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§ 1. Introduction. Several years ago, Kato [11] proved a simple but ex-
tremely useful inequality:

(D Aju| = (sgn u)Au

for u real valued with u € L{,. and Au € L}, (distribution inequality). (1) is to
be interpreted as a distributional inequality although it is proven by a limiting
argument starting with nice #’s. The use Kato made of (1) was to prove:

Theorem 1.1. (Kato [11]). Let V € L. (IR?), V = 0. Then — A + Vis es-
sentially self-adjoint on C3 (IR").

Kato was motivated in part by a result of Simon [15] who used hyper-
contractive semigroup methods (see §X.9 and its notes in [12]) to prove the
weaker result where V € L. (IR") is replaced by L? (IR", exp(—ax?dx) for
some a. By using the simpler contractive semigroup methods, Semenov [14]
(see also Davies [4] and Faris [5]) noted that one can prove the result with
V € L? (R*, dx). There is clearly a relation between the hypercontractive and
contractive semigroup methods, but there seems to be little connection be-
tween those proofs and Kato’s proof. Our main purpose in this note is to show
that the methods are related since both depend on the fact that ¢’ has a positive
kernel: this positivity and A1 = 0 lead to the fact that e is a contractive semi-
group: our point in this note is that (1) is ‘‘essentially’’ equivalent to this posi-
tivity.

The link between (1) and positivity preserving semigroups is via the following
theorem of Beurling-Deny [2]:

Theorem 1.2. (Beurling-Deny [2]). Let H be a positive self-adjoint oper-
ator on L*(M, dw). Then exp(—tH) is positivity preserving for all t > 0, if and
only if u€ Q(H), the form domain of H implies |u| € Q(H) with
(||, H|u|) = (u, Hu).
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(We note that the statement in [2] is very different looking involving ‘‘pure
potentials being positive’’; moreover, the result is only stated for finite-dimen-
sional L? spaces! but the method extends, and the more general result is an-
nounced in [1]. For additional discussion, see [7, 13].)

If we proceed formally from (1), we see that multiplying (1) by |«| and in-
tegrating (ju|, Alu|) = (u, Au) so that (1) is related to positivity of e** via Theo-
rem 1.2. We make a precise statement of this in §2 and discuss the resulting
self-adjointness theorems in §3, 4. In §5, we consider relations between two
different operators, the prototype being Kato’s inequality with magnetic fields
[11, 16]. Finally in §6, we mention a connection between two apparently dif-
ferent proofs of nodelessness of ground states.

It is a pleasure to thank I. Herbst and E. Nelson for most valuable conversa-
tions.

§ 2. The Basic Inequality.

Definition. Let H be an operator on L2(M, du). We say that H obeys Kato’s
inequality if and only if

() u € Q(H) implies |u| € Q(H)
(ii) For u € D(H) and f € Q(H) with f = 0
?2) Re(f, Hu|) = Re((sgn u)*f, Hu).

The left side of (2) is to be interpreted in the sense of a quadratic form expres-
sion which makes sense since f, |u| € Q(H). We note that a posteriori, it will
turn out that (f, H|u|) is real so that (2) really says

2" Hu| = (sgn u)Hu.

The right side of (2) is interpreted in the sense of the inner product of Hu and
(sgn u)*f. We note that

0 if wu(x) =0

u* (x)/|u(x)] otherwise.

(sgn u) (x)

Finally, we remark, that by (i) Q(H) has many positive elements so that (ii) is a
severe restriction on H.
The main result of this note is:

Theorem 2.1. H = 0 obeys Kato’s inequality if and only if e~ is positivity
preserving for all t.

Proof. 1f Kato’s inequality holds, given u € D(H) take f = |u| and obtain
(||, Hju|) = (u, Hu). By a limiting argument this extends to all u € Q(H)
whence e is positivity preserving by the Beurling-Deny Theorem (Theorem
1.2). Conversely, if e~ is positivity preserving for any u and any f = 0
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Re((sgn u)*f, e u) = (f, e™"|u|)
with equality at ¢ = 0. Thus, if u € D(H), f, |u| € Q(H) we can differentiate at
t = 0 and obtain (2).
n

§ 3. The Self-Adjointness Theorem. To use Kato’s inequality as a self-ad-
jointness tool, we need a regularity assumption.

Hypothesis R. We say that e™ : LX(M, du) — L3*(M, dun) obeys Hypothesis
R if and only if

feEL NI |f = 1]<oo

su e
sup. {le= ],
and
lim |e™ f—f], =0 forall fe L'
t—0
Remarks. 1. Byreplacing H by H + c, it suffices to take the sup over¢ =< 1.
2. Since e™ f— fin L' and for any & > 0:

(1 + 8H)"' f= J: et o~ £ gy

we have
3) lifn (1+8H)'f=fallfe L.
3Vvo

Moreover, if e~ is positivity preserving, so is (1 + 8H)™*.
3. Notice we do not suppose that lilm He“"”,,1 = 1.
tvo

Definition. A subset @ of L? is called a fundamental domain for H if and
only if:
(i) & C L* N D(H) where D(H) is the (L*-domain of H.
(ii) 9 is left invariant by (1 + 8H)~ ! for all § > 0.
(iii) For any g &€ L*N L, there exists a sequence g, € P with
llgn — 8|l = 0 and sup ||ga||» < . If g = 0, g, can be chosen = 0.
n

Remarks. 1. By (iii) Jgnf——{g fforanyf€ L' N L2andsoany f € L.

2. Under hypothesis R and e positivity preserving & = L® N D(H) is a
fundamental domain, as is easy to see (C*(H) N L* will also do!).

We can now give an abstract version of Kato’s basic self-adjointness result
[11]. Our proof is closely related to his.

Theorem 3.1. Let e~ be a positivity preserving semigroup on L*(M, dw)
obeying Hypothesis R. Let V be a multiplication operator so that (i)
V, = max(V, 0) € L*(M, dw), (ii)) V_ = max(—V, 0) is a multiplication oper-
ator which is H bounded with relative bound a < 1. Then H + V is essentially
self-adjoint on any fundamental domain, %, for H.
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Proof. Suppose first that V_ = 0. Suppose that u obeys [(H+ V
+1)|2]*u=0,ie.

) Hf,u) = —(V+ 1)f,u)al fE€ D.
Letus = (1 + 8H)'u € D(H). Let f € & with f = 0. Then by Theorem 2.1,
) (f, Hus|) = ((sgn us)*f, Hus).

As 8 | 0, the left side of (5) converges to (Hf, |u|) since f € D(H) us — u in L?
so that |us| — |u| in L2,
Now let g € 9, arbitrary. Then, by (4):

(g, Hus) = (H(1 + 8H) 'g, u)
—((1 + 8H) g, (V + Du)
—(g, (1 + 8HY 1 (V + Du)

where(1 + 8H)™* (V + 1) u = sum of L' term + L? term. By Remark 1 above,
this extends to all g € L2 N L* so that

(6) ((sgn us)*f, Hus) = —((sgn us)*f, (1 + 8H)™' (V + Du).
Now,letw = (V + Du,ws = (1 + 8H) 'w, s5 = (sgn us)*, s = (sgn u)*. Then
@ (sof, ws) — (sf, w) = (sof, ws — w) + ((ss — 8)f, w).

The first term in (7) goes to zero since ||ws — w||; — 0 (see Remark 2 following
Hypothesis R). The second goes to zero, if we pass to a subsequence, since
ss — s —> 0 on {xju # 0} = {x |w # 0} and |(ss — s) fw| = 2f|]w|. Thus by (5),
6), (7):
(Hf, |us) = =(f, (V + Dju))
so that
((H + 1), |us|) = 0.
Letting f = (H + 1) g withg =0, g € &:

(g9 luﬁl) = 0
so that |us| = 0 by (iii) of the properties of 9. This completes the proof when
V_=0.
The V_ part can be added by using the Davies-Faris Theorem (see Theorem
X.31 of [12]).
n

There is a close connection between Theorem 3.1 and the contractive semi-
group theorem of [10]. An important difference is that the latter theorem de-
pends critically on lifn |le” |11 = 1, while Theorem 3.1 does not (on the oth-

tvo

er hand Theorem 3.7 needs positivity of e~H).
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Remark. Usingthe idea of Faris, [5, 6], Theorem 3.1 can be made applicable
to P(), spatially cutoff Hamiltonian [8, 17]. Several years ago, Faris (private
communication) remarked to the author that he had a ‘‘Kato’s inequality’’
proof for P(¢),.

§4. Localization. The advantage of Kato’s method of proving Theorem 1.1
is that his method allows localization. Here we give an abstraction of this idea.

Theorem 4.1. Let ¢ ™ be a positivity preserving semigroup on L*(M, du.).
Let M =UX,, X;CX,C---CX,C:- .. Suppose that there are bounded
functions f, so that

(a) supp g C X, implies supp(f, (H)g] C Xj 4 1.
(b) For some C independent of n and all p

FuEDefls = Cliglls-

(©) fn(Hg — gin L? for all g € L2
(d) Given f = 0,there are g, = 0so that each g, is in C*(H) and has support
in some X so that

gn—>H+ D)7 f
in L2
Let = U {fe Cc*H) [supp f C X,}. Then for any V with J' [Vx)P
n Xa
dx <walln, V=0, H+ Vis essentially self-adjoint on 9.
Proof. The same as Theorem 3.1 with us replaced by f,,(H)u. This leads to
(H+ Df, |u) =0
for f € & so |u| = 0 by (d).

§5. Comparing Different Operators.
Theorem 5.1. Let A, B be positive self-adjoint operators. Suppose that

(8) |e-—tAg| < e—t8|g|
for all g. Then, u € D(A) implies that |u| € D(B) and for all f = 0in Q(B):
) (f, Blu|) = Re((sgn u)*f, A u).

Proof. First
(u, e~tuy) = (|uls e“‘B|u|)

so u € Q(A) implies (u, (1 — e ™u)t™* has a finite limit so (jul,
(1 — e ®ju])¢~ * has a finite limit so |u| € Q(B). Now

Re((sgn w)*f, (1 — e7*)u) = (f], (1 — e~P)ju|)
so that (9) results.
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Conjecture. Theorem 5.1 has a converse, i.e. (9) implies (8).

Example. LetB = —AonIR" LetA = —(d — ia)*>. Then one can show that
(8) holds following an argument of Nelson (private communication). There is a
formula for e~ in terms of stochastic and Weiner path integrals. For example if
div a = 0 (Colomb gauge),

(e)(x, y) = J exp (jz a(w(t))dw)dux,y,t (@)
so that

le™ (x, y)| = Jd:u‘x,y,t (w) = e™®(x, ).
This yields a proof of Kato’s inequality with magnetic fields [11, 16].

§6. Ground State Energies. There are two general proofs of the nodeless-
ness property of ground states in quantum systems. One in Courant-Hilbert [3]
uses

j (Vu))rdx < J]Vu|2dx

The other ([9, 19]) uses Perron-Frobenius arguments. The Beurling-Deny Theo-
rems shows these proofs are really the same and suggests Kato’s inequality
might be connected with ground states. In fact, we proved in [18]:

Theorem 6.1. Let H=—-A+V, H = —(3-ia)* + V. Then for any a, inf
spec(H) = inf spec(H).
Proof. This follows from
(u), Hju)) < (u, H u)
which in turn follows from Kato’s inequality (see §5)
H|u| = Re((sgn u)H u).
|

Remark. By the remarks in the example of §5, this result extends to free
energies, i.e.

Tr((exp(—BH)) = Tr(exp(—BH)).

Added note. E. B. Davies has kindly pointed out that a result similar to what
we have called the Beurling Deny Theorem appears earlier in Aronszajn and
Smith. The conjecture in §5 has been proven independently by the author
(University of Geneva preprint) and by Hess, Schrader and Uhlenbrock
(University of Berlin preprint).
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