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We prove several theorems about quantum-mechanical entropy, in particular, that it is strongly

subadditive.

1. INTRODUCTION

In this paper we prove several theorems about quan-
tum mechanical entropy, in particular, that it is strongly
subadditive (SSA). These theorems were announced in
an earlier note,l to which we refer the reader for a
discussion of the physical significance of SSA and for
a review of the historical background. We repeat here
a bibliography of relevant papers.2-9 .

The setting for these theorems is as follows:

(a) Given a separable Hilbert space H and a posi-
tive, trace-class operator, p,on H [i.e., p = 0 means
(W, py) = 0 for all ¢ in H], the entropy of p is defined
to be

0
S(p) = — Trp Inp =—Z}1 A; 1nxg, (1.1)
1=
where Tr means trace,the x; are the eigenvalues of p,
0 1n0 = 0,and we permit the possibility S(p) =©. In
physical applications one also requires that Trp =1,
in which case p is called a density matrix.

(b) IfH,, =H,® H, is the tensor product of two
Hilbert spaces and p, , is a positive, trace-class opera-
tor on H,,, we can define a positive,trace-class opera-
tor, p;, on H, by the partial trace,i.e.,

py = Trypq, (1.2)
by which we mean
o0
((P;P]_W) :EI (p® ei;Plz[\l/ ® ei]) (1.3)
i=

for all ¢,y in H, and {¢;} ;= any orthonormal basis in
H,. We shall denote S(p,) by §,, etc. In like manner
one can have H,,, = H, ® H, ® Hj,and P124 2 positive,
trace-class operator on H,,,, and define P On Hy, =
H, ® Hy, p, on H,, etc.by partial traces. When no con-
fusion arises, we shall frequently use the symbol p, to
denote the operator p; ® 1, on H,,.

Our main results are the following two theorems.
Theorem 1: Let H,, =H, ® H,. Then the function
P12 = S =S4, (1.4)

is convex on the set of positive,trace-class operators
onH,,.

Theorem 2 (Strong Subadditivity): Let H,,5 and
P123 be defined as in (b) above. Then

(i) S123 ¥ S3 —S15 —S53=0 (1.5)
and
(ii) S; +83 —S;5, —S,3 =0. (1.6)

In the next section we prove these theorems in the
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finite-dimensional case. In Sec. 3 we elucidate the con-
nection between these two theorems and give some
related results. Sec.4 contains the proofs for the infin-
ite-dimensional case and is based on the appendix
kindly contributed by B. Simon, to whom we are most
grateful.

2. PROOFS OF THEOREMS 1 AND 2 IN THE
FINITE-DIMENSIONAL CASE

Pyoof of Theorem 1: The theorem states that

(51 “312)(012) = C!(Sl ""312)(pi2)
+ (1 — a)(S; — S12)(pT5)

where py, =api, + (1 —a)py, 0 =ao <1,and pi,
and p’, are any positive, trace-class operators on H, ,.
We shall assume that both pj, and p’|, are strictly
positive and appeal to continuity of p - S(p) in the
semidefinite case. Letting

(2.1)

A =0 Tryppy, (—1npy, +1npg +1npy, —Inpy)
and
I'=(Q1—a) Try,p], (—1npf, +1np] +Inp,, — Inp,),

one sees that (2.1) is equivalent to A + T' = 0. We now
use Klein's inequality 7>10:

Tr(—A InA + A InB) < Tr(B — A). (2.2)

(Alternatively, one could use the Peierls—-Bogoliubov
inequality in a similar way.2) We first apply (2.2) to A
with A = p}, and B = exp(Inp; + Inp,, — Inp,) and then
similarly to I'. Then

A +T =o Try,lexp(ng] +1np,, —Inp,) —pi,]
+ (1 —a) Tryp[exp(inp] +1Inpyy —Inpy) — pf,]
=Try, [exp(np; +1np,, — Inp;) —pi,]=0.
(2.3)
The second inequality in (2. 3) follows from the concav-
ityll of C + Tr[exp(K + InC)] for positive C applied
to p; = apy + (1 — a)pf with K =Inp,, —Inp,. Q.E.D.

Proof of Theorem 2: R has already been pointed
out? that (1.5) and (1.6) are equivalent; however, we
shall prove each statement separately.

(i) Proof of (1.5): We use Klein's inequality, (2. 2),
with A = p,,3 and B = exp(— Inp, +1lnp;, + Inp,3). One
finds

Flpy33) =S123 +S3 —S15 — S33
=Tryz3 [exp(ng,; —Inp, + Inoy3) —pyp3].
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We now apply a generalizationl! of the Golden—-
Thompson inequality,i.e.,

Tr{exp(InB — InC + InD)]

0
=Tr [ B(C +x1)1D(C +x1)ldx. (2.4)
Thus

o0
F(pyp3) = Trlzs(fo P12lpy +x1)1
X pog(py +x1)dy —py,3)

o
=Tr, fo palpy +xNpy(py +x1)dx — Tryy30,53
=Tryp, —Trys30193 = 0. Q.E.D.

(ii) Proof of (1.6): Call the left side of (1.6)
G(p,534). Note that S; — S, is convex in p,, by Theo-
rem 1;since p,, is linear in p,,5,5; — 5, is convex in
P123- Thus, G(p;,3) is convex in p;,3. Inthe convex
cone of positive matrices, the extremal rays consist
of matrices of the form p = aP where @« = 0 and Pisa
one-dimensional projection. If p,,5 is extremal, then
(see Ref.2, Lemma 3) S; = S,5 and S35 =S, ,, so that
G(p;,3) = 0. Every positive matrix p,,4 can be
written as a convex combination of extremal matrices;
it then follows from the convexity of G that G(p123) =0.
Q.E.D.

3. REMARKS AND RELATED RESULTS

We have already noted in the proof of (1.6) that
Theorem 1 implies Theorem 2. We now note that the
converse is also true and give several alternative proofs
of Theorems 1 and 2. We then show that F(p,,;) is not
convex and give a corollary to Theorem 1.

(A) To show Theorem 2 implies Theorem 1 it suffices
to note that [apart from the trivial interchange of the
subscripts 1 and 2 in (2.1)] (1.5) is identical to (2.1)
for a special choice of p;,3,i.€.,p153 = @p1,® E5 +
(1 —a)pi, ® F, where H, is chosen to be two-dimen-
sional and E; and F4 are orthogonal, one-dimensional
projections on H,.

(B) Uhlmann? has shown that (1.5) follows from the
concavity of C + Tr exp(K + InC). This has been
shown to be true by Lieb,11 and an alternate proof was
later found by Epstein.12 Therefore, Uhlmann's
remark gives an alternate proof of (1.5).

(C) The proof of (1.6) shows that Theorem 1 implies
Theorem 2. However, (1. 6) is not equivalent to (1.5) in
other contexts.13 [In fact, (1.6) is false in the classical
continuous case.8] Therefore, it is instructive to note
that one can show that Theorem 1 implies (1.5) directly
without using (1.6). Baumann and Jost3:5 have shown
that a special choice of pj, and py, in (2.1) implies
that Tr fo AX(C + x]!)‘lA(ZC + x1)1dx is jointly convex
in (A, C) where A and C are matrices with C > 0. Lieb
has then shownll that this implies C
Tr exp(K + InC) is concave in C. The last statement was
used to provell (2.4) which, as we have already seen,
implies (1.5). Alternatively,we have already noted in
(B) above that concavity of C  Trexp[K + InC]
implies (1.5).

(D) We have already shown that the left side of (1.6),
G(p123),is convex. One might wonder, therefore, if the

left side of (1.5), F(p,,3),1is also convex. In fact, it is
not. If it were,one could choose H, to be one-dimen-
sional so that

F(py123) =S13—5; — S5 =E(p;5)
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would have to be a convex function of p;4. Take H, and
H 5 to be two-dimensional and choose p; 3 and py4 to be
the following orthogonal, one-dimensional projections:

Pis(i1:i3;j1’j3) = éﬁ(il, i3)5(j1:j3)
and
Pf3(i1,i3;].1,].3) = %[1 - G(il;ig)][l - 6(j1:j3)]:

where § is the Kronecker delta. Then pj =p] = 31,,
p3 =p3 =z13,and E(p}3) + E(p]s) — 2E(3p15 + 3073)
= — 2 In2 < 0, which is a contradiction.

(E) It was pointed out in Ref. 11 that if f(4) is a con-
vex function from the set of positive matrices into R,
and if it is also homogeneous [i.e., f(A4) = Af(A4) for all
A > 0],then

S A +xB)| o =lim £ [AA +xB) - (A)] sf(B>23 )

whenever A, B are positive matrices and the above
limit exists. The function (S; — S;,)(p,,) has these
properties. To apply (3.1) we compute

dixS(p +xy) =~ad;Tr[(p +xy) In(p + xy}]

=—Try In(p + xy) — Try.
Using this in (3. 1) we conclude

Corollary: Let y,, and p;, be positive,trace-class
matrices on H,,. Then

Trisy12 Inpy, — Tryy, Inpy

= Tryyyy, Iny;5 — Tryy, Iny,, (3.2)
i.e.,for each fixed v, ,, the left side of (3.2) achieves its
maximum when p;, = y;5.

4. EXTENSION TO INFINITE-DIMENSIONS

We can use Theorem A2 to extend Theorems 1 and 2
to infinite dimensions. For simplicity, we confine our
discussion to Theorem 1 where H,, = H, ® H,. The
extension of Theorem 2 is similar and we point out the
necessary changes at the end of this section.

Let E#(i =1,2 andn = 1,2, ) be sequences of
increasing, finite -dimensional projections on H, con-
verging strongly to the identity, and define

E» =FE% ® E3,
Piz =E"py,E*,
and
pt =Trypt, = E4(Tr,E%p, ,EB)E} 4.1)
Since the spaces EZ#H, are finite dimensional, Theorem
1 is satisfied by p%, on E%2H, ® E%H, for each n. Thus,
it suffices to show that the sequences of matrices

{p{z}:‘o -1 and { p'{};o -, satisfy the hypotheses of Theorem
A2 so that,e.g.,lim S(p%,) =S(p;,) =S;,.
n—>00

To show that {p%,}. ., satisties Theorem A2, we first
note that E» —>1,,. If14 the sequences A, —» A and
B, > B,then A, B, > AB. Consequently, p}, con-
verges to p,, strongly, and therefore weakly. It follows
from the Ritz principle (see Proposition Al) that

Py =E"p,,E* { En*1lp, ,En*1 4 p , with 4 as defined
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in the Appendix. Therefore,the hypotheses of Theorem
A2 are satisfied and - »
lim S(p%,) =S;,. (4.2)
n—00
To show that {p4}, -, also satisfies Theorem A.2,
define p% = TryE%p,,E%. Then p = E3p3E%. To show
that p% converges to p, weakly, it suffices to show that
p% converges to p% strongly. (In fact, it converges uni-
formly.) To do this we can assume, without loss of gen-
erality, that E3 projects on the space spanned by
e;---e, where {¢;:i = 1,2, -} is an orthonormal basis
in H,. Then
" .
W, pty) =_Z)1 (W ® e;,pi0®e)
i-
for all ¢ in H,, and it follows that

o1 = p7'l, 4.3)
and
lim (W, {(p; —PY) =lim 2. W& e;,p1,¢ ® ;) =0
7n->%0 n— n+l (4.4)

Since 51 is a monotone sequence of positive opera-
tors, (4.4) implies that p} — p, and therefore
p%t — p;. Further, it follows from (4.3),i.e.,the mono-
tonicity of p%, that

pt 4 EY 1ptEY
=EYyEYT = eyt oy

Thus, Theorem A2 implies
lim S(p%) =S(p,) =S;-
n—»o0
The analysis for Theorem 2 is similar. One defines

E® =E7® E3 ® E3,
Plaz = E"py3E",

and
Pty = Trap}ys, ete.
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APPENDIX : CONVERGENCE THEOREMS FOR
ENTROPY By B. Simon'§

We discuss a variety of convergence theorems which
are useful in extending entropy inequalities from finite
dimensional matrices to infinite dimensional operators
on a Hilbert space.

- Definition: Let A be a positive compact operator.
u,(A) denotes the kth largest eigenvalue of A counting
multiplicity.

Definition: Let s(x) be the function on [0, ©) given
by
—x Inx ifx=0
s{x) =

0 ifx =0.
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If A is positive and compact, we set
=]
S(A) = kZ_)l s(u,(4)),
the value infinity being allowed.

Definition: Let A and B be positive, compact opera-
tors. We write A < B if and only if u,(A) = u,(B) for
all k.

Definition: Let {A,}. ., and A be positive, compact

operators. We write 4, —*> A if and only if
uy(A,) — u,(A) for each fixed k.

—Remarks: (1) The topology defined by u-conver-
gence is, of course, non-Hausdorff. (2) The order < is
useful because of the following consequence of the Ritz
principle: i

Proposition Al: Let A be a positive, compact
operator and let P be a projection. Then PAP ¢ A. In
particular, if P and @ are projections and P = @,then
PAP 4 QAQ.

The above is false if 4 is replaced by =.

Theorem Al (Basic Convergence Theovem): Let
B be a positive, compact operator with S(B) < ©. Sup-
pose {A,} and A are given positive, compact operators
with

) 4,4,

() A, <¢B

Then, lim S(4,) = S(4).
7 ~->00

for each #.

Pyroof: The proof is based on the fact that s is
monotone in [o,e 1], Since B is compact, u,(B) —> 0.
Suppose uy(B) < e”1. By (1) and the continuity of s,
S(u,(A,)) — s{u,(A)),each &, and by (2) and the mono-
tonicity of s in [0,e71],s(u,(4,)) = s(u,(B)) for & = N,
each n. Thus by the dominated convergence theorem for
sums, Y k=v S(i,(4,)) —> 25 k=~ s(u,(A)). Since
Dip=n-1s Wt ,,(An)i certainly converges, the theorem is
proven. Q.E,D.

For applications of Theorem Al, it is convenient to
have statements expressed in a more usual form than
g-convergence.

Theorem A2: Let {A,} and A be positive, compact
operators. If

(1) w-lim A, =A
n—>oa

and

(2) A, 44 foralln,
then lim S(4,) = S(A).

n—>0

Proof: We first prove that A, £>A. Fix k and e.
By weak convergence and the min-max principle, it is
easy to find a k-dimensional space, V,and an N such
that

W, A,¥) = (uy(A4) — e)llyl2

if y € Vand n = N. But then u,(A,) = u,(A) — € if

n = N. Since p,(A) =u,(A,) by (2),this means

[y(A) — 1,(A,)| < € if » =N and hence 4, > A. If
S(A) < «,the theorem then follows from Theorem Al.
1f S(A) = o, for any M we can find an L such that
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Ei;l s(u,{A)) > M. However, for L sufficiently large,
S(4,) =23 k45(uy(4,)) and, since p1,(4,) — u4(4), the
latter sum can be made arbitrarily close to M. Thus
S(A,) — ©. Q.E.D.

Theorem A3: (Dominated Convevgence Theovem for
Entropy): Let {A,}, A and B be positive, compact opera-
tors and suppose that

(1) §(B) <,
(2) w-limA, =
n—>90

3) A,=B
Then,

lim S(4,) =S(A).

n—>%0

Proof: Since B is compact, for any € > 0 we can
find a finite-dimensional subspace K C H such that
(u, Bu) = | B1/2y|| < €llul for u € L, where L is the
orthogonal complement of K. Since 4, =< B, ”Al/zull =
(u,A,u) = (u, Bu) = €llul for all u in L Since A, —— A4,
A =< B,and A1/24] = €llul for all « in L also. We now
showA —> A uniformly. Recall that |4, — Al = supp
{l{e, (A — AW : 9,v e, llol =yl =1}. Now

write o =f+tu, Yy =g +v where f,gare in K and u,v
in L. Then

(9. (4, —AW) =((f +u), (4, —A)g + 7))
= (£, (A, —A)g) + |AL2f111/2|AL/20|1/2
+ | AL/2f)1/2]|A1/29)| 172 + |AL/24]1/2]| AL/ 2] 1/2
+ [ AL/2y)|1/2]|A1/2g]1/2 4 |AL/24]1/2]| AL/29]|2/2
+ |A1/2y||1/2]| A1/ 29| 2/2

(operator inequality ).

which can be arbitrarily small since A, — A uni-
formly on K,Al/2 and A1/2 are bounded on K,

lA1/2y) < e, fa1/24] < €,etc.,and || fll = l|<,0|| ete.
Thus I( (o, (A — A))| can be made arbitrarily small
independent of ¢,y (for all ¢,y with [¢] = ¥l = 1)
and thus lA4, —All—s 0. By the min-max principle,
[y (A,) — 11,(A)| = |4, —Al. Thus 4, > A,and (1)
implies that Theorem A1 is apphcable Q.E. D
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Example: Let {A,},A and B be the following opera-
tors on H, where {¢,} is an orthonormal basis for H

Ag, =0, eachk,
A, 0, = 6rzlee_lgon’
B =A,.

Then A, ¢ B, A, —> A strongly,but S(4,) does not
converge to S(ASL This example shows that =< and not
4 is needed in Theorem A3.

*Work partially supported by U.S. National Science Foundation Grant
GP-31674 X.

10On leave from Department of Mathematics, M.I.T., Cambridge, Mass.
02139, U.S.A. Work partially supported by a Guggenheim Memorial
Foundation fellowship.

#Supported in part by the National Research Council of Canada Grant
No. NRC-A6595 at the University of Alberta, Edmonton, Canada.
Present address: Department of Mathematics, University of Oregon,
Eugene, Oregon 97403.

§ Princeton University; A. Sloan Fellow.

!E. H. Lieb and M. B. Ruskai, Phys. Rev. Letters 30, 434 (1973).

2H. Araki and E. H. Lieb, Commun. Math. Phys. 18, 160 (1970).

3F. Bauman and R. Jost, in Problems of Theoretical Physics, Essays
Dedicated to N. N. Bogoliubov (Moscow, Nauka, 1969), p. 285.

4R. Jost, in Quanta: Essays in Theoretical Physics Dedicated to
Gregor Wentzel, edited by P. G. O. Freund, C. J. Goebel and Y.
Nambu (University of Chicago Press, Chicago, 1970), p. 13.

SF. Baumann, Helv. Phys. Acta 44, 95 (1971).

SD. W. Robinson and D. Ruelle, Commun. Math. Phys. 5, 288 (1967).

0. Lanford III and D. W. Robinson, J. Math. Phys. 9, 1120 (1968).

3E. P. Wigner and M. M. Yanase, Proc. Nat. Acad. Sci. 49, 910 (1963);

Can. J. Math. 16, 397 (1964).

°A. Uhlmann, “Endlich Dimensionale Dichtematrizen, 1I”’. Wiss. Z.
Karl-Marx-University Leipzig, Math-Naturwiss. R. 22, Jg. H. 2, 139

(1973).

1°D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New
York, 1969), Theorem 2.5.2.

YE. H. Lieb, “Convex Trace Functions and the Wigner-Yanase-Dyson
Conjecture’, Adv. in Math., to appear Dec. 1973.

2l Epstein, Commun. Math. Phys. 37, 317 (1973).

13M. B. Ruskai, “A Generalization of the Entropy Using Traces on
von Neumann Algebras,” preprint.

140, Lanford 1, in Statistical Mechanics and Quantum Field Theory
edited by C. De Witt and R. Stora (Gordon and Breach, New York,
1971), p. 174.

Downloaded 11 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



