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Abstract. We present a new method for rigorously proving the existence of
phase transitions. In particular, we prove that phase transitions occur in
(Φ'Φ)ϊ quantum field theories and classical, isotropic Heisenberg models in 3
or more dimensions. The central element of the proof is that for fixed ferro-
magnetic nearest neighbor coupling, the absolutely continuous part of the
two point function in k space is bounded by 0(k~2). When applicable, our
results can be fairly accurate numerically. For example, our lower bounds
on the critical temperature in the three dimensional Ising (resp. classical
Heisenberg) model agrees with that obtained by high temperature expansions
to within 14% (resp. a factor of 9%).

§ 1. Introduction

In this paper we develop a new method for establishing the existence of phase
transitions or symmetry breaking for a class of ferromagnetic systems in v ̂  3
dimensions. In particular we establish symmetry breaking for the classical isotropic
Heisenberg model and the (φ-φ)l quantum field model. We also establish phase
transitions for a broad class of lattice models having no internal symmetry. Work
on this last issue has been done by Pirogov and Sinai [38] by very different
methods.

It is well known [34, 35, 25, 3, 6,2] that the (φ-φ)2 model and, for finite range
interactions, the isotropic Heisenberg model do not exhibit symmetry breaking
in one or two dimensions. However for the case of long range interactions or in
the presence of anisotropy phase transitions do occur in 2 or more dimensions
[15, 40, 1A, 33, 29].

To describe our strategy, let us consider the method of proof for the classical
v-dimensional simple cubic Heisenberg model [34,26]. Let F(oc — β) be the two
point function (σa-σβy in the infinite volume periodic classical Heisenberg model
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at zero magnetic field and at inverse temperature J, (we replace the usual βJ by J).
Then we prove:

(A) The Fourier transform F(k) is of the form [cδ(k) + g(k)~\dvk where 0^g(k)^
D J " " 1 ^ " 2 for a universal constant D.

(B) A strictly positive lower bound B on F(0) as J->oo.
For the case at hand, step B is trivial since F(0) = <σα σα> = 1. Step A is proven

in § 2. The point is that when v ̂  3 (A) and (B) imply the existence of long range
order, that is F(α)τ^0=<(σα> <crα> as |α|->oo. The presence of long range order
implies the existence of more than one ergodic component in the infinite volume
theory. By proving (A) and (B) in non-zero field, one also establishes directly the
existence of a non-zero spontaneous magnetization in many cases. For by (A)
and (B) and the inequality F(0) = (2π)" v / 2 j F(k\

\K\£π

(inf^B^c + DΓ1 J k~2dvk. (1.1)
|fc,|gπ

When v ^ 3 , the integral on the right of (1.1) converges, so for J sufficiently large, c
is forced to be non-zero. Since, by (A) and the Riemann-Lebesgue lemma
c = (2π)v/2 lim F(α), there is long range order.

α—* oo

Our basic strategy thus emphasizes a kind of condensation at fc = 0 which
should be thought of a spin-wave Bose condensation. It suggests that phase
transitions are a very simple phenomenon in v ^ 3 and only really subtle when
v = 2.

It is interesting that in the field theory case step A is a consequence of the well
known Kallen-Lehmann representation

F(k) = cδ(k)+ J dρia^+a2)'1 (1.2)
o

where jdρ(α) = 1. Step (B) is the hard part of the proof.
We want to emphasize that the constant D in (A) and (1.1) is independent of

the single spin distribution and if one replaces (σa-σβy by (σι

a σ
ι

β}, of the number
of components. Our methods are also independent of the internal symmetry of
the model. We can accomodate both models with no symmetry and those with
continuous symmetry. On the other hand there are several restrictions on our
results. We cannot handle general non cubic lattices and cannot directly deal
with general non-nearest neighbor interactions (although using correlation
inequalities [20A] one can often control this situation). Moreover, the extension
to the quantum Heisenberg model is not immediate. [The extension has been
accomplished by F. Dyson, E. Lieb and B. Simon (in prep.).]

In § 2, we prove a general estimate of the form needed for step (A) and, in an
appendix, we give an alternative proof. These estimates are a lattice analog of an
estimate which one can obtain from the Kallen-Lehmann representation and
provide, via the convergence of the lattice approximation, a unified proof of these
bounds in both the statistical mechanical and field theoretic cases.

In § 3, we apply these bounds to prove phase transitions in certain lattice
theories and in § 4 to the field theory case. These bounds also have an application
in handling difficult Peierls' type arguments [11].
It is a pleasure to thank F. Dyson, E. Lieb and O. McBryan for useful discussions.
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§ 2. Gaussian Domination in Lattice Systems

In this section, we will prove various replacements for the Kallen-Lehmann
representation (1.2) in lattice systems. Let A be a subset of Έ of the form of a
rectilinear parallelpiped with Lγ x ... x Lv points. At each OLEΛ9 there is a random
variable σαeIRN (N = fixed integer). We define the Hamiltonians in a periodic
box A

HΛ({σ})=-J Σ ^ σβ

where the sum includes each pair of nearest neighbors once including points at
opposite ends of A which are nearest neighbors when A is viewed as a torus.
(Magnetic fields can be put into the single spin distributions below.) One chooses
a measure dλ on IR^ with j Qxp(aσ2)dλ< oo for all a; e.g. for the classical Heisenberg
model in a field μ:dλ = Qxp(μ σ)δ(\σ\ — l)d3σ. In the standard way [41], we define
a measure dμΛ on JRN|yl1 by

where ZA

 x is a constant chosen so that dμΛ is a probability measure. (°}Λ will
denote expectation with respect to dμΛ.

Given a function h with values in R^ we define σ(h) by σ(ft) = ]Γ/ι(α) σα and

) = 2vh(a)— ]Γ [^(α + ̂  + ̂ α —<5f)]

where δt is the vector (5^ = 3^ and α-i-c); is defined modL^ Notice that

ί=l i=ί

We propose to prove:

Theorem 2.1. For <my /ι1?..., /ιv with values in IR^:

(exp S expf(2J)"x Σ (^(α))2]. (2.1)f(

Theorem 2.2. Under the hypotheses of Theorem 2J:

! 2 - (2-2)

Theorem 2.3. For any /i with values in RN :

<φ)σ(-Δh)>ΛZJ-1Σ\K<*)\2- (2-3)
a, i

Remarks. 1. (2.1) is motivated by the so called grad (/> bounds of canonical quantum
field theory first proven by Glimm and Jaffe [17] in their exponential form
[20,24]. (See Herbst [24] for a general version of these bounds.) If one uses the
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convergence of the lattice approximation to field theories [23, 36], (2.1) implies
these grad φ bounds.

2. (2.3) is the inequality we need in our proof of phase transitions below. It is
better than the result announced in [13] by a factor of 2v leading to improvements
of a factor of 6 in the transition temperatures quoted there: The constants in
(2.1)—(2.3) are all best possible since the inequalities can be made arbitrarily close
to equalities by taking dλ close to a suitable Gaussian. The right side of the in-
equality is the worst possible Gaussian case, hence the name Gaussian domination.

3. (2.1)—(2.3) carry over to the infinite volume limit of periodic states.
4. We give an alternative proof of (2.3) with a worse constant in the appendix.

Proof of Theorem 2.2 given (2.1)

Since < > is translation invariant, and £ (dihi)(a) = 0, (σ(dihι)y = 0. Thus
α

lim j^exp^σ J£ d^Jj -1] λ~2 =|<σ(Σ W > .

lim expto/)-^2 Σ I^(«)I21-1} r 2 = (2J)-χ £ \ht(a)\2

[ \
(2.1) implies (2.2). D

Proof of Theorem 2.3 given (2.2)

View the functions on A with values in IR^ as vectors in a Hubert space in the
natural way. Define linear operators At by

AJ = df(-AΓ1'2f9 feRan(-Δ)

= 0, /eKer(— A) = constants.

We first note it suffices to prove (2.3) for /zGKer( —z))1, since letting h = h — ce
1 2 and (σ(h)σ(-Ah)) = (σ(h)σ{-Ah)y because'Jfc = JΛ

and (σ(—Ah)y = 0 by translation invariance.

Let h—Aih. Then £ | /φ) | 2 = £ <fc., ft.) = <Λ, ̂  AfAih) = (K h} s ince^f 4 i = l

on (Ker-zί)1. Moreover, ^θ j/j ί = (-zl)(-zl)-1/2/ί = (-zl)1/2/i, so

1

= Σ <σxσβ}(-All2h)(a)(-All2h)(β)
a,β

= (σ(h)σ(-Ah)}

where the second step follows by noting that since (σaσβy is only a function of
α — β it is the kernel of a operator on I2 commuting with — A and so with (— A)112. D

The above reduces everything to the proof of (2.1). As a preliminary to this
proof, we rewrite (2.1) in a more suggestive form. First, by a "summation by parts"
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dihi) = ΣσM^ + δi)-hi(oί)) = Σhi{θί)(σoc.δι-σa). Thus (2.1) can be written:
α α

e x p 2 ^ noc,β\σa~σβ) )=QXP[(^J) Zu \Kβ\)

where there is a "direction" given to each "bond", (α, β) with |α — β\ = l. Now
define dλ = QXΌ(^Jσ2)dλ and

} (2.4)

Then (2.1) is equivalent to:

(2.10

for all hφ
The key to the proof is the elementary

Lemma 2.4. Let μ, v be (not necessarily positive) measures on IRM. Then, for any
heiR™

\μμ(σ)dv(σ')f(σ -σ'- h)\ S Udμ(σ)f(σ - σ')dμ{σ'ψ2 [f dv(σ)f(σ - σf)dv(σ')^2

for any positive definite function f and, in particular, for f(x) = Qxp(—\ Jx2).

Proof Let (μ,v) = jdμ(σ)dv(σ')f(σ-σf). Let vΛ(.) = v( -h). Then

\(μ, vh)\ ̂ (μ, μ)x'2{vh, vh)^2 = (μ, μ)^2(v, v)1^2

which proves the lemma. •

Proof of Theorem 2.1. Suppose first that dλ(σ) = F(σ)dσ. We use a transfer matrix
formalism. Write an index aeΛ by α = (z, β\ i=l, ...,Lγ\ βeΛa) = (l,L2) x ... x
(15 Lv). Define

({^}) = f Π F(σβ)Uxp - Σ y(°β-°β'-hfβ)
2} (2.5)

[βeΛM J (β~β')=ί I

where hfβf = h{Uβ)ΛUβΎ We view Ft as a multiplication operator on L2(RM) with
M = NL2...LV. For α in 1RM, let Tfl be the integral operator on L2(1RM) with kernel
exp( — jJ(σ — σ'— a)2). Let a{ be the vector with components {cii)β = h{i β){i + 1 β).

Then

Lemma 2.4 can be rephrased

(/, Tagmf, T

which implies that

ό 1 / 2 | | ^ l . (2-6)

By the cyclicity of the trace
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so by (2.4'), (2.6) and Holder's inequality [39] in the form

\ / = l / i = ί i=ί

we have

Z({Λ α / ,})^ΠTr((F i T 0 ) L l ) 1 / L l . (2.7)
i=l

Defining ft$ suitably with the property that ft$ = 0 if β = <x. + δl9 (2.7) can be
rewritten

Repeating this in the other directions (2.1) results. (2.1) for the special case dλ =
F(σ)dσ implies (2.1) for all dλ by a limiting argument. D

(2.1)—(2.3) have some interesting consequences:

Corollary 2.5. Suppose that v ̂  3. Let <( ) be an infinite volume limit of <( )yl's where
we may also vary the dλ's after taking \Λ\ to oo. Suppose that < > is an ergodic state
("pure phase"). Let σa = σa — (sσa) and let h be a map from Έ to JRN. Then:

\K{-Δ)-"h)) (2.8)

for any h of compact support. In particular

J-'ihΛ-Ay'h). (2.9)

Proof First suppose that we are in finite volume and J]h(oc) = 0. Letting hί = Δ~1dih
so that σ(Yjδihί) = σ(h) = σ(h) we see by (2.1) that

where ( — Ay1 is A dependent. Taking Λ.-»oo on both sides we obtain (2.8) for h
with Yjh(a) = 0. For arbitrary h of compact support, let hΛ = h — \Λ\~ί(£lh)χΛ;

for A a cube. Since ( Λ ~ % ~ | ΐ - j | 2 ~ v a t infinity {XA9{-^)~1XA>^\^\1 + 2V'1 a s

|Λ|->oo. Thus (/ẑ , ( —zl)~ 1/zvl)—>(/z? ( —zl)"1^). Moreover, by ergodicity <σ(/ij">-^
(σ(h)n) as |τl|->oo. Thus (2.8) extends to all h. (2.9) follows from (2.8) as (2.2)
followed from (2.1). D

Caution. Alas (2.9) does not imply {σaσβ} — <(τ α )<^) is pointwise bounded by

(-Λ);/
(2.9) implies a bound on a critical exponent:

Theorem 2.6. If (σaσβ}τ~\a — β\~v + 2~η, as |α —/?|-»oo5 /or some infinite volume
(critical) ergodic state, then for v ̂  3,

Remark. For the field theory case this is a remark of Glimm-Jaffe [18].
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Proof. Under the hypothesis (σaσβ)τ^ C(|α — β\ + l)~η' one sees that

As noted above < χ Λ > ( - Λ Γ 1 χ i l > ~ | Λ | 1 + 2 v~1. τ h u s l+2v-1^2-rfv~1 or
η'tv-2. Π

§ 3. Phase Transitions in Classical Lattice Systems

Consider the simplest lattice system of spins with values in SN +1 on a v-dimensional
lattice:

Theorem 3.1. For N-component "spherical" spins on a v-dimensional lattice (v^3)
with nearest neighbor coupling, J= T~ * the long-range order parameter

c=lim £ <σ^ }>
α -*• oo j ' = 1

obeys:

c^(l-$NI(v)T) (3.1)

where

I(v) = (2π)-v J ( έ 1-cosfc^ Vfc. (3.2)
|fci|^π\i = l /

/π particular, c+0 z/ T^fc, where

fc = £NI(vT'. (3.3)

Proo/. Let Fj(a)={σ{j)σ^)} for some fixed . Define dω^ by:

dω j is a positive measure, since F is positive definite. By (2.3)

2(2π)vf f (l-coskMkrdωji^MJ-^ίmi^k (3.4)
Ϊ = 1

where

is normalized so that \\h(k)\2d2k = Yu \h((x)\2. Peaking h near some k0 we see that
α

rfω//c) = [D^(/c) + ̂ (/c)]ίίv/c (3.5)

with
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Thus summing over j

= c+ £ ίθβ)dvk

. D

Dyson has pointed out to us that 7(3) has been exactly computed by Watson
[44] (see also [28]) in terms of elliptic integrals: 7(3) =0.5054620197... so that
we have for the classical Heisenberg and Ising models for v = 3:

f = 3,v = 3)=1.31893

to be compared with the values obtained from high temperature series (not
rigorous but believed to be close to exact) [4] :

(=f cx(1.09))

Tc(iV=l,v = 3) = 4.51080 (=f c x(1.14)).

Our accuracy for the Ising model is comparable to that obtained with the most
sophisticated Peierls type argument combining self-avoiding random walk ideas
with a contour type expansion [14].

Equation (3.3) has a useful interpretation. If one considers models with N
components and YJσf = N, (3.3) implies a transition temperature Vc(N)>Taa=
2/(v)~1. T^ is easily seen to be the exact transition temperature in the spherical
model [26] which is the JV—>oo limit of this family of models [26,44]. Thus, we
expect that (3.3) is exact to order JV"1 as JV->oo.

We also note that in case one has a Lee-Yang theorem (at this point for n = 1
[30], 2 or 3 [5]), the lower bound on c 1 / 2 is also a lower bound on the spontaneous
magnetization, which, in particular goes to its T = 0 value of 1 as T->0. For,
since dλ does not enter in our arguments, (3.1) continues to hold in non-zero field.

n

But, by Lee-Yang, (σaσβy clusters if AΦO so c= ]Γ ( σ ^ ) 2 . But if h is in the

1-direction, <σ ι

0>=0 if zφl .
For the general nearest neighbor model, part (B) of our method is not much

harder than the rather trivial considerations in Theorem 3.1:

Lemma 3.2. Let ζ yj>λ denote the infinite volume expectation (may be dependent
on choice of subsequences) for a lattice model with apriori finite measure dλ on 1RN

and coupling J between nearest neighbors. Let

m = max {|σ| \σe supp λ}

(m may be infinite). Then

lim<|σo | 2> = m 2 . (3.6)
J^OO

Proof. Let Z(J, Λ) be the partition function for finite volume. Then if m is finite:

Z(J, λ) S μ(IRN)| | yVV J m 2 | v 1 1. (3.7)
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For any mί<m, we can find a set SmiCΊB.N so that λ(Sm i)>0 and σ σ'^.(m^)2 for
all σ,σ'eSmi. Thus:

ί)\^e2vJm'lΛl. (3.8)

From (3.7) and (3.8) we obtain a bound on the pressure

\imP(J)/J = 2vm2, (3.9)

(since m1<m is arbitrary). (3.9) easily implies that

Σ Σ < W ) = 2w"2' (3 10>
since P is convex and the expectation on the left of (3.10) lies between the left
and right derivative of P at J. But by the Schwarz inequality

so that (3.10) and the obvious fact < |σ o | 2 >^m 2 lead to (3.6). •

Theorem 3.3. In three or more dimensions, any lattice gas with an apriori measure
invariant under σ-+ — σ has a phase transition for large enough J in the sense that
the periodic state is not ergodic.

Proof. Given Lemma 3.2, the same as the proof of Theorem 3.1. D

Remarks. 1. The long range order parameter c clearly approaches the "zero
temperature value", m2.

2. For one component spins, in two or more dimensions, a result of this genre
has recently been proven by van Beijeren and Sylvester [1].

Actually symmetry doesn't play an especially important role in our method
of proving phase transitions. We first prove a technical lemma.

Lemma 3.4. Fix a measure dλ on IR with j eaσ2 dλ < oo for all a, so that suppμ inter-
sects both (— oo, 0) and (0, GO). Let

P(J,μ)= lim IΛΓM
Ml-**

Then for suitable constants ε and δ>0

P(J,μ)-P(O,μ)^εJ-δ

for allJ^0,μ.

Proof. Suppose, without loss that §dλ= 1. Pick ε\ A>0, so that dλ(±ε', ± oo)^ A
Let dλμ = eμσdλ/$eμσdλ. Then for μ>0 (resp. μ<0), dλμ(ε'9 oo) (resp. dλμ{-oo, -ε'))
is larger than A. Thus taking the contribution from σ>έ (resp. σ< — ε')\

) - P ( 0 9 μ ) = lim
\ \i-j\ =

D
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Theorem 3.5. Fix a measure dλ on R with \eaσ2dλ<co for all a so that suppμ is not
disjoint from either ( — oo,0) or (0, oo). Then for all sufficiently large J, there is
some μs so that P(J, μ) is not differentiable in μ at μ = μ3.

Remarks. 1. This implies that lim <°>J;/ί and lim <°>JjjU are distinct equilibrium

states for the (/, μ3) theory so there is a "phase transition".
2. By very different methods, Pirogov and Sinai [38] have proven the existence

of phase transitions in systems without any symmetry.

Proof. Let <°>J?μ be a limit of periodic states. By convexity of P and the Schwartz
inequality:

±,i=l J

Thus, by Lemma 3.4 2v<σoXτ > /^(ε-c)J~1). Let c= lim (σaσoyj>μ

Then, as in Theorem 3.1:

Thus for all J> Jc =ε/δ + vl(v) and all μ, there is a constant ot(J) such that

(3.11)

We claim that (3.10) implies that for J>JC, P(J,μ) is non-differentiable at some
point. For suppose that it is always differentiable. Then, by a beautiful argument
of Guerra [21,22] (see also Frohlich-Simon [12]), each < >JjAί clusters so that
(3.11) says:

^ (3.12)

Now, by mimicking the proof of Lemma 3.2

lim
μ-» oo

lim
μ-^ — oo

Thus (3.12) implies the discontinity of <(σo)j>μ in μ at some μ so that P(J, μ) is
not differentiable at at least one point. D

§ 4. Phase Transitions and Goldstone Bosons in (φ φ)\ Quantum Field Theories

In this section we establish phase transitions for N component (JV=152, 3)φ4

field theories in 3 space time dimensions. In 2-dimensions and JV=1, phase
transitions have been established by Glimm, Jaffe and Spencer in [20] using a
variant of Peierls' methods. One starts with a free Euclidean field φ = (φ1...φN)
of mass 1 so that
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We consider the interaction in a region ACIR3 defined by

V(Λ)=$lλ:(φ-φ)2(x):-σ:φ φ(x):-μφί(x)~]d3x + cl. (4.1)
A

It is technically convenient to define the normal order : : in (4.1) with respect to 0
bare mass. The symbol c.t. denotes infinite counter-terms which depend only on λ
and are chosen to be O(JV) symmetric.

Theorem 4.1. Let λ>0 and let A be the rectangle of area \A\ ^ 1. There is a constant
K such that

(4.2)

Moreover if μφO and / f

Λ1R3 \ e /0

exists and satisfies the Osterwalder-Schrader axioms including clustering.

The theorem is based on the phase space cell expansion of Glimm and Jaffe
[19] who established (4.2). For small λ and σ Feldman-Osterwalder [7] and
Magnen-Seneor [32] showed that the limit (2.3) exists and defines a quantum
field model with a mass> gap. Feldman-Osterwalder [8] have also established
this for large μ. If N = 1,2 one can then construct a theory for all λ>0, σ, μ using
correlation inequalities. See [8,10]. Frohlich [10] has established the theorem
foriV = 3 using Lee-Yang methods provided μ + 0. The limits μfO and μjO are
denoted by <°> {λ,σ,0±) respectively. The main result of this section is

Theorem 4.2. Fix σ > 1/2 and N=ί, 2, or 3. Then

,0+) = (X) (4.4)

which implies the presence of symmetry breaking.

Remarks. 1. The restriction on N is needed only to construct Euclidean invariant
states.

2. By scaling and renormal ordering we obtain (4.4) in other regions of the
coupling constant space e.g. as σf oo,A fixed.

The proof of Theorem 4.2 follows from the following two lemmas.

Lemma 4.3. For fixed λ> 0, σ and μ we have

oo p-a\x\

iix)} = ct + ί dQi(a) — — (4.5)
^n\x\

where §dρi(a) = 1 and j adρi(a)< oo and c ^ O .
o

Moreover

<:ψf(O):> = lim j<^(O)φ,.(x)>- ^ J (4.6)

and

c^<:0ί(O):>. (4.7)
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Lemma 4.4. Fix σ> 1/2. Then for small μ

(4.8)

b(λ)-+ao as λ[0 and Ω denotes a large square.

Proof of Theorem 4.2. By a Lee-Yang argument [30, 43,10]

lim , σ, λ, σ,

for μ Φ 0. Thus ct = <ψf(0)>2(A, σ, μ). By symmetry <φf(0)> = 0 for i Φ1. We conclude
using (4.7), (4.8) and <φ 1(0)>^0 that

->oo. D
λ j O

The proof of the above lemmas relies on the following generalized φ bounds
which are established in [42,37,12]. See [16,22,9,20,21] for earlier versions.

Theorem 4.5. Let F(φ) be a function of φ(x) localized in the unit cube Ao centered
at the origin. If F(φ) is invariant under reflections about each axis then

' n Λ ) Π FΛ(Φ)
ΛCΛ

U\Λ\

< lim

The above product ranges over lattice squares and FΔ denotes the translate of F
localized in A.

Proof of Lemma 4.3. Formula (4.5) is the analytic continuation of the Kallen-
Lehmann representation [27, 31, 39] which is valid for Wightman field theories.
The conditions on the moments of dρ follow from (4.6). To see this note that by
(4.6) and the fmiteness of <:φ?:>

By (4.5) and the monotone convergence theorem the above limit equals
(4π)~1 jdQi(a)so jί/ρι (α)= 1. From (4.5) and (4.6) we have

π ) - 1 ί adQί(a)

from which (4.7) follows. Thus we need only prove (4.6) which concerns the
interchange of volume and momentum cutoff limits. We apply Theorem 4.5 with

As <5jO the phase space cell expansion shows

lim/
ΔcΛ /O

uniformly in A because each Feynman graph arising from F tends to 0. D



Infrared Bounds, Phase Transitions and Continuous Symmetry Breaking 91

Proof of Lemma 4.4. Let Ω be a large cube and define

:φ2:(Ω)=Σ S:φhx)ulx
i = ί Ω

expαjλ, σ, μ) = lim < e " ^ ) > 1 / ^ l μ , σ, μ). (4.9)

See [42,21, 37] for the convergence of (4.9). By Theorem 4.5, generalized from
unit cubes to large cubes, we have

Ϊ, σ, μ)<e + ff*:2<n>>α 0, μ) (4.10)

j-ajλ, σ, μ) + αoo(A, <τ, μ j - α j λ , 0, μ)]|Ω| = 1.

By Jensen's inequality and (4.10)

Thus it suffices to prove that (e + σ:φ:HΩ)>(λ, 0, μ) tends to oo as λjO. By Theorem
4.5, <exp(-σ:φ2:(Ω))>(/l,0,μ) is bounded by expQΩKαJλ, - σ ^ - α J ^ O , μ))]
which is uniformly bounded for small λ>0 and | μ | ^ μ 0 (see [7,21,42]). Hence
we need only show that

lim<cosh(σ:(/)2:(ί2))>μ, 0, μ)

= lim f l(2M)\T\[_σ:φ:2(Ω)YM)(λ,0,μ)=oo.
A j O M = O

Since each term of the above sum is positive and asymptotic for small λ, we have

2 20,0, μ).

The last expectation is the free field expectation and is infinite for σ>l/2 and
large |Ω| by a direct computation. For example, one can get a lower bound by
conditioning [23] if we put Dirichlet boundary conditions on dΩ where a normal
mode expansion suffices. •

The proof of Theorem 4.2 holds whenever the infinite volume field theory is
Euclidean invariant. For N > 3 the Lee-Yang theorem is not known but we can
construct the infinite volume limit by considering expectations in a periodic box A
and taking subsequences. Here we use the φ bounds for periodic boundary
conditions to obtain compactness of <°>^. The limiting theory may not be
Euclidean invariant - so that the Kallen-Lehmann representation does not hold.
Nevertheless the grad φ bounds (2.3) apply by taking the lattice spacing to zero
and using Park's theorem on the convergence of the lattice approximation [36].
This yields

F(x) = <φ(x)φ(0)} = c + J eik-χf(k)d3k/(2π)3

where f(k)^k~2. It follows that F(x) — c — ( ^ " ^ x l " 1 is negative definite so that

-(4πΓ Vl" "1

This replaces Lemma 4.3. Lemma 4.4 holds uniformly in A. The proof now
follows as before.
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Remark. As an important consequence of Theorem 4.2 we mention that combining
it with some estimates on the renormalized, locally conserved current (which
should be checked), one obtains the existence of JV —1 (JV = 2,3) Goldstone
bosons ( = 0 mass one particle states) in the regime where <φ 1 > + φθ. This is a
general axiomatic result of [6, 45].

Appendix. Alternate Proof of Theorem 2.3

In this appendix we give an alternate proof of Theorem 2.3 (with an extra factor
of 2v). This proof is motivated by a proof of the Kallen-Lehmann representation
(1.2).

Fix a direction, say the one labeled by av Let α = (α1? α') and let g(af)eRN be a
function of the lattice sites in a hyperplane. We define an averaged spin variable

Let T be the transfer matrix in the 1 direction defined by

T = GT0G

where To is given in §2 and G = F1/2 in (2.5) with h = 0. Let s(g) be the operator on
L2(RM) given by multiplication by σo(g).

Theorem A.I. Let <(°) be the finite volume expectation. Then

o ^ 2 ( i - cos kj Σ <<ro(g

J J oc'

If we set g(oc') = eip''a' then by (A.I) we obtain

where F(k) is the Fourier transform of the two point function. Since the one direc-
tion is arbitrary we can sum over all v directions to obtain Theorem 2.3 with an
extra factor of 2v on the right.

The proof of (A.I) relies on two lemmas.

Lemma A.2. If 0<r<l and kγ is a multiple of 2n/Lx then
Lι-1

2(1— COS/q) £ (Γαi_j_rίΊ-αi^iαifci

α i = O

= 2(1 - cos fc^l - rLί)(l - r2)\ 1 - emr\'2

- 1 ) ] . (A.2)
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L - l

The proof is elementary using the identity ]Γ xm = (l — xL)/l — x and the
m = 0

inequalities

and ( l-r L l )^( l+r)( l-r L l " 1 ) for 0<r<l.

Lemma A.3. Let T and s(g) be defined as above. Then

ι\\g\\2T. (A3)

Proof. First note that since s is a multiplication operator and commutes with G
it suffices to establish (A3) with T replaced by To. In momentum space, To is
multiplication by

P-Σ
r)

and s(g) is the derivative — / ^ ( α ' ) — — . In this representation the commutator
oka>

(A.3) is

Proof of Theorem A.I. Let ex be the eigenvectors for T with eigenvalues λ{ ordered
so that λi^λ2^λm. Define the symmetric matrix

Then we

L i - l

Σ <
j=oLi-

= L Σ

have

1

)

) m,n

m<n

<)>eίJ

Γjs(g) τ ι

2;L, Iλ

••-Ίe

~jeij'}

\j

- + -e β1

Now we apply Lemma A.2 with r = λnλm

ι and we obtain

= 4 tr ίs(g)s(9)TLί - s(g)Ts(g)TL>" *]
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where Lemma A3 was applied in the last inequality and this completes the
proof. D
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