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Abstract. By extending Kato’s theory of two Hilbert space scattering, we are
able to formulate both optical and accoustical scattering from inhomogeneous
media as strictly elliptic problems. We use this formulation to present simple
proofs of the existence and completeness of scattering states.

§ 1. Introduction

In this note, we present basic existence and completeness theorems for the
scattering of acoustical and optical waves by inhomogeneous media. With the
exception of some technical results in the appendices, which may be new, we make
no claim that our basic results are new —the basic results have already been
obtained by Schulenberger and Wilcox [24-26]. However, we feel that our
presentation has some virtues of conceptual and technical simplicity. The usual
treatments use some combination of the following technical methods and
theorems: the two Hilbert space scattering formalism (Wilcox [30], Kato [15]), the
theory of uniformly propagative systems (Wilcox [30]), coerciveness estimates
(Schulenberger-Wilcox [25]), local compactness (Birman [4]), and Birman’s subtle
extension of the usual trace class criteria of Birman, de Branges and Kato (Birman
[4], Belopol'skii-Birman [2]). Of these ideas, we only use the two Hilbert space
theory, which, while not really intrinsic to the problem at hand (see the remarks at
the end of §2), is fairly natural.

Our main points are three in number. The first is that one can improve the
existing techniques for proving that differences of powers of resolvents are trace
class — these technical improvements are presented in two appendices, one of which
extends Stinespring’s famous trace class criterion [29]. Secondly, we extend Kato’s
two Hilbert space theory [15] to include the case under discussion. When Kato
specializes his theory to hyperbolic equations, he supposes that both equations are
on the same Hilbert space —the two Hilbert spaces come when one rewrites the
second order equations as first order equations. We allow two different base spaces.
This simple extension of Kato’s work is presented in §2. Our final point is
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connected with the second. Since one must rewrite the acoustic equations as first
order in time, it is natural, at first sight, to make them first order in space also.
Moreover, Maxwell’s equations are first order although they can, of course, be
rewritten as a second order wave equation. Our point is that it is better to keep all
equations as second order in the space variables. In the acoustical case, which we
discuss in § 3, this keeps everything strictly elliptic whereas rewriting them as first
order equations introduces a spurious static mode (i.e., the “dynamic equations”
include a constraint equation). In the optical case, Maxwell’s equations include
constraints — in our treatment of completeness, which appears in § 4, we are able to
deal nevertheless with second order strictly elliptic equations. For the static modes
completely decouple from the dynamic modes. Thus, we can give the static modes a
dynamics without effecting the dynamic modes!

It is a pleasure to thank M. Aizeman, W. Allard, P. Deift, T. Kato and E. Lieb for valuable
conversations or correspondence. This research has been partially supported by grants from the
USNSF.

§ 2. Scattering for Abstract Wave Equations

In this section, we describe some abstract results comparing two wave equations

ii; ()= — A, u,(t) (1)
u(0)=u®, i, (0)=0v\"

where A4, and A, are non-negative self-adjoint operators on different Hilbert spaces
A, and ;. Kato, in [15], considered scattering theory in the case #; = X;. Weare
interested in more general situations: in applications, #; and X, are setwise equal
but have distinct, equivalent inner products. Since the generalization of Kato’s
results are straight-forward, we only sketch the proofs. We follow Kato’s notation
and refer the reader to [15] for details.

In terms of the non-negative square root, B;, of 4;, one can write down the
solution of (1) as:

u(f) = cos(B; 1) uf” + B * sin(B; 1) v{” )

where B; ! sin(B, 1) is defined to be tI on N(B)), the null space of B;. If «{” e D(B),
v{9eD(B,), then u;(?) is twice continuously differentiable as a J;-valued function
and satisfies (1). In order to treat the scattering theory for (1), it is convenient to
reformulate it as a first order equation in t. Let v;=1; and ¢;={u;, v,>, where we
write column vectors as rows to facilitate notation. Then (1) becomes

%d’i =—iH;¢;, ¢(0)= <“§0), v (3)

where

(0 1
Hi—l(—Bf 0).
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We define [D(B;)] to be the closure of the domain of B;, D(B;), in the pseudo-norm
|| B; ully,, where we identify elements whose difference lies in N(B;) and set

H;=[D(B)] x A;.

Then 4, is a Hilbert space and H; is self-adjoint on [D(B2)] x D(B)). If U,(t) =e~"*#1,
then the first component of ¢,(t)=U;(t) $(0) is just (2). The details of this
construction are standard (see e.g. [15] or [22]), so we omit them.

Let [R(B;)] denote the closure of the range of B; in the //;-norm and let F, be the
orthogonal projection from J¢; to [R(B;)]. Let B; be the unitary operator from
[D(B,)] to [R(B;)] obtained by continuously extending B; from D(B;)/N(B;) to
[D(B,)].

Given any unitary V from J; onto J,, define an operator J: J#, -, by

J: {u,vy—<{B;'F,VB,u,Vv)
J is a contraction and J*: 5, > #] is given by:

J*: (w,x) (BT F,V-'B,w, V- 1x)
by an elementary computation. If the limits exist, we define wave operators from 3
to i, by:

Q*(H,,H,,J)=s-limU,(—1) JU,(t) B.(H,)

t—>F oo

where B (H) is the projection onto the absolutely continuous part of the spectrum
of H. As usual, we say that Q* are complete if RanQ* = Ran B_(H,). The operators
Q*(H,,H,,J) are somewhat artificial and are chosen to make the proof of the next
theorem easy. We will later discuss more physical wave operators. If it exists, we
define Q*(V~!B,V,B,) by:

Q*(V-!B,V,B,)=s-lime" " 'B:Vt g-iBitp (B.),

t— F oo
Notice that this operator maps ] into itself.

Theorem 2.1. Suppose that the wave operators Q*(V B, V, B,) exist (resp. exist and
are complete). Then the wave operators Q*(H,, H,,J) exist (resp. exist and are
complete), and are partial isometries.

Proof. The proof follows closely Kato’s proof for the case #; = &, and V =identity,
so we merely provide a sketch. The proof relies on the factorization

2
;7+32= (%——iB) (%+iB)

d
so that if u obeys ii= — B?u, then f, =i+ iBu obey Zf* = +iBf,.
To accomodate the null space N(B;) we decompose S, as

#;=[D(B)] x [R(B)] @ {0} x N(B)).
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(We caution the reader that x denotes Cartesian product and not tensor product.
The above formula looks more reasonable if one uses the isomorphism S,
x S,~8, @S, for vector spaces.) We make precise the f, decomposition above by
defining

T;: #,—[R(B)]x[R(B)]® {0} x N(B)
by

el e

1/§B.

(where the i factor in the matrix is }/ — 1 and not i=1 or 2!). Then by the calculation
above!
e‘”’“ 0
TUOT = (5 gL @

We propose to use the formula:
U,(-0)JU () B.(H,) ¢
=T,y (LU (=) Ty WLIT (T U T Ty Bo(Hy) 6. O]

Now by Lemma 8.1 of [15], T} P,.(H,) ¢ = {u, v) ® ({0}, 0) where u, ve P, (B,).
Thus, by (4),

T, Uy () T, P T, P (H,) ¢ =<e~Bi'u, &5 v> @ ({0}, 0).

On vectors of the form s=(w, z) @ ({0}, 0, one easily checks that
_ F,V 0\ (w\ (I-F)V [0 0) w)
1o 2 2

LJT s (0 FZV)(Z)+ /2 (—i i (z

so that, using (4) again, T, times the right hand side of (5) consists of components of
the form

e—i:Bz];vz VeitB, 0
or

e~ "By _F,)Vei'B1 g
where 0 is u, v or a linear combination of them. If (V' ~'B, ¥, B,) exist, then all
these terms have limits in Jf,. Since T, ! is an isometry from X, @® X, onto
{d’e‘%lq&:(“, U>, v-LN(BZ)}’ Qi(HZ’ Hl’ J) eXiStS.

We next claim that if @* (V ~! B, ¥, B,) exist, then J* isa (U,, +) asymptotic left
inverse to J, i.e. for a dense set of ¢:

(1 =J*J) Uy(t) P, (Hy) $ll ¢, 0. ()

Since J* is a contraction, (6) implies that |JU,(t) B(H)¢ |l , = | B(Hy) ¢l ¢, O
that Q%(H,, H,,J) are partial isometries with initial space B (H,). Moreover, by



The Scattering of Classical Wawes from Inhomogeneous Media 167

Theorem 6.3 of [15], (6) implies that Q*(H,, H,, J) are complete if and only if
Q*(H,, H,,J*) exist. Under these circumstances one can conclude completeness
knowing the completeness of Q*(VB, V~1, B,) for that completeness implies the
existence of Q*(B,VB,V~'), and so of Q*(V~!B,V, B,), and so of
Q*(H,, H,,J*) by the above argument.

We have thus reduced the proof of the rest of the theorem to the proof of (6).
Letting ¢, denote the first component of ¢ in the 5] representation, one computes
that the left side of (6) is equal to

II=F, V=" F, V) B,(Uy(t) Pue(H,) 9), |1,
so that it suffices to prove that
I ~F,(V =" F, V) e=i*%: 6] 4, -0 %)

for a dense set of 6 in P,.(B,). Since F;=V~'F, V is just the projection onto the
closure of Ran(V~!B, V) and since Q*(V~!B,V, B,) are assumed to exist, (7)
follows by an argument on page 359 of Kato’s paper [15]. [

In practice the existence or existence and completeness of Q*(V~'B, V, B,) is
established by proving existence or existence and completeness of Q* (V=14,V, 4,)
together with an appropriate invariance principle. Thus Theorem 2.1 reduces the
existence question for the complicated object Q* (H,, H,, J) to a question involving
objects on a single Hilbert space which in typical applications are just Schrodinger-
type operators (but with first derivative terms). These can be treated with standard
methods as we shall see. As pointed out by Kato [15], the identification operator J
is chosen just so that Theorem 2.1 will be easy. In practice, there are more natural
identification operators around and it is natural to ask about the wave operators
with J replaced by these more natural wave operators. Fortunately, one can say
quite a bit even on the abstract level.

Let us specialize our abstract formalism by adding an assumption that holds in
the applications in §3 and §4. Suppose that )] and X, are the same set with
equivalent inner products and that Q(A4,), the quadratic form domain of 4, as an
operator on J; is equal to Q(A4,) and that:

0=c,(u, A; W)y, S(u, Ay U)y, Sy (u, A; )y, (8)
that is:
i 1By ulz, SIByully, <c; 1By ully,. (89

(8) implies that [D(B,)] and [D(B,)] are equal as sets and have equivalent inner
products and thus the same is true of the spaces s, and 5, constructed above.
Under these circumstances, it is natural to use the bounded identification operator
I: 3¢, - #, and ask about Q*(H,, H,, I).

Theorem 2.2. Let A;, B;, X}, #,, H, (i=1, 2) be as described in this section. Suppose
that the wave operators Q*(V B, V,B,) exist (resp. exist and are complete).
Suppose that A} and X, are set-wise equal with equivalent norms and that (8) holds.
Suppose that 9 is a dense subset of Ran P,.(4,) in D(A,) ~ D(AT ") left invariant by
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B,, B7! and e*'®* 5o that for any we 9D, VweD(A,) N D(A,) and:
(I+A)(V=TI)etiB w0, ©)
(A, =V 14, V) et Biw—0 (10)

as t— +o0. Then

: iHt ,—iH;t
ts-l;me et P (H,)
- 0

exist (resp. exist and are complete).

Remarks. 1. Typically A, is second order homogeneous constant coefficient
operator and @ is the set of functions whose Fourier transforms have compact
support in R"~\ {0}.

2. We will have to work a little harder than we would have to if (9), (10) had
B, B, in place of 4, 4,. In applications, it is useful to have 4; since they are
differential operators rather than only pseudo differential operators.

3. Interestingly enough, there is a sense in which the problem is no longer a two
Hilbert space problem. For on 4, ¢#2' is a group of bounded operators — the wave
operators really make no mention of a second Hilbert space.

Proof. By Theorem 2.1, the fact that I and J are bounded and the argument on page
348 of Kato [15], we need only prove that

I(I=J) Uy(9) P,o(Hy) ¢l ¢, 0 (11)
as t — £ 00. Now, by the definition of || - || ,¢,:
I =J) Uy(t) ¢ 11, = 1 Bo(I = B3 * K, VB)(Uy(0) ), 11 2,
+I=V)UL(0) d), 1%,
where (U,(t) ¢), is given by (2) and (U,(t) ¢), =;_t (Uy(¢) );. Now, since 2 is
invariant under B, and BT !, (U,(t) ¢); is a sum of vectors of the form e***®: w with
we2. Thus (11) follows if we prove that:
I(I=V) e wly,—0 (12)
and
(B, —F,VB,) €% w| 4,0 (13)
as t— + 00. (12) follows from (9) and the fact that I + A, is invertible. To deal with
(13), we write it as
I(V=*B,~V~'F,VB,) é*® w,
SV B, V=V 'FVB) P wly + |V ! By(I-V) P wiy,.  (14)
The last term in (14) goes to zero by using (8) to bound it by ¢, | B,(I — V) €2 w|l,
and the fact that B,(I + 4,)~ ! is bounded which permits us to use the hypothesis (9).

Thus, we need only show that the first term on the right of (14) goes to zero. But this
term is bounded by
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I(V=1B, V=B,) et wlly, + (I~ V~'F, V) B, e w| .. (15)

Now I — V=1 F, Vis the spectral projection onto the kernel of B,=V ~! B,V on ;.
Since B, weP,.(B,) and Q* (B}, B,)=Q% exist we have

:llin HP(O)(B/Z) eP B, wl|= | Boy(B2) Q*(B,w)|
= P)(B}) B, * wl|=0.

So the second term in (15) goes to zero.
To prove that the first term in (15) goes to zero, we need (10) and a different
argument due to Kato [15]. We first note that by (10),

fim (1B e=/®t Pt wlZ, = Tim (¢ w, V=14, Veit),,
1=t t—+oo

=}i_m (eBr'w, A, €P'w),,
-
=B, wlz, =127 B,wlz,=1B;2" wiiz,
Since <u, B, e~iBat giBrt S (y, B, Q= w) for a dense set of u’s, it follows that
e~iBi B ety » B, Q- w=Q " B,w
in norm as t — + co. Since
e~iB B Bt w=e~ B0 ¢iBi' B w Q" B, w
we have that
(B~ By) €™ wl| = lle~3!(By — B,) €% w0
as t — +oo. Thus the first term in (15) goes to zero. []

To summarize, the basic estimates which one has to prove are:
(I) The inner products on ] and ¢, are equivalent. The form estimate (8) for
AL A,
(II) The estimates (9) and (10).

(I1) The existence and completeness of the wave operators Q*(V~'B, V, B,)
on X,.

Of course given the theorem of Birman [3], DeBranges [7] and Kato [14], (III)
follows from:

(III') (V= 'A4,V+2)~"—(A, +z)~"is trace class for some z>0 and some integer

§ 3. Acoustical Scattering

We want to construct a scattering theory for the pair of equations
u,=c Au, (16)
U, =c(x)? p(x) V- (p(x)~* Vu) 17
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with xeIR". In these equations, u(t, x) represents the difference between the pressure
at x at time ¢ and an equilibrium pressure. (16) governs the propagation of pressure
waves in an homogeneous medium with propagation speed c,. (17) governs the
propagation in a medium with a speed of sound c¢(x) and density p(x) which vary
with x. We assume throughout that

0<c3=Sc(x)Scy <, (18a)
0<p3Sp(x)Spy <o, (18b)

and that p(x)— p,, c(x) = ¢, as | x| - co. We will later add assumptions on the rate
of convergence and on the smoothness of p and c.

For this problem, it will be easy to verify the program (I)(I1I) stated at the end
of Section 2 once we properly formulate the spaces. Take ] =, = [*(R") with
the inner products

(1, V), =(c5 P0) ™ (th V) 2y

(4, V), =(u, (c(x)? p(x)~* V)2 ey
The operator 4, = —c2 4 on X, has quadratic form

q,(u, u)=(u, 4, u),,

=p5 Vi, Vit) 2 gy

with form domain H(R")={fel?|Vfel?}, with Vf being the distributional
gradient. If one defines a quadratic form g, with domain H! and

qZ(u’ U) = (Vus (P (x)— 1) VU)LZ(R")

then g, is the quadratic form on A, of a operator, 4, which is formally
c(x)? p(x) V-(p(x)~ ! V). There is clearly a natural choice for V a unitary operator
from ] to J,. Namely:

Vi u(x) > (c(x)? p(x)/cg po)''* u(x).

Now, we must check (I), (II) and (IIT').
(I By (18):

ci?patchpollul, SlulZ,<c5? p3t e pollulz,
and

P3P0 qs(th ) Sq, (1 u)Sp3 " po q4(u, 1)

so the basic estimate (8) holds.

The above calculations show the advantage of the formalism with J¢] + ;. We
are able to arrange all inner products so that neither p nor ¢ appears inside a
gradient so that inequalities like (7) become easy.

(II) To check (9) and (10), we use the fact that 4, and A, are differential operators.
Thus the terms on the left side of (9) and (10) can be written as a sum of terms of the
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form
f(x)e**Bs P(D)w (19)

where P(D) is a differential operator and f(x) is a product of terms of the form p(x)
—Pos c(X)—cq, p(x), po, c(x), ¢y OF their inverses or square roots or their derivatives
up to order two—moreover at least one factor of p(x)—p, or c(x)—c or their
derivatives occurs.

Let 2 be the set of functions in #(R") whose Fourier transforms have compact
support in R"~ {0}. Then e**8* P(D) w is a solution of the free wave equation so
that, as is well-known, |e**5: P(D)w| < Ct~®~ V250, if fel?, then (19) goes to
zero. Actually, more is true; by stationary phase methods (see e.g. Hormander
[12]), so long as f(x) is polynomially bounded

1A9I2so¢™+ | |Ifx)Pe-"-Dadx

ats|x|Sbt »

so that ||(19)]| goes to zero so longas | |f(x)|?dx—0 as |y |—oo. Thus
Ix—yls1

Lemma 3.1. Suppose that (18) holds and that p(x), c(x) are C? and that p(x) - p,,

c(x) = ¢q, D* p(x), D* ¢(x) =0 for all derivatives of order 1 and 2. Then the estimates

(9) and (10) hold.

(III') We must show that (V~'4,V+2)~*—(4, +2)~*is trace class for some k. By
the results of Appendix 1, (see Theorem A.2) it suffices to prove that (V='4, V
—A,)(A; +2z)~*1istrace class for some k and that V~*4, Vand A4, have the same
form domain. But since

(V=14 V)w=—(c(x)? p(x)"> (V- p(x)~! V) (c(x)? p(x))*/* w

is easily seen that V=14, V—A, is of the form f(x)4 +g(x)-V+h(x) with f, g, h
bounded if p, c are C? with bounded derivative. It follows that they have the same
form domain since 0<a<f(x)<B<oco. The relative trace class result follows
from the Theorem in Appendix 2 if we take k>%n so long as f, g, h obey
(L4 x2)"|f(x)* dx < oo for some m>n/2.

We have thus proven:

Theorem 3.2. Suppose that (18) holds and that p(x) and c(x) are C* and that the
functions p(x) —po, c(x)—co, D*¢, D*p (15 o, £2) obey (F stands generically for
these functions):

F(x)-»0 as |x]|—> o0,

fA+x*"|F(x)|*dx<co some m>n/2. (20)

Then the scattering operator for the system (16), (17) exists and is complete.

Remarks. 1. Results of this sort were first proven by Schulenberger and Wilcox [24,
25, 26].
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2. Deift [8] has used rather different methods to eliminate the smoothness
hypothesis on c, p.

The hypothesis (20) requires F(x) to more or less have | x| ~"~*fall off. While this
includes all cases of physical interest, it is natural from a mathematical point of view
to ask if | x|~"~*is really necessary. The answer is no. Kato [13] suggested using the
machinery of Agmon [1] and Kuroda [18, 19] (see also Reed-Simon [23]) to
extend Kato’s theory of two Hilbert space scattering. Following this suggestion:

Theorem 3.3. The conclusions of Theorem 3.2 remain true if (20) is replaced by:
[F(x)| < C(L+]|x[?)~12-¢ 21
for some £>0.

Proof. Steps (I) and (II) follow as above. The existence and completeness of the wave
operators Q*(V =14, V, A,) follow from the Agmon-Kuroda estimates (the easiest
way of realizing this is to use Lavine’s local smoothness theory [19A]; see Reed-
Simon [23]). Moreover, results of Hérmander [12] imply that, if Cook’s method is
used, the rate of convergence of the derivative of the wave operators is t = ~¢ so that
there is an invariance principle for Q*(V~14,V, 4,) by a general theorem of
Chandler and Gibson [6]. [

§ 4. Optical Scattering

In this section, we will consider scattering of electromagnetic waves by an
inhomogeneous medium which may even be non-isotropic. The basic equations
are, of course, Maxwell’s equations:

V-(e(x) E)=0 ah‘:-(ﬂ(X)H)=0 . @)
VxE=—u(x)E VxH-——-s(x)E.

Here E and H are three-vector valued functions on R 3 and &(x) and pu(x) are three-
by-three-matrix valued functions which we suppose are C2 throughout. Moreover,
we suppose that

O<esIse(X)Seyl; O<pzISu(x)Sp,l; all x. (23)

(23) is a basic restriction on the dielectric and magnetic susceptibilities required by
positivity of the energy

&(E, H)=[ [(E(x), e(x) E(x)) + (H(x), u(x) H(x))] dx. 24

Moreover, we suppose there are ¢, u, so that &(x) —é&,, u(x) — o g0 to zero at co.
We will specify the rate later. Of course, in most cases of physical interest, ¢, and p,
are multiples of the identity but there is no simplification in assuming this so we do
not.

We will see below that the proof of (I) and (II) of our program in §2 for this
situation is as effortless as in the acoustic case but completeness will require an
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additional trick and extra work. In most of the section we work with E; this will
mean that the convergence of the wave operators is in a norm not as natural as the
energy norm (&(E, H))!/2 — at the conclusion of the section, we explain how to use
magnetic vector potentials to remedy this defect.

Rewriting (22) as a second order equation in E, we obtain

E=—¢ 'V x(u ' (VxE)). (25)
We thus define #; and ., to be L*(R?)? with inner products

(E, F); ={ (E(x), &o F(x)) dx,

(E, F), = (E(x), &(x) F(x)) dx

and quadratic forms on ] and ¢, with form domain {EeL*(IR*)*|V x E€L?} by:

a,(E, F)=[(V xE, pg '(V x F)) dx,
4,(E, F)=[(V x E, u(x)~'(V x F)) dx.

(In order to check that (25) is indeed E= —A,E, we need to use A-(Bx C)
= —(Bx A)- C with B=V.) We define V: J#] —» X, by

(VE)(x)=¢(x)" Y2 &l/* E(x).

The formal structure of the above is very similar to the acoustic case, the only
change being that 4, and 4, now have non-zero kernels. Since we have been careful
to allow this possibility in §2, this in itself is no problem.

(I) As in the acoustic case, this follows from (23).

(II) As in the acoustic case, (9) and (10) follows from the fact that E()
=e*iBi P (B,)E, obeys a free wave equation so that ||E()||,, < Ct~ . Since the
free wave equation has some non-zero modes let us be more explicit. We can write
A, (k)=/?1(k) E(k) where A,(k) has one zero eigenvalue and two non-zero
eigenvalues, 1,(k) and A,(k), which are homogeneous of order two. Let e,(k) and
e,(k) be the corresponding eigenvectors in IR®. Then (P,.(B,) E) "has the form
f(k) e (k) +g(k) e, (k) so that

(etitBs Pac(Bx)E)"(k)=eil‘Vl_xl f(k) el(k)+eiiV/1—z_' g(k) e, (k)

and thus, if f and g have compact support in R >\ {0}, we will have | E(¢)|| , < Ct~!
by the usual method (see e.g. Reed-Simon [23]).

(II) As in the proof of (II) we could prove existence of Q*(V~14,V,4,)
directly and also the applicability of the invariance principle of Chandler and
Gibson. Since we wish to obtain completeness at the same time we will follow a
different route.

We define operators 4; on ] by the quadratic forms

4/(E, F)=q,(E, F)+[((V-y,E),(V-y, F)) dx
where y,=¢, for i=1 and y;=¢ for i=2. Now, in the ] inner product

Ker(A4)* ={E|V x E=0}*={E|V-y, E=0}.
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It follows that A, leaves Ran F,.(4) inv~ariant and that under the decomposition J;
=N(A4,)* ® N(4,;), we have 4,=A4,® A4, | N(4,). In particular,

B, } Ker(4,)* =B,. (26)

Next, we claim that (V='4, V+1)~2—(4, +1)2 is trace class if (23) holds, ¢,
and g, are C? with bounded derivatives, and if e(x)—&, and u(x)—u, go to zero
sufficiently rapidly as | x| — co. By Theorem A.2, it suffices to prove that (V =14,V
—A;)(A,+1)"3istraceclassand Q(V !4, V)=Q(4, +1). The latter equality is a
standard result that all second order strictly elliptic operators with asymptotically
constant coefficients define the same Sobolev space; see e.g. Gilkey [10]. (We note
in passing that the equality on Q’s is the “easy” estimate c,(V ' 4, V+ 1)< 4, +1
<cy(V~'4,V+1) and not the subtler estimate ¢, A,< 4, <c,4, which is true
if e —&4 has compact support but is much harder to prove.) The trace class estimate
follows from the results of Appendix 2 if e — ¢, tt — po, D* &, D* u all obey (20) so long
as we prove that (— 4 +1)*3(4, + 1)~ 3 is bounded. But this follows if we prove that
for all k and a in R3:

(kxa,u=Ykxa)+|k-eqal*=const |k|?|al?. (27

Since the left hand side is homogeneous of degree 2 in k and a, we need only check
(27) for k and a in the unit sphere. Thus (27) follows immediately so long as the left
hand side is not zero for k+=0=a. If the left hand side is zero then k x a=0 and
k-ey a=0.But k x a=0 implies that k is parallel to a whence k- £, a+0unless k or a
is zero. This completes the proof that (V~'4, V+1)~2—(4, + 1)~ is trace class.
We remark that (27) where ¢, is replaced by ¢(x) is used in the proof of the strict
ellipticity of V=14, V.

By the Birman-deBranges-Kato theorem, Q*(V-'B,V,B,) and
Q*(B,,V~'B, V) exist. We want to use this to prove that 2*(V~-!B, V, B,) and
Q%*(B,, V™! B, V) exist. Let W be multiplication by &5 /> &~ 1/2¢, so that VW,
which is multiplication by ¢~ ! ¢, takes Ker(B,)* ={E|V-¢, E=0} into Ker(B,)*
={E|V-e E=0}. By hypothesis, W—1 obeys (20), so for a dense set of vectors, E,,

lim (W—1)e*Bit E =0

t—+ o
so that s-lim(W—1) e*31*=0, Since Q*(B,, V-1 B, V) exist,
s-lim(W-1—-1) eiiV""zV':s-lim (W-1=1)etBiQ*(B, V-1B,V)
0.
Thus, the strong limits of
etitBiy—1g-tV"'BVp (y-1B, V) (282)
and

etV BaV p o-ithy P.(By) (28b)
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exists as t— + co0. But, by (26)
e~ "B P, (B,)=P,.(B,) e~ P, (B,)

and
eitvBav -t WE(B,)=¢'" B2V ! WE(B,),

so the " can be dropped in (28). Now we can again replace Wand W~! by 1 and so
conclude that Q*(V~'B, ¥, B,) exist and are complete.
We have thus proven:

Theorem 4.1. If ¢, u obey (23) and if e—eq, p—p,, D*e, D*u all obey (20) for
1=|a| =2, then suitable wave operators for the equations (22) exist and are complete.

Here “suitable” means that the natural identification is used and convergence is
in the topology of 4, i.e. B, E and E converge; equivalently ¥ xE and V x H
converge. Actually, one can arrange for the wave operators to converge in the
energy norm given by the square root of (24). For the map of {4e C®(R?)?|V ¢4
=0} to L*(R®)? given by H=pu"'(V x A) is onto a dense subset of the set of H
obeying V-(uH)=0. If we take E=A and solve A= —¢~ 'V x u~(V x 4) with
initial condition A obeying V-¢ A=0, then H=p"(V x A), E=A run through a
dense set of solutions of Maxwell’s equations. The wave operators for A are identical
on A’s to those constructed for E and the square of the norm of convergence for the
A’s which is [ (V x 4, u='(V x A)) +(e 4, A) is just (24)!

Appendix 1. Trace Class Properties of Differences
of Resolvent Powers

In this appendix, we prove a general result about trace class conditions on (H otV
+E)~*—(H,+E)~* and discuss applications to scattering theory. Let I , be the
trace ideal of operators with |4|P€.4,, the trace class, see [9, 11, 22] and let .#(#)
denote the bounded operators in

Theorem A.1. Let k be a non-negative integer. Suppose that H, is a positive self-
adjoint operator and that either

(a) Visasymmetricrelatively formbounded formwith relative bound smaller than 1
(ie. ||(Hy+E)~'? V(Hy +E)~'?| <1 for E large) and (Ho + 1)~/ V(H, + 1)~ *—1/2
is trace class
or

(b) Visa symmetric relatively bounded operator with relative bound smaller than
1(ie |V(Hy+E)~'| <1 for E large) and (Hy+1)~* V(H,+1)"* is trace class.
Then (Hy+V+E)~*—(H,+ E)~* is trace class for all —Eep(H) N p(H,).

Remarks. 1. For k=1, this result is well-known, see e.g. Kuroda [17] for (b) and
Simon [28] for (a).

2. In the proof and in Remark 3 below, we need the following complex
interpolation result, see e.g. Kunze [ 16], Goh’berg-Krein [11], Calderon [5], Reed-
Simon [22]: Let D be a dense subspace of # and let a(z; ¢, ) be defined for
é,¥eD, and zeC with 0SRez<1, so that:
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(i) a(+; ¢, ¥) is analytic in 0<Rez<1 and continuous in the closure for each
fixed ¢,y and a(z;-,*) is a sesquelinear form on D for each z fixed,

(ii) For yreal, there are bounded operators A(i y) and A(1 +iy)so thata(z; ¢, §)
=(¢, A(2) Y) for z=iy, 1+iy,

(iii) For some p, and p;, A(iy)e$, and A(l+iy)ef, for all y and
Sl:p(llA(iy)ll,,o, A1 +iy)ll,,) <.

Then, for each z, there is a bounded operator A(z) with a(z; ¢, Y) = (¢, A(z) ¥) so
that A(t+iy)es, with p; ' =tp7'+(1—1t) pg '. Moreover, this result remains true
if £ is replaced by Z().

3. In applications the following proposition is useful:

Proposition. If V(H,+1)~% is trace class, then (Hy+1)"PV(H,+1)~**# is trace
class for any B with 0<f=<a.

Proof. Let F(z)=(Hy+1)"**V(Hy+1)~**~) and interpolate. []

Proof of Theorem A.l. We give the proof of (a); that for (b) is similar. By
interpolating between

(Ho+ 1) 2V(Ho+1)"2eL(#),
and
(Ho+1)"12V(Hy+ 1)~ Y2 *eg,,
we conclude that
(Ho+1)"'"2V(Hy+1)" 2%, O<ask. 29)
Choose E so large that ||(H,+ E)~V2V(H,+ E)~'?|| =B <1. We claim that
(Ho+E)~Y?V(H+E)~*(H,+E)~'%eJ,. (30)
To prove (30), we expand
(H+E)"'=(H,+E)~'/?

: [i(—nf«HwE)-“z V(Ho+B) | (Ho+ B2
J

j=0
so that the operator in (30) has an expansion with terms of the form:
(Ho+E)~ "2 V(Hy+E)™" =1V ... V(Ho+E)~"~ 42 (31)
where n, + - +n,=k. Using (29) and |(Ho + E)~ "> V(H, + E)~*/?|| < B we see that
131l Sc B~ '

so that, summing the series, (30) follows. Since (H,+E)~Y*(H+E)*'? and (H
+E)~Y2(Hy+ E)'/? are bounded we conclude that (H,+ E)~Y2V(H+E)~*-1/2
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and (Hy+E)~*~"2V(H + E)~'/? are in .#, and so by interpolation,

(Ho+E)"*V(H+E)"*-1+%¢g, 1

IA

ask+ (31

=

and (32) then holds for all Eep(H) p(H,).
The result of the theorem follows from (32) and the expansion

(H0+E)—"—(H+E)"‘=i(HO+E)‘fV(H+E)"“1“. O
j=1

Application (Schrodinger Operators). Let Hy= — 4 on I*(IR") and suppose that any
one of the following conditions holds:

(@) VelZ={fl(1+x**?fel?} with a>n/2. V is Hy,-bounded with relative
bound smaller than one.

or

(b) V'2eI? with a>n/2. V is Hy-form bounded with relative bound smaller
than one.

or

(c) VeL' and for some a>n/2, (1+x%)*V is H,-form bounded with relative
bound smaller than one.

Then, the wave operators Q*(H, + V, H,) exist and are complete. For, in case (a)
(see Appendix 2),

V(Hy+1)"%e 4,
in case (b),
[(Ho+ 1)~ 12VYA[VY2(H,+1)""] e,
and in case (c),
[(Ho+ 1)~ "2V12(1 4+ x22][(1 +x2) -2 VY2 (Hy+ 1) "% e S,.

Thus, (Hy+ 1)~*—(H + 1) "*e.#, by the result above, so by a well-known theorem of
Birman [3], de Branges [7], and Kato [14], the assertion on the wave operators
follows.

We note that in low dimensions the classical result of Kuroda [17](VeL' nI*in
R ¥ improves the above. (c) is a slight strengthening of a result of Nenciu [20] who
uses a very different method.

For applications to optical and acoustical scattering, the hypotheses of
Theorem A.1 may not hold. The problem is that ¥ may not have relative bound less
than one since it will contain terms of the top order. Fortunately, ellipticity solves
this problem. We state a result slightly weaker than the best possible to make it
precisely what we need in the text.

Theorem A.2. Let H and H, be positive self-adjoint operators so that Q(H)=Q(H,)
and so that V= H — H, (defined apriori as a difference of forms) obeys: V(H,+1)~*~!
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is trace class. Then
(Hy+E)y *—(H+E)™*
is trace class for all —Eep(H)np(H,).

Proof. By the closed graph theorem, H and H,, define equivalent norms on Q(H,), so
for some a>0:

(¢, V) Sa(,(Ho+1) §),
1(, Vo) a(d,(H+1) ¢).
Let H()=0H,+(1—6) H so that for 0<0<1,

(@, Vo) sa(d,(HO)+1) ¢). (33)

Choose an integer N witha N~ <1, let 4,= H(i/N),and let N~ V= W. By (33), || (4,
+1)"Y2W(4,4+ 1)~ 12| <1. Moreover, by the hypothesis and the proposition
above,

(Ag+1) "2 W(Adg+ 1)+~ 112
is trace class. By Theorem A.1 and its proof
(A;+ 1) PW(A,+1)7*Y2 and (4,+1)F—(4;_,+1)7* (34)

are trace class for i=1. (34) is now established inductively for higher i so that (4,
+1)7F—(A4,+1)7* is trace class. [J

Appendix 2. A Trace Class Criterion

In this appendix, we prove an extension of a trace class criterion of Stinespring
[29] which we feel places it in its natural setting:

Theorem A.3. Let I (R™) = { f|(1+x%)*2feI?} with the natural norm. Suppose that
F and G are in L (IR™) with o.>m/2. Then F(—iV)G(x) is trace class with

1F(=iV) Gx)ll, ¢, Fll, | Gll,.

Remarks. 1. This theorem should be compared with the result that if F, GeI’(R™)
with p=2, then F(—iV)G(x) is in the trace ideal, .%, (see Seiler-Simon [27]).

2. Our original proof was natural but longer than the one we give below. This
proof was shown to us by M. Aiezeman and E. Lieb (private communication). T.
Kato has informed us that he too has found and proven Theorem A.3.

Proof. We first note that if H, Me [>(R™), then H(—iV) M(x) has an integral kernel
(2m)~"2 H(x — y) M(y), where V is the inverse Fourier transform, so H(—iV) M(x)
is clearly Hilbert-Schmidt. Writing

F(—iV) G(x)=[F(=iP)(1-4)"*(1+x%)~%?]- [(1 +x*7(1 - 4)=** G(x)]
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we see that the first factor is Hilbert-Schmidt since o >m/2. Now, since o>m/2, (1
— 4)~*/* is convolution with a function J(x) with J e I?. Moreover, since (1 +k2)~%2
is analytic in a strip, e**//2 J(x)e L? also. The second factor has an integral kernel (1
+x%)¥2J(x —y) G(y) so it clearly suffices to prove that

J+x2J(x—y)|> dx < C(1 + y?)=.

But, since J and e*l'2J are in I2,

[(l+x2)“|J(x-y)|2dx
ST+ +y)?P () dx
Sc[f A+ X2 )2 dx+ )7 § [T dx]
<const(l +y?)*

completing the proof. [J

Our original proof came from writing F(—iV) G(x)=ABC where
A=F(—=iV)(1—4)"?(1+x?)~%2,

C=(1—-4)""*(1+x3"2G(x),
B=(1+x%)"2(1—4)"%2(14+x?)~%*(1 — 4)*2.

A and C are Hilbert-Schmidt as in the proof. B is bounded. While this fact is both
intuitive and well-known (see e.g. Agmon [1] or Prosser [21]), a first principles
proof is not very short.
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