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Abstract. Following Hejtmanek, we consider neutrons in infinite space obeying a linearized
Boltzmann equation describing their interaction with matter in some compact set D. We prove exist-
ence of the S-matrix and subcriticality of the dynamics in the (weak-coupling) case where the mean
free path is larger than the diameter of D uniform in the velocity. We prove existence of the S-matrix
also for the case where D is convex and filled with uniformly absorbent material. In an appendix, we
present an explicit example where the dynamics is not invertible on L\, the cone of positive elements
in U.

§1. Introduction

In this paper, we consider the linearized Boltzmann equation (LBE):

ή(χ, v,t)= —v gradxrc(x, v, t) + J k(x, v', v) n(x, vf, t) dv' - σa(x, v) n(x, v, t ) . (1)

This equation describes a beam of neutrons which is non-self-interacting; thus
we are assuming low density and the non-linear term is dropped from the usual
Boltzmann equation (3.6). The first term describes free streaming of the beam in
phase space, the second the net input in (x, v) phase space due to scattering from
other regions (x, ι/) in phase space and from production (fission!) by other par-
ticles. Simiarly, the last term describes loss due to absorbtion and scattering from
(x, ι;) into other regions. We emphasize that while we use the symbol σα (in order
to have notation similar to Hejtmanek [7]), σα is not quite a cross-section but
has the units of inverse time and is a rate. v~ίσa(x,v) is the cross-section times
the density of scatters (or absorbers) and is an inverse mean free path. Similarly
the quantity

σ p ( x 9 v ) = $ k ( x , v , v ' ) d v f (2)

is a production rate [note that k(x, v, v') appears in (2) but that fc(x, ι/, v) appears
in(l)!].

In the cases of greatest physical interest [1, 3, 5, 16], either the configuration
space is finite or it is made effectively finite by having pure absorbers (fc = 0;
σa(x,v)^a) arround an interaction region D (so the beam delays exponentially
outside D). In some approximations [9,14,15] D is taken to be a slab infinite in
two directions. In any event, the case we will consider (following Hejtmanek [7])
of free space surrounding a interaction region is quite far from reactor theory.
It is nevertheless of some physical interest and is of special interest in the mathe-
matical theory of scattering [10, 12, 19] for two reasons: first the natural data set
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for the problem is not a Hubert space; in fact it is not even a vector space, for it
is L+OR"1), the cone of positive functions in //(IR™). Of course, for technical
purposes the vector space L1 is useful. Secondly, the interacting dynamics, W(f)
is, in general only one sided, i.e. defined from L\ to L+ only for ί^O. This
phenomena occurs even in the pure scattering case where σa(x, v) = σp(x9 v) (see
the Appendix) and is thus not due to energy or number dispension but rather
due to the statistical nature of the Boltzmann equation as expressed, for example,
in the celebrated //-theorem. (To confuse the issue W(f) is invertible on L1 but
with an inverse that can be non-positivity preservity.) For one-sided dynamics,
the basic objects of scattering theory are [13]:

Ω+ = s-\imW(-t}W0(t], (3 a)
t~> - oo

Ω~ = s-limW0(-t)W(t) (3b)
ί-> + oo

and the S-matrix S = Ω~ Ω+. Notice that the free dynamics W0(s) occurs in (3)
for 5^0 and so must be two sided but that only W(s\ s > 0 occurs.

The structure of this paper is the following. In § 2, we present the basic general
elements of the theory reviewing the work of Hejtmanek [7] whose two main
theorems concern the soluability of the Cauchy problem for ί > 0 and the existence
of the limit (3 a) in the case of absorption or pure scattering i.e., σp(x, σ) ̂  σa(x, σ).
We review this work partly for the readers convience, partly to establish notation,
partly because we need lemmas in a form slightly different from this and partly
to include some trivial extensions, most notably the existence of Ω+ in the sub-
critical case sup || W(t)\\ < oo. In §3, we discuss the weak coupling case (physically

r^O
the case of mean free path larger than the interaction regions) following Kato's
discussion [11] of weakly coupled two-body Schrodinger systems. Our main
results assert that in this case the system is subcritical and the limit (3b) exists.
In § 4, we consider the strictly absorbing case, σa(x, v) — σp(x, v) Ξ> α > 0 all x e D,
the interaction region and show that when D is convex, the limit (3 b) exists. In an
appendix we give an example where W(t) is not invertible as a map from I}+ to L\.

Acknowledgements. It is a pleasure to thank T. Hejtmanek for discussions and communication
of [7] before publication and R. Werner and C. Wilcox for an invitation to the Oberwolfach Scattering
Theory Conference where T learned of [7] and this work was begun.

§ 2. Foundations of the Theory (Following-Hejtmanek)

In what follows, we study Eq. (1) where σa(x, v) and fe(x, ι/, ι;) are given meas-
urable functions respectively on IR2" and IR3". They must be a.e. non-negative
and obey:

(CS) σa and K have compact support in x-space, i.e. there is a compact D,
with σa(x,.) and K(x,.,.) identically zero for x φD.

(FR) There are uniform bounds on the reaction rates, i.e. if σr is given by (2),
then

R(σ) = sup [σr(x, v) + σfl(x, u)] < oo . (4)
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Occasionally, we will require:
(FM) There are uniform lower bounds on the mean free paths, i.e.

M(σ)= sup Uv\~1(σp(x,v) + σa(x,v))~]<cQ. (5)
x,ι;eIR6

All these conditions are quite reasonable physically. Ra(σ\ Rr(σ\ Mα(σ), Mr(σ)
will denote the obvious terms. In the LBE, Eq. (1), the two operators:

(AI n) (x, v) = — J fc(x, t/, υ) n(x, v') dυ'
and

(A2 n) (x, v) = σa(x9 v) n(x, t;)

enter. We have:

Lemma 2.1. If (FR) holds then A± and A2 define bounded operators on L1(R2'1)
with

MJ^Λσ); \\A2\\£Ra(σ).

The semigroups e~tAl(t^O, i= 1, 2) are positivity preserving i.e. they leave the cone
L\ invariant. If (FM) holds, then in addition A1\υ\~1 ana A2\v\~1 are bounded
where \v\~v is the operator taking n(x, t;) to l i Γ^x, v) and

MJi ni^MΛσ); M2|CΊl ̂  Mβ(σ).

Proof. The boundedness statements for A2 are trivial and those for Aί are
simple consequences of Fubini's theorem. Since e~tA2 is multiplication by e~tσa

it is clearly positivity preserving. Since — A± is positivity preserving so is

π = 0 H

We also need the operator T0 which is the closure of the operator defined on
CoΌR2") by:

(T0 n) (x, v) = (v grad^rc) (x, v ) .

Lemma 2.2. TQ is the generator of a one parameter group of positivity preserving
isometries on L^IR2") and W0(t) = e~tτ° is given by:

(W0(t) n) (x, v) = n(x — vt, v ) . (6)

Proof. The group given by (6) clearly has the claimed properties so we must
only show that T0 is its generator. For nε C^(1R2") it is clear that

-d
dt

so the generator clearly extends T0. We are thus reduced to showing that C^(lR2w)
is a core for the generator. But since Q? is left invariant by WQ(t) this follows
from a theorem of Nelson [17] (see e.g. Theorem X of [18]). Π

We can now easily solve the Cauchy problem for the (LBE), Eq. (1):

Theorem2.3(essentially in Hejtmanek [7]). // (FR) holds, then the closure of
T=T0 + A1+A2 defined on QΌR") [D(T) = D(T0)] is the generator of a one
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parameter strongly continuous semigroup W(t) = e~tτ on 1} leaving Z/+ invariant
with

||W(ί)||gexp(ίΛr(<7)). (7)

Proof. That T generates an exponentially bounded strongly continuous semi-
group is a standard perturbation result of Phillips (see [8] or [18]). Since each
of the semigroups e~tA\ W0(t] are positivity preserving and since

||e- fyy ^ exp(ίϋr((j)), \\e'tAi\\ £ 1, W0(t)£\ ,

the bound (7) and the fact that e~Tt : L\ -»L+ follow from the Trotter product
formula [2, 20]. Π

Remark. While e+tτ exists, it may not take L\ to Z/+ see the appendix.
For latter purposes we note two formulae from the perturbation theory of

semigroups [8] which we will need later. Let A = A1+A2 Then the DuHamel
expansion says:

t
W(t) = W0(t) -$WQ(t-s)A W(s] ds (8)

o

we will also need its convergent iteration, the Dyson- Phillips expansion:

W(t)= Σ(-1)M j W0(t~Sί...sn)AW0(s,)...AW0(sn}dns. (9)

For there to be a sensible scattering theory, we need to be in the case where
the material of which we are scattering can be neither a reactor nor a bomb:

Definition. We say the system (fe, σα) is subcritical if

sup| |W(ί) | |<oo.
ί^O

It is physically obvious that:

Theorem 2.4 (essentially in Hejtmanek [7]).
(a) // σp(x, v)^σa(x, v\ then \\W(f)\\ g l(ί^O) and in particular the system is

subcritical.
(b) // σp(x,υ) = σa(x,υ) (pure scattering) then W(f) is an isometry on L\.

Remark. If W(t) is not invertible on L\ it will not be an isometry on L1

in case (b).

Proof. Since \ W ( t ) f \ ^ W ( t ) \ f \ on account of the fact that W is positivity
preserving, we have only to prove || W(t) n\\ ̂  | |n|| (resp. = ||n||) in case (a) [case (b)]
for n ̂  0. Since W0 is an isometry, the Trotter product formula implies we need
only show that \\e~tAn\\ ^ ||n|| (= ||n||) in case (a) [resp. (b)]. But

J[σp(x, i;) — σa(x, v)~\ n(x9 v)dxdv

which is ^0, ( = 0) in case (a) [resp. (b)] and thus e~tA decreases J n(x,v)dxdt. Π
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In § 3, we will show that certain systems violating σp ^ σa are subcritical.
Hejtmanek's final theorem asserts the existence of Ω+ in the cases covered

by Theorem 2.4. For later purposes, we will need a lemma which implies the
existence of Ω+ although by a proof less "physical" than Hejtmanek's:

Lemma 2.5. For any Borel set D, let \\n\\D = } n(x9 v) dxdv.
xeD

Then for n e L1

GO

I \\W0(t)n\\Ddt^(άiamD) \l\v\-1 n\\ (10)
— oO

where diamD — sup \x — y\.
x,yeD

Proof. We will show that for each fixed v :

00

ί ί \(WQ(t)n)(x,v}\dxdt^ά\zmD$\υ\-l\n(x,v)\dx (11)
xeD - oo

whence (10) follows by integretating over v and using Fubini's theorem. Letting 3£
be the characteristic function of D, the left hand side of (1 1) is

00

J J SC(x) \n(x - vt, v)\ dx dt .
- oo

Let y be the coordinate in x-space parallel to v and xλ the orthogonal coordinates.
Then this last integral is

00

I J dtS&(y,x±) \n(y-\υ\ t, xλ, v)\ dydx^dt
- oo

letting z = y — vt and changing variables from y, t to y, z we see that the integral is

[N" ' ί [ί#Ό>, xjdyl [J I n(z, xl5 t;)]dz] dxj

Thus (11) follows form the bound

uniform in xλ and this bound is geometically clear. Π

Theorem 2.6 (essentially in Hejtmanek [7]). // <fc, σ> obej; ("CSJ, ^FKj and
define a subcritical system, then the limit:

Ω+ = s-limW(-t)W0(t)
t-» - oo

exists. Ω+ is positively preserving, is a contraction if σp ^ σa point\vise and an
isometry if σp = σa pointwise.

Proof. We use Cook's method [4]. Since the | |W(— t) W0(t)\\ are uniformly
bounded, we need only prove the limit exists for a dense set of n e Zλ The prop-
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erties of Ω+ then follows from the properties we have proven above for W and
WQ. Now, it follows from standard perturbation theory that for s< t

\\W(-t)Wo(t)n-W(-s)WΌ(s)n\\ = $W(-u)AW0(u)ndu

\\A\\ $ \\W0(u)n\\Ddu
S

where we have used the fact that by (CS), An only depends on the values of n
< 00

in &D. If \v\~1neLί, j || W0(u)n\\Ddu< oo by Lemma 2.5 and thus
— 00

lim f \\W0(u)n\\Ddu-^0 so W(-f)WQ(f)n
ί,s-> - oo

is Cauchy. Π
There is clearly a close connection between subcritility and the existence

of Ω~ since both are expressions of the fact that eventually the norm ||n||D goes
to zero. In fact we will make:

Conjecture Ω~ exists for any subcritical system.

§3. Weakly Coupled Systems

Our analysis depends on the following basic result:

Theorem 3.1. // (Lί)+ contains a dense set for which

00

l\\W(t)n\\Ddt«x> (12)
0

then under hypotheses (CS), (FR) and subcriticality the limit

Ω~ = s-limW0(-t)W(t)
t-> + oo

exists. If

\Ddt£C \\n\\ (13)
ό

then the system is subcritical.

Proof. As in the proof of Theorem 2.6,

\\ίW0(-t) W(t)-W0(-s) W(sj] n\\ ί \\A\\ \ \\W(ύ)n\\Ddu
S

so that (12) implies the limit Ω~ n exists for a dense set of n. Subcriticality implies
the necessary bound to extend the convergence to all n.
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Let (13) hold; then using (8), we see that

\\W(t)n\\£ \\n\\ + ] \ \ A W ( s ) n \ \ d s
o

£ || R|| + \\A\\ \ \\W(s)n\\Dds£(\ + \\A\\ C) \\n\\
0

implying subcriticality. Π
Our basic small coupling result is patterned after the time-dependent aspects

of Kato's theory of smooth perturbations [11]:

Theorem 3.2. If(k9 σ) obey (CS), (FR) and (FM) and ι/α = (diamD) M(σ)^ 1,
then for any n : oo

j \\AW(t)n\\ <fί^α(l -α)'1 ||n|| . (14)
o

The wave operator Q~ exists and the system is subcήtical.
Proof. We will first show that for any n e L1

]\\AW0(t)n\\dt^*\\n\\. (15)
o

For H^iΓ1!! :g M(σ) by Lemma 2.1 and since v commutes with W0:

oo oo

t\\υW0(t)n\\Ddt£ J \\W0(t)vn\\Ddt
0 - oo

by Lemma 2.5. Since \\AW0(t)n\\ ^ \\Av~1 \\ \\υWΌ(t)n\\D, (15) follows. (15) allows
us to bound the terms (9):

]\\AW(t)n\\dt£ £ S\\AW0(s1)...AW0(s2)...AW0(sJn\\<rιs
0 n= 1

This proves (14) and from (14) we can conclude the subcritibility and existence
of Ω~ by minor changes in the proof of Theorem 5.1. Π

Remarks. 1. Theorem 5.2 has as a corollary the existence of a critical diameter
for critical or supercritical behavior. It is a little disappointing that the result
does not have a critical volume (mass) instead but it seems difficult for this to
happen without additional assumptions on σ, k.

2. The condition M(σ)"1 ^ (diamD) is essentially a statement that the mean
free path in larger than D and is physically quite satisfying.

§4. Uniformly Absorbing Material

We say the region D is uniformly absorbing, if for all x e D, ve 1RM, σα(x, v)
— σp(x,v)^a. Of course, in this case, W(t) is subcritical by Theorem 2.4. What
we wish to prove is :

Theorem 4.1. If D is uniformly absorbing and convex, then the inverse wave
operator Ω~ exist.



106 B. Simon

The intuition behind Theorem 4.1 is that particles inside D either leave D in
which case they should never return, or they stay in D in which case they are
absorbed expontially.We thus expect that for any unice" n, || W(t)n\\D^ Ce"^ so
that (12) holds. We will first prove a lemma that says that for large enough times
nothing now can enter D (first half of the above argument).

Lemma 4.2. Let D C Sr, the open ball of radius r. For each x E Sr\D, let Cx = set
of v E lRn such that the half ray x — vt intersects D. Let

n e C£(R2n} = {n e C$(R2n)\ supprcn {<x, u> |v = 0} - φ}.

Then for sufficiently large t, n(x, v, t) = (W(t)n) (x, v) = 0 if xe Sr\D, v φ Cx.

Proof. By (8):

n(f) = W0(t) n - ] W0(s) An(t -s)ds.
o

For nEOQ, we can clearly choose T so that for t>T, x<= Sr(WQ(t)n)(x, v) = 0
all υ; for suppx(W0(ήn)^oo. Thus xeSn n(x, v, ί)Φθ implies that WQ(s)(An)
•(x,v,t — s) + Q for some s>0 which implies An(x — vs, v, t — s)φO for some s
which implies that x — υseD for some s > 0. Thus v e Cx. Π

Next we need a simple geometric fact. Given D, let p(x)= dist(x,D). Then:

Lemma 4.3. // D is convex, then for any x e S,\D and vεCx,v- gradp ̂  0.

Proof. Given xe-S^ND, let y be the point in D with dist(y, x) = p(x). Such a y
exists by compactness and is unique by convexity and the parallelogram law.
Let e be the unit vector in direction y — x, and let P be the plane through x
orthogonal to e. By definition of y, if z e D, then the angle α = xyz must be larger
than 90° so that xz must point in an accute direction relative to e, i.e. Cx lies on
the opposite side of Cx from e (Fig. 2). If we show that gradp= — e we will be
done. But this follows from convexity. Π

z

-grαdp The Plane P

Fig. 2

Theorem 4.4. Under the hypothesis of Theorem 4Λ, for any n e C™, there is
a T with \\n(t)\\D£ e'^'^ ||n(T)||D for t^T.
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Proof. Let φ be a monotone decreasing C$ function on [0, oo] with φ(ty= 1
and with $uppφ(p(x))cSr some fixed open ball containing D. Let

\\n\\ φ = ί Φ(p(x)) n(x9 v) dxdv ,

for nel}+. Then by Eq. (1):

-77- \\n\\ φ = J (v gradj φ(p(x)) n(x, v) dxdv + remainder

where the remainder obeys :

remainder = J /c(x, v', v) n(x, v', t) dv1 dvdx — J σ(xDv) n(x, v, t) dvd ,

= J(σρ(x, v) - σu(x, v)) n(x, v, t) dxdv

Choose T so large (by Lemma 4.2) that for t > T, n(x, v, t) φ 0 if x e Sr\D, x φ Cx.
Then, by Lemma 4.3, the term

J (t; - grad^ p) — — n(χ, υ) dx dv ̂  0
3j;

δφ dώ
since supp -— - C Sr\D and — — ̂  0 by monotonicity. It follows that

dy dy

so for t ̂  ί0 ̂  T

| |n(ί)IU^I|n(ίo)IU-«ίl ln(s)l lD^
ίo

As suppφ approaches {0}, \\n(ή\\φ-^ 11^(011,0 so we have:

\ \ n ( t ) \ \ D ^ \ \ n ( t 0 ) \ \ D - κ l \ \ n ( s ) \ \ D d s . (16)
ίo

From (16) we conclude that | |w(ί) l lo is monotone decreasing for t> Γ, and from
this that for any δ

Taking δ = (t — t0)/n and letting n-» oo we have:

00

Proof of Theorem 4.1. From Theorem 4.4, for any n e C^, J || W(t) n\\Ddt<co.
o

Thus, by Theorem 3.1, Ω exists. Π

Appendix. An Example with Non-Invertible Dynamics

Let D be the cube (— 1, I)3 let k(x, υ, v') = vv' exp(— v2 — v'2}; x e D and
σα(x, v) = σρ(x, v) and let n be a positive L1 function whose x-space support is in
a very small neighborhood of <1 + 10~6,0,0> and whose i -space support is in
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a cone of very small opening angle about <1,0,0> with 1 rg |ι;| ̂  2. Then we claim
that n is not in the range of W(t) for say t ̂  1 as an operator on l}+ (so in partic-
ular the inverse of W(l) on L1 is not positivity preserving). To prove our claim
we note that for particles to be in supprc at ί = 1, they must have passed through D
and thus they have scattered with nonzero probability. Thus the distribution
for v must have a Gaussian piece and, in particular, cannot have t -space support
strictly in {t;|l^|ι;| ^2}.
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