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We study the unique bound state which (—d*dx*) + AV and —4 + AV (in two
dimensions) have when A is small and V is suitable. Our main results give necessary and
sufficient conditions for there to be a bound state when A is small and we prove analyticity
(resp. nonanalyticity) of the energy eigenvalue at A = 0 in one (resp. two) dimensions.

1. INTRODUCTION

It is well known that a one-dimensional quantum mechanical attractive square
well binds a single state no matter how small the coupling, and that a three-
dimensional square well that is too shallow has no bound states. It is not so well
known that two dimensions is like one dimension in that shallow attractive square
wells have a bound state in that case. (We first learned this from Mark Kac to
whom we are grateful). Given these facts, it is easy to see by a variational argument
that if ¥ is everywhere nonpositive, strictly negative on an open set and V(x) — 0
at infinity, then —4 4+ AV will have a bound state no matter how small A is.
Several questions are suggested by this situation. The lowest eigenvalue e(}) if
—A4 + A Vis easily seen under wide circumstances to be real analytic for A > 0 by
an application of Kato—Rellich perturbation theory (see [6, 8]). What about
analyticity at A = 0? Suppose ¥ is not everywhere nonpositive. When does
—4 + AV have a bound state for all small positive A? Surprizingly, these questions
do not seem to have been answered before and our goal is to answer them. Our
results include:

1. Conditions for a Bound State

In one dimension, if (1 + | x %] V(x)! dx < co, we prove that —d?%/dx® + AV
has a bound state for all small positive A if and only if [ V(x)dx < 0. In two
dimensions, if [| ¥(x)/**<d?x < oo (some € > 0) and [+ x| V(%) d®x < oo,
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then —A4 + AV has a bound state for all small positive A if and only if JV(x) dx <0.
In cither dimension, if [ ¥(x) dx = 0, —4 + AV has a bound state for all X # 0.
In either case, if A is small there is only one bound state.

2. Analyticity and Nonanalyticity at A = 0

Suppose that —4 -+ AV has a unique bound state for all A small and positive.
Let e(}) be its energy. In one dimension, if Je®#t | ¥(x)| dx < oo for some a > 0,
then e() is analytic at A = 0. In two dimensions, e(}) is never analytic obeying a
bound | e(d)] < exp(—(o)™) (resp. | e(A)| < exp(—aA-?) for o > O if Jvdix <0
(resp. [ Vd®x = 0).

3. Threshold Behavior

In two dimensions A"e(A) — 0 as A — 0 for any n. In one dimension, e(X) ~ cA?
with ¢ # 0if [ Vd x <0 and e(}) ~ X with ¢ 5 0if [ V' dx = 0. This should be
compared with three dimensions where, if ¥ is spherically symmetric, e(d) ~ ¢
(A — ) with ¢ = 0 for p wave and higher and e(X) ~ ¢ (A — Ap)* for s-waves
(generically ¢ 5 0). We will study this type of “threshold” behavior as a general
perturbation phenomena in a future article [12].

Our interest in this problem and our general approach is motivated by work of
Abarbanel, Callan, and Goldberger [1] who derived Eq. (2) below and formalily
found the expansion

(—EQ = — P [ V@ dx — P [ V0 1x = y| V() dx dy + OO

by expanding (2) “by hand.” In particular, it is a pleasure to thank M. L.
Goldberger for raising this problem and for his encouragement.

2. ONE-DIMENSIONAL CASE

Let E be a negative eigenvalue of (—d%dx®) + V so that ((—d?/dx?) + V)
¢=E¢.Thenyp=|V [172 $ formally solves the equation | ¥ {*/* ((—d?/dx®) — E)*
Vi = o, where V72 is shorthand for | V' |/2 sign ¥ = V/| V |*/2%. One can
make this formal argument rigorous if [ | ¥(x)| dx < co. (This is the condition for
V to be a form bounded perturbation of —d?/dx?; one can follow the argument in
[9].) Let K, be the operator, | V |'/2 (—d?/dx? + o®)~! V172 with integral kernel:

K(x,y) = | VM Qo) exp(—a | x — y ) V() ()

if f| V(%) dx < coand a > 0, then (1) is easily seen to be trace class (tr(| K, |) < o)
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so the theory of trace class determinants [2, 4, 10] is applicable. Then —1 is an
eigenvalue of K, if and only if det (1 + K,) = 0, so we have:

ProrosiTion 2.1, Let [| V(x)| dx < co. Then —a® (with « > 0) is an eigen-
value of (—d?/dx?®) + AV if and only if:

det(l + AK) =0. 2
Next we note the elementary:

ProposITION 2.2, If [ | V()| dx < oo, then there are constants A, , ¢ so that for
| Al small < Ay, —d?[dx® + AV > —c). In particular, any negative eigenvalues
of —d?/dx® 4 AV approach zero as X goes to zero.

Proof. There is a basic Sobolev type estimate
| )2 < d(l —¢'lzs -+ 1 $17). 3)

(See, e.g., Kato [6] or Reed-Simon [7] for proofs.)
By (3):

iy (—$" + AV =1 418 — A [ 1 V@I | 6
>0 = M) Ml I,
with d, = d [ | V(x)| dx. Take ¢ = d, and Ay=d. '}

Now define:
Ly(x, y) = | VxR VA()[20 @
M(x, y) = Qo)™ | V(x)|12 [e=sie—vt — 1] V2(y) )
so that
K.=L,+M,.
Now:

PROPOSITION 2.3. If j(l + | x®) ] V(X)) dx < o, then as « } 0, M, converges
in Hilbert-Schmidt norm (|| A |lgs = (Tr(4 * A))*?) to the operator:

My(x,y) = —1/2] V&2 | x — y | V(). (O]

Proof. M, is Hilbert-Schmidt since

[ 1 Mx, it dx dy < [ 1VOU VDN Ax P+ 11 < .
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Now, M,(x, y) — My(x, y) pointwise and | M,(x, )| < | Mq(x, )| since [ e — 1]
< y for y > 0; so by the dominated convergence theorem,

[ 1M, — M)Cx, y)P dx dy — 0. W
The main technical result of this section is:
THEOREM 2.4. Suppose that f(1 -+ | x [%)| V(x)| dx < co. Then, for X small,

—d?/dx® + AV has at most one negative eigenvalue. There is such an eigenvalue if
and only if

a = —N2(2 (1 + AM) [ V') ]
has a solution o > 0 and the eigenvalue is then E = —o®.
Proof. If there is a negative eigenvalue, « = —E'/* must go to zero as Alo0.

Thus for A small || AM, ¢ || < 1, so 1 + AM,, is invertible. Thus
det(l + AK,) = det(l + AM,) det(1 + (1 + AM )1 AL)).

Since 1 4+ AM, is invertible, det (1 + AM,) # 0, so —a? is an eigenvalue if and
only if
det(l + (1 + AM,)tAL,) = 0. 8)

Now (1 + AM,)~ AL, is rank one and, if A is rank 1, det (1 + A)=1+trdso(8)
is equivalent to tr (1 + AM,)? AL,) = —1, which is equivalent to (7).

This proves the entire theorem except for the assertion that (7) has at most one
positive solution for A small and fixed and thus, the Schridinger operator has at
most one eigenvalue. Since there is a one-one correspondence between eigenvalues
and solutions of (7) and the number of eigenvalue can only go up if V is replaced
by — | V|, we need only show that (7) has at most one solution when ¥ < 0. In
that case, (7) is equivalent to:

a = G(a, A), (9a)
G, ) = 2 VI3, (1 4 AM) L VM), (%)

From (9), we see that any solution « for A small must obey
a= ) [ | V() dx + 00Y,

so if V is not identically zero, | o~ | < C,A~2 for A small and « any solution. Now,
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M, is easily seen to be real analytic as an operator valued function in the region
Re a > 0, so by the Cauchy integral formula,

| 2] < utar

for all real « and A small. An explicit calculation shows that

oM,
(1 v Zoe v )
stays bounded as « — O because
j V@) | x — y 1| V() dxdy < oo,  (by hypothesis).

1t follows that for all « with «~* < C;A~* and all small A:

|26 | = |3 (17 @+ anes 2o o v )
< (vem Zeivin) + x| 5
<ca

Thus, for all sufficiently small A and o < CX-, we have | 9G[oa| < 1/2 if
a,(A) and ay(}) are two solutions of (9), all « in between obey a1 < CA! and so
| 8Gfoa | < 1/2. But then

o — | = | [ @GJea) do| < 112) 1 =

soa,=0c. [l

THEOREM 2.5. Let V obey [(1 + x¥)| V(x)| dx < oo, ¥ not a.e. zero. Then
—(d?/dx?) + AV has a negative eigenvalue for all positive X if and only if

f V(x) dx < 0. (10)

If it does have an eigenvalue, then it is unique and simple and obeys
od) = (—EQ)”

an
—O0) [ Ve dx — Q4 [ V() 1x — y| V() dx dy + o)

RTSRTRE
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Proof. Writing

(1 +AM)? =1— M, + M1 + AM)?
=1 — AMy — XM, — M) + BM2(1 + AM)™

we see that (7) has a unique solution for A small with | « | small and it is given by
(11). The question of whether this solution represents an eigenvalue is equivalent
to whether this solution is strictly positive for A small. If [ ¥(x) dx < 0, it clearly is
positive. If

j V(x)dx = 0,
then

[ V@ 1x =y V() dxdy <O,

so again the solution is strictly positive. To see this later assertion, we need only
note that if

desz,

then:
ealz-vl 1

_f Vx)[x —y| V(y)dxdy———l,i}{,ﬂf V(")(_—za—_) Vo)

= tig2 [ 1700
—2[ 1701 % >0,

so long as V is not identically zero. (This last integral if finite since P(0) = 0 and v
is a C? function). |
Remarks. 1. There is a close connection between the negativity of [ ¥(x)| x -y |

V(y) dx dy when [V(x) =0 and the positive definiteness of e~ol=-vl; see, e.g.,
Gel'fand-Vilenkin [3].

2. Notice that if there is an eigenvalue it is either of order A% or A* for A small.

3. Notice that if [ ¥'(x) dx = 0, there is an eigenvalue for all A, positive or
negative; A # 0.

4. 1In the theorem we asserted that there was an eigenvalue for all A > 0 but
only proved this for all small A. This suffices since the number of eigenvalues can
only increase as A increases. This is because, if (s, (—d%dx®) + A¥V) ¥) <0, then
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(Vi) <0 so (, (—d¥dx®) + AV) ) <O if A > A . Thus, by the min-mix

principle, the number of negative eigenvalue increases.

5. One can systematically develope an asymptotic series to all orders for
aA)(and thus; EQ))) so long as [ | x |* | V(x)| dx < oo foralln. If [| x || V()| dx
= oo for some nand V < 0, then some derivatives of E(A) will diverge as A | 0.

6. Theorems of the form of 2.4 and 2.5 should hold if we know that [ (1 +
| x )| ¥(x)| dx < co but are definitely false if we only require that JI1 V&) dx < oo.
For if ¥(x) < —cx~**+ near infinity (c, € > 0), then ¥ will have infinitely many
negative eigenvalues even if [ ¥(x) > 0!

THEOREM 2.6. Suppose that [e®l® | V(x)| dx < co for some a > 0. Then, if
[ V(x) <0, the unique negative eigenvalue e(A) for —d¥dx® + AV occuring for
small X is analytic in A at A = 0.

Proof. Since e()) = (x(A))* we need only show « is analytic. But under the
hypothesis, M, is analytic near o = 0 (say in Hilbert-Schmidt norm), so that
F(o, X) = o« + (2)(V22, (1 + AM,)™! | V [1/%) is analytic near o = A = 0. Since
(2F/20)(0, 0) = 1, and F(0, 0), the unique solution of F(x, A) = 0, «(2) for A small
is analytic by the implicit function theorem for functions of several variables [5]. |

Remarks. 1. If [| x|*| V(x)l dx < oo, but [ e | ¥(x)| dx = oo foralla >0,
it seems quite likely that e(X) will have an asymptotic series to all orders but not be
analytic in A.

2. Tt is something of a pure coincidence that e(}) is analytic at A = 0. For
example, if p? in p? + AV is replaced by p® + AV and B > 1, then e(d) is not
analytic near A = 0 (see [12]) for most 8.

3. Two-DIMENSIONAL CASE
This case is not too different in principle from the one-dimensional case although
two technical complications occur:

(1) K, is no longer trace class.
(2) The kernel of (—4 + o%1 is not as simple as (2x)~* exp(—a | x — y ).
The first problem will be solved by using the theory of modified determinates
[2, 4, 10] and the second by the following:
LeMMA 3.1. Let G(x, ) be the integral kernel for (—4 + o2)~! in two dimen-
sions. Then, there will exist entire functions f and g such that

Gx,0) =fla|x)Ina|x|+glelx]. 12

IR B——"1
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Moreover:
@ f0 =—1/2m,
(i) g(z) and f(2) are bounded by
C, exp(— Ca(z)) on the half axis, z € [0, ) for some Cy , C, > 0.

Proof. Since G(x, a) = G(ox, 1) the estimate need only be proven for G(x, 1).
G(x, 1) is up to a constant a Bessel function of imaginary argument (up to a
constant G(i | x | , 1) is the zeroth order Neumann function) so that (12) and (i)
follow from the theory of such functions [13]. The evaluation of f(0) can be found,
eg.in[11, p. 174} 1

Now let
Mx,y) = | VOO ko(x — ) VP2, 13)

where
k() =flalxIn| x| +glalx)+nalflalx]) — fO)

Thus
|Vie(—4 — oyt Vit =M, + L.,

with
Lx, ) = | V@M V(p)* (—1/2m) In o 14
PROPOSITION 3.2. Suppose that for some § > 0:
[ivemed <o [IV@I0+x)ds <
Then, for any « > O, M, is Hilbert-Schmidt and for « small | M, — My llys < C
o for some € > 0.
Proof. On account of the definition of k, , we need only prove that:

[1V@IVON I ix —y)| Pdxdy <o

to see.that M, is Hilbert-Schmidt. In the region |x — y| <1, the integral is
finite by Young's inequality and the fact that Ve L'+ by hypothesis. In the region
| x — y| =1, the integral is finite on account of

lnx —YE<SCA+A+y); ==L

The only term that is not Lipschitz continuous at a = 0 is the term from In «
[f(a(x)) — f©}. Since In alf(xlx])— f(0)] < V(ex)*2In«, this term is
Hélder continuous.
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Remarks. 1. For later purposes we note:
My(x, p) = | V@2 (=} 1n (x — ) + 2(0) V(y}'/~ 15
2. g(0) is an explicit multiple of Euler’s constant.
Tusorem 2.3. Let V obey [| V(x)[*** dx < oo; [| V()| (1 + %) dx < oo for

some 8 > 0. Then —4 + AV has at most one negative eigenvalue for A small and
positive. It occurs if and only if there is for X small, a positive solution, a(A), of

(tn o)t = +Qu) P A2, (1 + AM)L | V 17), (16)

where 0 < a(X) < 1. In that case, the eigenvalue is —cx(N)*.

Proof. The modified determinent det, for A Hilbert-Schmidt is defined by
[2, 4, 10]:
det, (1 + A) = det (1 + A) ),

which is well defined since (1 + A4) e~ — 1 is trace class. det, (1 + 4) = 0if and
only —1 is an eigenvalue of 4. Moreover, if 4 is Hilbert-Schmidt and B is trace
class:

det, (1 + A)Y(1 + B)) = det, (1 -+ 4) det (1 4 B) e~ TriBle-Tri4B),
Thus, if 1 + A is invertible, 4 + B + 4B has — 1 as an eigenvalue if and only if
det (14 B) = 0. The proof now follows by mimicking the proof of Theorem 2.4.

Turorem 3.4. Let V obey [| V(x)|**? d%x < oo, [| V(X)I(1 + x?) d*x < oo for
some 8 > 0. Then —4 + AV has a bound state for all small positive A, if and only
if [ V(x)d2x < 0. If [ V(x) <O, then the eigenvalue E (A) obeys:

-1
EQ) ~ — exp ([(A/47r) f V(x) dx] )
where
EQ) ~ — exp(—(ad)), (a>0),
means that for A small
—exp(—(@ — &1 XY < EQ) < —exp(—(@a + &7 A7)
If [ V(x) = 0, then EQ\) ~ —exp(—(cX)™®) for suitable ¢ > 0.

Proof. For of}) to go to zero (rather than infinity), the right side of (16) must
be negative for A small and positive. The result now follows as in the one-dimen-
sional case. |
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Note added in proof. The lowest order perturbation terms for weak coupling have been ob-
tained in Landau and Lifshitz, “Quantum Mechanics,” pp. 156-157. I should like to thank J.
Klauder for bringing this to my attention.
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