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We study the small A behavior of the ground state energy, E()), of the Hamiltonian
—(d?/dx?®) + AV(%). In particular, if V(x) ~ —ax~? at infinity and if [ V(x)dx < 0, we
prove that (—EQ)Y/2 = —[%/\ + ar?ln A] fde(x) + O(A?),

1. INTRODUCTION

It is well known that a sufficiently shallow square well in three dimensions will not
bind. By contrast, in one or two dimensions, there is a special situation, due essentially
to an infrared divergence, in which an attractive short-range potential always produces
a bound state no matter how small the coupling. For the case of the one-dimensional
Hamiltonian

H = —(d*dx? + AV(x)

Abarbanet ef al. [1] derived a formal series for the ground state, E(A), for an attractive
I of short range of the form

(—EQ)M? = — A f dx V(x) — 2 f dedy V(x) | x — y 1 V(y) = 0. (L)

This situation was further studied by Simon [2] who proved that so long as
Jdx V(x) < 0,and [dx(1 + x2) | ¥(x)| < co, there is a unique bound state for small
A and its energy is given by (1.1). It was also shown that if [dx e?!*!V(x) < oo,
then (—E(A)))1/2 is analyticat A = 0.

[n this note we wish to consider the case where V(x) is of sufficiently long range that

f dx(1 + x?) | V(x)| = oo.
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There are three cases to consider with

V(ix) >~ —ax™* (1.2)

as x — 00,

(A) If2 < B < 3, then a simple modification of the argument in [2] allows one
to prove that (1.1) is still valid.

(B)If B =2, there is still a unique bound state for small A so long as
[dx V(x) < 0. However, if this integral is nonzero, then (1.1) is not valid because
the A2 term is infinite; there is, in fact, a A% In X term which we explicitly isolate. The
situation here is reminiscent of some recent work of Greenlee [3, 4] and Harrel [5]
who study perturbations of the operator (—d?/dx?) by potentials with x~ singularities
at the origin on the interval [0, o] or (—(d%/dx? + x?) on the interval [0, co] with
#¥(0) = 0 boundary conditions. If y > 3, then first-order perturbation theory is
infinite but there is an explicit A%, g = (y — 2)~* leading term if y > 3 and a A1n A
leading term if y = 3. Harrel also considers situations in which the first-order term
is finite but the second order is infinite; for example, if y = 2.5, there is a
aA + bA%In A + O(A*) behavior analogous to what we find in the 8 = 2 case.

(C) If 1 < B < 2, then there are infinitely many bound states for any A > 0
in one and three dimensions. One may ask in this case if there is any difference between
the one and three-dimensional case as there is for a short-ranged potential V(x).
In fact, there is a difference; all the bound state energies in three dimensions and all
but the ground state in one dimension are of order A*, & = 2(2 — B)~1, as A approaches
zero from above. The ground state energy in one dimension is special in that it is
of order A%, One still finds that

(—EQ)2 = — 3 J dx V(x) + O). (1.3)

We shall not consider the case 8 = 1 or 0 < 8 <C 1 although on the basis of the
work by Greenlee and Harrel and our case (C), there is a natural conjecture: At
B = 1, all states but the ground state are of order A%, while the ground state is of
order A%(In A)%; for 0 < B < 1, all states are of order A%, h = 2(2 — )~ and the
ground state is of order A9, g == 2(3 — 25)~.

The outline of this note is as follows. In Section 2, we consider, for motivation,
the special case V(x) = —}(| x | + d)~% which is solvable in terms of Bessel functions.
In addition to verifying our general results for 8 = 2 (see also formula (4.2)) and small
A, we check explicitly a curious behavior at A = 1; for A < 1, there is only one bound
state, while for A > 1, there ate as infinite number. Such a behavior was proven in
general for 8 = 2 potentials by Simon [6]. In Section 3, we consider the cases (A),
(C) and certain general features of (B) as defined above, and in Section 4 the A%In A
term in case (B) is explicitly isolated.
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2. AN EXAMPLE

In this section we shall discuss the potential
AV(x) = —3Mi x| +d)7? (2.1
and the solution to the Schrddinger equation
" (x) + [k — AV ()] (x) = 0.

The outgoing wave solution for positive x can be written in terms of Hankel
functions [7]

$.(x) = Tk(x + d)* HVk(x + d)], (2.2)

where T is constant and v = 3(1 — A)'/%. The solution for negative x includes an
incident plane wave and a reflected wave at infinity and is written

$(x) = (k(d — XN {HPk(d — x)] + RH k(d — V)], (2.3)

Matching boundary conditions at the origin yields a reflection coefficient, r, and
a transmission coeflicient, ¢, of the form

F == Re%ite—im(r+1/2)

— TeZizeiﬂ(H—l/Z)’
where z = kd and
T = 4ij7D(z)

R =T — HP@)/H()
and

D(z) = (dld2)[z(HP )T (2.4)

The eigenvalue condition is equivalent to the vanishing of D(z) for z pure imaginary
and in the upper half plane. Defining z = iy, it becomes

wdldy) K(y) = —3K,( ). 2.9

where p = d(—E(A))'/? and recall that v = (1 — A)1/2 where K,(y) is a modified
Bessel function of the second kind related to H;"(z) by K(y) == (mi/2) exp(imy2) «
HM ().

For 0 <A <1, there is always one solution to (2.5), as can easily be seen by
considering the limiting behavior of both sides of this equation. For small ) it is
convenient to expand K,( y) as

K = 5 Tw) (L) 1+ F_I(,(iy)ﬂ (Z)] + o0
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and the eigenvalue condition can be expanded as

2v = tanh[y In(2/y)] + O(») (2.6)
or
y=4%—v[1 — (3G —»)In4/y*] + O[3 — v)].

This can be rewritten in the form
(—EN)12 = — }[A + 2aX2 In A] f dx V(x) + 0(W), 2.7)

where a = }. We shall return in Section 4 and derive this expansion for a more
general class of potentials that behave as —ax~2 for large x.

If A is larger than one, then one sees that the index of the Bessel function becomes
complex. This introduces an oscillatory behavior and profoundly affects the spectrum.
If A is only slightly larger than unity, then a simple expansion is possible for small y.
Defining v = 6, then the eigenvalue condition (2.6) becomes

26 = tan[8 In(2/y)] + O(y). (2.8)

There are therefore an infinite number of bound states for A > 1, and their energies
are geometrically related for weak binding.

3. GENERAL CONSIDERATIONS

Throughout this section we shall consider the family of operators H defined earlier
with

f dx | V(x)| < oo, (3.1)

and will often add the condition

j dx | x|” | V()| < o (3.2)

for some y > 0.

The discussion in Ref. [2] assumed Eq. (3.2) with y = 2, and it is our purpose
to extend the class of admissible potentials. We note that if ¥(x) ~ —ax™* for large x,
and (3.1) holds, then (3.2) will also hold for y =8 — 1 — € for any € > 0. Under
condition (3.1) two results carry over from Ref. [2] (Propositions 2.1 and 2.2);
namely, £ = —ao2 with o > 0 is an eigenvalue of H if and only if

det[l1 4 AK,] =0 (3.3)
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where K, is the integral operator

K{x, y) = PV 2 expl—ax L x — v i) PLA(y), (3.4)

s
2
and V12(y) = | V(p)'* sign{ V(y)). Moreover,

d?

H= e

T+ AV(x) 2= cA
for some ¢ and all small A. Thus one needs only look for solutions to (3.3) with

0 < oA < (cA)'2 for amsll A
It is convenient to decompose K, into two sets of integral operators

K,=0,+P, =L, +M,.

First,

Qulx, y) = 7]’ e E L V()12 eV y),

¢4

(3.5)
Py, y) = % V) [emi=ls sinh o) x ] VEE(Y),

where x|, =0if xy < O0and | x|, = min}xj, |y otherwise; | x | = max | x ..
Iy .. Second,

1 / /
Lof(x, y) = 5 | VX2 V().
(3.6)
M.(x.7) = '2151 V(x)[1/2 [emle=vl — 1] VI3 y).

In Ref. [2], the latter decomposition was used since it results in a simpler implicit
equation for « as deduced from Eq. (3.3) than does the former decomposition (com-
pare our Eq. (3.8) with (9) of Ref. [2]).

The advantage of the 0, , P, pair is that it is more convergent. As « — 0, the factor
in brackets of Eq. (3.5) approaches | x [ rather than a factor of 3| x — y| as in
Eq. (3.6). For fixed y, the latter approaches % | x | for large x whereas for the former
|xc—0or;yjas|x|— co. Therefore P, is less singular than M, .

We emphasize that P, is very natural, it arises from replacing the Green’s function
in K, by the Green’s function in which a zero boundary condition is imposed at the
origin. The fact that when Eq. (3.2) holds with y = 1, then det(1 + AP,) = 0 has
no solutions for A small is intimately connected with Schwinger’s proof [8]
of Bargmann’s bound [9].

In order to bound P, independently of x, note that the elementary inequality for
x >0

x~1sinh x < cosh x < e”
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leads to
| P06, )] EVOOIME | x [ | V(D)2 < x V()2 | yV(p)|12 (3.7
so that by letting
Pylx, y) = | V)2 [ x [« VIA(p),

we have by the dominated convergence theorem
fdxdylPa — P20

as o — 0 so long as (3.2) holds with y = 1. With this result, one can now mimic the
proofs of Theorems 2.4 and 2.5 of Ref. [2] and obtain

THeOREM 3.1.  Suppose that (3.1) holds and that (3.2) holds with v = 1. Then H
has at most one negative eigenvalue for A small and this occurs if and only if
Jdx V(x) < 0. If this condition holds, then o = (—E(X)'/? is given by the implicit
condition (expand the determinant using the fact that Q, is a separable integral operator)

& = —3Xe IV (1 + APY e=ivl| V(y)[172) (3.8)

and, in particular, Eq. (1.1) holds. This immediately extends the results of Ref. [2)
from x—3—< potentials to x~* < potentials.

To understand and to anticipate our next result, suppose that V{(x) = V(—x)
and V ~ —ax—*f at infinity. If ;, and. ; are two bound states with energies E, << E, ,
then it is possible to find a linear combination ¢(x) on (0, o) that vanishes at the
origin. Therefore,

B " dx 09 > [ ax [P + W) )

As is well known, if ¢(0) = 0, then [10]

[Tax@nr =3[ dx g0 x,
0 1}
so that

EO = min(Gx—? + AV() ~ —A7

where g = 2(2 — B)"1 if B < 2. Thus one expects that all bound states except for
the ground state will have energies that behave as A whereas the ground state energy
will be 0O(2%).

THEOREM 3.2. Let V obey (3.1) and (3.2) for some y, where 0 < y << 1; then there
is a constant C so that at most one bound state occurs with an energy smaller than
—CX, b = 2(1 — y)™, for amsll A. Such a bound state will exist if [dx V(x) <0,



ONE-DIMENSIONAL QUANTUM HAMILTONIANS 75

and in that case its energy, E(A), is given by Eq. (3.8) with o = (—E(ANW'/2. In particular,

(—EQ)2 = — 1A J dx V(x) = OV ), (3.9)
Proof. Since
e—a‘u‘\> sinh a | x < }e—u(\,ri/—‘.r‘() < L.
then
| P 1) < e | V)M V()
2x

Recalling the bound on | P, | given by Eq. (3.7), one has for 0 <C 8 < 1

1 1-8 N
[P 9 < () o0 VPR [ V(.

Therefore, the Hilbert-Schmidt norm for P, , choosing 6 = y, is bounded by
P Wins < @yt [ dy x il V()

it now follows that if A|j P, llys < I. or equivalently
h
EQ) < — 411 [ [ dx it ] (3.10)

where i = 2(1 — y)~%, then (1 + AP,)is invertible and thus for such « and A, Eq. (3.3)
has a solution if and only if (3.8) has a solution with o > 0. Then £ = —a2 is the
unique eigenvalue and satisfies the inequality (3.10). The result now follows by
mimicking the arguments given in Ref. [2].

The O(A'#¥) error comes from

Error = — IMe =BV x), [(1 4+ AP) L — 1] | ¥ 32 iy
— 3\ [ dx V(x)e=ts — 1),
The first term in the error is of order A%|| P, |lys == O(A2a*1) = O(A¥) since o = O()).

By using (e™*1®l — 1) <C (x| x|V, the second term is also seen to be of order
O(Ax?) == O(AItY),

4. THE SECOND-ORDER TERM FOR B8 = 2 POTENTIALS

In this final section, we will consider potentials that behave as V' ~ —ax~? at
infinity. For later convenience we will decompose ¥ as

V(x) = Vi(x) + Vy(x) (4.1
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where

Vi(x) = —a(l + x®)1
and demand that

f dx | x M| Vy(x)l < o (4.2)
for some & > 0. It will be proved that if [ dx V(x) < 0, the ground state energy obeys
(—EQ)2 = —[1A + aAtIn A] f dx V(x) + 00%). 4.3)

To motivate this result, consider the direct expansion of the determinant, Eq. (3.3);
after some slight manipulations one finds to second order in A,

w= =g M [ar v+ g [Td - e [T v vix+ 2

The small « limit of the second term depends upon the large z behavior of the con-
volution integral between two ¥”’s. One estimates that

f dx V(x) V(x + 2) ~ [V(2) + V(—2)] f dx V(x)

and for even potentials one finds
[ “dz (1 — e ) V(z) ~ —2aa In « + O().
0

Now by noting that « = O(}), the expansion (4.3) immediately follows.
In order to prove this result, let us return to the eigenvalue condition (3.8) and using
Theorem 3.2, where y = 1 — € for § = 2, one has

= — B [ dx V() e iE e IR P VIR ) 009
(4.4)
- — 1) J' dx V(x) e~2iel 1 LIX2(V12 P, | V |U2) + O(X*).

Now the second term is most easily estimated by using the relation P, = M, +
(L, — @.), and one has

IRV, (Ly — QI I V)
— — ¢ [ dxdy V() V(e™iel — Do + O
= A [ dx Ve — DIA/)x + 009 + 009

= f dx V(x)(e==l — 1) + O3~
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Thus Egs. (4.4) achieve the form

r= - A f dx V(x) + 2V, M, V12

EREDY [ dx V(x)[2eoler — el 1] - O(NF), (4.5)

This result shows the advantage of using the P, , Q, decomposition, becuase if one
had instead used M, and L, directly, the third term in (4.5) mught have been missed
by assuming that A3(F1/2, M, 2, | V [*/2) is of order A*~<. However, we shall see that this
term contributes to order A2 only and does not contribute to the A> In A term that we
wish to isolate.

Introducing the Fourier transform by

i) = m | dx g(x) e .
then we find that
Vilk) = —amp el
and V, is continuously differentiable with
| Valk) — Volk) < 1k — k12
and hence by Taylor’s theorem with remainder
Vik) = V(0) + a2l 2 | ki + ck + Ok1+9). (4.6)
Now using the fact that the Fourier transform of exp(—b| x |} is (27)1/2 2b(h2 +-k2) %,
the third term in (4.5) becomes

5 _[' dk [P(k) — PON2m) 172 daf(k2 — o2) — (k2 - dad)1]. (4.7)

The contribution to the integral in (4.7) outside the region (—1 = k < 1) is eastly
seen to be of order Ao® = O(AY). From this region itself, one sees that the ck term
in (4.6) contributes zero and the O(k'*%) term contributes of order Aal*1/%
O(A2+1/2%) Finally the | k| term yields (neglecting O(A%) terms) Aaxin4d = O(A%).
As claimed, this contributes a term of order A2 to a.

The second term in (4.5) is

2

A
A ( dx dy V{(x) V(y)e=lz—« — 1),

which can be written as

322 [ dk (k2 + @)1 [ PR — | PO)R). (4.8)
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Using the expansion (4.6), we have

[ V(k)2 — | V(0))2 = 2 Re[V(O)(V(k) — V()] + | V(k) — P(0)2
= aQm)'2P(0) | k | + c'k + O(k1+9).

Thus Eq. (4.8) is estimated to be
N 1
— Xa2m)L2 P(0) f dk k(k? + o2yt 4 O(AE+d)
0

= —aX1n A f dx V(x) + 0O(2?).

This then proves Eq. (4.3).
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