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We consider the analytic properties of Bioch Hamiltonians and their energy levels as 
functions of quasi-momentum k. Among other results are: (1) The only entire band is the 
trivial free electron parabola. (2) The only isolated singularities allowed are branch points. 
(3) In one dimension, no natural boundaries or logarithmic branch points occur. (4) The 
periodic attractive screened Coulomb lattice has a nondegenerate lowest band (i.e., the 
“direct gap” is strictly positive for all k). 

1. INTRODUCTION 

In this work, we discuss the analytic properties of the energy bands of Bloch 
Hamiltonians [13]. One of our main motivations is an attempt to extend Kohn’s 
elegant analysis [14] of the one-dimensional case to more than one dimension. In one 
dimension, one has available ordinary differential equation methods which go back to 
Lyapunov, Hamel 171, Haupt [9], and, in the physics literature, Kramers [16]. These 
methods lead to a simple implicit expression for the band energies E(k) as solutions of 

2 cos k = d(E), 

where A is the discriminant for the equation 

(1.1) 

-d2/dx2 + V(x) = E; O<x<b. U-2) 

These differential equation methods do not seem to extend to the multidimensional 
case and it seems natural to exploit the operator techniques which have been so 
useful in the consideration of other aspects of the study of nonrelativistic Hamiltonians 
[12, 19-211. 
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The operator theory background for -A + V with V periodic has been developed 
by several authors [2, 3, 18,21,23,27,29] and leads to the following formulation. 
Let f be a lattice in Iw3 and let V be a potential with 

V(x + b) = V(x); x E R3; b E 7. 

Then H = -A + V is unitarily equivalent to a direct integral described as follows. 
Let r be the lattice reciprocal to p, i.e., those k with k * a = 2m with n EZ for any 
a E p. Fork E UP, let H(k) be the operator on 12(r) 

H(k) = T(k) + V, (1.3a) 

(WV MP> = (P + k12 RP>> p E r, k E lR3, (1.3b) 

(V$)(P) = c w #(P - s), (1.3c) 
Pa- 

C(q) = I Q 1-l JQ exp(--iq . x) V(x) d3x, (1.3d) 

where Q is any basic cell for the direct lattice l? Obviously, forp, E I’, H(k) is unitarily 
equivalent to H(k +p,). Moreover, H is unitarily equivalent to the direct integral 
lz H(k) dk, where B is the Brillouin zone, i.e., {k 1 k is nerer to 0 than to any other 
point on r>. Band functions are just analytic eigenvalues E(k) of H(k). 

It is clear that H(k) can be continued to complex k just by letting k in (1.3) be 
complex. We can then study the analytic properties of the energy bands of H(k) by 
using the powerful tools of operator perturbation theory [12] and some of our results 
below are transcriptions of results from another problem in analytic perturbation 
theory; that of the anharmonic oscillator [24]. 

It is useful for comparison purposes to note what can be proved using differential 
equation methods in the one-dimensional case (normalized so that r = B). 

(1) One can analytically continue between any two bands (if some gaps are 
missing this must be suitably interpreted; see Appendix B). 

(2) The only points k where E(k) has a finite limit but is nonanalytic are square 
root branch points and at such points Re k E Z. 

(3) The only entire band function is a parabolic one. (1) and (2) (under un- 
necessary extra assumptions which we eliminate in Appendix B) are results of Kohn. 
We discuss (3) in Appendix B. 

The O.D.E. methods leave open the following which we prove in Section 6: 

(4) Natural boundaries do not occur under analytic continuation. 

We have nothing to say about (1) in the general case except for some handwaving in 
Section 2, but we can prove (3) in general and results related to (2). We establish (4) 
in the one-dimensional case. We also prove the ground band nondegenerate in some 
cases. (See Appendix C.) 
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We generally make two restrictive assumptions in our work below. First, we have 
little to say about intrinsic multivariable analyticity but rather restrict ourselves to 
the consideration of E(k, + ak), where k, , a E R3 and k E C. Typically we chose a E P 
the direct lattice. Second, we sometimes suppose that the x-space potential, V, is 
bounded. The latter hypothesis is known to be a restriction since P’ locally L2 is a11 
that is needed for --d + V to be self-adjoint on D( -d) and V locally in L3/2 can be 
accommodated using form methods. 

We have studied the problem of analyticity of band functions primarily for its own 
sake but we close this introduction by mentioning some possible “applications.” 

(1) Kohn [15] has used analyticity in studying magnetic interactions. 

(2) There is an indication of singularities in the complex quasi-momentum 
plane of some physical quantities (although we should emphasize that branch points 
can drop out of suitable sums over bands, e.g., Tr(H(k)-2)). 

(3) A WKB analysis can be developed [l, 321 which suggests that tunneling is 
enhanced between bands which can be linked by analytic continuation along a short 
path in the k-plane. 

2. COUNTING DIMENSIONS 

Many years ago, Wigner and Von Neumann [31] made a precise statement which 
they proposed gave meaning to the idea that the eigenvalue degeneracy “couldn’t” be 
accidental. They proved: 

THEOREM 2.1 [31]. In the (n2)-dimensional real vector space of n x n self-adjoint 
(complex) matrices, those with a degenerate eigenvaiue are a “surface” of real co- 
dimension 3. 

This theorem suggests that in three-dimensional solids, accidental degeneracies 
occur [lo]. In this section we examine similar situations with regard to cubic branch 
points and irreducibility of eigenvalues of A + AB whose A and B are self-adjoint 
II i< n matrices. Dimension counting can never prove or disprove a result, particularly 
when one counts in finitely many dimensions and is interested in the infinite-dimen- 
sional case. But it can serve as an indicator of what will be true unless some special 
mechanism is found. 

THEOREM 2.2. In the n2-dimensional complex vector space of n x n matrices, those 
with a degenerate eigenvalue are a complex variety of (compIex) codimension 1 (i.e., 
they are of real dimension 2n2 - 2). 

Proox It is a fundamental result of Galois theory [I l] that any symmetric poly- 
nomial of the roots h, ,..., X, of X” + a,X+l + *.. + a, is a polynomial in a, ,..., a, . 
In particular, nifi (hi - XJ is a polynomial D(al ,..., a,) (this is a standard function 
called the discriminant [6]). The coefficients a, ,..., a,, of the polynomial det(X - ZJ 
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for T a matrix and X a numerical unknown are polynomials in the tij . Thus d(t,,) = 
D(ak(tij)) is a polynomial in the tu which vanishes if and only T has a degenerate 
eigenvalue. Thus, these T’s are the (complex) zeros of a single polynomial and so a 
variety of codimension 1. a 

Remarks. (1) At first sight, this proof seems to apply also to the case where Wigner 
and von Neumann say the codimension is 3 not 1. It is true that the set. D, of self- 
adjoint matrices with a degenerate eigenvalue as a subset of the set, S, of all self-adjoint 
matrices is given by the vanishing of a single real polynomial. But this does not imply 
that D has codimension 1. To see what is going on, consider the case n = 2. 

T= a ( 
c + id 

c-id ) b ’ 

The condition for T to have a degenerate eigenvalue is det(T) = $[tr(T)]Z or equiva- 
lently, 

*(a - b)2 + c2 + d2 = 0. (2.1) 

In the self-adjoint case, a, b, c, d real, the single condition (2.1) yields three real 
conditions a = b; c = d = 0. But for complex numbers (2.1) defines a “surface” of 
complex codimension 1. Theorem 2.2 is easier to prove than Theorem 2.1 because the 
fundamental theorem of algebra allows one to measure codimensions in terms of the 
vanishing of polynomials. 

(2) Another way of understanding why Theorems 2.1 and 2.2 yield different 
codimensions is to remark that among those IZ x n matrices with a degenerate 
eigenvalue, those which are diagonalizable are a surface of (complex) codimension 1 
(i.e., total real dimension 2n2 - 4). These extra two real codimensions explain why 
there are two fewer dimensions in Theorem 2.1 then indicated by Theorem 2.2. 

(3) The point is that according to Remark 2, the “generic” matrix with a degene- 
rate eigenvalue has Jordan “anomalies,” i.e., is of the form 

T= A, = A2 . 

If S has S,, # 0 in the above basis, then T + 0rS has eigenvalues &(LY) so that h1 and h, 
are the two branches of a function with a square root singularity at 01 = 0. We have 
thus proved: 

COROLLARY 2.3. Among the 2n2-dimensional real vector spaces of pairs (T, S) of 
self-adjoint n x n complex matrices those with the property that some eigenvalue of 
T + 01s has a square root branch point is a dense open set. 

In fact, the complement is a union of “surfaces” of dimension 2na - 2 or less. This 
is a good point to explain what we mean by a “surface” of dimension k. S is such a 
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surface if there is a surface S, of dimension m < k - 1 (dimension of S, defined 
inductively) so that S\S, is a manifold of dimension k. 

THEOREM 2.4. In the 2n2-dimensional real vector space of n x n complex matrices, 
those with a triply degenerate eigenvalue are a surface of real codimension 4. 

Proof In terms of the notation of the proof of Theorem 2.2, 

i=l j.k#i 
j#k 

is a polynomial Lj in the coefficients of P. Both D(a) and D(a) vanish when and only 
when either P has a triple root of two double roots. It follows that the set of matrices 
with n - 2 or fewer distinct eigenvalues is a variety, V, of (complex) codimension 2 so 
that the set 7 of matrices with a triply degenerate eigenvalue is contained in a surface 
of (real) codimension 4. If T E 7 has a triply degenerate eigenvalue and all other eigen- 
values distinct, then T E V and so there is a piece of I’ through T which is a manifold 
of real dimension 2n2 - 4. But no matrices near T have two doubly degenerate eigen- 
values, so the piece of V through T is part of 7; i.e., most of T is a manifold of dimen- 
sion 2n2 - 4. By continuing this analysis we see that T is a surface. 1 ( 

Remarks. (1) This makes precise the notion that third-order branch points are 
unlikely. But it says that in general they are not too unlikely. That they do not occur 
in one-dimensional solids seems to be somewhat special and on the basis of Theorem 
2.4, we expect triple points to occur in solids for suitable three-dimensional potentials. 
We also expect such branch points for anharmonic oscillators with polynomial inter- 
actions of a suitable type. 

(2) The explicit example T(X) = A + AB with 

is of some interest. A and B are both self-adjoint but T(+i) are triply degenerate and 
the eigenvalues have a cube root singularity there. 

(3) The first remark illustrates the dangers of the Wigner-von Neumann 
philosophy. 

(4) One can show (R. Gunning, private communication) that the “surface” 
above is a variety in the technical sense [6]. 

Finally we consider the question of whether the eigenvalues E(A) of A + hB are 
values of a single analytic function. We first prove the weak but interesting 

THEOREM 2.5. Let & be the 2n2-dimensional real vector space of pairs (A, B) of 
self-adjoint matrices. Let 9 consist of these pairs (A, B) with the property that the 
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eigenvalues of A f hB are all the values of a single analytic function. Then J/&Y is a 
proper real subvariety and, in particular, 9 is a dense open subset of A. 

Proof. Let P(h, p) be an arbitrary polynomial of degree n in h and CL. The set of 
such P which can be factored as P,(h, p) P&l, p) in a nontrivial way is a variety in the 
set of polynomials; i.e., it is the zero set for some family of polynomials Q, ,..., Qii in 
the coefficients in of P. (This follows from the fact that such P’s can be written as a 
union of parameterized “curves,” the parameters being the coefficients of PI and P, .) 
(A, B) E &‘\9 if and only if the polynomial det(A + hB - p) is reducible, and so if and 
only if certain polynomials Q, ,..., Qli all vanish. This realizes &%“\3 as a variety. To 
see that it is proper we need only find some pair (A, B) E 9. Take 

As in Remark 2 above, A + XB has an eigenvalue with an nth-order branch point at +i 
so that the n eigenvalues are branches of a single analytic function. Thus 9 is non- 
empty. I 

We have not been able to identify precisely the dimension of &?\J but we make 
the following 

Conjecture 1. .&?\9 has codimension 2n - 2. 
Before explaining our reason for this conjecture, let us see what this suggests about 

band structure of solids. We claim that the natural restriction of a Bloch Hamiltonian 
to n x n matrices is to consideration of families of the form A + BO + XB, + X2 
where BO , Bl are fixed and A is an n-parameter famil’y. The B’s come from the quasi- 
momentum and A from the potential. If the n x n approximation is made by making 
x take finitely many values then A is clearly diagonal and so n-parameter; if we get 
the n x n approximation by makingp take only finitely many values, Vis convolution 
with something depending only on (k - m) mod n and so is n-parameter. In general, 
an n-parameter set will not meet a set of codimension 2n - 2 and this becomes more 
so as n increases! This numerology suggests that: 

Conjecture 2. For any (bounded) potential the eigenvalues of H(k) are different 
Reimann sheets of a single multivalued analytic function, with the proviso that 
obvious geometric symmetries must be taken into account. 

Let us now try to explain Conjecture 1. One way that a pair (A, B) can lie in A\4 
is for A and B to have a common invariant subspace S. The only way it can then 
happen that (A, B) E 9 is for the eigenvalues on S and Sl to be identical. The real 
dimension of & is 2n2. The dimension of all j-dimensional, S, subspaces is easily seen 
to be 2j[n -jJ (e.g., one can choose an O.N. basis for S in (2n - 1) + a** + 
(2n - 2j + 1)-dimensional ways, each j-dimensional space has a family of O.N. basis 
of dimension jz). Given S, the dimension of self-adjoint A with S as invariant subspace 
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is jz + (n -j)2 and similarly for B. Thus the dimension of (A, B) with a common 
j-dimensional invariant subspace is 

2j(n -,j) + 2j” t 2(n -j)2 = 212 - 2j(n - j) 

and so of codimension 2j(n -j). This is minimized by j = 1 and, in particular, 
,&‘\9 has a piece of codimension 2n - 2: i.e., codim(.J?\,Y) > 2n - 2. 

Let us try to explain why it is reasonable that the above case is the smallest codi- 
mensional piece of &\S. At a point of double-crossing, the generic possibility is that 
there is a square root branch point. Suppose that only double degeneracies occur and 
that at each such degeneracy there is either a square root branch point or a partly 
accidental degeneracy, i.e., analytic eigenvalues and projections at that point (this can 
fail to happen; see [ 121). In this situation (which is “generic”) if (A, B) E A\$, then 
the spectral projection for A f hB associated to the eigenvalues for a given irreducible 
part of det(A + hB - p) = 0 is an entire function approaching a spectral projection 
for B as h - E. It follows that it is constant so that (A, B) have a common nontrivial 
invariant subspace. For this reason, we make Conjecture 1. 

3. BEHAVIOR ON THE REAL AXIS 

In this section, we briefly describe the analytic behavior of the energy band functions 
over the real Brillouin zone. There are two kinds of possibilities about which one 
might worry a priori and such worries appear in the physics literature [30]: 

(a) Can a band have a loose end, i.e., suddenly stop? 

(b) Can “closed bubble” bands occur ? 

That neither of these things happens is a simple consequence of the Kato-Rellich 
theory, and it is useful to compare the simplicity and power of these methods with the 
weakness of results obtained in the attempts (e.g., [30]) to eliminate these phenomena 
using classical methods of analysis. 

Let us begin by picking a direction k, and considering the functionf(X) = E,(M,). 
Depending on whether a multiple of k, lies in r or not, H(xk,) is periodic in X or not. 
In any event, one has: 

THEOREM 3.1. Let V E L,“‘;(W) andjx h,k, , II. Then the nth eigenvalue ~,(hOkO) is 
the value at A, of an analytic fzrnction f(A) in a neighborhood, N, of (- CO, CO) so that 
f(h) is an eigenvalue of H(xk,) for all x E N. Moreover, for somefixed a and b (indepen- 
dent of n. h, , k,) 

and in particular, 

: df (h)/dh i < a + b ’ f(h)/ : h E R, (3.1) 

/f(h)! f  CehlAl, XE R. (3.2) 
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Remark. This theorem, in particular, eliminates possibilities (a) and (b) above. 

Proof. Since V E Lf!$ , we have the bound; 4 E P(r), k E W, 

(4% I v I $1 d 44% T(k) 44 + cd& $J (3.3) 

for since V is periodic, it is uniformly locally -L3j2 and thus by a bound of Strichartz 
[26] (see [19,21]) 

($4 v99 G 49% --d$v + 4$4 $1 (3.4) 

for # E L2(R3). One obtains (3.3) from (3.4) by passing to the direct integral decomposi- 
tion, noting thereby that (3.3) holds for a.e. k. By continuity it holds for all k E [w3. 

From (3.3) one finds that for suitable c, d, 

($3 T(k) ~9 G cKd, Wk) $1 + 41 (3.5) 

(by noting that H(k) > T(k) - / V / > (1 - E) T + c,). Now 

H(Ak,) = X2k02 + 2hk, *p + H(0) 
so 

Therefore 
2lA4, twa +\ < co + (54 WV 4)). (3.6a) 

Moreover, 
d”H/dh” = const for IZ > 2. (3.6b) 

From (3.6) it follows that H(X) is analytic family (of type B)) in the sense of Kato [12] 
so that by the general Kato-Rellich theory [12,21], one has local regularity; i.e., any 
eigenvalue E,(A,k) can be continued uniquely to X near h, (if degeneracies occur, this 
depends on the fact that H(h) is self-adjoint and X, is real). To be able to continue 
globally we need to know that (i) f(x) cannot go to infinity as h approaches a finite 
point; (ii) f(h) cannot have loose ends, i.e., if X, ---f A and&(&) is bounded then f&) 
has a limit which is an eigenvalue of H(hk). (ii) follows from the fact that H(Ak) has 
compact resolvent (see [24]). We prove more than this compactness in Appendix A; 
compactness alone is an easy consequence of (3.1), (3.3) and the compactness of 
(T(0) + 1)-l. (i) clearly follows from (3.2) which follows from (3.1). Equation (3.1) 
follows from (3.6) and the standard formula 

df@)ld~ = 61, W/d4 4 (3.7) 

(where H(X) 77 = f(h) q) and 117 I[ = 1. 

Remark. The proof of (3.1) is standard; see [12]. 
In part, the above arguments extend to complex A, but only in part. The germane 

facts are as follows. 
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(i) H(Ak,) is an entire function of type (b), so local continuation is possible 
module (iii) below. 

(ii) H(&) still h as compact resolvent so “loose ends cannot occur.” 

(iii) Since H(XL,,) is no longer self-adjoint, algebraic branch points can occur 
and indeed, we show they do occur in many cases. 

(iv) The proof above that f(h) is bounded no longer works because (3.7) no 
longer holds with a normalized 7, but is replaced by 

dfidh = b&b, (dfWV WV) 

with (v(x), 7)X)) = 1. In fact, at usual square root singularities df/dh will diverge 
(although only as j h - A, I-ljz. We use the phrase “no natural boundaries occur” as 
shorthand for the statement thatfis bounded as X varies; of course, such a statement 
also implies that no poles occur. 

We close this section with a few remarks on multivariable analyticity. For a one- 
variable problem, it is a theorem of Rellich [22] that self-adjointness for real A implies 
analyticity of eignvalues for real h even at level crossings: This comes from the fact 
that if f is a function with an algebraic branch point on the real axis so that every 
branch is real on the real axis, then the algebraic branch point has order 1, i.e., is 
really a point of analyticity. Rellich [22] gives the example 

with eigenvalues &(a” + p ) 2 ljz so that one can have singularities on the real axis in 
the multivariable case. In fact, such singularities are believed to occur in semicon- 
ductor energy bands [13]. 

We do have a conjecture to make about singularities in this case. 

Conjecture 3. Let E(h, ,..., A,) be an algebraic function defined near (O,..., 0); i.e., 
E solves an equation CL,, a,@, ,..., A,) Ej with aj analytic near zero. Suppose that all 
the brancjes of E are real for A,..., A, real. Then, there exists a family of analytic 
functions {xjk}, j < i, 0 < k < 191, such that 

where eachfi obeys hfzh,) = O(Z~~~) as z -+ 0 (k may depend on A,; e.g., f;,(h, , A,) = 
AI2 + A2* is allowed). 

Conjecture 3 would imply that only the Rellich type of singularity can occur. 
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4. BOUNDS ON THE REAL PART 

In a study of the analyticity of the anharmonic oscillator energy levels [24], a 
major role was played by Martin’s observation that in that case Im E(p) > 0 if 
Imp > 0. This is certainly not true for energy bands but a suitable replacement 
exists, namely: 

THEOREM 4.1. Let V E L$$!3) be cc periodic potential. Then for some V-dependent 
constant b and all k E FS: 

a(H(k)) C (z ) Re z 3 b - 1 Im k I”}. (4.1) 

ProoJ: By (1.3) for any 4, 

WA WY 44 = (#J, ff(Re k> 49 - I Jm k I2 II 4 II’. 

Because of (3.3) and (3.9, (4, H(Re k) 4) 3 b(& #I) so we have 

Ret+, f@) 4) 2 @ - I Im k l”>ll $ /12. 

Equation (4.1) now follows from the well-known result [20] 

o(A) c CL.Xnull{(~, A$) ( !( (b // < 11. (4.2) 

Actually, for the case at hand (4.2) is easy since H(k) has a discrete spectrum and 
A# = e$implies e = (#, A$) if jl * 11 = 1. 1 

COROLLARY 4.2. The energy band functions f(h) = l ,,(Ak,,) cannot have isoiated 
(single-sheeted) singularities. 

Proof. In the neighborhood of any poles or isolated essential singularity there are 
values with arbitrary large negative real part violating (4.1). fl 

COROLLARY 4.3. If an energy band function f(A) = E,(A~J has an algebraic 
singularity (i.e., isolated multisheeted singularity with a jinite number of sheets), the 
Pusieux expansion (expansion in (A - x0>“/“) has no negative terms. 

Proof. Same as for Corollary 4.2. [ 

5. ENTIRE BANDS ARE PARABOLIC 

As we have emphasized, Theorem 4.1 is an analog of the Herglotz property for the 
anharmonic oscillator. In this section, we mimic the analysis of isolated singularities 
at infinity for Herglotz functions [24] to prove that the only entire energy band func- 
tions are parabolic. The basic input result is 
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THEOREM 5.1. Let f(z) be a function analytic in D = {z i [ z 1 > R} obeying 
Re f 3 b - c(lm z)~; f(F) = f7). Then 

with a2 < c. 

f(z) = ; a,z, 
9,=--o: 

Proof. Since f has an isolated singularity, it has a convergent Laurent expansion 
f(z) = CT, a,z” with a, real. Thus 

Re f(reis) = f a/ cos no. 
-a 

(5.1) 

Moreover, we have 

Ref(reis) > b - cr2 sin2 0. (5.2) 

Multiplying (5.2) by the positive function (271-)-l (1 f cos(n0)) and integrating and then 
using (5.1) we obtain 

a, & $(a/ + a-,r-“) 3 -(const) 9. 

Taking the right choice of & and r + co, we see that a, = 0 for n > 3. 1 

This theorem clearly implies that if E, is an energy band function and f(A) = E, 
(Xk,) is entire for some k, , thenf(A) = ah2 + bh + c so thatfis parabolic. One would 
expect that only the free parabola is possible and we can prove this for suitable k, . 
Our proof is only one step past Thomas’ proof [27] that flat bands are impossible and 
is modeled on his proof (obviously our result implies his). 

THEOREM 5.2. Let V be a boundedperiodic potential. Let k, E F (the x-space lattice 
or direct lattice) and suppose that f(h) = E,(&J is analytic near infinity for some band. 
Then 

f(4 = (k, + J&J2 + U(1) 

for some k, E r (the p-space or reciprocal lattice). 

Proof. Without loss, we can suppose that k, lies in an integral basis for f since 
any k, is a multiple of such a basis vector. Thus {k . k, j k E r> = 27rZ. By 
Theorem 5.1, f(A) has an expansion ah2 + bX + O(1). The content of this theorem is 
that a = k,2 and b = 4wz, for some 12 E Z. Thus suppose that either a # k,” 
or b # 4wz. We show below that in that case 

IlG”Wo) - f(W II - 0; as X -+ co along a suitable path. (5.3) 

Equation (5.3) contradicts the fact thatf(h) is an eigenfunction of T(Ak,) + V, for 

(WW + V + = f0) 4 

5951110/1-7 
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implies that 

or jl VIIIl(T(hk,) -f(h))-l I/ 3 1, which implies that (5.3) cannot hold. Thus a proof 
of (5.3) under the hypothesis a # k,,2 or b # 47Tn shows by contradiction that this 
hypothesis is false and proves the theorem. 

T(hk,,) -f(h) has an orthonormal set of eigenvectors with eigenvalues E,(h) = 
(p+&J2-uah2-bbh-r-0(1/Q;p~P( r real). Clearly (5.3) follows from 

i:f 1 Im E,(h)1 --f co as X -+ KI suitably. (5.4) 

Now lettingp * k, = 2rrn, 

j Im E,(h)] = j Im h I j[(hn - p) + (2k,2 - 2u)(Re Q(>I. 

If either a # ko2 or ,9 g&Z, we can arrange for the inf in (5.4) to grow like c ] Im d 1, 
c # 0, by choosing Re X suitably. 1 

We conclude this section with a series of remarks about these results. 

(i) In particular, if V is bounded and c,(k) is an entire function on C3, en(k) 
must be one of the free bands. We expect that if this occurs, V must be zero although 
we only know how to prove this in the case of one dimension. 

(ii) For very special potentials in one dimension (namely, those with only 
finitely many “bands of instability”; see [3]), it can happen that a band function is 
analytic near infinity. The properties of d(h) tell us that such bands must look “free” 
near infinity. We presume that many such potentials also exist in three dimensions: 
again they must look “free” near infinity. 

(iii) If infinity is not an isolated singularity, it must be a limit point of singulari- 
ties which must be branch points in some circumstances (see Sect. 6). This infinite 
number of singularities should not be surprising since in the typical case f(x) is 
periodic so that one singularity in the basic period region yields an infmite number of 
singularities. 

(iv) The fact that no band functions are entire other than the trivial band 
function explains why no “elementary” exactly solvable band models have been found. 

6. NATURAL BOUNDARIES 

It is our expectation that energy band functions must remain bounded when con- 
tinued along bounded paths in the complex plane. As we have already described, this 
would imply that their only singularities are algebraic. Unfortunately, we are only able 
to prove this expectation in one dimension. Our proof is motivated in part by the 
ideas of Loeffel and Martin [17] in their study of anharmonic oscillators. We first 
note: 



BAND FUNCTIONS 97 

PROPOSITION 6.1. Let A(k) be an entire analytic family of operators with compact 
resolvents and let B be a bounded operator. Suppose that for each k, E C, there is a 
neighborhood N of k, andfor each E, E C a simple closed curve r surrounding E, so that 
r C @\a(A(k)) for all k E N and 

sup sup ;I B(A(k) - E)-’ I/ < 1. (6-l) 

Then, any eigenvalue e, of A(k) + B can be analytically continued along any curve with 
the only possible singularities beingjnite algebraic branch points. 

Proof. By general arguments [24], it suffices to show that the eigenvalue cannot 
diverge as it is continued along a curve y(t). Suppose the contrary so that as y(t) ---f k, , 
some eigenvalue e(k) diverges. Pick to so that for t = to , y(t) is in the neighborhood N 
of the hypothesis and let E,, = e(r(t,J). Then, since (6.1) holds, (A + B - E) = 
(1 + B(A - E)-l)(A - E) is invertible on r, so e(r(t)) must lie with I’ for t > to . 
It follows that e(r(t)) cannot diverge as y(t) -+ k, . g 

Remark. It is criticial in the above that N be independent of E. 

THEOREM 6.2. One-dimensional periodic systems with bounded potentials have band 
functions without natural boundaries. 

Proof. By periadicity we need only consider the region 1 Re k 1 < 4. We use 
Proposition 6.1 with A(k) = T(k) - ck2 and B = I/. Pick the period and c so that 
A(k) has eigenvalues 

e:)(k) = n2 + 2kn. 

It is easy to see that the eigenvalue with real part closest to e:‘(k) is one of e$)n*+Jk) 
and that at most one of them is within n of Re e:“(k). Thus the real parts have gaps in 
the spectrum of order n. Choosing N a small neighborhood of k, and using the fact 
that / e,(k) - e,(k,)I = 2(k - k,) n we see that given any E, there is a curve I’ to go 
with E in I’ and (within the gaps) 

Thus (6.1) holds. 1 

Remarks. (1) V bounded is not necessary. Since the gaps are of order (eco)(k))lla, 
it suffices that V be (T(0))‘i2 form bounded with relative bound zero. For example, 
V E L:,+,‘(R) and periodic will do. 

(2) If one looks at T(O) for a two-dimensional cubic lattice, one finds arbitrarily 
large gaps for the simple number theoretic reason that the sums of two squares have 
density (In n)-’ [8]. Thus at first sight our argument will extend to this case also. Alas, 
variations with k are still of order (E,J112, overwhelming the In E, gaps! 
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(3) Since E(k) is given by solutions of the equation d(E(k)) = 2 cos k, one 
would think it easy to prove that no natural boundaries occur, for “surely” inverse 
functions of entire functions cannot have natural boundaries. This “surely” statement 
appears to be false (J. Fornaess, private communication). 

APPENDIX A: TRACE IDEAL PROPERTIES OF RESOLVENTS OF BAND HAMILTONIANS 

Recall [25]: 

DEFINITION. The singular values p,(B) of a bounded operator, B, are the eigen- 
values of I B 1 = (B*B)li2 ordered p1 3 p2 > .... B is said to lie in the weak trace 
ideal Y&p > 1) if and only if 

Here we note [2]: 

THEOREM Al. If V E Lag is periodic, the Bloch Hamiltonians, H(k), have 
resolvents in Sv and in no smaller X&’ or .fP space. 

Proof. T(0) has a resolvent in 9% since its nth eigenvalue goes as n+?-j3. Thus 
T(0) + V has the same property, since by (3.3) 

(T(0) + V + h)-l = (T(0) + x)-1/2 (1 + (r(O) + A)-“” V( T(0) + +1’2)(T(o) + A)+’ 

and (T(0) + h)-1/2 E Yw3 and we have weak Holder inequalities [25]. Since T(k) - T(0) 
is T(0) form bounded, the same argument shows that (T(k) + V + Q-l E $y”. If this 
resolvent were in some smaller 9,P space, we could turn the above around and prove 
that T(0) is in this smaller space. g 

APPENDIX B: THE DISCRIMINANT AND THE ONE-DIMENSIONAL CAKE 
(FOLLOWING KOHN [14]) 

We want to provide here a quick proof of Kohn’s result [14] that in the one- 
dimensional case only square root branch points occur and that, if all the energy gaps 
are present, the bands are the value of a single multivalued function. We do this 
partly for the readers’ convenience, and partly to present an alternative proof (follow- 
ing a suggestion of Trubowitz) of one of Kohn’s main input lemma: 

LEMMA Bl. The discriminant, A(h), for any one-dimensional problem with periodic 
L&,, potentiai has the property that A’(A) only vanishes for h real with j A( Z 2 and 
all such zeroes are simple. 
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Proof. d(X) has only real zero and h, < X, < ... (since d(h) = 0 implies that X is 
an eigenvalue of H(7r/2)) and is entire of order 4.. Thus by Hadamard’s theorem [28], 

(if some hi 

so 

4v = c fj (1 - h/h,) 
i=o 

0, 1 - h/X, is replaced by X) with 1 h;’ < co. Thus 

Ll’(h)/d(A) = i; (A - X,)-l 
i=o 

Im[d’(h)/Ll(h)] = (Im X) f 1 h - Xi 1-l. 
i=O 

It follows that d’(X)/d(X) has all its zeros on the real axis and all these zeros are simple. 
That / d(h)\ > 2 is required if d’(h) = 0 is a consequence of the fact that the zeros are 
simple and that d(X) is strictly monotone in intervals with / d(x)1 < 2 (e.g., [21]). 1 

Given this lemma, we see that locally d-l can only have square root branch points. 
By Theorem 6.2, it has no other singularities. Thus 2 cos k real and 1 cos k 1 > I 

imply Re k == 0, +r,.... 

THEOREM B2. If V E L&,(R) is periodic, the band functions are continuable along 
any path with only square root branch points occurring. These can only occur at points k 
with Im k f  0, Re k = 0, $7 ,.... 

Suppose all gaps are present, i.e., d’(h) = 0 implies 1 d(h)1 > 2, not just 22. Then 
at such points 2 cos k has a nonvanishing derivative so that at such ho’s, e(k) = A, has 
a square root branch point with nonzero fractional terms in the Pusieux series. If we 
follow a path around such a branch point we go from one root of d(h) =:: c to the 
other. Thus following a path in k so that 2 cos k runs along the curve 2 cos h- = d(X) 
(X E (-- 03, co,)) with excursions into complex cos k only to get around the branch 
points, we run through all energy bands. (see [14, Fig. 41). 

APPENDIX C: NONDEGENERACY OF THE GROUND-STATE BAND 

The modern approach to proving the nondegeneracy of the ground state is based on 
theorems of Perron-Frobenius type. (This idea was first developed by Glimm and 
Jaffe [5]; see, e.g., [21] for a full discussion.) The ground state of H is the largest eigen- 
value of e-H so that one tries to prove that this is an operator with a strictly positive 
kernel, i.e., if #(x) 3 0, then (e-“4)(x) > 0. Since this approach works for genera1 
Schriidinger operators, it certainly applies to those with periodic potentials. The result 
is that H(0) has a nondegenerate lowest eigenvalue. In general, not all H(k)‘s will 
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have that property, e.g., if V = 0 in one dimension and k = frr. But we wish to point 
out that for an interesting class of v’s each H(k) has a nondegenerate ground state. 

THEOREM C 1. Let V be aperiodic potential whose Fourier ‘Ltransform” G(q) given by 
(1.3d) obeys: 

(a) d(q) < 0 all q. 

(b) {q I d(q) # O> contains a basis of the reciprocal lattice, r. 

Then, for any k E p, in the Brillouin zone, the smallest eigenvalue of H(k) is non- 
degenerate. 

Proof. Think of e-H(k) as an operator on Z2(I’) in the form (1.3). It suffices to show 
that it is positivity improving, i.e., e-H(k) (p, p’) > 0 for all p, p’. Now by a standard 
argument [4, 211 it suffices to prove that (e-“)(p, p’) > 0 since e-ro’) is a positive multi- 
plication operator. Now, expanding the exponential, it suffices to show that (- V)” 
(p - p’) > 0 and > 0 for some n. The > 0 follows from (a) and the > 0 from (b). 

EXAMPLE. The periodized attractive Yukawa (screened Coulomb) potential 
VW = -L/c?. e-@ls-7JI[x - y/-r obeys the hypothesis of Theorem Cl. 
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