sup over a, lim 1 fl j--l e,,(z) 2 e(z). 1 

VI.2. The Periodic TF Equation 

The Pekodic Coulomb Potential. Th erc is no Green function for -d on the 
torus, i.e., there is no periodic function on W satisfying -Af = CyfZa 6(* - y), 
essentially because -Of = g(periodic) implies that 2 vanishes at a = 0 in a 
Fourier series. However, one can find a function on the unit torus satisfying. 

-dG = 47r(6 - 1). 

Equivalently, G: R3 + R satisfies 

(110) 

-(L&G)@ -y) = 4a -1 + C Q-y) 
lrtza 

and G is periodic. Obviously, G is determined only up to an additive constant; 
a specific choice we shall make is 

G(x) .= T-I c 1 k I-p exp[2mi(k, x)]. 
BBZS 
?c#O 

(111) 

G is bounded on r, except for a singularity at x = 0, G(x) = G(--x) and 

MdiiG(x)- Ix-1 (112) 

exists. To see that rlf exists, we note thatf(x) = sre 1 x - y l--l dy is continuous 
and that G(X) - 1 x 1-l + f(x) = T( *) IL is a distribution whose Laplacian is zero. 
T is therefore harmonic, and thus C”, even at x = 0 [67]. 

THEOREMS VI.6 Let A -+ 03 and let 4, p be the limitfunctions of Theorem VI.2. 
Then there exists a constant $,, > 0 such that 

-&4)(x) = 47r [z c S(x - y) - &)]. (114) 
?/EP 

Furthermore, # and p are real analytic 011 R3\k3. 

Proof. Let 6 denote the right side of (113) with &, I 0. As p EL”-‘(~J, 
G ~Ls-‘(.r& for all e > 0, G * p is a well-defined continuous function on 
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R3\Z3 (cf. Lemma II.25). 4 is periodic and satisfies (114) since Jr, p = z. Let 

f  E Com(lfF). Then 

On the other hand, 

Thus,+ FE+ -6, h’ h p w lc 1s eriodic, bounded, and continuous by Theorem VI.2 
and (112), is harmonic. Therefore it is a constant, &, . I f  we integrate both sides 

of (113) over r, we obtain 

(115) 

By Theorem VI.2, p and $ are c’l on WJL” and are strictly positive 
since $ > $ii > 0. The bootstrap argument of Theorem IV.5 as well as the 
proof of Theorem IV.6 arc applicable here. 1 

Equation (113), together with the conditions 

is the periodic TF equation we have been seeking. To establish uniqueness we 
Iccast (113) as a variational problem. 

Consider the following functional on 

Although G is not positive as a function (its integral vanishes), it is nevertheless 
true that G(x - y) is the kernel of a positive, semidefinitc operator. Consequently 
the arguments and conclusions of Section II apply to ZP . In particular 
p ++ G,(p; z) is strictIy convex, so the minimizing p is unique. That such a p 
exists folIows either from a repetition of the arguments of Section II or else, 
more directly, from the analog of Theorem 11.10 together with the fact that we 
have already demonstrated at least one solution to the variational equations 
(113) and (116). 
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It is important to note that 

is not the same as the limiting energy per cell, e(z). From the definitions, one 
finds that 

e(z) = E,(z) + 2 M/2, (117) 

with J-4 defined in (I 12). & does not enter (117). Adding a constant c to G(X) 
changes none of the quantities or equations except for three things: M-+ M + c; 

8Jp; 2) + 8&; z) - cz2/2 on Yz; E,(z) ---f ED(z) - cSj2. 

VI.3. General Remarks 

A. Noncut& Bravais Lattices. If the underlying Bravais lattice, L, of the 
crystal is not cubic, but is specified by three primitive, linearly independent 
translation vectors, aI , a2 , a3 t Ra then (111) must be replaced by 

G(r) = (TV-~ 2 1 k I-z exp[2ve’(k, x)], 
EL' 
MO 

(118) 

where Y = vol(ar , a e , aa) = ) (zI * (a, X a3)1 and L* is the lattice reciprocal 
to L, i.e., L* = (6, , b, , &) and (b, , Q~) = 6,,j . With this modification alI of our 
theory goes through as before mutatis mutandis. 

In addition, with trivial modification one can allow more than one nucleus 
per unit cell. 

B. The Madelung Potential and its Signijicance. In r, place a uniform charge 
distribution of total negative charge one, and also place a positive delta function 
at ‘the origin. The ordinary potential this charge distribution generates is 

f(x) = 1 s 1-I - j”r 1 x - y  1-l dy. (119) 
” 

The Madelung potential, F( x , in P, is defined to be the potential of an infinite ) 
periodic array of such charges, i.e., 

F(x) = 1 f(x - y). 
vcza 

(120) 

Since j has no quadrupole moment, f(x) = O(i x I-“) as 1 x 1 -+ 00, so (120) is 
absolutely convergent. The Madelung constant, M’, is defined by 

M’ = liiF(“) - ] x p-1. (121) 

If the same is done for an arbitrary Bravais lattice, L, f(x) will have a quadrupole 
moment in general, and the analogous sum for F(X) will not be absolutely 
convergent, and hence will depend on “shape.” 
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The point we wish to make is that even for the cubic lattice, only differences 
F(x) -F(x’) have significance. Consider the sum in (120) restricted to a large, 
cubic domain, fl E P. In the outermost cells of /I replace the constant negative 

charge distribution by a nonconstant one of the same charge, - 1. As the reader 
can easily convince himself, in the limit A -+ CO, the sum (120) will converge to 

F(x) + c, where c is a constant depending on the assumed distribution in the 
outermost cells. Likewise, d/r’--+ M’ --- r, and ‘jr, F --+ jr, F -(- c; thus M’ is 
unstable under “changes in the charge at the bounnary.” 

We mention this fact for two reasons. One is that in the solid state physics 
literature M’ is purported to have some physical significance. The second reason 
is that TF theory illustrates the foregoing remark insofar as 

where 

g(x) = z I x 1-l - Jr I x - y 1-l p(y). (123) 
0 

The constant, d, in (122) is not ze3.0 precisely because pn(x) # p(x) in the outer- 
most cells of A, cf. (127) et. seq. 

Let us calculate the relation of M’ to M. Let f(K) be the Fourier transform 
of .f(x). Then the Fourier series coefficients of F are given by 

JyJ4 = f(k), k -- 2m, n t Z”. (124) 

In particular, 

(125) 

Since -(47r)-l dF ~~ S(x) - 1 in r, , and Jr,, I= -.- 0, 

F(x) = G(x) + 2~ s,- x2 dx. 
0 

Thus 

AZ :- &?I -:- 2n Jr x.2 dx. (126) 
0 

Now we shall apply the same analyses to the TF +. Clearly 4’ = CrorJ g(x - y) 
satisfies -(4x)-r d#’ = zS(x) - p :m -(47-r-r d+, so # = #’ + d. Proceeding 
as in (129, 
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We wish to show that d # 0 in general. Otherwise, (127) would give a fortuitously 
simple expression for & , As z -+ 0 it is clear that p + the constant function Z, 
and 4 --+ p2j3 = z?P. We shall prove this later. Thus 

whereas 

I p(x)x2 dx = z 
s 

x2 dx + o(z). 
rll ru 

Hence, d # 0 for small Z. 

C. Signi$cance of & . As remarked earlier, #0 =: jr, $I is the average electric 
potential in the crystal. It is not the thermo&na&c limit of the chemicabpote-ntial. 

The chemical potential, Ed,,, , for a finite system is always zero, and hence 
Jim,, Ed n = 0. 

Since $’ = p213, HGlders inequality yields 

ljo < (j pyn L 2213. w? 

As z + 0, (128) becomes an equality, as we shall prove later. 

D. TheLimitsz-+Oandz-+oz 

THEOREM VI.7. As x -+ 0: 

where 11 . IID is the &,(I’,) norm. Moreover, 

e(z) = (3/5) s5j3 -j- O(z”-). (132) 

Remark. As we shall see in the next section, the limit z -+ 0, 7, fixed is the 
same as z fixed, 1 r,, 1 --f 0. This is the high density Iimit and (132) says that the 
total energy approaches the ideal gas value, namely, (3/5) p5j3, Equation (132) 
validates the assertion made at the beginning of Section VI that the corrections 
to TF theory beyond the leading term are of the same order as the quantum 
mechanical kinetic energy corrections, 

Proof. ZZ-~~~$(X) = A(x) + B(x) -I- C, where A(X) = ,@G(x), B = 
-zI/~G * (z-‘p), C : z-~/%/+, _ Since G EL~-~, all E > 0, and 11 Z-lp ‘;I1 = 1 we 
have that for 1 <<p < 3, i! A Iln - O(z1j3) and (( B (11, : 0(x1/3), Hence 
11 ,z-?yl - c ‘;,D - O(Z~/~). In particular, taking p -: $ and using the fact that 
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z--z/3$ +, z I, C = 1 -I- O(Z’.!~), thus proving (129), (130). The fact that 

P -= 4”!> implies (131). To prove (132) we use Theorem 1’1.3. J!.,, p”:“/IO = 
.z~!~/ 10 --- O(?) by (13 1). (-12) lim, ,&4(x) -- z 1 .Y I-~1 - ,-Mj --: (z/2) SIT, G( -1’) x 

p(y) (1~ -r &/2- As II p 117,‘4 --- O(z) by (131) and G ~l;~l”(r,,), sl-,, G( -v) p(~,) C/J, 7 
O(z). ‘rhus c(x) x [(I /lo) + (l/2)] z+ I-- O(zx). 1 

THEOREM 1’1.8. Let @“(x; z), @(x; z), md eRt(z) be the TF poten&al, &ensit~~ 
and energy respectizel& for a neutral atom with a nucleus of charge z located at 
.li! =- 0. (Recall that qbat(x; 2) -- S4/Pt(z1/%; 1) -: @‘(x; z)?+ anrl eat(z) = 

_n7/3eai( I ).) Then there exist 6, c, d < CO such that for all z 

II+ - qhnt ill) :>T c, 1 :.I p z; lY2, (133) 

1 p ‘- pat II,, .-< dz’ia, I ; p :, 3, (134) 

zuhere jl ’ lip is the L,,(r,) norm, and 

1 &, - ~9~ [,/jW(x; I) dx ( <; 6. (135) 

Joreowr, as a - Co, 

e(z) -.- eat(Z) = O(z). (136) 

Remark. This says that as z 2 co the crystal consists essentially of isolated 
atoms, in agreement with the fact that z--t CO is the same as the lattice 
spacing-t r;, as we shall see in the next section. Equation (134) should be 
compared with the fact that 1; p II1 == z, and (I 36) should be compared with the 

fact that eat(z) N z:/~. 

Proof. By Theorems V.6 and V. 12, 

pyx; z) ‘5; 4(x) I< 1 cpyx - y; a). 
?,d’ 

By Theorems IV.8 and IV.& @l(x; z) :< cr 1 x 1. 4r u -2 9r- “, on all of Pl[O). 
‘I’hese facts imply (133) for p cc, and, since P,, has finittr volume, they imply 
(133) for all p. Now p --x/W and (a ;. j~)rP :..L; $P- -- (39) btff f  b)‘!” for 

n, 6 :-: 0. Thus 
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E. Scaling Relations and Pressure. Suppose the unit cell F,, is isotropically 
dilated by a factor 1, i.e., 

r, -+ zr, = (Zx 1 x E r*j. 

Denote by a subscript I the dependence of the various quantities of interest on 1. 
Note that e,(z) is the energy per cell, not per unit volume. One easily finds that: 

GE(s) _: Z-‘G(Z-lx), 
Ml = FM, 

$Qie; AT) = PqqZ-la; Pz), 
p&T; z) = I-@p(Z-4; I%), 

e,(z) = Ek7e(Z3x). 

(1371 

The presswe is, by definition, 

PZ - !& (WVedt I (138) 

where I; : ) I&4)1 = 1 A ) P. W e will interpret a/aF’ to mean the derivative 
with respect to isotropic dilatations. Thus 

P = 432~)~1 ;+z (qqe,,,/I A I. (139) 

If we can interchange the derivative and the limit in (139) then: 

THEOREM VI.9. 

P = -(3Ez)-l (a/Al) q(z) = [(7/3) e(h) - d3i(Z3z)J Ems, (W 

where (i)(z) = de(.+z. 

To validate the interchange in (139) we argue as folIows: For a finite system, 
specified by A, the scaling Aations (I 37) also hold. Thus, (139) reads 

However, 

whence 

(141) 

by (104b). Therefore, to complete the justification of (140) we need the following 
lemma. 
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LEMMA VI. 10. The energy per cell, e(z), Jot the periodic TF system satisfies 

i(z) LZ de(z)jdz = 1;;{+(x) - z 1 x I-“], 

where + is the periodic TF potential. 

(142) 

Proof. By applying the methods of Section II to the energy functional 

Q,(p; z), (116), one can prove the analog of Theorem II. 16, i.e., 

Using (117), 

de@)/dz = xM - jr0 G, + ll,,, 

= ?j-Ir$#(x) ~ z 1 x I--‘} 

by (113) and (112). 1 

Remark. Using Theorems VI.3 and VI.9 we obtain another formula for the 
energy: 

(‘43) 

This gives us an alternative formula for the pressure: 

P~/~]. 

From (144) we see that P > 0 whenever e > 0, which proves part of our con- 
jecture. 

The compressibility, K, is defined by 

W’ = - I G I wa(I To I) 

= -(l/3) aP/al 

= P[(14/3) e(Pz) - f  1013) 13.zif13~) 

+ (/%)3 i(Pz)] . 

(145) 

VII. THE TF THEORY OF SCREENING 

Another interesting solid state physics problem is the TF theoq- of the 
screening of an impurity in a solid by the electrons in the solid. ‘I’he simplest 
model is to treat the impurity as the Coulomb potential of a point charge, and to 
replace the nuclei of the solid by a uniform background of positive charge. 
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The electrons are treated as a gas which will partly “screen” the Coulomb 
potential of the impurity. The TF theory of this problem has been widely 
studied, see e.g., Kittel [42]. Only the positive impurity case will be discussed 
although, as in the remark at the end of Section I, we could do the other case as 

well. 
Here we shall put the TF theory on a rigourous basis, but we shall not attempt 

to justify the TF theory as the limit of a proper quantum theory. We are not 
certain that a justification is possible, but even if one is, it would not seem to bo 
accessible to our methods of Section III. Those methods depend on energy 
considerations, and the energy of the impurity is finite while the total energy of 
the background is infinite. On the other hand, if one considers a large number of 
impurities, proportional to the size of the solid, the methods of Section III 
might be applicable. In any event, for real solids the TF theory of screening is 
not considered to be very realistic; as we shall see, the screened Coulomb field 
of the impurity falls off exponentially fast with distance, whereas in real solids 
the fall-off is believed to be much slower and is also osciltatory. This effect is due 

to the sharpness of the electron Fermi surface [42]. 
The formulation of the problem is the following. Let A be a bounded, mea- 

surable set in R3 in which a uniform charge density pe > 0 is placed. In addition, 
there is a nucleus of positive charge z located at x -= 0. The total electric potential 
generated by this configuration is 

vi,@; 4 = z 1 x 1-l + PB J4 I x - Y 1-l 4. 

The TF energy functional is 

(1461 

~A(P; 2) = % j p5’3 - j V/&J; +(x) dx + 4 jjp(r)p(y) I x - y 1-l dx dy (147) 

These integrals are over all of R3, and hence the support of p is not confined to A. 
We couId make a theory in which supp p C A but the results, both physical and 
mathematicaI, would be the same apart from an overall shift in the average 
potential caused by the boundary effects (cf. Sect. VI.3 and the remark after 
Theorem VII.2). The formuIation (147) is simpler and, on physical grounds, 
preferable. 

We shall only be concerned with the neutral case. Thus, by the methods of 
Sections II, IV, and V, there is a strictIy positive pn(3c; Z) which minimizes (147) 

and satisfies 
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with strict inequality if /l\/l’ # r_~ or z > z’. Equation (151) is Teller’s lemma 

suitably modified for the case of a smeared out background. We use the special 
notation pn(x), YA( x , and drl(,r) to denote these quantities when z = 0. ) 

We shall adopt an extremely weak notion of rl - 03 and it is remarkable 
that the theory goes through for such a sequence. One reason for this is that we 
are not interested in evaluating the total energy. 

DEFINITION VII.1. A sequence {&}zi of bounded measurable domains in 
lR3 is said to tend to infinity (symbolically il --+ 03) if every bounded subset of Iwa 
is eventually contained in /l. 

We first study the z = 0 case. 

THEOREM VII.2. Let A + CC and z 0. Then 

lilim I#&) 7: &‘” 

and the limit is uniform OPI compact subsets of W. ’ 

(152) 

Proof. By monotonicity and the remark after Theorem VL2,lim,+, +n(~) - 
sup,$,(x) = $(x) exists. As in the proof of Theorem VI.2 we see that 4(x) is 
periodic for every period; hence +(x) is a constant, + Let r,, be a cube of side one, 
centered at 0, as in Section VI, and let 4” be the TF potential when il = r,, . 
The estimate (106) holds if $Ot is replaced by +r, and +‘(x) < 0 1 x ; 4 by 
Theorems IV.7, IV.8, IV.9. Thus, as in the proof of Theorem VI.2,$ < co and 
the limit is uniform on compacta. Taking the limit /l + x in the equation 

--0$,(x) = 47(pB - p/,(x)), one has that 0 = --d$ = 4+r(pB - +3/2). 1 

Remark. When .z -T.- 0, if (147) IS minimized subject to supp p C il, then 
it is easy to show that the minimum occurs for Pi = pB , all x E il, and all A, 
and $Jil(~) = 0. Therefore the boundary efl’ect is precisely to lower the potential 
by ~7”. Compare the remarks in Section V1.3R. 

We next turn to the z > 0 case. We want to show that 

exist and that they satisfy the obvious TF equation: 

j 
g(x) dx --Y z. 

Of course, the existence off implies that of g and also (155). 

(‘53) 

(‘54) 

v  55) 

(‘54) 

607/23/1-S 
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THEOREM VI1.3. Let A --+ 03 and z > 0. Then f exists and (154)-(156) hold. 
Moreover 

(i) 0 <f(x; 2) ,< $at(~; z). 

(ii) The limits ila (I 53) are uniform on compact subsets of R3\(0). 

(iii) g E L1 n LW. 

(iv) f  and g are strictly positive and real anaZytic on R3\{O}. 

(V) If2 3 2’ thmJ(x; 2) > f(x; z’), all x. 

(vi) Amming only that g E L1 n L5f3 and that f(x) > -pz”, there is only 
one so&ion to (154) and (155) (without assuming (156)). 

Proof. Let fA(x; z) (resp. g,(x; 2)) = ~$~(x; x) - pz’” (resp. pJx; z) - p,). 
By monotonicity,f, converges to somef, and by Theorem V-12, 

$/l(x) ~.f&; 2) + PY” -=I 9&) + P(X; 4. 

This, together with Theorem VII.2 proves (i). By mimicking the proof of 
Theorem VI.2, (ii) is also proved. 

To prove (iii), appIy the inequahty (a + ,8)3’2 - mai2 < (s)fl(a + #‘2 with 
0: -: pi’“, /3 =f&; z) < $a+; 2). Thus 

g,(x; z) < (312) +“@; z) [$““(x; z) + p;‘3]1’2, 

and gA is dominated by an L1 n L5/3 function. The dominated convergence 
theorem implies (iii). It also implies (156) since sg,(x; z) dx = z by neutrality. 

Equation (154) follows from the fact that since gn -+ g in L1 n L5/3 we can 

take the limit A -+ co in the distributional equation 

-J-&t; 2) = 47r[zS(x) - gn(x; z)]. 

Then f  is given by the right side of (154) plus a harmonic function, h. Since 
f-+0 as / x 1 + oz by (i), h = 0. Condition (iv) follows by the methods of 

Theorems IV.3, IV.5, and IV.6 Condition (v) follows from the monotonicity 
property (151). 

To prove (vi), suppose that (f’, 5’) is another solution to (154), (155). By the 
now familiar subharmonicity argument, 1y = {X 1 f’(x; z) > f(x; z)} is empty 
because x E B implies that g’(x; z) > g( x; z) which implies that f’ - f  is sub- 

harmonic on B. But bothf’ andf-, 0 as ] x I-+ cc by Lemma II.25 and the fact 
that g and g’ E L1 n L5/3. Likewise, {x ] f’(x; 2) < f(x; z)} is also empty. 1 

Remark. By the uniqueness of the solution to (I 54)-( 156), both f  and g are 
spherically symmetric functions of x, i.e., f(x; z) -f(y; a) when 1 x 1 = ) y  1. 

There is a scaling relation for this problem. If we write 

f(x; 2) = p:‘3F(p;‘sx; p;%), (157) 

g(x; 2) = p&(&%; p;%), (158) 
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then (154) and (155) become 

~(x; => = z 1 ,% 1-I -. j / x - y  I--l G@; z) dy, 

(I + F)3/” ~ 1 -- G, 

(159) 

(160) 

while (156) becomes 

I 
G(c; 2) dx = z. (161) 

Henceforth we shall deaI only with the scaled quantities F and G. It is con- 
venicnt to define 0 E R and Y: R3 + R by 

H = (6+” RZ 4.342 (162) 

E-(x) L 1 x /-+v (163) 

whence 
--(4?7)-1 A Y(x) --’ 6(z) - (3/2) E’(x). (164 

It is sometimes said [42] thatf( x z -,-Y(x) as ! x 1 - r co. While the factor ; ) 

1’ is correct, the factor z is definitely too large as we shall now show. Physically, 
one may say that the effect of the nonlinearity of TF theory is to over screen the 
i??ZpUYit.LL 

‘~‘HEOREM VII.4. 3‘11e real ana/$ir function 4: (0, CC) x (0, w) - (0, CD) 

dejined b> 
E(x; z) = q(I x j; 2) l-(x) (165) 

satisJes 

(i) y(~; 2) is monotone decreasing in r and monotone kreasing in z. 

(ii) q(0; z) ~1 lim,,, tj(Y; z) =m 2. 

(iii) Q(Z) -- lim,,, q(Y; z) exists and 0 < Q(z) S-C z. 

(iv) Q(z) is monotone increusin,g in a and lim SUIJ~+~ Q(z)(bz)-“;” c-: 1, with 
h = (24/~)~/~ (5 + 5lf”)/32 - 1.039. 

LEMMA VII.5. Let T: W + R be sphekcail~ spmetric (ix., 1 s ; := 1 y  1 
implies T(x) : T(y)) and sati.fv T(x)1 x !-~I e+@lsl ELM. Let I Y * T. Then 
I is spherically sy’mmetric and 

I x I)-’ !‘I, s T(s) sinh[A(s - 1 x I)] ds. 
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Prooj, Use bipolar coordinates, i.e., 

s J(l x - 3' I) g(l y I) dy == 23-r I x l-1 6 dssj(s) j'"'" tg(t) dt, IId-- 
withf = T,g = Y. 1 

Proof of Theorem VITA. We can rewrite (159) as 

-(4+r AF + (3/2) F = z6(x) - T, 

where (166) 

T(x; z) = G(x; z) - (3/2)F(x; z). 

As 0 < (1 + a)s/s - 1 - (312) a < a3P when a > 0, 0 < T < F3P. Thus 

and hence 

F==zY-YYT (167) 

Ffx; x) < zY(x). (168) 

By (168) F3/? satisfies the hypotheses of Lemma VII.5 and hence 

where 

(I’ + T)(x; x) L= A(z) Y(x) - H(x; z), 

A(z) = (4n(8) jam s F(J; z) sinh(0s) ds, 

(169) 

and where T(s; z) = T(x; x) for 1 x 1 = S. H is given by 1, in Lemma VII.5 
Since 0 S< T < F3/2 < zs12Y”P, a simpIe estimate 1, yields 0 < H :<: pY3rz 
with fi < 00. 

Define Q(s) - .a - A(z) and q(r; z) by (165). Then we have that 

with 

L(Y; z) = (2~rj8) rrn 5 Qs; z) (es8 - ezBr-e*} ds. 
-r 

(170) 

As T ;> 0, L is monotone decreasing in r. As L 1 H/Y :< fiYrP, 
Jim,,, L(Y; ,s) == 0. This, together with Theorem VIT.3(v) proves (i) and the 
existence of the limit in (iii) with Q(z) = z - A(z). To prove (ii) it is sufficient 
to note that by Lemma II.25, Y * T, which appears in (167), is continuous and 
hence finite at x = 0. 



THOMAS-FERMI THEORY Ill 

lfQ(z) = 2, then A(a) = 0 and0 := T G - (3/2)F, ax. The&’ = G = 0, 

and (161) would not hold. Now suppose that Q(Z) = 0. Then F -; H = YL, 
whence T < F312 = Y3/zL3rA. Then from (170) and the monotonicity of L, 

qp; 2) < (&g) Jm s -wqJ; .)W e-3W(& - e-o*} ds 

i- 

:< (277/H) cp s-1/2 e-W2L(,; z)3/z ds 

.< (240) L(r; .z)3/2 j- s-~/~~-OP/~ ds. 
T 

Since F = YL, (168) implies that L < 3, and since the last integral goes to zero 
as r--f co, we conclude that there exists an u, such that L(q z) = 0 when 
r > r0 _ This contradicts Theorem VIL3(iv) and hence (iii) is proved. 

The monotonicity of Q(z) is implied by (i). To obtain the bound, we note 

that x + (1 + x)3/z - 1 - 3x/2 is monotone increasing for x > 0. Thus, 
since F > Q(z) Y, T I> (I + Q(z) Y)3/a ~ 1 - 3Q(2) Y/2 E T’. I f  Q(Z) is 
bounded there is nothing to prove. Otherwise, insert T’ into (169) and, by 
dominated convergence, 

lim,$f A(z) Q(z)-~/~ > (b/0) im s-7/2~~38p/2 sinh(Bs) ds z l/b. 

Since A(z) : z -- Q(Z), (iv) is proved. ] 

We are grateful to Dr. J. F. Barnes for providing us with the accompanying 
two figures. The first is a plot of Q(Z) (labeled Q and 2, respectively). The second 
figure is a plot of the function q(r; Z) (labeled UP) for z =-: 53.6988. The 

corresponding Q(Z) = 8.0. 
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FIGURE 2 

Notes Added in Proof. 

1. A simplified account of the analytic methods of this paper was given in [98] and a 

summary of the results, together with some applications, was given in [99]. 

2. It has been shown [52] that the right side of (6), with a smaller (c), is a lower bound 
on the Ieft hand side of (6). 

3. The reader may consult [68, IOO] for further discussion of Dirichlet-Newmann 
bracketing. 

4. In [2I, 24, 361, Theorem II.22 is generalized to the molecular case: ZK(p) = 

A(p) ~ R(p) + U, U = internuclear repulsion, provided the total energy eTp(X) = 
fir(X) j U is stationary with respect to variations of the Ri . We do not give this result 
here, because, as shown in Section V, eTp(X) has no absolute, and probably no local 

minimum as a function of the Ri . 
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