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In the Mathews—Salam formulas for the (space-time cutoff) Schwinger functions of Y, no restriction on

finite mass renormalizations for the boson is necessary.

1. INTRODUCTION

In an earlier paper' it was shown that the Matthews—
Salam formulas® can be used to construct the Schwinger
functions for Y, at least in the presence of a space—
time cutoff. Unfortunately, this could be shown only
under a certain restriction on the finite renormalization
of the boson mass: It had to be essentially nonnegative.
But in Glimm®** and Glimm and Jaffe® it is shown that for
the semiboundedness of the Y, Hamiltonian such a re-
striction is unnecessary. This is achieved by separating
out contributions coming from low fermion momenta
and estimating them in a way different from the estimate
for the high momentum contribution. Since only the lat-
ter need renormalization the counterterms can be made
smaller by choosing the “lower momentum cutoff” high
enough. In this paper we carry through the same idea in
the Euclidean framework invented by Matthews and
Salam.?

2. IMPROVED INTEGRABILITY ESTIMATES
We use the notation of Ref. 1. In particular, we write

for AcC,, [that is, Tr(A*A4)"1/2<w]

det (1 +A4) =det [(1 +4) exp("z (—‘kl"fAk)] @
k=1

If A is a (bounded) linear operator on a Hilbert space
H, we denote by A™(A) the operator induced by A on
A™(#), the m-fold antisymmetric tensor product of 4.

Our main result is
Theovem 2.1:

1
1+ 2K

u= IIA"‘( det (1 + )Ly,

X exp ((sz 1 p3(x) :gz(x)dzx) € 1‘r;mL"(duO)

for all M c R, Ac R (det!) denotes the renormalized
determinant defined in Ref. 1 with the finite mass re-
normalization parameter M? appearing there put equal
to 0).

From Theorem 2.1 we get immediately

Corollary 2,2: The finite volume Schwinger functions
exist and fulfill

|S!(”)(h1’ ceey hn; fl: s '!fm;gl! LI -sgm)I
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n m
< explne, +mey) Cn+3)/210 Wkl T (£l *llg,ll,L/*
ral i=1

(2.2)
where the constants ¢, ¢;, c; may depend on g and M,

Pyoof of the Corollary: By the Matthews—Salam formula
[cf. (4.15) of Ref. 1] the left-hand side of (2.1) is

| 1 1 Amf_ 1
l (7pz+m2f1/\---/\ 7p2+mzfm’ <1+m)

Se8L A A SpEw)andy) Hl ¢(h,)

7=

det{D(1 + AK) exp[M? [ : ¢?: (x)g%(x) dPx]duy(o) ‘

< ful i 6| Iilyallzsly (2.3)

To prove the theorem we have to split the operator K
into two parts:

K=SpI'¢g=L,+H, (2.4
where
Le=Sp L8, (2.5)
1 ytm .
Sp = xp(ipx) d*p. 2.6
Fie =302 |,|sci’2+m2e p(ipx) d?p (2.6)

The crucial estimate to separate the contributions from
L, and H, is contained in the following:

Lemma 2.3: Let LeC,, He(,. Then

m_ 1
T+L+H

F
<det(,(1+0y,) exp[8IILIl, - 3Tr(H*H)?- 2Re TrH?H*]
X exp(3m/2), 2.7

det{(1+ L +H) exp[- (L +H) +H?/2]

where Oy =H + H* + H*H and Oy, its nonnegative part.
The proof is given in Sec. 3.

Covollary 2. 4:

u<detgy,(1+ o,,,:,)1 /2

At 2
X exp [— vy Tr(HfH,)? - X* Re TrH} exp (— %Trwg :HE )]
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X exp <4>\|IL¢II1 +~)§(Tr L% exp[M? f: ¢2x) : £x) dzx]> )

(2.8)

where Tr,,, : He : is defined as in Ref. 1, that is, with
subtraction of the full formal counterterm [d2% /(p?+ m?);
hence

Trreg: K2 : =TT Hé: +2Tr :HeLy: +Tr: LE:, (2.9

Next we deal with the low momentum part:

Lemma 2, 5:

exp(dMIL.llpe 1 LAdu).
1

€plw

Proof: (a) L¢€C1 because it can be factored into two
Hilbert—Schmidt operator. Let 6, be the projection onto
momenta |pi < ¢;x a function which is 1 on supp g and
fulfills

T B1X@) |2 < =, (2.10)

A:p—i; Bex(p? + m2), (2.11)

Bz;‘z‘_;l';;z Be- (2.12)
Then Ly =A - B,

A*A = ‘/mx-@n%—nz;m xp? +m?), (2.13)

B*B:G'z;’}ﬁzpﬂ%—@zf:nz)-m% (2.14)

(recall that we are working in 4/ =#, ;,» ®H, 5).
Then it is easy to see that
TrA*A <K <= (K independent of ¢), (2.15)
TrB*B=(¢, Co)y, {2.16)

where C is trace class in /4, (actually

1
Copris gEg)’ (2.17

where E is a multiplication operator in momentum
space:

1
E(k)=fd2,b (p+k/2) m (p_k/z)2+m2]3/2‘

(2.18)
By using the numerical inequality
x<3(1/6+6x%) (xeR, 6>0), (2.19)
we obtain
exp(4N|Llly) < exp(4AllAll,|IBll,) < exp[2XI1All,(1/6
+6(¢, Cop))]. (2.20)

The right-hand side is in L? for small enough &,

The high momentum part is estimated essentially as
in Ref. 1. But there is a modification because our es-
timate (2. 7) involves det,(1 + Oy,) instead of det (1
+0y,). If we estimate
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)\4
we(p) =det g, (1 + o, 12 exp (— y Tr(H:H¢)2>

X exp(X® Re TrHEHY) (2.21)

by introducing a cutoff « in ¢ and consider

Inwe (¢p) — Inw, (), (2.22)

we get, using Lemmas 3.1, 3.2 of Ref. 1,

Inwe (¢) ~ Inewe(¢,)
<2 TR V(0N - Tr (8 H(0.)?]
+ X[ TrHy(9)*HE(9) - TrH (¢ )°HE(9,)]
#1104y~ Ongeapls 2 A0,

+5 Tr(0%, (o)~ = Ofy (0,05 (2.23)

The only new term is the last one. We have to show that

J1Tr(0F,(0)-= O o)) |2 diy = O(k). (2.24)

This follows from the following two lemmas.
Lemma 2.6: Let A, Be(, be self-adjoint. Then
| Tr(42 - BY)| < 114 - Bl (141
+11Allg sll Blig 5 + I BIE 5).

Proof: Denote by A, u; the eigenvalues of A,, B,, re-
spectively (ordered decreasingly):

| Tr(A% = BY =206 = ) (O + 2 + 1) [ Q0] 2 = e [917
X (Z()\E + )‘kuk + “:)4 /3)3 /4
< [lA = Bl (I1AlZ /5 + 1Allg 75/l Bllg /5 + 11 BIIZ /)
by Lemma 3.2 of Ref. 1.

We next require a general interpolation theorem for
the spaces C,; explicitly, the following three-lines
theorem:

Proposilion: Let K, be an analytic operator-valued
function in the strip S={z € € la <Rez < b}, weakly con-
tinuous on the closure of S with (¢, K, ) bounded for a
dense set of ¢ and ). Suppose that K,MyeC,Q for all real
v, Ky.iyeC,y for all real ¥ with o= sup, K, ;i) <> and
B=sup,liKy,,ll,, <=. Then for any z€ S, K,c(,, with
InlK,ll, <#Inf+{1-1t)lna where ¢t =(Rez — a)b— a and
Pt =tpit + (1= 1)p7'.

Interpolation theorems fall into three closely related
types: three line lemmas, Riesz—Thorin theorems, and
Stein theorems. Kunze® proved a general Riesz—Thorin
theorem for C, spaces and Calderon’ made a general an-
alysis of interpolation spaces. By combining these
works, one gets the Proposition above (see, e.g.,

Reed and Simon®?, Appendix to Sec. IX.4). The proposi-
tion has been independently discovered by Gohberg,
Krein, and Krein and the reader can find a self-contained
proof on pp. 137-139 of Ref. 9.
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Lemma 2.7: For every € >0, K, H,, O,, O”r are in
Cz+5 a. e,

Proof: We give the proof for K; for the other cases,
the proof is analogous. We apply the proposition with

__btm
V4 }-‘KZ—W(I)L, (2.25)
on the strip
S={zcC:7+6<Rezs<1+8} (0<b6<i). (2.26)

Since it is easy to see that K, c(, a.e. for Rez=% + 6
and K, c(C, a.e. for Rez=1+0 it follows that K=K,
ECZ/(!-ZG) a.e. and

1n||K||a/u-25) <4) ln”K3 /44-5”4 + (1 - 46) ln”Kiqs”z.
(2.27)

Lemma 2.6 and 2.7 allow to estimate the non-Gaussian
part of we(¢) in the same way as this is done in Ref. 1
(essentially Nelson’s argument). The Gaussian parts
coming from H, are as in Ref. 1
AZ
Uy = eXp (E Troe,: H?‘H,:;) .

Lemma 2. 8:

2
Up = eXp (%Tr,eg : H{H;): exp [~ (3%/2)(¢, Bep),] (2. 28)

where B, is a positive Hilbert—Schmidt operator on#,,
and

Be> ?—}?nma + 22/ md)g? (2.29)
Proof:
HC:(SF“SF,!)¢3> (2- 30)
1
BC :mthg, (2. 31)

Gom— (a2 (605-C0) 1 1) (2.32)
¢ PIF MO B N T A )
(p.=p +k/2). Using ab < 3(a®+b% we get

1 2/ 1 802~ 2\ .. 1
szfdﬁ(m-m * dzﬁ(m

1 1 1 _ 2
)t A . (2.9

(The last equality follows because
. 1 1\ ([ 1
_/dp(p +m? " pt¥m ) R O +r/F+m?
1
To-r/AF mz>
=0 by symmetry.)

Now it is clear that we only have to choose £ such that

2% In(1 + £2/m?) > M? (2.34)
to make ug - exp(M?[ : ¢ : g2 dx) € Ny<pcwl?. This com-
pletes the proof of Theorem 2. 1.
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3. DETERMINANT INEQUALITIES

In this section we make use of ideas of Lieb!’ and
Kato (private communication) in order to prove the cru-
cial lemma 2. 3.

Lemma 3.1: Let A, B be linear operators from a M-
dimensional (real or complex) Hilbert space /, to N-
dimensional Hilbert space /. Then
HA™(1/A*B) det(A*B)I?

< ||A™(1/A*A) det(A*A)IIA™(1/B*B) det(B*B)||. (3.1)

Remark: Note that A™(A™) detA is a polynomial in the
matrix elements of A4, so (3.1) makes sense (and is true)
also for singular A or B.

Proof: We use the polar decompositions

A=U|A|, B=V|B| where |A|=(4%4)*/2

B=(B*B)'/2,
U, V are partial isometries. Then A*B=|A|C|B| where
C=U*V is a contraction in /. The left-hand side of
(3.1) is then bounded by
llA"'(l/lA[)detlAlllzllA"‘(l/|B|)det|B| 2

X||A™(1/C) detC|? (3.2)

and the last factor is <1 as can be seen by replacing C
by IC| (unitaries do not matter); then 1A™(1/[C1)
XdetlC|1l is the product of the m largest eigenvalues of
ICl. The first two factors in (3. 2) give the right-hand
side of (3.1).

Lemma 3.2: Let Ay, B; (i=1,...,n) be linear opera-
tors from #/, to /,,. Then
IA™(1/25,AFB,) det? S, A¥ B,II?

<A™/ 25,A¥A,) det? A¥ANIIA™(1/ 2 BEB)

Xdet),B¥B,|. (3.3)

Proof: This is a special case of Lemma 3.1 (4,
=@ H).

Remark: Lemma 3. 2 has been brought to our attention
by Lieb who first proved it for the special case m =0 and
then proved a general resuli!’ from which (3. 3) follows
easily. The idea of the proof given here (the reduction
to Lemma 3, 1) is due to Kato (private communication),

Lemma 3.3: Let A, B be trace class operators on a
Hilbert space /. Then

A
s"A"‘ (W)dd(h +A| +|B|)u

m 1
><"'A (|1+AI+W|B|W:1)det(|1+A|+W|B|W-1)u

(3.9

with a unitary W. (For m =1 this result also can be
found in Lieb.!'?%)
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Proof: If # has finite dimension, this is a special case
of Lemma 3.2 with A, =By =1, A,=UIA|*/%, B,=|A|'/?
A,=VIBI'2 B,=|BI*2 (A=UlAl, B=VIB|, W=U*V).
The infinite-dimensional case follows from an easy lim-
iting argument (see Appendix, Proposition 2).

Lemma 3.4: f 0<A<1isa(,, operator on# (i.e.,
TrlA|™ <o), thenA™[1/(1- A)]det, (1 - A)il

<explm(1+3+---+1/n)). (3.5)

Proof: f ay> a,>---2 0 are the eigenvalues of A, the

left-hand side is

I (1- o) expla; +a;/2+...+a}/m) NIl
i1 jem 1=y

< I exp(a; +o2/2+ ...+ al/n)
ism

<explm(1+1/2+-+-+1/n)].

Lemma 3.5 (= Lemma 2.3): For Ae(,;, Be(,
I m 1 2
<det,(1+0,,) exp(6llBlly + $m - [|All} - 2Re TrA%A*
(3.6)
where O,,=(A +A* + A*A4),.

Pyoof: 1t is sufficient to give the proof for 4, Be(,
(see Appendix, Proposition 4). By Lemma 3.3 it suf-
fices to estimate

1+C +|B| @.7

X:IIA"‘( 1 ) det(1+C + |B)|
where C=i14+A4|-1=C,=-C_(=0<C_<1). With

1 1 _ 1 1
JT+C, ‘B|\/1+c+’ =77 7T

we have (since C,C_=C_C,=0)

D=

E

Xsdet(1+C+)I|A"‘< 1

m)det(l +D~ C_)“

<det(1 +C,) det(1 + D),

IIA"‘(————l IE) det(1 - E)ll <det(1 +C,)det(1 +D)

X exp(3m) exp(~ TrE - TrE?/2) (3.8)
by Lemma 3.4,

Now
TrE=Tr(1+D)*C_> Tr(1-D)C_> TrC_~TrDI|IC.|

>TrC_-~Tr|B]|,

TrE:=Tr {1 Dca
re=Ar -1/~

D D 2
= 2_ 2 4
TrC2 ZTW C:+Tr (1+DC->

(3.9

2 TrC%— 2TrD> TrC%~ 2Tr|B|. (3.10)
Because of 1+0,,=11+A12P,+(1-P,)=(1+C)*P,
+(1~P,)=(1+C,)? (where P, is the projection associat-
ed with C,) we get
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X <det(1 +0,4,)! 2det(1 + | B|) exp(2 Tr | B| + 3m/2)

X exp(— TrC, - TrC?/2) =det (1 + 04,0 /2 det(1 + | B|)
X exp(2 Tr|B| +3m/2)

Xexp(— TrC. - 3TrC%+3Tr0,, - s Tr0%.) (3.11)
We claim
TrC_+3TrC%=3Tr0, +4Tr0%.. (3.12)

Proof: Since (1-C)>=1-0,_,

Tr(C_+4CH=Tr(1-v1-0,)+3Tr(1-v1-0, )%

=2Tr(1-v1iI=0,.)— $ TrO,_ = :TrO,_ +5;Tr0%.
(WV1-x<1l-x/2-x%*/8 for 0=x=<1).

Therefore,

X < det,(1+ 0402 exp(3I Blly + $m)

X(3TrO, ~sTr0%). (3.13)
The lemma now follows from
3TrO, — 1Tr0% - Re TrA +$Re TrA?

=~ ¢llAll} - Re TrA%A*, (3.14)
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APPENDIX: CONTINUITY OF CERTAIN
OPERATOR FUNCTIONS

Proposilion 1: For Ac(C,

nA'"(—-——1 ) det(1 +A)Il < exp(llAll, +m). (A1)

1+A
(This estimate is not best possible: The factor e¢™ can
be eliminated. )

Proof:

IA™ (—-1 iA> det(1 +A)||

1
= sup [(e, A=A ep A" —= [N NS
{ei.fl‘)k)i ! 1+4 7

xdet(1 +A)| (A2)
where the sup is over orthonormal systems of vectors
e, f, i=1,...,m). If we denote by C, the operator
which maps v e/ into e,(f,, w) (k=1,...,m), then
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1
e Ao ey AM(-l-+—A>f1/\...Afm det(1+A4)

m

—_— + »
IR a)\mdet (1 A+l >t"c”>

k=1
1\" X ¢ dx, ( m )
=(—= —2det{l +A+22,C,). (A3
(27”> ?*1"1{_}:{ I |1} 3, e PR (&%)

Using the well-known inequality
|det(1 + B)| < exp(lIBll;) (A4)

we obtain(A1).
Proposition 2: For A, Be(,

1
T +B> det(1 + B)|

<|lA - Bll exp(llAll, + [IBlly +m +1),

IIAM(T{I) det(1+A) - A"'<

(A5)

Pvoof: Without loss of generality we can assume A # B,

Consider then

1
A +A+HB-

F(t)=A (1+A+t(B-A)> det(1+A+1(B=A)). (A6)
The left-hand side of (A5) is bounded by

RIF@id < sup IF Q. (A7)

tclo,1]

By Cauchy’s formula we have

' 1 dt 1 dt
IF t)||=l|——.¢ Ft+T)H$—¢ IF( + 7).

( 20 a1 T ( P b

(A8)

Choosing |7|=¢=(IlA - BIl;)"! and using proposition 1,
we obtain
IF(E + )l < exp{ll(1 = )A + B+ 7(B = A)lly +m]

< exp(llAlly +11Blly +m +1) (A9)

and, therefore,
IE' DI < |A = Bl exp(llAll, + 11Blly +m +1)

which proves the assertion by (A6),
Proposition 3: The function
Rn :Cn -’Cl

ARRA)=(1+A)exp -5 (‘,f)k
k=1

-1 (A11)

is continuous.
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Proof: R,(A)=A"G(A) where G is an entire function.
Therefore

IR, (A) = R, (B)ll; < [1A" — Bl IG(A)] + [IB"Il; 11 G(A) - G(B)I.
(A12)

Repeated use of Holder’s inequality for operators gives

n-l
lla" = B"lly < 1A = BIl,, 2. IAIRI Bl -*. (A13)
k=0

Pyoposilion 4: The function

Lm:C,~[(A™H) (bounded operators on A"H),

ApRLMA)=A" (ﬁ—ﬁ det,.1,(1+A4)

is continuous.

Pyoof: L™A)=A" (expé (_If)k),

A™ (——-——1 ) det(1 + R,(4)).

1+ R (A) (a14)

The first factor is obviously continuous; Proposition 5
then follows from Proposition 3 and Proposition 4.

Rewmark: For special cases (m =0 or 1) most results
of this appendix can be found in Refs. 9 and 12.
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