
ADVANCF-,S IN MATHEMATICS 24, 244-273 (1977) 

Notes on Infinite Determinants of Hilbert Space Operators 

BARRY SIMON* 

Departments of Mathematics and Physics, Princeton University, 
Princeton, New Jersey 08540 

We present a novel approach to obtaining the basic facts (including Lidskii's 
theorem on the equality of the matrix and spectral traces) about determinants 
and traces of trace class operators on a separable Hilbert space. We also discuss 
Fredholm theory, "regularized" determinants and Fredholm theory on the trace 
ideals, c#~(p < oo). 

1. INTRODUCTION 

This note represents an approach to the abstract Fredholm theory of trace class 
(and more generally ~ = {A [ Tr(] A [ ~ ) <  oo}) operators on a separable 
Hi lber t  space, ~v{,. There  are few new results here but  there are a set of new 
proofs which we feel sheds considerable light on the theory discussed. In  part i -  
cular, we would emphasize our proof of Lidskii 's  theorem (see Sect. 4): I t  was 
this new proof that  motivated our more general discussion here. 

To help emphasize the differences between our approach and others, we remark 
on the differences in the definition of the infinite determinant  det(1 -I- A) for 
trace class A. First,  some notations (formal definitions of algebraic multiplicity, 

c A rA','tN(A) etc., appear later): Given a compact operator, A, ~ ~ Js~=t ( N ( A )  = 1, 2 ..... 

or ~ )  is a listing of all the nonzero eigenvalues of A, counted up to algebraic 
c~ 

multiplicity and {/~/(A)}~=I, the singular values of A, i.e., eigenvalues of I A L 
(A 'A)1~  2 listed so that /~I(A) >//~2(A) >/ -" > /0 .  Throughout ,  the trace of an 

operator in the trace class is defined by 

Tr (A)  = ~ (~b~, A4~), (1.1) 

for any orthonormal basis {4~}.~_1. 
The  only two systematic analytic treatments of det(1 q- A) for abstract 

A ~ ~1 of which we are aware are those of Gohberg and Krein  [7] and Dunford 
and Schwartz [4] who rely on the basic definitions (respectively) 

N(A) 

det(1 + / z A )  = [-I (1 q-/x;~g(d)), (1.2) 
i--1 
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det(1 q- IzA) = exp[Tr(log(1 q-/~A))] (1.3) 

We use instead the definition (also used by Grothendiek [8] in his algebraic 
discussion of infinite determinants) 

ao 

det(1 -k tzA) = ~ t za Tr(An(A)) (1.4) 
q~O 

where An(A) is defined in terms of alternating algebra. Of course, any full 
treatment must, in the end, establish the equality of all three definitions. This 
equality is a consequence of the theorem of Lidskii [15]: 

N(A) 
Tr(A) = ~ AriA ) (1.5) 

i = 1  

(and, as we shall see, the equality of the Definitions (1.4) and (1.2) implies 
(1.5)!). At first sight (1.5) seems trivial, but to appreciate its depth, the reader 
should consider trying to prove it for a quasinilpotent trace class operator (i.e., 
one with (0} as spectrum). The  formula (1.2) is very natural but it is quite difficult 
to work with analytically. For example, even after one proves absolute conver- 
gence of the product (and so analyticity of det(1 + /~A)  in/~), the analyticity of 
det(1 ~- A + /~B)  in/~ is not easy to prove. We find the formula (1.3) quite un- 
natural as a general definition since tr(log(1 + /~A))  is singular for those/z with 
(1 ~-/~A) noninvertible and is only determined modulo 2rri. The  main advantage 
of (1.3) is the small/~ expansion which leads to the formula of Plemelj [22]: 

act(1 -k A) ----- exp (--1) n-1 Tr(A~)/n (1.6) 

which converges if Tr(I A I) < 1 (or more generally, if Tr(I A I p) < 1 for 
some p). While (1.6) is often called Plemelj's formula, we note that it occurs in 
Fredholm's original paper [5] ! Equation (1.6) is a useful motivation in the theory 
of regularized determinants (see Sect. 6). 

In distinction, the formula (1.4) has the following advantages: 

(i) Once one has the basic bound I Tr(An(A)r ~< (Tr(l A I))n/n!, the 
analytic properties of det(1 -k A) are easy to establish; e.g., det(1 H- A -k/~B) is 
obviously analytic as a uniformly convergent sum of polynomials. 

(ii) The  algebraic properties of the determinant, in particular, det(1 -k A) 
det(1 q- B) : det(1 q- A q- B + AB) follow from the functional nature of A ~. 
In the finite dimensional case, this is well known (see e.g., Lang [13]). This 
formula occurs in Fredholm's original paper [5] proven via computation of 
various derivatives. Grothendieck [8] proves our Theorem 3.9 by the algebraic 
method we discuss. 
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(iii) I f  A is an integral operator (which is trace class) with a continuous 
kernel, (1.4) reduces to the definition of Fredholm [5]. This  fact, which is useful 
for an abstract Fredholm theory (!) is far from evident from (1.2) or (1.3). 
While Eq. (1.4) is essentially Fredholm's  definition, it is analytically simpler 
because of the possibility of using invariance of the trace; in particular one 
avoids Hadamard ' s  inequality in proving the convergence of (1.4). 

To  distinguish our proof of Lidskii 's theorem, (1.5), from those in [4, 7] we 
might compare them in the finite-dimensional case. In  that case, there are two 
says of seeing (1.5): One can pass to a Jordan normal form, whence (1.5) follows 
by inspection (and the invariance of trace), or one can consider the characteristic 
polynomial, whence Eq. (1.5) follows by using the fact that the sum of the roots of 
a monic polynomial P(X) is the coefficient of its next to leading term. In  essence, 
the proofs in [4, 7] are analogs of the Jordan normal form proof while ours is via 
a "characteristic polynomial": In  brief, we prove Eq. (1.5) by "applying 
Hadamard  factorization to Fredholm's  determinant."  A primary complication 
in the "normal  form" proof of (l .5) is the lack of a normal form for quasinilpotent 
operators. This  must be gotten around by a limiting argument  [7] or by an 
argument that is essentially our proof in the special case where A is quasi- 
nilpotent [4] !. (In this case Hadamard ' s  factorization theorem can be replaced 
by Liouville's theorem.) T h e  only place that we need to appeal to a limiting 
argument from a finite rank approximation is in our proof that det(1 + A) 
det(1 + B) = det(1 + A + B + AB). 

We should mention that Carleman [3](and also Hille and Tamarkin  [10]) 
establish a Hadamard  factorization of detz(1 + A)(see Sect. 6). In  particular, had 
they choosen to look at the second term of the Taylor  series in their equalities 
they would have for A Hilber t -Schmidt  that 

~(A) 
Tr(A ~) = ~ A~(A) 2 

i = 1  

(but they did not choose to do this). Hille and Tamarkin  [10] have similar 
formulas in the trace class case and one can easily prove Lidskii 's theorem from 
their results (essentially by the method shown in Sect. 4). 

The  material we present here is "foundational" and so it is important to have 
some care in how one proves the basic facts about trace class operators and 
trace ideals, lest one introduce a circulaiity. Thus,  let us sketch the basic 
definitions and facts, primarily following the discussion in Reed and Simon 
[24, 25, 26]: 

(1) [24, Sect. VI.5]. The  closure in the norm topology of the finite rank 
operators on ~ is called the compact operators, cg~. Any operator A ~ c(~o has a 
spectrum which is countable with only zero being a possible accumulation point. 
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Any A ~ ~(A) which is nonzero is an eigenvalue. Any A ~ c ~  has a canonical 
expansion: 

o o  

A ~ ~ tz~(A)((~n, ")¢,~ (1.7) 
n=l 

where tz~(A) are the singular values (eigenvalues of [ A [ ~  ( A ' A )  1/~) and 
{6~},~_a (resp. {~b~}~_l) are orthonormal sets (the ¢~ are eigenvectors for A*A and 
the ~b, for AA*).  We  order t he /~ (A)  by/zl(A ) ~/~2(A) ~ "-" ~ 0. 

(2) ([26, Sect. XII.1, 2]; see also [19]). Given h ~ a(A) with A ~ c ~  and 
A # 0, one defines the spectralprojection Pa by 

P~ = (2~i)-1 f{e-~{=~ dE(E -- A) -~ (1.8) 

for all small e. Then  Pa is a finite-dimensional (nonorthogonal) projection so that 
A leaves P~sf' and (I - -  Pa) W invariant. Moreover, a(A [" Pad/t = {h}, a(A ) 
(1 - -  P~)~¢') = a(A)\{A} and Ran Pa = {4' [ (A --  ),)~ ~b ~ 0 for some n}. We 
call dim (Ran Pa) the algebraic multiplicity of h. A list of all nonzero eigenvalues 
counting algebraic multiplicity of A is denoted by {h~(A)}f__(; ). 

Remark. To define Eq. (1.8) all that is required is that )t be an isolated point 
of a(A) and the further properties of P~ all hold whenever Pa is finite-dimensional. 
Both conditions automatically hold if A ~ ~ and ~ ~= 0. 

(3) [24, Sect. VI.6]. For any positive self-adjoint operator, A, the sum 
~ 1  (¢~, A¢~) is independent of orthonormal basis and denoted Tr(A). The  
trace class Wf 1 (called J l  in [24]) is those operators with Tr(I A I) < oo. One 
shows that A ~ ~fl if and only if A is compact with ~ = 1 / x , ( A )  < oo. Tr(] A I) 

A ~ = 1  ~ (  ) is called the trace norm, II 'f[~ ~1 is a *-ideal in ~¢(W) and one has 

!l A "~- B H1 ~ I1 A [dl ~- II n I[1, II A *  Ill = II A II1 

and (1.9) 

I{ A B  I[1 ~ IJ A [[1 [IB [l~ 

For A c c# 1 and any orthonormal basis {¢,}~=1, the sum Z~__I (¢~, A(~) is 
absolutely convergent and defines a number Tr(A), the trace of A, independent 
of basis ¢~. Tr(.)  is a *-linear functional on ~ with 

I Tr(A){ ~< 1} A II1. (1.10) 

For any unitary U, IJ UAU-11[1 = Id A dPl and T r ( U A U  -~) --- Tr(A). 

(4) [24, Sect. VI.6; 25, Appendix to Sect. IX.4]. The  trace ideal, cgv 
(1 ~ p < oo) is defined as those A with I A I ~' ~ ~1 • Then  A ~ c#~ if and only if 
A is compact and Z~=a/~n(A) ~ = Tr([ A[P) ~ II A ![~ < ct). From Eqs. 
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(1.9) and (1.10) and a simple complex interpolation argument, one easily finds 
that (p  1 @ q--I = 1)- 

] Tr(AB)[ ~< II A [[~ [I B ][q (1.11) 

(H61der's inequality for operators), from which it follows that 

i! A I1~ = sup (I Tr(~B)i/II B I[~)- (1.12) 
Bergq 

(Take B ----- [ A [~ 1U* if A = U ] A [ to get equality.) From (1.12), the triangle 
inequality for !1 '1[~ follows, c ~  is a *-ideal in ~f(~"¢'). 

(5) [30]. In  one place we need the existence of a Schur "basis," i.e., for 
any A ~ c ~  , an orthonormal set (not necessarily complete), 1 ~ = 1 c  ~N(m so that 

~,(A) = (~ , ,  a~ , ) .  (1.13) 

One obtains (1.13) by writting a Jordan normal form for A on each F a (h an 
eigenvalue which is nonzero) and then applying a Gram-Schmid t  procedure. 

Remark. I t  is with some reluctance that we use this device since it requires a 
"Jordan normal form" for A. We emphasize it enters in our proof of Lidskii 's 

• ~ N ( A )  
theorem only in the proof that )_2i=1 hi(A) < 0% something that can be proven 
by other means [7]. 

(6) ([24, Sects. I I .4  and VIII .10] ;  see also [18]). Given oY', a separable 
Hilbert  space, the n-fold antisymmetric product A ~  is defined. I f  {~g}~_l is an 
orthonormal basis for J r ,  then ~q ^ "" ^ ~ (il < i2 < " i~) is a basis for 
A~5¢ '. Given A: Jdf; --~ 3¢', one defines A~(A): A ~ f - - ~  A ~  so that A~(A) 
(~1 ^ "- A ~ )  ~ A~a A -- A A ~ for any ~l ,--., ~b~ E 5 ( .  A~(.) is a functor, i.e., 
A~(AB) = A"(A) A"(B) and A~(A *) = A~(A) *. Thus,  e.g., [A~(A)I = 
A~([ A I)- I f  X is finite-dimensional, with d i m ( ~ )  = m then dim A~(X)  = (~,~), 
and A~(A) on the one-dimensional space A ' ~ f  is just multiplication by det (A). 
A ~  is a natural subspace of @~ ~/o, the n-fold tensor product. 

We conclude this introduction with a sketch of the contents of these notes. 
In  our proof of Lidskii 's theorem, we need to know that for A a ~ l ,  
~N(A) (so that the definition (1.2) converges). As noted in [7], /=1 l hi(A)l < oo 
this follows easily from Eq. (1.1) and the existence of a Schur basis, but we give 
an alternate proof of the more general Weyl [36] inequalities: 

N(A) 

Y~ l ;~,(A)I ~ ~ I! A II~ 0 .14)  
i=1 

in Section 2. (For p ~ 1, these inequalities are associated with work of Lalesco 
[12], Gheorghiu [6], and Hille and Tamarkin [10] and forp  = 2 with Schur [29].) 
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This proof depends less on intricate convex function arguments than do the usual 
ones [4, 7]. In Section 3, we define (by Eq. (1.4)) the determinant for operators of 
the form 1 + A with A E W1, and in Section 4 we prove Lidskii's theorem. In 
Section 5, we illustrate the usefulness of the definition (1.4) by proving a 
determinant inequality (essentially found already in [33]). In Seetion 6, we define 
det~(l + A) by: 

det~(1 + A )  det (1 + A )  exp --  ~ (--1)k+~A~/h , (1.15) 

and show it is defined for A ~ , ~  for p ~> n. Finally, in Section 7, we recover the 
usual Fredholm theory in abstract form. 

We remark that it is an interesting open question to establish the theorem of 
Lidskii in the Banach space setting (see [8, 14, 27, 28]). Even Weyl's inequality, 
Eq. (1.14), fo rp  = 1 appears to be open in this case. See added note (3). 

2. SOME INEQUALITIES OF WEYL 

Our goal here is to prove the inequality (1.14) and some related facts. We first 
note the following: 

LEMMA 2.1. Let A be a compact operator. Let {f~},~ and {g,}~= 1 be orthonormal 
sets. Then 

( A ,  Agn) = ~ a,mtz,~(A) (2.1) 

where (oz) is a doubly substochastic matrix, i.e., 

I a,,~ ] ~< 1; n = 1, 2, . .  (2.2a) 
~ Z = I  

~z 

[ ~,~ ] ~ 1; m = 1, 2,... (2.2b) 
~,=J_ 

Proof. By the canonical form (1.7), (2.1) holds with 

~,,~ : ( f~,  ~)(~b~,  g~). 

Since {f~) and {g~} are orthonormal families, we have by Bessel's inequality and 
the Sehwarz inequality: 

\~L'-_ ( ~ 1  '(f~ 2\1/2 / ~° \1/2 
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since the {~bm} and {@~} are normalized. Similarly (2.2a) holds since the { ~ }  
and {~b,,} are orthonormal. | 

The  following is so basic to our proof of (1.14), that we overkill it with three 
proofs, each of which illustrates different aspects of the result. 

LI~MMA 2,2. Let ~ be a doubly substochastic matrix (i.e., let (2.2) hold). Let t ~  
be a sequence with (Z~=I  ] tz.~ 1~) ~/~ < oo for some 1 <~ p ~ or. Then the sums 

are convergent and 

f ,~=l  

I ~ . 1  ~ ~< I ~  I ~ • (2.4) 

First Pro@ By (2.2a) the result clearly holds i fp  = oo. By duality and (2.2b), 
we get the case p = 1. T h e  general ease now holds by the Reisz-Thorin inter- 
polation theorem on l~ (see, e.g., [24, Sect. IX.4]). | 

Second Pro@ The  sum (2.3) is clearly convergent p = 0% so let p < co. 
I f  q is the dual index of p, then: 

~IA~I~ < ~ IA~l~-ll~.,.llm. I 

-- I ~ "  I ~  L] [I ~. I ~-~ ~ I~/~][I = .~ 

i ol.) tL1. ,) , 

from which (2.4) follows. In the above we have used H6lder's inequality (on 
sequences indexed by pairs (n, m)) in the second inequality and (2.2) in the last 
inequality. I 

Third Proof (suggested by E. Seller). Let  ~ be an arbitrary convex function on 
[0, oo) with q~(0) = 0 and 4(x) ~ 0. I t  is then automatic that ~b is monotone. 

We claim that 

4(I t) E 0, (2.5) 
~=I fa=l 
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from which (2.4) follows taking ~(x) = x ~. Now, since ~ is monotone: 

(2.6) 

The  second inequality follows by convexity and (2.2a) writing 

~=I m = 0  

with  a~o = 1 - -  ~,~=: ] a,~,~ ] and/*o = 0. Summing over n, (2.5) follows from 
(2.2b) and (2.6). | 

THEOREM 2.3. ([29] for  p = 2, [12] for p = 1, [36] for generalp). For any 
compact operator A and 1 <~ p <~ 0% 

] A,~(A)] ~ ~ 1] A [l~. (2.7) 
f t ~ = l  

More generally, for any orthonormal sets {f,~}, {g,~} we have 

c~ 

Z [(f~, Ag.)l~ ~ II i Ig. 

Proof. The  general result follows immediately from the last two lemmas. 
Equation (2.7) then follows f rom the existence of a Schur 'basis" t%~,~=:r ~utm (see 
(5) in Sect. 1) takingf~ = g ,  = % .  | 

These  are the only inequalities from this section we will need later. However, 
we wish to make a few remarks about extending the method above by using a 
few additional "tricks." First we note that, by using the third proof of Lemma  
2.2, we can conclude that 

~b(l( L , Ag,~)]) <~ }(/, ,(A)) (2.8) 
~=1 ~=i 

for any convex ~ with 4(0) = 0, ~(x) ~ 0. Equation (2.8) is not quite as strong 
as Weyl 's  theorem which only requires t --~ ~(e t) to be convex. For example, the 
function ~(x) = ln(1 + x) is such that (2.8) holds (by Weyl 's  theorem) but it is 
not of the form we have treated so far. Second, there is a general principle illus- 
trated by the following: 
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THEOREM 2.4. I f  A is compact and {f~}~-i and {g~},~=l are orthonormal sets, 
then for any N and p > 1 : 

N N 

[(f~, Ag~)l~ ~< ~ I ~.(A)I ~'. (2.9) 
n=l n=l 

In particular, for any N eigenvalues ;q(A),..., ;~N(A): 

N N 

~ IA~(A)t ~ ~ ~ It~J-//)l ~'. (2.10) 
n=l n=l 

Proof. Let P be the orthogonal projection onto the space spanned by 
N {g~}~=l • Let B ~- AP. Then, by Theorem 2.3: 

N N 

Z I(A, Ag.)t~ = Z I(A, Bg~)I~ 

Now, since B has rank N, tz~(B) ~- 0 for n >~ N + 1 and by a simple min-max 
principle argument,/~(B) ~ / ~ ( A )  for all n and, in particular, for n = 1,..., N. 
Equation (2.9) thus follows. By using a Schur basis, (2.10) follows. | 

The third principle, following Weyl [36], systematically exploits the anti- 
symmetric tensor products. For example, we have Weyl's original inequality: 

I AI(A) "-" aN(A)l < t~(A) ' ~N(A). (2.11) 

For/LI(A) .-- tzu(A) is the norm of AN(A) on ANa% ~ (as the largest eigenvalue of 
I AN(A)[ = AN(I A 1)) and al(A ) -. 'an(A ) i s  a n  eigenvalue of AN(A). By com- 
bining this idea and the second principle above we can, for example, prove the 
following theorem of Ostrowski [21] : 

THEOREM 2.5. Let al(A),..., AN(A) be N eigenvalues of a compact operator A. 
For k <~ N, let ~k(al ,..., an) be the elementary symmetric function given by: 

~ ' l ( a l ,  ", a n )  = 2 a q  " "  ai~ • 

Then for any p >~ 1 : 

z~(l al I%.., I AN I') ~< 2~(~1(A)~,..., ~NCA)9. (2.12) 
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In particular, for  any r > 0: 

N N 

[ I  (1 + r I A,(A)f) ~< [ I  [1 + r~(A)~]. (2.13) 
i=l  i=l  

Proof. As in the construction of a Schur basis, we can find an orthonormal 
set ei~ ,..., eN with 

Aei = ~iei  ~ -  E c~iiei" 
J<i 

e N It follows, that if P is a the orthogonal projection onto the span of { n}~=1, then 
the nonzero eigenvalues of B = A P  are ~1 ,,--, ~N- Thus the nonzero eigenvalues 
of Ak(B) are Aq(A) ---/~(A)(1 ~< d < " < ik ~< N). Therefore (2.12) follows 
from Eq. (2.7) and the method of proof of Theorem 2.4 (2.13) follows from 

N N 

[ I  (1 + a,) = E E (al ,..., aN). | 
i~l k=l k 

Remark. In particular, (2.13) with r = 1 is the 6(x) = ln(l + x) result of 
Weyl mentioned above. 

LEMMA 3.1. 
Moreover 

3. DEFINITION AND PROPERTIES OF THE DETERMINANT 

The  basic estimate we need to define det(1 + A) is 

For any A ~ Ea(NF ) we have that A~(A) s EI(A~)X) for  all k. 

[I Ak(A)II1 ~< II A Ir~/k! (3.1) 

Pro@ The  eigenvalues of l A~(A)I = Ak(I A l) are 

(~q(A) . . .~ , k (A) ) ( i  1 < ... < i,~). 

Thus: 

rl ^~(A)If,_ = Z ml(A)--'m~(A) 
i l  <-<i k 

1 
= k~- ~ /zq(A)-.-~,~(A) (3.2) 

il<'<i k 

= ~IFAII~.  I 

6o7124/3-4 
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DEFINITION. For A E ~f~, we define det(1 + A) by 
) 

det(1 + A) = ~ Tr(A~(A)). (3.3) 
k ~ 0  

THEOREM 3.2. The sum (3.3) converges for any A ~ g~j and 

I det(1 -f- A)[ ~ exp(ll A lit)- (3.4) 

I det(1 -k A)I ~< f i  (1 + ~,(A)). (3.5) 

Proof. Equation (3.4) follows from (3.1) and (3.5) from (3.2). | 

THEOREM 3.3. Fix A 1 ,..., A ~  ~ c~ 1 . Then 

is an entire function of m complex variables. More generally, i f  F(A) is an analytic 
function with values in ~1 ,  then det(1 -~ F(h)) is analytic where F is analytic, 

Proof. By definition 

and by (3.1) the sum converges absolutely and uniformly on compact subsets of 
C ~. Since each term Tr(A~(~2~=.1 )tiA~-)) is a polynomial, F is an entire function. | 

THEOREM 3.4. Fix A ~ ~1 • Then, for any e, there is a constant C(e) with 

I det(1 -k ;~A)I ~< C(e) exp(e I a 1)- (3.6) 

Proof. Since I 1 -~ x I ~ exp([ x [), we have, by (3.5) 

] det(1 @ aA)I ~ f i  (1 -~- ] )~ I/z,~(A)) 

~< I-I (1 + I a I ~ , (A))  exp I a I . ~ ( A ) .  

A Choose M so that EM+I/~(  ) <  (/2. Now, we can choose C(~) so that 
[1--[M~ (1 + I A I ~(A))]  < C(E) exp((~/2)l ;~ I). | 
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Remark. On accountof the inequality [31]: 

] det(l + A + B)I ~ det(1 q- I A l) det(1 + B 1) 

one can conclude: : . . . . .  

( ) 
THEOREM 3.5. The map A --~ det(1 + A) from ~1 to C is continuous, i.e., i f  

I] A~ --  A II1 ~ O, then det(1 -~- Ae):----~ det(1 + A). 

Remark. By using Cauchy estimates on the analytic function det(1 + A + 
/~(B -- A)) and the bound (3.4), One can prove [32]: 

I det(1 + A) --det(1 ~ B)[ ~.[IA -- B 111 exp(ElA [[1 +/IB[I1 + 1) (3.7) 

(see also Theorem 6.5 below). 

Pro@ Let C : sup, II A.  I11. Given e, choose Mwith~m>M+l C~/ml < e/3. 
Then by (3.1): 

2 £  M 
I det(1 + A,) -- det(1 + A)I • T + Z Tr(JAm(A~) -- A~(A)[) - 

'm~l  

Now, let P~ be the orthogonal projection from @~ d~ to Am~. Then 

~'~ m C ~ - i  I] A - -  A n [ ]1 ,  

M mCm_l)_l see that for n > N: so choosing Nso that IJ A -- A~ IJ~ ~ (e/3)(~=~ we 

jdet(1 + A~) -- det(l + A)] < e. | 

LEMMA 3.6. L e t  A be a finite rank operator with P A P  = A for some finite 
rank orthogonal projection P. Let A~(A) be the operator A"~( P A P )  as an operator on 
A~(P~Y~). Then, i f  d i m ( P ~ ) =  k: 

det(1 + A) = tr(A~(1 + A)). 

P r o o f . .  Clearly tr(Am(A)) = tr(A'~(PAP)) ~ tr(A~(A)), so det(1 + A) : 
/~ rn 3Z~= o t r ( A e ( A ) )  = tr(A~(1 -r A) ) .  II 
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LEMMA 3.7. Let A and B be finite rank operators. Then 

det(l + A) det(1 + B) ~ det(1 + A + B + AB) .  (3.8) 

Proof. Let P be a finite-dimensional orthogonal projection with ran A, 
ran A*, ran B and ran B* all in ran P. Then,  if dim P -~ rn: 

det(1 @ A) det(1 + B) = tr(A~(1 + n) )  tr(A~(1 + B)) 

= tr(A~o*(1 + A) A~(1 + B)) 

= d e t ( 1  + A + B + AB) ,  

where we have used the fact that A ~ ( P ~ )  is one-dimensional so that for operators 
C, D, on it, Tr(C)  Tr(D) = Tr(CD).  | 

THEOREM 3.8. [8]. For any A,  B e cg 1 : 

det(1 + _4) det(1 + B) = det(1 + A + B + AB) .  (3.9) 

Proof. Let P.~ be a family of finite rank orthogonal projections converging 
strongly to 1. Then,  by L e m m a  3.7, (3.9) holds if A, B are replaced by An 
P~AP~ and B~ = P~BP~ . As n --~ c~, ]1A~ - -  A I]1 ~ 0, ]1B~ - -  B ]11 --+ 0, and 
[I A~Bn --  A B  El1 --+ 0 so, by Theorem 3.5, the determinants converge. Thus  
(3.9) holds. | 

THEOREM 3.9. Let A ~ cg 1 . Then det(l + A)  ~ 0 i f  and only i f  I + A is 
invertible. 

Proof. Suppose 1 + A is invertible. Then  B ~ - - A ( I  + A) -1 is in W1 and 
A + B + A B = ( I + A ) ( 1  + B ) - - I  ~-0.  Then  

det(1 -v A) det(1 + 13) = det(l)  = 1 

so det(1 + A) @ 0. On the other hand, if 1 + A is not invertible, then - -1  is an 
eigenvalue of A. Let  P be the corresponding spectral projection. Then  1 + A = 
(1 + AP)[1 + A(1 - -  P)], so it suffices to prove det(1 + A P )  = 0. Now, by 
Lemma  3.6, det(l + A P )  is the finite-dimensional determinant of an operator 
with eigenvalue - - l  and is thus zero. | 

THEOREM 3.10. I f  --I% 1 is an eigenvalue of multiplicity h, then F(~) ~- 
det(1 + tzA) has a zero of order precisely k at ~ ~ tzo . 
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Proof. Let P be the spectral projection for _ / ~ 1 .  Then  

det(1 + / ~ / )  = det(1 + ~ A P )  det[1 + /zA(1  - -  P)]. 

Now det [1 + /~A(1 - -  P)] @ 0 by Theorem 3.9. Also B = A P  is zero on 
( 1 -  P ) o ~  and has only spectrum --/2o 1 on P~'¢¢'. Thus  Tr(A~(AP))  
(--1)~(~)/z -~  so that 

det(1 + ~ A P ) :  ~ \ ( k )  (--/~//~o)" = (1 --/~ol) ~. I 
~=0 m 

4. LIDSKII'S THEOREM 

The  key to Lidskii 's theorem is: 

THEOREM 4.1. Let F(z)  be an entire function with zeros at z l  , z 2 ,... (counting 
multiplicity) so that 

(1) 

(2) 

(3) 

Then 

y(o)  = 1. 

For any ~, I F(z)) ~ C(~) exp(e ] z l)- 

'}"~=1 g'n ]-1 < co. 

ao 
F(z)  ---- [ I  (1 - -  zzfX). (4.1) 

J=l 

Remark. This is not quite the same as Hadamard 's  theorem. For, in general 
(2) only implies that ~2~1 ] z,~ 1-1-~ < oo, and F(z)  = e ~ I ~ = 1  (1 - -  zz~ ~) 
e~/~ with a = - -~°°  1 z~ 1 (conditional convergence with ] z 1 I ~< J z 2 I ~ = ~); 
this is a theorem of Lindel6f [17], see [1]). However, our proof is essentially a 
piece of a standard proof of Hadamard ' s  theorem (see, e.g., [35]). 

Proof. Let G ( z ) =  I]~__~ (1 - -  zz~ 1) which is convergent to an entire 
function by (3). Since F(z) /G(z)  is an entire nonzero function, 

F(z)  -= G(z) e ~'~). 

Now for fixed R, let z 1 ,..., z~ be the zeros of F with ] z~ I < R/2. Then  for 
I z l = R, II - -  zz711 >~ 1, so F(z) ( I - l~ l  1 - -  zz71) -1 = HR(z) has supl~l<R ] 
H•(z)] <~ C(e) e ~R. I t  follows by the Borel-CaratModory theorem [35, pp. 174- 
175]that  f o r [ z ]  ~<1 

I In H~(~)I ~ 2(½ R -- I)-~[ER -5 In C@)], 
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where we have used the fact that HR(0) 1. Moreover, if,R: ~> 4 and ~l z I ~< 1 

ln -- <~ C [ z [  [zi [-1, 
i n + l  

where C is choosen so that ] ln(1 - -  z)l ~< C [ z I i f  [ z [ ~ ½. It follows by 
taking R ~ oo that h(z) = In HR(z) + l n [ l ~ + t - - ]  obeys [ h(z)[ ~< 4e. Since e is 
arbitrary, h is identically zero for I z [ ~< 1 and so for all z. I 

THEOREM 4.2. For any A • 51 and/X ~ C: 

N(A) 

det(1 q-/xA) = 1-1 (1 -}-/X~j(A)). (4.2) 
J=l  

Proof. Let F(/~) = det(1 ~-/xA). By Theorems 3.9 and 3.10 the zeros o f F  
are precisely (counting multiplicities) at --hi(A) -1. By Theorems 3.4 and 2.3, 
F(/x) obeys the hypothesis of Theorem 4.1. I 

COROLLARY 4.3. (Lidskii's Theorem [15]). Tr(A) ---- ~N(~)j=. hj(A)for _/1 • Tl-  

Proof. The  term linear in /~ in the Taylor expansion of det(1 -4- /xA) ~ is 
~ N ( A )  

Tr(A).  The  term linear in /x on the right of (4.2) is ~J= l  hi(A). | 

Remarks. 1. Equation (4.2) of course also implies that 

Tr(A~(A)) = ~ )t~x(A ) '." h~(A), 
i 1<2 • - "  <~/¢ 

but  this is just Lidskii's theorem for Ak(A)! 

2. From Remark 1 Lidskii's theorem implies (4.2)! 

5. DETERMINANT INEQUALITIES 

We want to illustrate the use of (1.4) as a tool i n  proving inequalities on 
determinants. Seiler and Simon [31] have already used (1.4) to prove: 

det(1 + I A d- B I) ~ det(1 ~- I A I) det(1 + I B [) (5.1) 

although alternate proofs avoiding (1.4) have been found by: Lieb [16] and Kato 
(unpublished; see [32]). Seller and Simon [33] have proven a variety of 
complicated inequalities tailor made for their study of the Yukawa~ quantum 
field theory. By using their method, we can prove an inequality of some general 
interest that illustrates the applicability of (1.4): 
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THEOREM 5.1. For A E ~1,  define 

det~(1 -{- A) = det(1 + A) e -Tr(A). (5.2) 

Then, for any A,  B ~ cg 1 : 

[ detz(1 q- A ÷ B)I ~< exp(1/2 II B * B  I1~ + ~ II A 11~) (5.3) 

where a = 1 ÷ el/2 = 2.6487 .... 

Remark. The point is that det~(1 ÷ A ÷ B) extends from ~1 to a continuous 
function ~ with 

I detz(1 + A + B)I ~< exp(1/2 I1A ÷ B 112) (5.4) 

(see Sect. 6 below). Of course, since [ det(1 ÷ A)I ~< exp([[ A H1), we have 

i det2(1 ÷ A ÷ B)[ ~< exp[2(ll A 111 ÷ 11B I[,)]- 

However, ifA E T1 and B ~ ~2, we cannot use this to bound [ detz(1 ÷/zA ÷ B)[ 
as I t ~ ] --~ oo and (5.4) would only give us ] det~(1 ÷ /zA ÷ B)] ~< C1 exp(C~ I~1~). 
Equation (5.3) gives [ det2(1 ÷ /zA ÷ B)[ ~< C 3 exp(C~ ]/x 1). 

Proof. 

] det(1 -+- A ÷ B)] = det(1 ÷ B) det[1 -k (1 + B) -1 A]I 

det(1 + B) Tr(^"[(1 + B) -1 A]) 1 

~ II det(1 + B) A'[(1 + B)-x]II Tr(l A~(A)i) 
n = 0  

a~ 

~ [[ det(1 ÷ B) A~[(1 + B)-l]l[ II A Ilk/n! 

Now, we claim that 

(5.5) 

Temporarily deferring the proof of (5.6), we note that (5.2) and (5.5) together 
with (5.6) imply 

[ det~(1 q- A ÷ B)[ ~< exp(--Re Tr(A) -- Re Tr(B)) ~ (e ~/2 l[ A II1)~/n! 
n ~ 0  

× exp(Re Tr(B) ÷ 1/2 [j B * B  [[1) 

~< exp(a [1A 111 ÷ 1/211B*B [[). 

[[det(1 ÷ B) Au[(I ÷ B)-IJ][ = ~ e ~ exp(2 Re(Tr(B)) ÷ [[ B * B  II1). (5.6) 
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We compute 

[1 det(1 -r B) A"[(1 q- B)-~]II ~ 

= II det(1 q- B + B* q- B'B) A~(1 + B @ B* -}- B*B)II, 

so (5.6) is implied by 

il det(1 + C) A~((1 -]- C)-1)11 ~ e ~ exp(Tr(C)) (5.7) 

for all self-adjoint C with --1 ~ C. Now, let A~(C) be the eigenvalues of C 
ordered by ;~l(C) ) --- ) --1. Then: 

II det(1 -~ C) A'~((I T C)-I)!I ~ f i  (1 -~ ~z(C)) 
m=n+l 

exp 1~(C 
,m +1 

~< e" exp(Tr(C)) 

since - - ~ = i  ,~(C) ~< n. | 

6. REGULARIZED DETERMINANTS 

It was realized quite early that Fredholm's original 1903 theory was not 
applicable to a wide class of integral operators of interest. In 1904 Hilbert [9] 
showed how to extend the class of operators which could be treated by replacing 
K(x, x) by zero in all formulas and Carleman [3] later showed that this definition 
worked for all operators which are now called Hilbert-Schmidt. Contributions 
to this line of development were made by Lalesco [11] who, in particular, 
realized when Tr(K) was finite, Hilbert's determinant "det~" and Fredholm's 
determinant, "detl" were related by 

det~(1 + A) = detl(1 q- A) exp(--Tr(A)), 

and by Hille and Tamarkin [10] and Smithies [34]. 
In a 1910 paper that has been widely ignored, Poincar6 [23], apparently 

unaware of Hilbert's work, studied integral equations f--=-(I + K)g where 
some power of K, say K 5  is an operator to which Fredholm's theory can be 
applied. By using this theory for K5 he was able to show that 

det  , =-- exp(L ) 
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is well defined by the series for [/x [ small and defined by analytic continuation an 
entire function. The interesting feature of Poincar~'s work is his ability to reduce 
the estimates to those of Fredholm except for K '~. 

Motivated by the Hilbert-Carleman-Smithies line of development, det~ has 
been systematically developed by Gohberg and Krien [7] and Dunford and 
Schwartz [4]. The theory of det 4 was independently developed by Brascamp [2]. 

In this section, we wish to establish the main properties of det,(1 -~ A). 
Unlike most of the treatments discussed above, we avoid the need for any new 
estimates in defining det,, by reducing the analysis (following Seiler [30]) to what 
we have already discussed in defining de h (see Lemma 6.1 below). In philosophy 
(but not techniques), we thus follow Poincar6. Our approach partly follows the 
appendix of [32]. In particular, we follow the proof of (3.7) in proving that 
det,(1 + A) is Lipschitz on cg,~--a continuity statement that appears to be new. 

LEMMA 6.1 (essentially in [30, 32]). For any bounded operator A, define 

Then: 

(a) 
Co) 

R~(A) = [(1 + A )  expC~=ll(--A)e/k)]--l .  

I f  A ~ cg,, then R,~(A) e 51 . 

I f  f (z) is an analytic function with values in cg,~ (analytic as a qY,-valued 
function), then R~( f (z)) is a function analytic as a 5a-valued function. 

n--1 le Proof. Let h(z) ~ z-"{[(1 + z) exp(~k=l f - -z ) /k]  -- l}. By an elementary 
computation, h is an entire function. Clearly 

R~(4) = Ash(A). 

Hence, I[ R~(A)lll <~ ]] A IJ~ H h(A)ll~ < oo by H61der's inequality for operators. 
Now, le t f (z)  be a function analytic as a 5,-valued function. Then, it is clearly 
analytic as a c~-valued function, so h(f(z)) is a B(~gg)-valued analytic function. 
It follows that Tr(BR~(f(z))) is analytic for any finite rank B. Moreover, by 
the above, II R~(f(z))H1 is uniformly bounded on compact subsets of the domain 
of definition off.  Now under the duality (A, B)  --~ Tr(AB), 51 is the dual of 5oo 
and B(J/U) is the dual of 51124 , Sect. VI.6]. Since the finite rank operators are 
dense in ~1,  it follows that given any B E B ( ~ ) ,  we can find B~ a net of finite 
rank operators with ]1 BE [[ov ~ II B [[op so that Tr(AB~) -+ Tr(AB) for any A ~ 51 . 
Thus Tr(R,~(f(z))Be) converges pointwise to Tr(R,~(f(z))B) so by the Vitali 
theorem, Tr(R,~(f(z))B) is analytic for each B ~ ~,¢(~). It follows that Rn(f(z)) 
is analytic as a 51-valued function. | 

DEFINITION. For A ~ 5,~, det,(1 --F A) = det(1 + R~(A)). 
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THEOREM 6.2. Let ha(A),.., be the eigenvalues of A ~ cg n . Then: 

det,(1 + tzA) = F[ (1 +/xA~(A)) exp Ixk(--h~(A))~/k 
m = l  

(6.2) 

Moreover, for A E ~.-i : 

detn(1 + A) = det,_~(1 -+- A) exp[(--1) "-~ Tr(A"-a)/n] (6.3) 

and, in particular, for A E (gl : 

det~(1 -[- A) = det(1 + A) exp . ~  (--1) k T r ( A k ) / k .  (6.4) 
kK2=I 

Remark. Equation (6.2) is natural from the point of Hademard's theorem 
which we have been emphasizing. For if we only know that ~2~=1 [ )~,,(A)I ** < oo 
and we want a function "det"  (1 -[-/zA) with zeros precisely at/z = - -h~(A) -1, 
we need a canonical product of genus (n -- 1). 

Proof. By the spectral mapping theorem, the eigenvalues (including algebraic 
n--I /c k multiplicity) of R~(~A) are (1 + lxh~(A)) exp(Y~=~/x ( - -A,~(A)) /k) -  1, so 

(6.2) follows from Theorem 4.2, Equation (6.3) follows from 

(1 q- R~(A)) ~ (1 -1- R~_~(A)) exp((--1)"-xAn-a/n --  1), 

Theorem 3.8 and the fact that for A ~ ~1 : 

det(e ~) = eTr(a) 

(which follows from Theorem 4.2 and Lidskii's theorem). | 

COROLLARY 6.3. Let A ~ ~ .  Then (1 + A)  is invertible i f  and only i f  
det,(1 + A) # 0. 

For later purposes we note that there exists a constant F~ with 

(1 + Z) \ffL"=l (--z)k/k ~ exp(P~ I z [~)" (6.5) exp 

Equation (6.5) is obvious, since it clearly holds for I z[ > ~ (for any ~) and 
for ] z J small since the left side is 1 -]- 0(z n) for z small. We remark that l"x = 1, 
F z = ½, and for any n /"~ ~ 1In (by using z small) /",~ ~ e(2 q- In n) [20], 
also/'4 ~ ~ [2]. 

THEOREM 6.4. 

I det,(1 -t- A)I ~ exp(F~ II A I1~)- (6.6) 
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by Theorem 2.3. 

THEOREM 6.5. 
balls, explicitly: 
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By (6.2) and (6.5): 

[ det,(l + A)[ ~ exp (F,~ ~ [  A~(A)[ n) 
'f~,-- 1 

exp(F, [[ A Ill) 

I 

det.(1 + A) is Lipschitz as a function on ~ uniformly on 

i det~(l + A) -- det,~(1 + B)J ~ I] A -- B IJ~ exp[F~(N A II~ + I1B H~ -~- 1)hi • 

Proof. This clearly follows from (6.6), the lemma following (which is an 
abstraction of an agreement in [32]), and the fact that if f (z) is an analytic c~_ 
valued function, det,(1 + f (z))  is analytic by combining Lemma 6.1 and 
Theorem 3.3. | 

LEMMA 6.6. Let f be a complex-valued function on a complex Banach space X so 
that 

(a) f ( A  + zB) is an entire function of z for all A, B, eX. 

(b) There is a function G on [0, or) which is monotone nondecreasing, so 
that for all A ~ X:  

[f(A)l ~< G({[ A[I). 

Then: 

[ f ( A ) - - f ( B ) l  ~ I I A - - B I [ G ( I I A I [ + I I B H +  I) (6.7) 

for all A, B E X.  

Proof. Letg(z) = f(½(A + B) + z(A -- B)). Theng is entire in z and 

If(A) --f(B)[  = [g(½) -- g(_l)[  

sup ] g'(t)] 
-½<t~<~ 

~< k-1 sup I g(z)[ 
Izl-<</c+½ 

(6.8) 

for any h. In the last step we use the Cauchy estimate 

[g'(t)l ~ k -1 sup [g(t + w)[. 
[wI=~ 
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T a k e k  = [ I A - - B I 1 - 1 . F o r ] z l  ~ < k + { - , '  

I g(z)] ~< G(II(A ÷ B]2) ÷ z (A  -- B)]I) 

<~ G(] I A -4- B/2 II ÷ (k + DI] A --  B II) 

~< G(H A I1 + II B tl + 1). 

Thus  (6.8) implies (6.7). | 

Since det~(1 + /~A)  is an entire function of/z ,  it clearly has a convergent 
power series expansion det,(1 ÷ / z A )  : ~ a,~J(A) izm/m! The  form of this series 
(essentially found by Plemelj [22](n = 1) and Smithies [34](n : 2)) illuminates 
the choice of det,(1 ÷ A) so we derive the formulas: 

LEMMA 6.7. 

Let 
Let f ( z )  be analytic for z small with f ( z )  = Z:=x (--1)~+lb.z"/n. 

oo 

g(z) ~ exp(/(z))  ---- ~ B,~z~]ml 

Then Bo ~ 1 and B~ is given by the mxm determinant: 

Proof. 

or 

Bm = 

b x m - -  1 0 
bz b 1 m - -  2 
b3 b~ b 1 

b~_ 1 b~_ 2 b.,_z 
b~ b~_ 1 b,~_ z 

Since g'(z) = i f ( z )  g(z), we find that 

" ' "  0 

" ' "  O 

" ' '  0 

. , ,  

"°" 1 

• "- b I 

nB~ = n!(blB~_l/(n --  1) ! - -  b2B~_~/(n --  2)! ~- ---), 

(6.9) 

Now (6.9) clearly holds for B 1 so suppose inductively, that it holds for B 1 ..... 
B~_ 1 . Then  (6.10) corresponds to the expansion in minors in the first column in 
(6.9) and so it holds for B ~ .  | 

THEOREM 6.8. (Plemelj-Smithies formula). Let A E ~ . Then 

det~(1 ÷ ~A) = ~ ~o~(~'~)(A)/ml (6.11) 

B~ = ~ b~B,_~(--1) k+l [ ( n - - 1 ) ! ] .  (6.10) 
~=1 (n - -  k)! 
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where the series converges for all l~ E C and a~n)( ~t) is given by the mxm determinant: 

with 

. 

~(~")(A) = (.)  
O 'm_ 1 

(~) 
O" m 

m - - 1  0 "- 0 

~(~) . . . . . .  1 m--2 

O ' n _ l  

(6.12) 

o~ n) Tr(A ~) k /> n 
(6.13) 

~ 0  k ~ n - - 1 .  

Proof. Since det(1 +/~A) is an entire function, it clearly has an expansion 
(6.11) converging for all /,. The coefficients need only be found for small tz. 
By Lemma 6.7, (6.12) and (6.13) are equivalent to 

/" \ oo 

) 
for small/~. This follows by using Lidskii's theorem and the product expansion 
for det,(1 +/zA).  | 

Remark. The beauty of (6.12) is that det(1 + A) has an expression in terms 
of Tr(A ~) and when Tr(A), Tr(A2),..., Tr(A n-l) are set equal to zero in this 
expression, we just get det,(1 + _//). 

7. FREDHOLM THEORY 

The basic result of the Fredholm theory is the ability to write (1 + /zA) -1 
as a quotient of explicit entire functions of/~. The "higher minors" of Fredholm 
will not be discussed here but we note they are essentially the functions [A~_//(I + 
/~A) -a] det(1 + t~A): See [32] for methods of estimating these objects. We begin 
by deriving formulas due to Plemelj [22] and Smithies [34] for the numerator in 
this quotient and then we discuss Fredholm's original formula. 

THEOREM 7.1. I f  A ~ W~ , then 

(1 + /zA)  -I det,~(1 + tzA) 

is an entire operator-valued function of lz. 

(7.1) 

Proof. (1 +/~A) -a is analytic in L,/~--PIr )Lit,t'A~--I]N(A)] fi=l " Since the spectral 
projection at each A~(_//) is finite rank, one can show by an explicit analysis of the 
Laurent series about --A~ -1 [19] that at/z ~ --A;(A) -1, (1 + /zA)  -a has a pole of 



2 6 6  BARRY SIMON 

order at most dim P h  (alternatively, one can write (1 - 7  txA) -~ = (1 - -  P~) 
[1 -7/xA(1 - -  p~)]-I -7 [1 -7 ~AP~] -~ P~ and note that the first factor is analytic 
at/x = --A~ -i and that the second factor has a pole of order at worst dim Pa~. by 
the analysis of finite-dimensional operators). Thus,  since det~(1 -7/~A) has a zero 
of order dim Pa~ at/~ = --A-~ , the product is entire. | 

DEFINITION. Di~(A)  = --det~(1 .7 ;~A)[(1 + )~-d) - 1 -  1]/t. 

COROLLARY 7.2. For A ~ ~ , D~m(A) is an entire T,-valued function. 

Proof. (~) D a =(A) ---= A[det~(1 .7 hA)(1 + hA)-i]. | 

We can now use the method of the last section to find explicit formulas for the 
coefficients of the power series expansion of D~)(A):  

THEOREM 7.3 (Plemelj-Smithies formulas for D~)).  

o o  

D~'~)(A) = Z fl(7)(A) Am~m! (7.2) 
Yr~=0 

where fll'~ ) is given by the (m + 1) × (m + 1) determinant: 

A m 0 "" 0 
A 2 (,0 ~x m - -  1 . . . .  0 

~z~m+i ffm(n) ffm--a(n) . . .  o.ln) 

(7.3) 

where a[ ~) is given by (6.13) and (7.3) is to be interpreted in the sense that @, 
fi~)(A)q~) is of the same form as (7.3) with A j replaced by (~b, AJ(9). | 

~ (A), we can evaluate f i~l(A) by Proof. In  terms of the determinants (,o 
expanding in the first column: 

fl(.~)(A) A ~  ) - -  mA2~ (") D A a~,(") = .,-1 Jr m(m --  j ~_~ Jr- "" 

so that 
(n) (n) 

~ (m-- ])! + " "  

I t  follows, that for/~ small (where all series converge): 

m! qT~0 
- -  ~ = ( A  - -  t~A 2 + tzA 3 + " ' )  ~ / ~  

0 

= A(1 @/~A) - i  det~(1 +/~A).  II 
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COROLLARY 7.4. I f  A ~ ~ and --[.1, - 1  IS not an eigenvalue of A, then 

(1 + /zA)  -1 = 1 -- tz[D(f)(A)/det~(1 +/zA)] (7.4) 

where det.(1 -r/~A) = Z.~=o-=m (") tz"/m ! and D~m(A) = Z~=o~/3 m(~>(A)/z'~/m.l with 
~(") fl~'?) given by Eqs. (6.12) and (7.3). 

Proof. Equation (7.4) follows by definition of D~)(A). ] 

In practical computations, one would like to estimate the error made by 
dropping the tail of the power series defining det~(1 -F/zA) and (~) D.  (A). Such 
estimates follow from Cauchy estimates and bounds on the growth of the func- 
tions as /z--+ oo. Our approach here is patterned after that of Dunford and 
Schwartz [4]. We have already seen that [ det~(1 -F/zA)] ~ exp(T'~ I P [~ [[ A I]~). 
We now prove such estimates on D(un)(A). We  first note the following estimate 
from the appendix to [32] (see also [4]): 

THEOREM 7.5. For n = 1 and 1 ~ p ~ oo : 

II D.(1)(A)II~ ~< II A II~ exp([/L III A 111)- (7.5) 

Proof. It suffices to prove that 

l[(1 -F A) -1 det(1 + A)][~ ~ exp([[ A It1) (7.6) 

and this can be proven for finite rank operators with (1 q- A) invertible. Now: 

1](1 + A) -1 det(1 + A)]] = 11[ 1 + A 1-1 det([ 1 -F A [)[l 

N 

= ] tZl(1 -F A)[ -1 I~ tzJ( 1 + A) 
j = l  

N N 

= 1-[/zj(1 -F A) ~< H (1 +/zj(A)) 
J=2 j=2 

exp ~j(A) ~ exp(ll A [11), 

where N ~ rank(A) and we have used/zj(1 H- A) ~ 1 +/z~(A), which follows 
rain-max characterization of/zj([4]): 

tzj(B) = min ( max JIBe]r). | 
~1, - --,q~j_l CE[q~l,.. - ,q~j__l]l 

]]¢11=1 

C O R O L L A R Y  7 . 6 .  

(1) e m iJ ~ ,  (A)]I1 ~< II A II1 +1, 
(1) e,n 

(7.7) 

(7.8) 
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Remark. We emphasize that the power series for det(1 -t- txA) and D~I)(A) 
have (m!) 1 in their definition. This (m!) -1 control of convergence is an improve- 
ment over the celebrated (m!)-l/~ bound Fredholm obtains from Hadamard's 
inequality. In special eases, Fredholm [5] obtains better than (m!)-l/2 or even 
(m!) ~; see also Hille-Tamarkin [10]. 

Proof, By a Cauchy estimate: 

II fl(~l)(A)[ll ~ m! II A H1 R-m exp(R I1A II1) 

Choosing R = m !] A ]l~ 1, Eq. (7.7) results. The proof of (7.8) is for any R. 
similar. | 

Remark. The idea used in these estimates is similar to that by Smithies [34] 
in his convergence estimates. 

COROLLARY 7.7 (essentially in [32]). 

[] D(~I)(A) -- D(1)(B)t]I 

<~ I1A -- B II1 {[N A ILl + II B ILl + 1]) exp[I t~ I ([I A I11 + II B I!a + 1)]}. 

Proof. Follows from Lemma 6.6. | 
The basic input in the estimates we prove for D(, '~) is a formula which will also 

be basic to our development of Fredholm's formulas for ~-m t~(l~, namely: for 
A, B ~ c~ 1 with (1 + A) invertible 

d 
d/z log[det(1 + A +/xB)] l~0 = Tr((1 + A) -1 B). (7.9) 

To prove (7.9), we write 

det(1 -+- A + /xB)  ~ det(1 + A) det(l + /x (A + 1)-~B) 

= det(1 + A)[1 + t~ Tr((1 q- A) 1B) + 0(tL2)], 

from which (7.9) follows. 
Now let A, B ~ ~1- Then 

log[det~(l + A +/zB)] 
n - 1  

= log[det(1 + A + t~B)] + ~ (--1) l~+a Tr[(A + ~B)~]/k 

so that, for (1 4- A) invertible 

d r~-i 
log[det,(1 + A + t~B)]l,=0 = Tr((1 + A) -1 B) + k=l ~ (--1)k+a Tr(BAk-~)" 
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If  B -- (4,-)¢, then 

det~(l q- d)(¢, (1 2_ A)-~ ~) 

d/x det,(1 + d  + ~B)I,= 0 + ~ (--1)~det,~(1 + A)(¢, A k ~¢). 

Now ] det,(1 + A)[ ~ exp(F~ II A 1]~) so that, using 

for f analytic: 

d f  
~z=0 

~ d  ~< sup I f( . ) l ,  
1.1=1 

[[(1 + A) -~ det~(1 + A)][ ~ Cn exp(-Pn [] A [I,~) (7.10) 

for C~ sufficiently large. Once we have (7.10) we can take limits to conclude 
Eq. (7.10) first when A ~ ~ with (1 + A) invertible and then even for (1 + A) -1 
noninvertible if (1 + A) -~ det,~(1 + A) is interpreted as det~(1 + A ) -  
A D(~")(A). | 

Remark. Equation (7.10) appears in Dunford and Schwartz [4] with C. n ~ 1. 
The estimate in this form is wrong! For take A = --/x(¢ • ~) with ]r¢ [] ~- 1. Then 
II(1 + A) -~ ]1 = 1 + / x  + O(~), det,~(1 + A) ~ 1 + O(/~), and exp(F~ ]l A ]1~) 
1 + O(~ ") whence (7.10) with C~ = 1 would imply (1 + /x )  ~< 1 + O(~)!  

As above in Corollaries 7.6 and 7.7 we immediately obtain: 

THEOREM 7.8. For d E c#~ 

D(n) (a) Forp ) n , [ [  a (A)I[~<Ca[[A[I~exp(F~IA[ n AIj~). 

(b) P1 D(a')(A) -- D~n)(B)][~ ~ C,  II As -- B II~{([r A rl, -{- Pl B H~ + 1) 
exp(T'~ 1 A I~([] A [I,~ + [] B~ I[ + 1)")}. 

(c) [ %.'(n) ] ~ (m[)l_(1/n). e~"(ll A Ir,~) '~ 

(d) II/~2'(A)ll. ~< C.(mO 1-(1/") e~P"(ll A II.) m+l. 

Remark. To bound the higher Fredholm minors, we would use the fact that 
they are higher derivatives of det(1 + A + ~B)(see [32]). 

As a final topic in the Fredholm theory, we obtain abstract formula for the 
coefficients of D•i)(A) which agree with Fredholm's formulae [5] for concrete 
integral operators. Let ~ f  be a Hilbert space and @~ 5¢t ° its n-fold tensor 
product. We define the "partial" trace from ~1(@~ ~ )  to ~1(9f') by (for C 
compact): 

Tra~[Tr(~_~)(A) C] = T r ® ~ ( A [ C  @ I  @ --- @1]). (7.11) 

6o71"413 -5 
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(7.11) defines an operator in cgl(Jf' ) since, for C compact 

I Tr®je(A[C @ --- @I])1 ~< 11A Ill II C l]®, 

(7.11) can then be shown to hold for any Ce£°(acf) .  Now given B: 
A%°(f--~A~f,  we can extend B to @~5~ 'a by setting B to zero on 
(A~Y~)" and then form Tr~_I(B ) ~ C~l(W ). 

THEOaEM 7.9. Dc1,)(A) = 2~=o/3~)(A) ~ / m !  Then 

fl~)(A) = Tr~(A~+I(A))(m + 1)! (7.12) 

In particular, Tr(~) (A))  = -I1) C~m+ 1 • 

Remark. The last statement is obvious also from the Plemelj-Smithies 
formulas. 

Proof. By (7.10), for C finite rank: 

Tr(CDJl)(A)) 

--Tr{[(1 + ffA) -1 det(i + ffA) -- det(1 + ffA)] C/~} 

= - - I  d [det(1 + / , A  + )~C)],~= o - -act (1  + ~A)Tr(C)I / /z  

Suppose that A is a finite rank operator 

A = ~ ~,(e,, ")L 

with {e~}~ and {fg}L~ orthonormal and 

C = (e~,)f~ 

Then 

d m l  Tr(A + (tLA + hC)) 

= -~ ~ (e.,, ̂  ... ^ e,,,+~, (~A + 1C) e i l  h " ' '  A ( ~ A  + AC)f~+,) 
1<",. <ira<im+l 

= tZm E Otil " "  oti~,(eix A "'" A elm A e n ,fix A "'" A f i  ~ Aft). ( 7 - 1 3 )  
i l<.  • .<i m 
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[In (7.13), it isn't necessary to take i~ < n, since the terms with i~ = n are 0.] 

d ~+~ + ~c)) ~-~ TrA (#A 

= ~m ~ oql""alm(e q ^ "" ^ ei,., f l ,  ^ ""fi~)(e~, fk) 
i l < ' "  "<i m 

+ ~  2 ~, . - .~(-1)~+~ 
i l  4 - .  . <i m j = l  

× (e~ ^ ... ~. ^ .." ~ ^ ~.  ,L1  A " " f O ( %  , A )  

= ~m ~ (eil A "'" ^ e,~, ^ e l  1 A "'" A Aeim)(e~,fi~) 
i 1 4  . . .  <ira 

- -  l ~  TM e q  A " ' "  ei~ 1 A e n ^ e l  j+l  A " "  ei,,~, A e i l  A " "  A A e i , ) ( e i j  , 

1 1 < -  - - < i m L J = l  

- -  ~'* [Tr(C) Tr(A~(A)) - -  m Tr (C  Tr.~_~(A'*(A)))] 

since 

( c *  ® I ® . . .  ® O ( e i l  ^ ' ^ ei~) = ~ .= (ei~ ^ .." ^ C %  ^ "" A ~i~). 

Thus, for A and C of the type above: 

Tr(CD2)(A))  = ~ (m + 1) ~ Tr (C  Tr~,~(A~+~(A))). (7.14) 

Since we can always take ~ or a~ ~ 0, Eq. (7.12) holds for any finite rank 
operator, so 

c~ 

D2)(A) -= ~ (m + 1)/~"~ Tr~(A~+a(A)) 

for A finite rank and, so, by a limiting argument for any A. This proves Eq. 
(7.12). I 
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Added Notes. (1) Another systematic presentation of infinite determinants can be 
found in J. R, Ringrose, "Compact  Non-Self-Adjoint Operators," Van Nostrand, 1971. 
Ringrose proves the Hadamard factorization of the determinant but  uses Lidskii's 
theorem to prove it rather than vice versa. 

(2) The  determinant  inequality (5.1) appears prior to [31] in S. J. Rotfel'd, Prob. 
Math. Phys., No. 3, 81 (1968). 

(3) Rather strong results on the status of Weyl's inequality on a general Banach 
space will appear in a paper of W. Johnson, B. Maurey, H. K6nig and J. R. Retherford. 

I should like to thank E. B. Davies, S. J. Rotfel'd, and J. R. Retherford for bringing 
these references to my attention. 
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