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Pure states for general P(o),theories: 
Construction, regularity and 

variational equality* 

By J. FROHLICHand B. SIMON' 

Abstract 

We give a new construction of the P ( G ) ~  Euclidean (quantum) field theory 
and propose a structure analysis of this theory. Among our results are: 

(1) For any polynomial P bounded from below, we construct two 
Euclidean states (expectations) not necessarily distinct, which satisfy 
all Osterwalder-Schrader axioms including clustering and obey the Dobrushin- 
Lanf ord-Ruelle (DLR) equations for P. 

(2) Equality (.),,+ = (.),,- holds if and only if the pressure a,(;!)cor-
responding to  the polynomial P(x) - px is differentiable a t  p = 0, and in this 
case the state (e),,, is independent of a large class of different (in particular 
classical) boundary conditions. 

(3) All P ( Q ) ~  expectations thus f a r  constructed are  locally absolutely 
continuous with respect to  the free field Gaussian expectations with LPRadon-
Nikodym derivatives, for all p < m. 

(4) The strong Gibbs variational equality holds, for all s tates construct- 
ed so f a r  for a given P. 

1. Introduction, summary of results 

In  this paper we discuss a variety of new results for the P($), Euclidean 
(quantum) field theory [46], [43]. Mathematically, this theory is defined as  
a class of non-Gaussian, generalized stochastic processes over R2 which are  
indexed by the positive polynomials on the real line. They are  not only 
mathematically interesting but  of some importance t o  quantum physics, 
because they yield non-trivial models of relativistic quantum fields in two 
space-time dimensions. 

In  order t o  explain the connection between generalized stochastic pro- 
cesses and relativistic quantum fields, we briefly recall the Euclidean de- 
scription of relativistic quantum field theory: 

A relativistic quantum field theory of one neutral, scalar field 4 in d t 1 
space-time dimensions can be described in terms of a sequence 
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{W,(x,, . .,x,));, of Wightman distributions [47] satisfying the  Garding-
Wightman axioms (namely "temperedness," "PoincarQ-invariance," "posi-
tivity," "spectrum condition," "locality," "clustering"; see [47] for precise 
statements and consequences). From these axioms i t  then follows tha t  the 
Wightman distributions are  the boundary values of functions W,(x,, .. a ,  x,) 
holomorphic in a large domain of C(d")n(called the permuted, extended tube 
[47]). This domain contains the so-called Euclidean points 

6 ,  = {x,, a * . ,  z,: x, = (Z,, it,), x, # x,, for i # j }  , 
where Z, E Rddenotes the space-and it,, t, E R, the time-component of the 
complex vector x,. On 6, we define 

S,(x,, ..,x,) = W,(Z,, it,, . a ,  Z,, it,), X, = (Zj, tj) . 
These are  called the Euclidean Green's or Schwinger functions. 

The following properties of the Schwinger functions are  a consequence 
of the Garding-Wightman axioms; (see [34]): The Schwinger functions are 
Euclidean invar iant ;  they have a positivity property called OS positivity 
(for "Osterwalder-Schrader"; see [34] and property (b) below); they are  
symmetric under permutations of their arguments. 

These properties are  compatible with the existence of a probability 
measure p on (the o-algebra 2 generated by the Bore1 cylinder sets of) the 
space '5' of real-valued tempered distributions over Rd"' such tha t  

S,(fl, ...,f,) - \s,(x~, ...,x.)nLLft(x.)dxI 
(1.0) 

= 5 nb.B(f t)dp(B)
5' 

for arbitrary Schwartz test  functions f,, ...,f,, Here { ~ ( f ) :f E S(Rd+'))are  
the coordinate functions defined by g(f)[T] = T(f), for all T E S'. Equation 
(1.0) says tha t  the Schwinger functions are  the moments of the measure p. 
We should emphasize tha t  those properties of the Schwinger functions tha t  
can be derived from the Wightman axioms do not imply tha t  a measure (1.0) 
exists. However, in all models thus  f a r  constructed, such a measure does 
exist. (If the Schwinger functions are  the  moments of a measure we say 
they satisfy Nelson-Symanzik positivity.) 

We recall tha t  the Euclidean group acts in a natural manner on S' (if 
,B is an element of the Euclidean group, T E S', we set  TB(f)= T(f B), where 
fB(x)= f(P-'x), for all f E S(Rd+')). This yields a homomorphism of the 
o-algebra C onto itself. 

By proper Euclidean motions we mean the elements in the connected 
component of the  Euclidean group on Rd+'containing the identity. Le t  0 be 
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defined by 

and, for F a 2-measurable function on S', 

With each open se t  A c Rd+' we associate the o-algebra X,,of sets in S' 
generated by the coordinate functions { $ ( f ) :  f E S(Rd+'), supp f CAI. We set  

We now consider the class of probability measures p on (S', 2 )  with the fol- 
lowing four properties: 

(a) /L is invariant under all proper Euclidean motions. 

(b) [W)F d p  2 0, for  all 2,-measurable functions F on 5'. This pro- 
J 

perty is known as  OS p o s i t i v i t y ;  (it is a reformulation of Osterwalder-
Schrader positivity [34] in a probabilistic context). 

(c) There exists a norm ( ( j . l ( l  continuous on S(Rd+') such tha t  

is uniformly bounded and continuous in the norm I ! I . I I !  on { f :  f eS(Rd+'), 

lilf l i i  5 1). 
(d) The action of the group of translations of Rdf l  is ergodic.  As a con- 

sequence of the Osterwalder-Schrader reconstruction theorem [34] we have 

THEOREM1.0. T h e  m o m e n t s  o f  a m e a s u r e  p o n  (S', 2)  w h i c h  h a s  pro- 
perties (a)-(d) a r e  t h e  S c h w i n g e r  f u n c t i o n s  of a u n i q u e  r e l a t i v i s t i c  q u a n t u m  
field theory  s a t i s f y i n g  a l l  t h e  W i g h t m a n  a x i o m s .  I f  a m e a s u r e  p h a s  pro- 
perties (a)-(c) t h e n  a l l  i t s  ergodic  componen t s  have  propert ies  (a)-(d) (i.e., 
(a)-(c) a r e  stable u n d e r  ergodic  decomposi t ions) .  

R e m a r k s  1. The mathematical structure defined by properties (a)-(d) 
has been emphasized and studied in [5]. The second par t  of Theorem 1.0 is 
due to  [5]. 

2. Property (a) is the Euclidean formulation of r e l a t i v i s t i c  (Poincar6) 
covariance;  (b) expresses the fact  tha t  the inner product on the physical 
Hilbert space is posi t ive  de f in i t e ,  and (d) implies u n i q u e n e s s  o f  t h e  phusical  
v a c u u m  (see [47]). Property (c) can be replaced by weaker conditions (see 
[34]), but  i t  is known to  hold in all theories thus f a r  constructed [4], [39]. 

One way of formulating the Euclidean approach to constructing rela- 
tivistic quantum fields is tha t  in order t o  obtain quantum field models i t  
suffices to construct probability measures on (S', Z)satisfying (a)-(d). This, 
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in turn,  is a special problem in the theory of generalized stochastic processes 
over Rdfl. 

One can briefly describe our two main results as the construction of 
many new examples of such measures in case d = 1(unifying previous con-
structions) and the proof of a very strong regularity property of these 
measures and of measures previously constructed. We should also emphasize 
that  we prove a new family of technical estimates which we call chessboard 
estimates (see Section 2) and which subsume many earlier estimates. 

I t  is quite easy to  construct one class of measures satisfying (a)-(d), 
namely the Gaussian process, p,, with mean zero and covariance 

jdf )e(g)dp, = (f,( -A  + mi)-'g) . 
The corresponding quantum theory describes non-interacting, relativistic 
particles of mass m,, so that  this theory is usually called the theory of the 
free Euclidean field. One way of constructing interesting measures is as  
follows: Suppose that  one has a function F, E L1(dp,), for each bounded 
open region AcRdf ' ,  such that: (i) F, 2 0, (ii) FAis C,,-measurable, (iii) for 
any Euclidean motion, proper or improper, a (F , )  = Fe,A),(iv) if A,, .. a ,  A, 
are disjoint and open and A\A, U ..UA, has Lebesgue measure zero, then 
FA=HZ"=,F.,,. In analogy with the theory of Markov processes, such families 
are called multiplicative functionals. Given such a functional, and any A 
with B(A) = A, the measure 

is a probability measure satisfying OS positivity (property (b)); for, dp, 
satisfies OS positivity, and FA= FA,.O(F,,) with A, = {xe A ;x,,, > 0). One 
can hope to recover (a) by constructing some limit, as A-+Rd+'. Even if this 
limit does not exist, one could hope to construct a subsequence limit by 
means of a compactness argument (such ideas go back to  [7]). This limit is 
a priori not Euclidean invariant, but  since the Euclidean group is amenable 
[15], one could hope to recover (a) by averaging. Such averaging will, in 
general, destroy OS positivity, so that ,  given some {FA},even the existence 
of the infinite volume limit presents a non-trivial problem. 

In terms of multiplicative functionals, one can describe the simplifica-
tion associated with the case n - d + 1= 2. If n 2 3, no multiplicative 
functionals are known for p, which are neither Gaussian nor exponentials in 
the field and i t  is widely believed that  none exist. In two dimensions many 
exist, e.g. one associated to each semibounded polynomial P (in physics, 
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quantities like the energy tend to be unbounded from above bu t  not from 
below, so a mathematical physicist uses the term "semibounded" to mean 
bounded from below): namely F, = exp(- U(A)) where 

is a multiplicative functional. Here :-: indicates the necessity of making 
various "infinite subtractions" known as Wick ordering (see e.g., [46], [43]). 

The infinite volume problem (i.e., proving (a)-(c) for these functionals) 
was first solved by Glimm, Jaffe, and Spencer [12], for P fixed and m, suf- 
ficiently large (equivalently, for m, and Q fixed and P = hQ, with h suffi-
ciently small); by Nelson [32] and Guerra, Rosen, and Simon [23], for 
P = Q - p X  with Q even; and by Spencer [45], for P = Q - pX", where 
n < deg Q is odd, and p is sufficiently large. Among other things, we solve 
this problem for arbi t rary ,  semibounded polynomials P. A typical P for 
which this is the first construction is: P(X) = h(X6+ X5), with h large. 

In  solving the infinite volume problem, i t  is often useful to modify the 
definition (1.1) by additional terms a t  the boundary. All tha t  enters about 
dp, in (1.1) is the measure dp, 1 C, which is the Gaussian process on S'(A) with 
covariance f, g H (f, (--A + mi)-'g). If one takes instead the covariance 
f, g H(f, ( - +ma-'g), where A? is the Laplacian with Dirichlet boundary ~ f :  
conditions, one obtains the "Dirichlet field." One also obtains measures of 
interest if A: (the Neumann-Laplacian) is used, or if A is a rectangle, and 
A; (the Laplacian with periodic boundary conditions) is used. One uses a 
unified symbol dp;, for all these measures, with Y = F ,  D, N, P (for free, 
Dirichlet, Neumann, periodic) to indicate the choice of boundary conditions. 
An additional complication is that ,  in defining U(A), the Wick-ordering, :-:, 
can be defined with respect to  dp:, for Y = F, D, N, P. If the dp:, Wick-
ordering is used, the measure dv'") is called free, half-Dirichlet (HD), half- 
Neumann, ..., and if the Wick-ordering and dp;, involve the same Y, we 
speak of free, Dirichlet, etc. In the above results, that  of [12] uses F states, 
that  of [32] and [23] uses HD and that  of [45] uses HP. 

Given these various "boundary conditions" one wants a criterion for an 
infinite volume measure dv obeying (a)-(d) to be somehow a P(#), theory, for 
a given P. One convenient sense is that  i t  obey the DLR equations of [23], 
say in the following form: for A c Rqounded ,  the associated measure v on 
S'(R2) obeys: 

(1.2a) dv 1 2, = ~ x P ( -U(A))exp(- I A l a-)ga~(dpor C.3) E fA(dpo r 2.1) 

where ga, E L1(dp0) is a function of the fields on ah ,  i.e., I;,-measurable for 
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clustering for the two point function and a simple extension of a very elegant 
argument of Guerra [191, [201 for proving such clustering. 

We will prove a variety of results asserting that  states constructed by 
different methods are identical, e.g., in the construction discussed above, the 
state is independent of what value of large p, is taken. Our methods of 
proof are a translation to the field theory context of an argument of 
Lebowitz-Martin-Lof [26] which we now give: 

Definition. Let dv,, dv, be two probability measures on S'(R2). We say 
that  v, 5 v, (FKG) if and only if 

for any function F on R" which is monotone increasing in each variable 
separately and for any f,, ...,f, E C,"(Rz),all positive. 

Dejinition. We say that  a probability measure dv on S'(R7 obeys ex-
ponential bounds if and only if 

for all f E b(R2), real valued, in such a way that  

is continuous on d(R2). 

THEOREM1.1. Let dv, and  dv, be probability measures on S'(RZ)so that 
both obey exponential bounds and  so that v, 5 v, (FKG). If 

f o r  al l  f E C:(R2), then v, = v,. 

Proof. By the exponential bounds, it suffices to prove that  

\dfI ) - e  .df.)dvl = \$tf  .dfn)dv2 for all f,, ...,~ " E c ; ;  

and by multilinearity it suffices to prove this equality for f,, -,f, 2 0. 
Follomring Simon [40], we introduce random variables a(f,), p(f,) by: 

a t f )  = $t f )  if lPtf)l 5 1 ? 

= 1 if #(f) 2 +1 , 
= -1 if p(f) 5 -1 ; 
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By the exponential bounds: 

so it suffices to show that 

for  all f,, ...,f, 2 0. Now both 

are monotone functions of the fields g(f ,), f 2 0, so that  

\ TI:. ~ ( fi)dvl 5 \ TI:, p(f Jdv,, and 

-1I IL,  ~ ( f,)dv, 5 - [TI:=, p( f  ,)dv2+ $c:=,[ g(f ,)d(v2- v,) 

from which (1.10) follows by using (1.9). 

Finally, we should like to say something about the general estimates we 
prove in Section 2. These estimates include as special cases the $ and gi 
bounds for general states (see e.g., [8], [21], [4], [ l l ] )  and estimates needed 
in the proof of the existence of phase transitions [14]. Moreover, the esti-
mates (1.2) are a simple consequence (§ 7) of them and of checkerboard esti-
mates [23]. The estimates are non-trivial even when P = 0 in which case 
one obtains estimates which are related to checkerboard estimates as the 
improved linear lower bound [22] is to Nelson's proof [31]of the linear lower 
bound. 

Special cases of these estimates have recently been found independently 
by Glimm-Jaffe-Spencer [14],Guerra [19], Seiler-Simon [39]and in the periodic 
case by Park [35], all of whose work has motivated us. In a preliminary 
version of this paper we closely followed [39] and [35], dealing directly 
with the Euclidean field theory and OS positivity. In Section 2, we present 
a proof using "Hamiltonian" methods following [21] and [4]. While these 
proofs are substantially equivalent, it  seems to us the one we give is nota-
tionally simpler and more "intuitive." 

The basic idea of these estimates is to use the pressure to bound inter-
acting expectations. One of the simplest examples is the following estimate 
of [19], [39]: 

where dv, is a state for the polynomial P and a&) is the pressure for 
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P ( X )  - pX. Earlier estimates in the spirit of (1.11) can be found in GRS 
[22], Frohlich [4], and Simon [42]. 

These estimates which we call chessboard estimates turn out to be es-
pecially powerful when used in conjunction with the checkerboard estimates 
of [23]: 

Let A,, a E Zz,be the mesh of squares with centers a t  l a  and side I. Let 
{F,}be a finite family of functions with FaXAa-measurable. Let 

p = (2/{1- e-mo1})2. 
Then the checkerboard estimate asserts that  

with 1 1 - ( 1 ,  the Lp(S', dp,) norm. 
It is a pleasure to thank F. Guerra and L. Rosen for valuable conver-

sations and for permission to quote an unpublished result (Theorem 6.1) of 
GRS. 

2. Chessboard estimates 

By the mesh of I-squares we mean the squares of side 1 with centers a t  
the points la;a e Z" If F is a function of the fields in the 1-square A, about 
l a ,  we define F[Blfor P E Zzas follows: let (PI,P,) = 6. If P, and PZare even, 
then F I B ]  is the translation of F to A,. If PI(resp. P,) is odd and P,(resp. P,) 
is even, we reflect F a t  the line t = 0 (resp. x = 0) and translate from 
(-a,, a,)(resp. (a,, -a,)) to P. If P, and P, are both odd we reflect in both 
lines and translate from -a to P. For fixed a and b, let 

The definition of F[,l is just so chosen that  F(zu,b)= P I ~ , ~ ) F ( ~ . ~ )with P the 
reflection of F(a)b)a t  the line t = l ( a  - 1/2) and similarly for F(a)zb).I t  fol-
lows immediately from OS positivity that: 

PROPOSITION2.1. dpoF(a)b)2 0 for a l l  even a,  b. Moreover:J 

exists and  i s  finite if FE n,,, LP(dpo). 

Proof. By OS positivity the quantity on the right of (2.2) is monotone 
in n,  m. I ts  finiteness for F in a suitable L P  follows from the checkerboard 
estimates. 

When there is no possibility of confusion, we will just refer to ro(F). 
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For any semibounded polynomial, P ,  we define: 

(2.3) 	 y(F, Aa, P )  = yo(F ex^(- U(Aa; P)))/'Yo(ex~(- U(Aa; PI)). 
Remark. If F = exp(-  U(A,; Q)), then ro (F)  = exp(+  A, a,(&)) and 

y(F, P )  = exp(I Aa I (a,(P + Q) - am(-?))). 
Our main goal in this section is to  prove the following results which we 

call "chessboard estimates": 

THEOREM2.2 (free chessboard estimate). Let {F'")},,, with #(A) finite 
be a family of functions, each measurable with respect to the .fields i n  a 
distinct square A, i n  the 1-mesh. Then: 

Definition. Let {dv,,} be a family of measures indexed by finite sets 
A,,, = {(x, s) I x 1 $ L/2, I s $ t/2). We say dv, -+dv, by iteration if 

for  any function of the fields in a bounded region in n,,, LP(dpo). (By a 
simple limiting argument, it suffices to  consider F = exp(ig(f)), f E C,"(R2).) 

THEOREM2.3. Let Fabe a s  i n  Theorem 2.2 and  suppose that 

by iteration as  A --. m .  Then: 

THEOREM2.4. Let F, be a s  i n  Theorem 2.2 and  dv, a s  i n  Theorem 2.3. 
Suppose that 

exp(-  U(A; Q - P)) dv,/Norm. -dLQ 

by iteration as  A --.m . Suppose moreover that  

a.(Q 1 P )  = lim,+, (lim,., A 1 ' log \exp ( - U(A; Q - P))dv, 

exists and  that  

(2.6) a,(& P )  = a,(&) - . 

Then: 


Remarks 1. The existence of the limit defining a,(& P )  is general via 
OS positivity and convexity. Moreover, 



by Theorem 2.3. A discussion of the opposite inequality may be found in 
Section 3. 

2. Even without (2.6) a result similar to  (2.7) holds but  7(Fa, A,, Q) is 
replaced by 

7n(Fa exp (-U(Aa; &)))/exp[ I ha 1 (a,(& / P )  + a-(P))] . 
3. At the close of this section, we briefly describe how to  obtain chess-

board estimates for periodic boundary conditions. 

Proof of Theorem 2.2 (an abstraction of the p-bound proof of 1211). BY 
translation covariance and the fact that  r0( l )= 1,  we may suppose that  
A = {(a,, a,) I0 5a, 5 a - 1, 0 5 a, 5 a - 1). Moreover without loss of 
generality, we may suppose that  a is even and that  G = ITaeAFais invariant 
with respect to reflection about the lines x or s = (1/2)a - 112; for, let c be 
the function obtained by taking the product of G with i ts  reflections about 
the lines x = a - 112 and s = a - 112 and both lines together (four factors). 

Then, by OS positivity 1 I ~ d p ,1 5 (15; d,4)'I4 and the right side of (2.4) for 

is the 4th power of the right side of (2.4) for G. 
Let J ,  be the embedding [23]of the Fock space fields a t  time s = I(i-112). 

Let B, be the operator 

B, = JT~I(IT;:: F(k,i))J, , 
Then, by the Markov property: 

Moreover, by a general argument and the supposed symmetry of G, each 
operator B, "couples" to  the vaccum, i.e., 

(2.8b) 1 B, 1 1  = lim,,, (Q,, (Bi"B,)znQo)'12"t1. 
This general argument is due independently to  McBryan [29] and Seiler-
Simon [39] and may be found in their papers. Now: 

where A, = {(a,, a,) 0 5 a, 5 a - 1, 0 5 a, 5 2"+' - 1) where each H,,,,,,, 
is a translate or  translate and reflection of F,,,,,.(2.9) follows from the 
Markov property. Repeating the argument leading to (2.8), we see that  

(2.10) lim,,, (R,, (Bi"Bt)2"R,)''2"f'5 IT::: YO(F(~ , , , ); 

(2.8) and (2.10) imply (2.4). 
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Before the proof of Theorem 2.3, it is useful to note the following 
corollary of Theorem 2.2. 

COROLLARY2.5. Let {A,),,, be a family of 1-squares and  let A be a n  
L-square with U,,, A, cA. Let F, be A,-measurable. Then: 

(2.11) 7(IT,, ,Fa, A, P) 5 a,,A 7(Fa, A,, P )  . 
Proof. Since r(1, A,, P )  = 1, we can, by setting some Faequal to 1,  

suppose that  Uaf ,aa= A. Let G = (l-Ja,,F,)exp(- u(A)). Then, by the 
free chessboard estimates: 

so that  (2.11) follows, since 

7, ( ~ X P( - u(A))) = exp( IA I = a,,.4 70(exp( -U(AA)). 
Proof of Theorem 2.3 (abstraction of the method of [4I). On account of 

Corollary 2.5, it suffices to prove the theorem for a single square, i.e., #(A)= l ,  
since any finite union of l-squares is contained in some L-square. As in the 
proof of Theorem 2.2, we can, without loss of generality, suppose that  the 
factor F is in a square centered about (0, 0), symmetric under reflection 
about the line x = 0. For simplicity of notation, suppose F is in a unit 
square. Fix 1. Then in terms of the usual Hamiltonian H, (infspec H, -E,) 

5 I I A, I I (R,, e-'t-l)HIQo > / ( ~ o ,e-"@~> 

for a suitable operator A, = J: Fexp(- U[(- 112, 112)x (-112, 1/2)])J,. By a 
general convexity argument [39] or the spectral theorem, the ratio in (2.12) 
converges to exp(E,) as t -m. Since A, couples to the vacuum, 

j 1 A, I l  = limn+, (Q,, (A1"A,)2"Qo)2-"-1, 
so, applying Nelson's symmetry and the free chessboard estimate: 

(To prove (2.13), we use Nelson's symmetry to bound (Q,, (A?Al)2"R,)by 
(Q,, exp(-2"+'H, -,)Q,) B, I I where B, is the norm of an operator associated 
to a strip of size 1x 2"+' with or its reflection in each unit square. 
1 1  B, 1 1  is controlled by using the free chessboard estimate.) Since El-El-,-+ 

-a,(P) by general convexity arguments [39], taking first t -+ w and then 
1 3co in (2.12) and using (2.13) we find that  
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( F  exp(- U(A)))/exp(a,(P)) = r (F,  A, P )  . 
Proof of Theorem 2.4. This is essentially identical to  the passage from 

Theorem 2.2 to Theorem 2.3. We emphasize that  we did not use the existence 
of a vacuum Q,  for H, in that  proof. The net result is that  

F dc < r(Fexp(- U(A; Q - P), A, P))lexp(a,(Q 1 P))I \  Q'= 

= 7,(Fexp(-U(A; Q)))lexp(a,(& I P )  + a&')) 

which is r (F ,  A, Q) given the hypothesis on a,(& I P). 

As a general consequence of chessboard estimates, we recover the fol-
lowing result of Guerra [19] and Seiler-Simon [39] (see also [4]): 

COROLLARY2.6. Fo r  a measure dv, or d5, of Theorem 2.3 or 2.4: 

for any  f bounded with polynomial falloj' a t  a. 

Remark. In (2.14), by a,(P + f(x)Q) we mean the pressure for the in-
teraction P + k& with k = f(x). 

Proof. By a limiting argument, we need only consider f with compact 
support, piecewise constant on some set of 1-squares. For such an f ,  (2.14) 
is precisely the chessboard estimate translated into a,-language. 

Rather than formally state chessboard estimates for  (half)-Dirichlet and 
periodic states, we settle for making a series of remarks: 

1. Chessboard estimates hold for the (half)-Dirichlet limits of [23], [32] 
since they can be realized by the Glimm-Jaffe weak coupling construction 
[9] and we prove (2.6) in that  case in Section 3. 

2. Chessboard estimates hold for periodic states for P if a,(P + p X )  
is differentiable in , ~ ta t  , ~ t= 0. This follom~sfrom our general result (Section 
5) that  for such P ,  the periodic state is realizable via construction in the 
spirit of Theorem 2.4. This includes all periodic states thus f a r  controlled. 

3. A chessboard-like estimate but with r, replaced by a "periodic" pres-
sure (which is presumably equal to Y,!) holds by abstracting an argument 
of Park [35]. (2.8) is replaced by: 

for a suitable unnormalized trace, "Trn(see [24], [35]). 
4. It is easy to extend chessboard estimates to Y,and ($9,; see e.g., the 

discussion of exponential bounds in [39]. 
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Theorem 2.4 raises a natural question whose answer will be important 
in several other places in this paper. Let dup be a translation invariant DLR 
state for P. Define 

where the limit will exist going through rectangles if up obeys OS positivity. 
We conjecture that a(&I up) = a,(&) for any up and Q but we have no idea 
of how to prove a result of this generality. Instead, we will consider two 
cases of interest: (i) a,,,,(&) which is defined by taking P = Q + ax2with 
a large and using the weak coupling cluster expansion [13] to define d ~ p ;(ii) 
a,,,,(&) which is defined by taking P = Q + p,X with p, large and using 
the large external field cluster expansion of Spencer to define up. A priori 
these pressures depend on a and p,. In this section we prove: 

THEOREM3.1. If up is  defined by the cluster expansion [13], then 
a,(&, up) = a,(&) for any  semibounded Q. 

COROLLARY3.2. a,, ,,(Q) = a,, ,,(Q) = a,(&). 

Proof of Corollary. The WC equality is immediate. The LE equality 
follows by using the covariance of a, under translations of the field and the 
fact that after translation by a fixed amount (fixed, once p, is chosen) the 
Spencer state is defined by a weak coupling cluster expansion. 

LEMMA3.3. Suppose that (P, m,) is  a pa i r  for which the cluster ex-
pansion is  applicable. For  A c A', rectangles, let 2:;" be the partition 
function defined with interaction i n  A', with a Gaussian measure with a 
Dirichlet boundary condition on ah and with the interaction Wick ordered 
relative to this Dirichlet Gaussian measure. Then: 

(3.1) lim,,, I A I-' lim,,,, {ln[Zf:"/Z,,]) = 0 . 
Proof. Let Gobe the free Green's function and G: the Green's function 

with Dirichlet data on ah. Let C(s) = sGo+ (1 - s)Gf: and d = Go- GX. 
Let dp0,,,, be the Gaussian measure with covariance C(s) and U,(Af) the 
interaction in A' with C(s) Wick ordering. Define 

so that Z;,(1) = Z,,, Z.;,(O) = Z?:.'. We first claim that: 
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(3.3) follows from a standard integration by parts formula (e.g., (1.8) of 
[13]); there is a cancellation of the (dlds)U,(Af) term and the P" term as  is 
well-known when matched Wick ordering is used. (See e.g., Cooper-Rosen 
[I].) From (3.3) one immediately obtains: 

(3.4) I~[ZS.(I .) /Z~~(O)]= 1'll ds 1Z , l / E A 1  C(x, y ) ~ ( x ,y, s)ds dy . 
By the cluster expansion [13],lim,,, F(x, y, s) exists and independently of 
A, s: 

(3.5a) I dxdy  ~ ( 3 ,y ) ~ ( x ,y, s) s 1 1 1 ~ 1 1 1, 
(3.5b) 1 1 1  = CaSBIIHx~xB~~z7 

where X, is the characteristic function of the unit square about a € Z2. NOW, 
by an elementary estimate [23], d(x,y)$G,(dist(x, ah)) and d(x,y)(G,(x-y), 
SO 

(3.6) 1 d(x, y) l 2  5 Go(dist(x,aA))Z13Go(di~t(y,aA))Z~3Go(~- y)Li3 

by symmetry. By (3.6), 

(3.7) 1 1 e ~ a ~ B 1 1 25 Cexp[-D[dist(a, ah) + dist(P, ah) + Ict: - PI]] 
for suitable positive C, D. (3.4), (3.5) and (3.7) imply that  

I lim,,,, [ln[ZSl(l)/Zb,(0)]]I 2 C I ah I , 
proving the lemma. 

Remark. We expect that  (3.5) will hold in any P($), state and not just 
in case the state is defined by the cluster expansion. This would allow one 
to extend Theorem 3.1 to general states obeying chessboard estimates. 

Proof of Theorem 3.1. By a chessboard estimate: 

so that  

(3.8) am(Q, vp) 2 aw(Q) 

On the other hand, by conditioning [23], [24], for A c A': 

\exp(- U(A; Q - P))exp(- u(A'; ~ ) ) d p .  

2 \ e m ( - U D ( ~ ;Q - P))exp(- uD(hr;p))dp0,,,, 

= e x ~ [ l A 1 [aD,"L(Q)- aD,A(P)]]Z?'A 
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where 2::" is given by Lemma 3.3 and we have used the decoupling nature 
of Dirichlet boundary conditions and 

This and the definition of u p  yield 

Using Lemma 3.3 we conclude that: 

(3.9) am(&, up) 2 a,(P) + a,,,(&) - a,,,(p) . .Since a,,,(R) = a,@) for any R [24],  (3.8) and (3.9) complete the proof. 

4. Construction and properties of ( ),,, 

Fix a semibounded polynomial P and consider the family of polynomials 
P ( X )- p X ,  -p , S p S p ,  where p ,  is chosen so large that  Q,(X)  = P ( X ) T ~ , X  
are polynomials for which infinite volume states dv: can be constructed by 
Spencer's method. 

THEOREM4.1. T h e  measures  

exp ( ( P T P,)+(XL))~G'/N* 

have l i m i t s  in the  fol lowing senses: (i) a s  A +  by i n c l u s i o n  in the sense 
of character is t ic  f u n c t i o n s  a n d  m o m e n t s ,  (ii) b y  i t era t ion .  T h e  r e s u l t i n g  
l i m i t s  dvP-,,,, obey a l l  the  OS a x i o m s  except ( a  p r i o r i )  c lus ter ing .  Moreover 
the  Schwinger  f u n c t i o n s  a n d  Schwinger  generat ing f u n c t i o n  for  d ~ , - , ~ , +  
(resp.  dv,-,,,_) are  con t inuous  f r o m  the r i g h t  ( resp .  the  l e f t )  in p ,  a n d  f o r  
pf < p: 

(4.1) 	 p 2 p ( F K G ) , 
(4.2) 	 x , 5 - + (FKG) . 

R e m a r k .  We will prove shortly that  clustering also holds. A priori, 
the states dv,,,, dvp ,_  depend on pm, but we will prove this is not so. In  
Section 7 we prove up,+are  DLR states for P. 

Proof .  Let f 2_ 0; then by the FKG inequalities fo r  v;: 

is monotone decreasing jointly as A is increased and p is decreased (all top 
signs) (resp. increased for all bottom signs). The existence of the required 
limits for  such f's follows and then for arbitrary f by standard "Vitali" 
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methods (see e.g., [5]). Moreover for f 2 0 the interchange of the A--+m and 
;t 1po(resp. p 7 po)limits is allowed in the Schwinger generating functions 
by monotonicity. The interchange for general f and for the Schwinger 
functions is again by general methods. The OS axioms follow as for half-
Dirichlet states [5], [43]. (4.1) is obvious from the FKG inequalities for v;. 
(4.2) follows by putting in cutoffs in the definition for v: using, say, periodic 
boundary conditions for their definition. 

Let a&) = a,(P - pX). Since am@)is convex in p ,  the derivatives 
from the right, D+a(p)and left D-a(p) exist for  all p,  and D+a(p)(resp.D-a) 
is continuous from the right (resp. left). Moreover, for all but countably 
many p, (Dta)(p) = (D-a)(p) and these are precisely the ,L! for which a,(p) 
is differentiable. 

We use for -dvP, ,  and (#(0)),,, for the number withJ 

Proof .  Since both sides of (4.3) are continuous from the right (resp. 
left) in the + (resp. -) case, it suffices to prove (4.3) for those p with a,(p) 
differentiable. For such a p ,  chessboard estimates in the form of Corollary 
2.6 (which hold for ( ),,, by Theorem 2.4, Theorem 3.1 and Theorem 4.1) 
imply for a > 0: 

so subtracting 1,  dividing by 1 a 1 I A 1 and taking 1 a 1 -+0: 

At points with D+a,  = D-a,, this implies (4.3). 

COROLLARY4.3. (i) ( ),-,,,, i s  independent  of  the  choice of  p,. 

(ii) ( ),,+ = ( ),,- i f  a n d  o n l y  i f  a,&) i s  d i f e r e n t i a b l e  a t  p = 0. 
(iii) a,@) i s  s t r i c t l y  convex in p. 

Proof .  (i) If pl > p, the associated states ( );,, obey 

By Theorem 4.2, the one point functions are the same so by Theorem 1.1, 

< >P,*= ( )L,L. 

(ii) Same as  the proof of (i), given (4.2). 
(iii) By (4.1) and the proof of (i), if (#(O)),,+ = (#(O)),,,+, then ( ),*,+= 

( ) +  This is impossible for p # p' since the states obey DLR equations (see 
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Sections 6, 7). I t  follows by Theorem4.2 that  Dia(p)arestrictly monotone. 

THEOREM4.4. ( ),,= obey clustering (equivalently the associated Wight-
man theories have a unique vacuum). 

Proof. Without loss of generality, consider the case ( ),,+. By a theorem 

of Simon [do],it sufficesto prove that  ($(x)$(y)),= ($(x)@(y))+-($(x))+($(Y))+ 
goes to zero as j x - yI -m. Since ($(x)$(y)), is monotone decreasing as 
I x - 76 / increases, it suffices to show that  

Let c be a constant to be fixed later and let +(x) = $(x) + C. Since (++),= 
(@$),, (4.4) follows from: 

-
(4.5) limA4=(+(xA>+(xA>>?VIIhl5 (+(0))+ = ( d o ) ) +  + c . 

Now, by Holder's inequality (+(xJ2)", ((?lr(~,~)'")+,so for a > 0: 

exp[a < +(x,,)" >'I -S2 C O S ~[~(+(xA)')!~I 

5 B(cosh a + ( ~ * ) > +  
5 exp [ I  h1 (ac t am(a)- a40))I  

+ exp[l hl(-ac + a,(-a)-a,(0))1 

where we have used chessboard estimates in the Iast step. Choose c large 
and E small so that  for 0 < a  < E :  

(e.g., c = -(1/2)(D+a)(O)-(1/2)(D-a)(O)+ 1 will do). Then: 

exp[a(+(~.,)')Y~lS 2 exp ( I  A I (ac + a,(a) -ado) ) )  . 
Taking logs, dividing by ( A1 and taking I Al to m :  

Taking a 4 0 using Theorem 4.2, we obtain (4.5) and thus unique vacuums. 

Remark. The first result of the above type is that  differentiability of 
a,(p) a t  p =  0 implies unique vacuum for the @' HD theory [41], [44]. S'imon 
[41] related uniqueness of the vacuum in $' - p$ to  the fact that  a,(p) was 
CYor p # 0. The critical observation that  C' suffices is due to Guerra [19], 
[20]. Our proof is a mild extension of his, exploiting one additional trick. 

5. Consequences of differentiability of the pressure 

We have already seen (Cor. 4.3 (ii)) that  (.),,+ = (a),,- if and only if 
a,(P - pX)  is differentiable a t  p = 0. On account of the one-sided continuity 
of (.),-!,,,=, we have: 
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THEOREM5.1. I f  a,(P - p X )  i s  d i feren t iab le  a t  p = 0 ,  t hen  the 
Schwinger func t ions  and  generating funct ional  for  (a),-,,,+ and  { -),-,,,-
are  cont inuous a t  p = 0. 

Our main goal in this section is to  give a more significant consequence 
of differentiability of a,. 

THEOREM5.2. I f  a,(P - p X )  i s  digorent iable  a t  p = 0 ,  t hen  a12 the 
classical boundary condit ions measures ( f r e e ,  Dirichlet ,  hal f -Dirichlet ,  
periodic, N e u m a n n )  for P converge a s  A , 7 R 2  and to  the same l i m i t  

(.>P,+ = (.)P,-.  

Unfortunately the proof is somewhat technical, requiring some fine 
tuning of various elements of the cluster expansion. We defer these techni-
calities t o  an appendix, giving here the proof for  Y = P a n d  the basic strategy 
of the general proof. We will not pause to  explain the importance of Theorem 
5.2 since i t  answers a natural question that  also comes up a t  various technical 
points. We emphasize that  a,(P - p X )  is differentiable for "most p's." 
We note that  earlier results of a much weaker kind occur in [24]and that  
for the special case of P ( X )  = X" p o x ,  p, # 0 ,  most of the results in 
Theorem 5.2 have been proved earlier in [61 using GHS inequalities and the 
Lee-Yang theorem. It is also clear that  our method can be modified to  ac-
comodate other B.C.-e.g., free boundary conditions with a constant external 
field turned on outside the region of interaction (such boundary conditions 
occur in forthcoming work of Glimm, Jaffe and Spencer). Before turning 
to some aspects of the proof of Theorem 5.2, we prove a corollary due t o  
Guerra (note added in proof to [20]):  

COROLLARY5.3 (Guerra [20]).  I f  Q i s  even and p > 0 ,  t hen  the H D  state 
for Q i s  ident ical  t o  the (.),-,,,- state. 

Proof.  By monotonicity in p and A, the  HD s ta te  is continuous in p 
from the left so equality for most p's implies equality for all p > 0. But 
this equality follows from Theorem 5.2. 

Proof o f  Theorem 5.2 for Y = P.  Let (.), be any limit point for  the 
periodic states (such limit points exist by the #-bounds for periodic states). 
Then, i t  suffices to  prove 

(5.1) <.>P,- 5 <.)m 5 <.)P,+ 

in FKG senses. For (5.1), the equality of (-),,+ with (.),,- and Theorem 1.1 
imply that  ( a ) ,  = (-) , ,+.  Since (.), is an arbitrary limit point, the limit 
exists and equals (a),,;. 
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Now (5.1) follows in the same way that  (4.2) did; namely by putting in 
enoughcutoffs. Explicitly, let dv,,,, .kt for AcA'be  the measure with periodic 
boundary:conditions in A' and interaction P in A and P -p,X in A1\A. Then 
clearly, by the usual FKG inequalities, 

dvp,,\,,.i,5 dvp,.,,.,? 
from which (.), 5 (.),,+ follows by noting that  (.), = lim,,, d~ , , . , ~ ,A, for  
suitable A, and that  (-),,+ = lim.,l,~(lim,~~l,zdv,,,\, ,,). 

The strategy for proving Theorem 5.2 is similar to the special case just 
proven. Given some boundary condition Yo,we will seek another boundary 
condition Y+ so that: 

(9  Y o , 5 Y , , (FKG sense) 
where dv,,,,,,,, is defined as  above, with interaction P in A and P - p,X in 
A' \ A. 

(ii) For fixed A, lim,\,,,z (dv,, ,,, - dv, ,,,, ,) = 0. 
Now (ii) will assure us that  (.),,+ = lim,,,z(limA,,,z dv,,,,,,,\,) so that  

(i) implies that  any limit point of d~,,,.,,,,,~is less than (.),,+ in FKG sense. 
A similar Y- construction will then lead to the existence of the limit dvyO,.,,,,, 
and its equality to (.),, as  in the above case, Y = P. 

To prove (i) it  suffices in practice to prove the inequality when P = 0. 
The proof of (ii) will depend on the use of a cluster expansion. Following 
Spencer [45] we will work with a translated field so that  the freedom to 
choose Y+ different from Yo will be useful to obtain a boundary condition 
which is simple in terms of the translated field. 

The details in the proof of Theorem 5.2 appear in the appendix. 

6. Ultraregularity: General consequences and the strong Gibb's principle 

Fix a bare mass, m, and a polynomial, P. 

Dejinition. A probability measure dv on S'(R" is called ultraregular 
(for (P, m,)) if and only if: 

( 1) For every bounded open A in R2,dv r Z, is absolutely continuous 
with respect to dp, with Radon-Nikodym derivatives f, E n,,, LP(S', dp,) 
obeying for any p < -

I I f a  l lp 5 Cp ~ X P(apd(N2) 
where d(A) = diameter of A. 

( 2  ) f,, = e-L'(A'e-a-lA'ga,where g,, is measurable with respect to Z,,. 
( 3 ) g,, E LP(S', dp,) for all p < - and g,, > 0 almost everywhere. 
( 4 ) Let g,,, denote g,, for A the rectangle of sides I and t centered a t  

the origin with sides parallel to the coordinate axes. There exists T(p) for 
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for rectangles a n d  that  (4) holds. 

Proof. The key observation is that  for  A c A' 

where E,, is the conditional expectation with respect to  dp, onto the C,, 
measurable functions. By Holder's inequality for  such expectations: 

I / g  
ah 

j j 
p 
< 
= 

e-a,lA'\.b 1 1  e-L'!A'\A) 11~11Ea.z(~a~~)l!~ 

with p-' = q-' + r-'. Thus, for fixed r > p, 

(6.4) j I ga., / 1, 5 e+cl"'\i'lI I Ea.i(ga.jl)IIr 

where are have used the estimate (1231, Lemma 111.13)) 

where a,(q) is the pressure for  qP. By Theorem 111.3 of [23], 

so long as ( r  - l )(s  - I)-' 5 e(d), where d = dist(aA, ah') and where e(d) is 
a universal function which goes to  infinity as d -+m. Thus, for any p,  we 
put r = 2p and s = 514 E (1, 413) and conclude, using the hypothesis (4), that  
for  d sufficiently large, and 1', t' 2 T(5/4), Ijga,llp 5 exp[c([(ll, tl)\Al)] so long 
as d(a(ll, t'), ah)> d. Taking A to  be an 1 by t rectangle and A' to  be the 
rectangle of side 1 + 2d by t + 2d, we find 

so long as 1, t 2 d. This proves (5). 
The first part  of condition (3) follows from (6.4) and the second from the 

following argument: g,, 2 0, and if some function f 2_ 0 is Caa measurable 

and 1fgaAdpa= 0, then Ife-LT!A'\A)ga,.dpa0 so fg,,. = 0 almost everywhere. = 

Now E,,E,,, is the second quantization of a strict contraction (by Lemma 
111. 4 of [23]) so long as d(aA, dh') is sufficiently large and thus i t  is positivity 
improving (Theorem 1.16 of [43]) so Ea.j(ga,\t) > 0 almost everywhere. Thus 
f = 0. We conclude that  g,, >0 almost everywhere. This proves the second 
part  of (3). (1) follows from (5) as in [23]. 

While ultraregularity is stated for rectangles, i t  contains some informa- 
tion about circles. 

THEOREM6.2. Let A(r) be the circle of radius  r centered about 0. Let 
v be a n  ultraregular state. Then 

with lim,,, IA(r) (-'In ( 1  gaA,,,Ilp5 0 f o r  a n y  P <... 

1 



Proof .  For each r ,  let A'(r)  be the square of side 3r .  By using hyper-
contractivity, as in the last proof, we find that  by taking r large enough, 
for any fixed E > 0: 

so that  

lim,,, / A ( r )  I-' In I I g,,,,,) l i p  5 [ ( I  + E)-'a,(l+ E )  - a,](9x-l - 1) . 
Since a, is continuous, the 6 is 5 0. 

THEOREM6.3. L e t  d v  be a t r a n s l a t i o n  i n v a r i a n t  measure  o n  S'(R2)so 
that d v  12, = e - a w ' l  e-U( .2)  ga,dpo. Suppose  t h a t  d v  i s  a weak ly  tempered 
state a n d  t h a t  there  i s  a sequence o f  sets A ,  -+m in the F i s h e r  sense so t h a t  
-
lim,,,~A,~-'ln~~g,l~~~p~Of o r a l l p < m .  T h e n  

(6.1) s (v )  - p(v, P )  = a,(P) . 
In par t icu lar ,  (6.1) holds i f  v i s  u l t r a r e g u l a r .  

Proof .  By the general Gibbs inequality 

s (v )  - p(v, P )  5 a,(P) . 
On the other hand, by definition of g,, and s: 

= a, + p(v, P )  - lim dv[lng,,] I A, I - 'I 
so m7eneed only prove that  

(6.5) lim d v  I A, I-' In g,, 5 0 .J 
But, by Jensen's and Holder's inequality, for p arbitrary 

' A, I-' d v  In g,, 5 1 A, 1-I In d v  g,,I I 
1 A ,  1 ln [ ( I  d , ~ ~ ~ 1 : ) 1 ' ~ ' ( \dpoe-~u(")) ' 'pe - a - i ]  

5 [p- 'aw(p)- aw(l)l 
as A ,  -+ m using the hypothesis. Taking p -+1 and using the continuity of 
a,, we see that  (6.5) follows. 

One final remark: A proof of ultraregularity provides alternative 
proofs of quasiinvariance of d v  under translation of the field, 

~ ( f )-d f )+ I f  ( x ) g ( x ) d x  ($(XI-.d(5)  + g(x) ,  !J E C:) 

and of integration by parts  in the d v  theory; for a restricted class of states, 
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these are results of Frohlich [4Jand Glimm-Jaffe [lo]. For, picking A2suppg,  
the form of f, immediately proves the quasi-invariance and gives the 
explicit formula of Frohlich for the Radon-Nikodym derivative. This quasi-
invariance allows one to  define operators ~ ( g )on L2(S', dv) and Frohlich's 
formula yields an  explicit formula for  n(g)l which implies the integration 
by parts  formula. We emphasize that  this connection between the three 
properties of DLR, quasi-invariance and integration by parts  is essentially 
already in [4], [lo]. 

7. Ultraregularity in P(#), and regularity in Y, 

The key to  proving ultraregularity in P($), is to  combine chessboard 
and checkerboard estimates: 

LEMMA7.1. Let A be a n  1-square. Let q 2 4(1 - e-"~')-~.Then for a n y  
function F of the fields i n  A: 

y0(F,A) 5 1 1  Filq. 
Proof. The bound holds for each (\~ ' " > ~ ) l d / r , ) " ~ ~by the checkerboard 

estimates (Theorem 111.12 of [23]). 

THEOREM7.2. Measures obeying the hypotheses of Theorems 2.3 or  2.4 
a re  u l t ~ a r e g u l a r .I n  part icular,  the measures dv,,+ of Section 4, the cluster 
expansion states, and  the (Dirichlet and) half-Dirichlet states for P=Q-pX 
(Q even) a re  ultraregular a n d  obey the strong Gibbs equality (6.1). 

Remarks 1. We emphasize that ,  by construction and Theorem 5.2, the 
cluster expansion states (and "most" Dirichlet or  half-Dirichlet states) are 
dv,,, so there is some redundancy in the statement of this theorem. 

2. By similar arguments with the estimates described a t  the end of 
Section 2, limit points of periodic states are ultraregular. 

3. In the assertion of the Gibbs equality, the reader can see that  a 
critical role is played by Theorem 3.1. 

Proof. By Lemma 7.1 and chessboard estimates (Theorems 2.3, 2.4), if 
F is A-measurable, A an 1-square and q 2_ 4(1 - e-"~')-~,then: 

(7.1) <- ( I F e - L T ( A ) ( ( ,  e - l A l a ,  . -

By duality theory for the L p  spaces, this show that  
dY, r xb  = e-U(Ale-lAla, 

QA 

with l'gA(I, 1 where p = (1 - q-I)-'. Since q can be taken arbitrarily 
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close to 4 as I --.m we have proved condition (4) in the definition of ultrare- 
gularity. All that remains, by Theorem 6.1, is to show that g, is dA meas- 
urable. 

For any Fs n,,, LP(A, dp,), it is not hard to prove, using the method 
of Section 2, that for Fo r ( , )  E LP(dvp) 

\~e"')dv, = lim,,, JFer 'A)dvp,, 

for suitable "finite volume" dv,,,,. (For the states of Theorem 2.3 these are 
the usual finite volume states; for the states of Theorem 2.4, we use the 
DLR equations when proven for Theorem 2.3 to write dv,,,, as the usual finite 
volume state times a factorg,,.) If Fisorthogonal in L2(A, dpO) to L2(dA, dp,), 

then IFec''"dv,,,, = 0 by the Markov property for dp,, so for such F ,  

IgA~c ipo= O. ~ h u s  

g ,  E L2(aA, dp,)" = LYdA, dpo) 

We wish to end with a brief result expressing the applicability of our 
ideas to the Yukawa, theory: 

THEOREM7.3. Let dv be the infinite volume Y2 Euclidean measure ob- 
tained from the theory of Magnen-Se'ne'or [28] and Cooper-Rosen [I]by 
restricting to purely Bose expectations. Then f o r  A finite: 

dv r ZA = ftdpo 

where f, E LP(dpo)for all  p < 413. 

Proof. One proves an estimate of the form (7.1) by abstracting the 
argument of Seiler-Simon [39] or our method in Section 2 and using checker- 
board estimates. rn 

Appendix 

Proof of Theorem 5.2. In this section, we complete the proof of Theorem 
5.2 following the strategy described in Section 5. In the first part of this 
appendix, we always match Wick ordering to the Gaussian measure appear- 
ing with the interaction-this measure may be one with classical boundary 
conditions or an interpolation arising in the details of the cluster expansion. 
In this way we will prove Theorem 5.2 for the cases Y = D, N, F. In a 
brief finale to the appendix we describe how to handle a variety of pertur- 
bations of these basic boundary conditions including the half-D (N, P) states. 

The reason for the length of this appendix is that we rely extensively 
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on the cluster expansion which requires separate estimates on Green's func-
tions and differences of Green's functions in each special case. To keep the 
size manageable we will suppose the reader to be familiar with the Erice 
lectures of Glimm, Jaffe and Spencer [13] and we will use freely various 
technical devices taken from [I]. We describe the proof of strategy steps 
(i) and (ii) for the case of +boundary conditions; the -case is identical except 
for obvious notational changes. 

Given a polynomial P, we pick p, > 0 so large that the cluster expansion 
of [45] converges. For such a p,, we pick, following Spencer 1451, Q, a real 
number so that the term linear in X in the polynomial 

Ql(X>= P(X - - p,(X - Qc) 

vanishes. If P(X) = a2,X2" + .., then clearly for p, large, $,-

-(p,/2ma2m)1/2m-1.Let a", be the term quadratic in X in Ql(X) so that for 
p, >> 1, 

z2 a2m$ozm-za' a.~m-1ap~m-2i2m-1 

where a' = m(2m - 1)and a = at(2m)-'"+ 2i2m-1 . We define a polynomial Q(X) 

by 

(All Q(X) = P ( X  - 0,) - p,(X - 0,) - a",X2- m,Z$,X. 

The point of this change of variables is the following: Let duy-,,, ,, be the 
measure described in Section 5. Then in terms of a variable $ = $ + 0,: 

(A21 duYTIA,= 2-l exp(- U(At;Q ( $ ) ) e x p ( - p , ~ ( ~ ~ ) ) d p ~ ( ~ - ~ ~ ~ ( $ )  

where 

(: :with respect to dpr~(9) )and where dphy~~"2)is the Gaussian process on 
St(A')with mean 0 and covariance (-A! + mi + 2Z27.,)-I. Here F i s  obtained 
from Y+by replacing Q by $ - Q, (we will be more explicit below-we note 
for now, that if Y = P or N, we will take Y = P (resp. N )  in which case F 
is P (resp. N). That is these boundary conditions are stable under a shift 
of the field, see [24]). Henceforth for notational convenience, we will suppose 
A = 0 and then will use A systematically in place of the above A'. 

Next for 0 5 z =< 1define a covariance CXby 

(A31 C:;(x, y) = zcj:-~,~z'(x,y) + (1 - z)CP(x, y) 

and ( ),,, by (A2)with dp~' .+,~z)replaced by the Gaussian measure with mean 
zero and covariance C;(and changing the meaning of Wick ordering in 
U(A; Q)). In (A3), CT is the periodic Green's function with mass (m:+2a"2)'/2. 
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Now, for an arbitrary expectation (.), let 


(A; B) - (AB) - (A)(B) 

and set 

kh(x1 y) = (C'TT'~~'CZ)(xl y) -
and 

(which is z dependent because of the Wick ordering!). To establish (ii) of 
the basic strategy, it suffices to prove that 

(A41 (R),=l,, - (R)?=o,a-40 

for R a product of Wick polynomials localized in some bounded open region 
XocR2. By the fundamental theorem of calculus and integration by parts 
on function space [13]: 

with 

Note that a term - (R; 62U/6$(x)64"(y)) does not occur because we have 
matched Wick ordering to dp,(see, e.g., [I]). We are now able to abstract 
the basic estimates needed to establish (A4): 

THEOREMAl. TO establish (A4), i t  suflces to prove that uniformly i n  
ze [O, 11and A suficiently large: 

I I k,,(x, y) / I ,  S Cll A 1 and I k,\(x, y)l 5 Cz exp[- C3{dist(x, ah) (1) + dist(y, ah) + dist(x, Y))] 

for dist(x, dh), dist(y, ah) 2 1, and p < m. 

( 2 )  	 GI(%?Y) L1(Xo x Xo) 

( 3 )  	 G2(x, u) L1(Xox A) , 
G,(x, y) is  locally integrable and ~(G,x,,,(x, y) 1 1 2  <= 

( 4 )  C, exp[-C, dist(Xo, B)] f o r  any  B cA with dist(Xo, B) 2 1. 
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Proof. We show that  for j = 1, 2, 3, d2xd2yk,,Gj  -0 uniformly in zI 
as A ,2R ~ S Othat ,  in particular, dist(dA, X,,)- ). For j = 1 this follows 
directly from (I), (2) and for j = 2, 3 it follows from (I), (3), (4) by breaking 
the region A into squares and using exponential falloff to get convergence 
of the sum. 

Dirichlet boundary conditions. Here, we will choose Y _  so that  is 
also D. Thus YT can be described in the language of [24]as  the field obtained 
by setting the boundary field g,,, to  -$, (so that  6,.= g,,, + 9, is zero). To 
check (i) of the basic strategy one can follow one of two paths: (a) pass to 
a lattice approximation and note that  since Q, < 0, to arrange for a positive 
expectation for g,, we must include a term of the form exp(a$) for a > 0 
in Y_ which leads to  (i); (b) realize D boundary conditions via the method 
of [4] by adding a mass term external to  A and taking this term to  infinity. 
In  one case, for D, we have 2-'exp(-(1/2)1M: g2:) and for YT we have 
2-'exp(- (1/2)1M.(9+g,)2:). In  the lat ter  case, the additional term exp(- M Q , ~ )  
leads to  an  FKG inequality in the right direction since g, < 0. We leave the 
details to  the reader and concentrate on checking the hypotheses of Theorem 
A1 with P = D. We note that  by taking p, sufficiently large (so that  -$, 

is large), m7ecan carry through (i) for D boundary conditions with an  arbi-
trarily large (but fixed) external field on the boundary. 

Notice that  since D boundary conditions decouple A and RYA we can, 
without loss assume that  the covariance is (-A? + mi + 2E,)-' rather than 
(-A; + nzi + 2E2x,,)-l. 

Estimate (1)follows easily by the Cooper-Rosen method [ I ]  of writing 

where P,, is the Poisson kernel for -A + mi + 2E2 in A or alternatively, 
since A is a rectangle, by the method of images, see e.g., [24]. 

Estimates (2), (3), (4) follow in a standard manner once one establishes 
the convergence of the cluster expansion (see e.g., $ 4  [13]). Th'1s conver-
gence also allows us to  take A other than a rectangle in (s)~,,, -+ ( ),,,. 
The combinatorics and estimates in the expansion are identical to those in 
[45] with the exception of two technical estimates on covariances, namely 

Corollary 9.6 which bounds R d$,,,, and Proposition 8.1 (which bounds Lp( I )
norms of drC) of 1131. Corollary 9.6 is easy once one notes that  since 
D-covariances are involved and since Ci(s), the interpolated covariance of 
the cluster expansion, is less than C.r in the sense of quadratic forms (see 
e.g., [24]), the estimate need only be proved for Cf;("conditioning"). This 
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can be found in [45] and is quite easy. Proposition 8.1 follows from a simple 
modification of the iterated Poisson method of Cooper-Rosen [I]. 

Neurnann boundary conditions. It is easily seen by passing to  the 
lattice approximation 1241, that  N boundary conditions are  left invariant by 
translations of the field. Thus we can take Y _= N so that  (i) is trivial (i.e., 
identical to  the periodic case) and still have = N. 

Estimate (1) of Theorem A1 follows by the method of images 1241. As 
in the Dirichlet case, to  prove (2), (3), (4) we must prove convergence of the 
cluster expansion. Corollary 9.6 follows as above if we note that  C;(s) $ C"; 
in operator sense and then bound C i  by a method of images argument. 

It is in proving Proposition 8.1 that  the Cooper-Rosen method is especial- 
ly useful. For, on account of the Neumann boundary conditions, stopping 
time arguments as in 1451 do not have an immediate applicability although a 
modification probably exists. The Cooper-Rosen method of repeated Poisson 
iteration yields Proposition 8.1. The estimates are  slightly worse than in the 
free or periodic case since 0:' is more singular than C, as  x, y -ah but ,  by 
the method of images, 0:' - C? / 5 d ,Co pointwise where d ,  is bounded as  
A/R2 so estimates are only worse than those in [I]  by an overall constant. 

Free boundary conditions. These are  technically the most subtle ones 
since they don't decouple and they aren't left invariant by translation of 
the field. We pick Y _so that  has mean zero and covariance 

Cg = ( -A  + nz: + 2 a , ~,)-I . 
Thus YTcorresponds to the free boundary conditions covariance but with 
9" - + c  in R2\A. As in the case of D boundary conditions, 9, < 0 implies that  
step (i) goes through. 

For step (ii), we need only check estimate (I), and Corollary 9.6, Pro- 
position 8.1 in the cluster expansion for C; = .rCf + (1 - .r)C?. 

To prove estimate (I), let c, be the free covariance with mass rn,. Then 
by a simple Feynman-Kac formula: C': 5 Cf 5 c,. Since C? can be written 
down in terms of images, estimate (1) follows. We remark tha t  we have 
been crude in this estimate obtaining only 1 Cf 1 5 0 [exp(-rn, 1 x - y I)] fo r  
I x - y 1 large rather than 

1C;I 5 O[exp(-(mi + 2E2)12 lx - yl)] 

for x - y large. This improved estimate can be obtained from the Cooper- 
Rosen machine but is not needed a t  this point. 

Corollary 9.6 follows if we note that  C,(s) $ C: in the sense of operators. 
Proposition 8.1 follows from the Cooper-Rosen method as  in the NBC case 
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if we note that / Cf; - Cf; / 5 dl& 
There are some changes in the combinatorics of [13] needed on account 

of the slower decay of Cf;near dA. 

Half (and multiplicative) boundary conditions. Finally we want to 
consider extending Theorem 5.2 to a class of boundary conditions which will 
include the various half-D (P, N) states and a variety of other choices of 
change in Wick ordering. I t  is clear that this idea can be extended to prove 
that for the polynomials with a,(P - pX)  differentiable a t  p = 0, one has 
( . ) p + l Q , i  -+ as X 1 0 for any Q with P + XQ semibounded for all small 
x > o .  

We recall from 1311, 1321: 

Definition. A family {G(A): AcR2 ,  Borel) with values in functions on 
S'is called an additive functional if and only if for arbitrary A,, A, with 
A l n A 2 =  0: 

G(A, u A,) = G(Al) + G(A,), and 

for each A, G(A) is measurable with respect to the a-algebra generated by 
{$(f)/ suppf cQ) for any open Q 2A. 

Let dv,,,, be a classical boundary conditions state for P. 

Definition. Suppose that for each A we are given an additive functional 
GA so that eKF.' E L1(dv,) where F,,= G,(R2). Then the measures 

1
2 - e  -FA dv,,,, s d v ",,,, 

are called a multiplicative (boundary conditions) perturbation of dv,. 

To show that dG,,,, converges to (e),,, as A / R2, it clearly suffices that 
the measures dGy,A obey FKG inequalities and that in the large p, region 
we prove 

for local polynomials R. To prove (A6) in this large pw region, we define 

(R),, .,-
Then 

d
(R)l,* - (R)O,A= \ dz -(R),,a 

o dz 

dz(R; F A ) , , ,  

so that (A6) follows if we can prove 

(A7) (R; FA),,* +0 

,,(e-rFA);:,,(~e-rFd') 
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as  A,/ R2,uniformly in .r e 10, 11. 
The following result is so obvious tha t  i t  does not require a formal 

proof. 

THEOREMA2. L e t  dF,,,, be a m u l t i p l i c a t i v e  per turba t ion  of  dv,,,, so t h a t  
for a n y  unit square,  A, 

where Xo i s  a Axed square c o n t a i n i n g  supp R. T h e n  (A7) a n d  t h u s  (A6) 
hold. In par t icu lar ,  i f  (i) dG,, ,obey FKG inequal i t i e s ,  (ii) (A8) holds for  
the  P I X )  T p ,Xs ta tes ,  (iii) dv,, ,- dv,, ,-0 a s  A ,7 R v o r  P ( X )  7p,X, t h e n  
for  polynomials  P w i t h  a,(P - p X )  d i f f e ren t iab le  a t  p = 0, dF,, ,-(.),,.. = 

( ),,- where dv", , ,i s  the  state w i t h  (Y ,K F ' )  boundary  condi t ions  a n d  poly- 
n o m i a l  P. 

We conclude with a general result that ,  in particular, implies Theorem 
5.2 for the HP, HD, HN states: 

PROPOSITIONA3. Let  { V,}t=,be polynomials  o f degree less t h a n  2m =deg P. 
Let  {g , , 1 ( ~ ] )be a f a m i l y  o f  func t ions  s a t i s f y i n g  supp g , , ,  c A a n d :  

(A9a) 	 IC, [dist(x, ah)]-"; d(x, ah) < 1
I 8 ,,21x>I 	 5

CA9b) 	 1 C,[dist(x, ah)]-"2; d(x, ah)  2 1 

where 6 ,  < 1,'2m, 6, > 2. L e t  

T h e n  {eWF.'} satisfies the  hypotheses of  Theorem A2 for  Y = F,  P, N, D. 

Proof .  GRS 1241 (Section VIII) prove a linear lower bound under the 
hypotheses of this proposition for Se-L" 'e -Fidp~: ,which replaces Theorem 

9.5 of [13]. The remaining estimates needed to  prove the convergence of the 
cluster expansion for (-);,, have already been proved above. The cluster 
expansion leads to  exponential falloff of (A; B):,,,and so to (A8). • 
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