Lower semicontinuity of positive quadratic forms

Barry Simon,†

Department of Physics, Yeshiva University, New York

(Communicated by Professor W. N. Everitt)

(MS received 29 January 1977. Read 4 July 1977)

SYNOPSIS

We develop various facets of the theory of quadratic forms on a Hilbert space suggested by a criterion of Kato which characterizes closed forms in terms of lower semicontinuity.

1. Introduction

In this note, we consider a variety of aspects of the theory of positive quadratic forms, t, on a complex Hilbert space, \mathcal{H} , that is sesquilinear forms, t(.,.) on $D(t) \times D(t)$ with $D(t) \subset \mathcal{H}$, a subspace with $t(\varphi, \varphi) \ge 0$ for all $\varphi \in Q(t)$. We recently proved the following result [8]: see added note therein for earlier proof of D. Robinson.

THEOREM 1. If $t_1 \le t_2 \le \ldots$ is a sequence of increasing closed quadratic forms, then the form t with $D(t) = \{\varphi \in \bigcap D(t_n) \mid \sup_n t_n(\varphi, \varphi) < \infty\}$ and $t(\varphi, \psi) = \lim_n t_n(\varphi, \psi)$ is closed and the corresponding self-adjoint operators T_n converge to T in strong resolvent sense.

To understand this result, we recall [3,6] that t is called closed if O(t) is complete in the norm $\|\varphi\|_t = (t(\varphi, \varphi) + \|^2)^{\frac{1}{2}}$, that $t_1 \le t_2$ means $D(t_1) \supset D(t_2)$ and $t_1(\varphi, \varphi) \le t_2(\varphi, \varphi)$ (all $\varphi \in D(t_2)$) and that there is a one to one correspondence between closed quadratic forms and operators T which are self-adjoint on $\overline{D(T)}$. Theorem 1 is a strengthening of a result in [3].

This note had its genesis in an attempt to understand the relationship of our proof of Theorem 1 and a very different (unpublished) proof of Kato of the same result. (Our work was done without knowledge of each others interest and the two proofs were obtained within a single week!) His proof depends on an important preliminary result: Define \tilde{t} , a function from all of \mathcal{H} to $[0, \infty]$ by:

$$\tilde{t}(\varphi) = t(\varphi, \varphi) \quad \text{if} \quad \varphi \in D(t)$$

$$=\infty$$
 if $\varphi \notin D(t)$.

^{*}On leave from the Departments of Mathematics and Physics, Princeton University. Research partially supported by the U.S. National Science Foundation under Grants MPS-75-11864 and MPS-75-20638.

Lower Semicontinuity of Positive Quadratic Forms

269

Then Kato notes:

THEOREM 2. t is a closed quadratic form if and only if \tilde{t} is lower semicontinuous (l.s.c.) i.e. if $\varphi_n \to \varphi$ in \mathcal{H} , then

$$\tilde{t}(\varphi) \leq \lim \inf \tilde{t}(\varphi_n).$$

Theorem 1 follows from Theorem 2 and the fact that a supremum of l.s.c. functions is l.s.c. We provide a proof of Theorem 2 in §2.

Our proof of [8, Theorem 1] relies on a decomposition $t = t_r + t_r$ of any quadratic form into two positive forms where t_r is defined as the largest closable form less than t_r . The connection between the proofs is given by the following result proven in §3:

THEOREM 3.
$$(\overline{t_r})^{\sim}(\varphi) = \liminf_{t \to \infty} \tilde{t}(\psi)$$

In theorem 3, the indicates closure and the symbol $\lim_{\psi \to \varphi} \inf$ indicates that we take the inf over all $\lim_{\phi \to \varphi} \inf \psi_n \to \varphi$.

This circle of ideas also allows one to solve the following problem: Suppose that T_n converges to T in strong resolvent sense, with T_n , T positive and self-adjoint. Let t_n , t be the corresponding quadratic forms. How is t related to t_n ? The many pathologies that can occur with unbounded forms suggest that there might not be any kind of explicit formula for t in terms of t_n . There is such a formula but it is not simple. In §4, we will prove:

THEOREM 3. Under the above hypothesis:

$$\underline{\tilde{t}(\varphi)} = \lim_{\psi_n \to \varphi} \inf \underline{\tilde{t}_n(\psi_n)}.$$

To see that this determines t, we note the polarization formula:

$$t(\varphi, \psi) = \frac{1}{4} [\tilde{t}(\varphi + \psi) - \tilde{t}(\varphi - \psi) - i\tilde{t}(\varphi + i\psi) + \tilde{t}(\varphi - i\psi)]$$
 (1)

We also note that \tilde{t} defines a sesquilinear form via (1), if and only if \tilde{t} obeys the parallelgram law

$$\tilde{t}(\varphi + \psi) + \tilde{t}(\varphi - \psi) = 2\tilde{t}(\varphi) + \tilde{t}(\psi)$$
 (2)

In §4, we will see also how theorem 1 follows from theorem 4 and provide a new proof of the following result from [8]:

THEOREM 3. If $t_1 \ge ... \ge t_n \ge ...$ and t is defined on $\bigcup D(t_n)$ by $t(\varphi, \psi) = \lim t_n(\varphi, \psi)$, then $T_n \to T_\infty$ in strong resolvent sense where t_∞ , the form of T_∞ , obeys

Finally in §5, we use ideas from [7] to prove a result on the following problem: Let $t_n \uparrow t$ and $s_n \downarrow s$. When does $T_n + S_n$ converge to T + S in strong resolvent senses. Our result is considerably stronger than that of Schechter.

It is a pleasure to thank M. Schechter for showing me [7] before publication

and T. Kato for valuable correspondence and for permission to publish a proof of his unpublished result, Theorem 2.

2. KATO'S CONVERGENCE CRITERION

We want to give here a proof of Kato's result, Theorem 2, which is motivated in part by the role that l.s.c. conditions play in the theory of maximal monotone operators [1]. We will actually prove a slightly stronger result. We will show

(a) If t is closed and $\varphi_n \to \varphi$ weakly then $\lim_{n \to \infty} \tilde{t}(\varphi_n) \ge \tilde{t}(\varphi)$

(b) If t is closable but not closed, there exist $\varphi_n \to \varphi$ in norm with $\tilde{t}(\varphi_n)$ converging to a finite limit and $\tilde{t}(\varphi) = \infty$ (but if $\tilde{t}(\varphi) < \infty$, then $\liminf \tilde{t}(\varphi_n) \ge \tilde{t}(\varphi)$).

(c) If t is not closable, then these exist $\varphi_n \to \varphi$ in norm with $\tilde{t}(\varphi) < \infty$, and $\lim_{n \to \infty} \tilde{t}(\varphi_n) < \tilde{t}(\varphi)$.

The weak l.s.c. condition (a), for certain explicit t's is used heavily in [4,5] on the existence of solutions of the non-linear equations of atomic physics.

Proof of (a). Let T be the operator corresponding to t. Then, we claim that

$$\tilde{t}(\varphi) = \sup\{|(\varphi, T\psi)|^2 \mid \psi \in D(T), (\psi, T\psi) = 1\}$$
(3)

(3) follows by noting that $|(\varphi, T\psi)|^2 \le \tilde{t}(\varphi)\tilde{t}(\psi)$ by the Schwarz inequality and choosing $\psi_n = ((\varphi, TP_{[0,n]}(T)\varphi))^{-\frac{1}{2}}P_{[0,n]}(T)\varphi$ with $P_{[0,n]}(T)$ the spectral projection for T. Now, let $\varphi_n \to \varphi$ weakly. Then for any $\psi \in D(T)$ with $(\psi, T\psi) = 1$:

$$|(\varphi, T\psi)| = \lim |(\varphi_n, T\psi)| \le \lim \inf \tilde{t}(\varphi_n)$$

so that (3) implies the l.s.c. $\tilde{t}(\varphi) \leq \liminf \tilde{t}(\varphi_n)$.

Proof of (b). Let $s = \bar{t}$. Since \tilde{s} is l.s.c. and $\tilde{s} \leq \tilde{t}$, $\tilde{t}(\varphi) \leq \liminf \tilde{t}(\varphi_n)$ so long as $\tilde{t}(\varphi) = \tilde{s}(\varphi)$, and, in particular if $\tilde{t}(\varphi) < \infty$. Since t is not closed, pick $\varphi \notin D(t)$, $\varphi \in D(s)$, $\varphi_n \in D(t)$ st. $\varphi_n \to \varphi$ in \mathcal{H}_s , = D(s) with the norm $\|\cdot\|_s$. Then $\bar{t}(\varphi_n) \to \tilde{s}(\varphi) < \infty = \tilde{t}(\varphi)$ so \tilde{t} is not l.s.c.

Proof of (c). Let \mathcal{H}_t be the completion of Q(t) with the norm $\|\cdot\|_t$. Let $i_t:\mathcal{H}_t\to\mathcal{H}$ by extending the identity map from D(t) to \mathcal{H}_t . Since \mathcal{H}_t is not closable, Ker $i_t\neq\{0\}$ Pick $\varphi\in\mathcal{H}_t$ with $\|\varphi\|_t=1$, $i_t(\varphi)=0$. Choose $\varphi_n\in D(t)$ st. $\varphi_n\to\varphi$ in \mathcal{H}_t . Since i_t is continuous $\varphi_n\to 0$ in \mathcal{H}_t (notice that the φ_n 's obey $\tilde{t}(0)=0<\lim \tilde{t}(\varphi_n)=\|\varphi\|_t^2-\|\varphi\|^2=1$ so that on the surface, the existence of this sequence seems only to imply that \tilde{t} is not u.s.c.). Now, clearly $(\varphi_n,\varphi_m)_t\to 1$ as $n,m\to\infty$, so pick N with $Re(\varphi_n,\varphi_m)_t>\frac{1}{2}$ if $n,m\geq N$. Let $\psi_n=\alpha\varphi_n-\varphi_N$ with $\alpha\geq 0$, to be picked below. Then $\psi_n\to\varphi_N$ in \mathcal{H}_t . Moreover, for $n,m\geq N$,

$$\tilde{t}(\psi_n) = \tilde{t}(\varphi N) + |\alpha|^2 \tilde{t}(\varphi_n) - 2 \operatorname{Re} \left[\alpha t(\varphi_N, \varphi_n)\right]$$

$$\leq \tilde{t}(\varphi_N) + |\alpha|^2 \tilde{t}(\varphi_n) - \alpha$$

Since $\tilde{t}(\varphi_n) \to 1$, $\sup_n \tilde{t}(\varphi_n) < \infty$. Picking α small, we see that $\tilde{t}(\psi_n) \le \tilde{t}(\varphi_N) - \frac{1}{2}\alpha$ for all $n \ge N$ so \tilde{t} ($\lim \psi_n$) $> \lim \inf \tilde{t}(\psi_n)$, i.e. \tilde{t} is not l.s.c.

3. THE REGULAR PART AS A LIM INF

In this section, we prove Theorem 3. Before giving the proof, we make a

Lower Semicontinuity of Positive Quadratic Forms

271

remark: Suppose that s is closable and $s \le t$. Then

$$q(\varphi) \equiv \lim_{\psi \to \varphi} \inf \tilde{t}(\psi) \geq (\bar{s})(\varphi).$$

It follows that if one knew that q were the diagonal part of some form, that form would be \bar{t} , and we would have a proof that \bar{t} , existed independent of the construction in [8]. The point is that it is not a priori obvious that q obeys the parallelogram law (2).

Proof of Theorem 3. Let $s = \bar{t}_r$. Then $s \le t_r \le t$ so by Theorem 2:

$$\tilde{s}(\varphi) \leq \liminf_{\psi \to \varphi} \tilde{s}(\psi) \leq \liminf_{\psi \to \varphi} \tilde{t}(\psi)$$

To prove the converse, we need to recall the construction of t, in [8]. As in 2, let \mathcal{H}_t be the completion of D(t) in $\|\cdot\|_t$ and let i, : $\mathcal{H}_t \to \mathcal{H}_t$. To avoid confusion, let us denote the identification map of D(t) into \mathcal{H}_t by I. Let P_t be the \mathcal{H}_t -orthogonal projection onto the \mathcal{H}_t -orthogonal complement of Ker i. Then for φ , $\psi \in D(t)$:

$$t_r(\varphi, \psi) = (P_t \varphi, \psi)_t - (\varphi, \psi) \tag{4}$$

Now, by construction [8], D(s) is the image of Ran P_t under i_r . Given $\varphi \in D(s)$, choose $\omega \in \text{Pan } P_t$ so that $\varphi = i_t \omega$. Choose $\psi_n \in D(t)$ so that $I_t(\psi_n) \to \omega$ in \mathcal{X}_r . Then $\psi_n = i_t I_t(\psi_n) \to i_t \omega = \varphi$. Moreover, by (4)

$$\|\varphi\|^2 + \tilde{s}(\varphi) = \|\omega\|_t^2 = \lim_{n \to \infty} \|I(\psi_n)\|_t^2$$

$$=\lim_{n\to\infty}\left[\tilde{t}(\psi_n)+\psi_n,\psi_n)\right]$$

It follows that $\tilde{s}(\varphi) = \lim_{n \to \infty} \tilde{t}(\psi_n)$ so

$$\tilde{s}(\varphi) \ge \liminf_{\psi \to 0} \tilde{t}(\psi)$$
 (5)

Since this inequality is obvious for $\varphi \notin D(s)$, (5) holds for all φ . (3 and 5) complete the proof.

4. A Convergence Criterion

Proof of Theorem 4. Suppose first that $\varphi \in \overline{D(T)}$. For each x, pick a continuous function f_x with $f_x(y) \to 0$ as $y \to \infty$, $0 \le f_x(y) \le y$ for all $y \ge 0$ and $f_x(y) = y$ for $y \le x$. Then $f_x(T_n) \to f_x(T)$ strongly (for densely defined operators, this is proven in [6]; see [8] for the elementary extension) so that, for any φ and $\psi_n \to \varphi$:

$$(\varphi, f_x(T)\varphi) = \lim_{n \to \infty} (\psi_n, f_x(T_n)\psi_n)$$

$$\leq \liminf_{n \to \infty} (\psi_n, T_n, \psi_n) = \liminf_{n \to \infty} \tilde{t}_n(\psi_n)$$

Since $\varphi \in \overline{D(T)}$, $\tilde{t}(\varphi) = \lim_{x \to \infty} (\varphi, f_x(T)\varphi)$ so

$$\tilde{t}(\varphi) \leq \liminf_{\psi_n \to \varphi} \tilde{t}_n(\psi_n)$$

Conversely let $\varphi \in Q(T) = D(t)$. Let $\psi_n = (T_n + 1)^{-\frac{1}{2}}(T + 1)^{\frac{1}{2}}\varphi$ Then $\psi_n \to \varphi$ and $\tilde{t}_n(\psi_n) + ||\psi_n||^2 = \tilde{t}(\varphi) + ||\varphi||^2$ so

$$\tilde{t}(\varphi) \ge \liminf_{t \to \infty} \tilde{t}_n(\psi_n)$$

Since this is obvious for $\varphi \notin D(t)$, we have established the theorem for $\varphi \in \overline{D(t)}$. Now suppose $\varphi \notin \overline{D(T)}$ and for each x pick a continuous function g_x going to zero as $y \to \infty$ with $g_x(y) = 1$ if $y \le x$ and $0 \le g_x \le 1$. Then, since $\varphi \notin \overline{D(T)}$, $\lim_{x \to \infty} (\varphi, g_x(T), \varphi) < \|\varphi\|^2$. Since $g_x(T_n) \to g_x(T)$ strongly:

$$\lim_{n} \inf \tilde{t}_{n}(\psi_{n}) \ge \lim_{n} \inf \left[x(\psi_{n}, [1 - g_{x}(T_{n})]\psi_{n}] \right]$$

$$\ge x(\varphi, (1 - g_{x}(T))\varphi)$$

Since $\lim_{x\to\infty} (\varphi, (1-g_x(T))\varphi) > 0$, $\liminf_{n\to\infty} \tilde{t}_n(\psi_n)$ must be ∞ .

One might hope that Theorem 4 would have some kind of converse. This seems unlikely because even for bounded operators, any kind of convergence for t_n to t is no stronger than weak convergence of T_n to T. This weak convergence does not even imply weak convergence of the resolvents [since weak convergence of resolvents implies strong convergence of resolvents 6].

EXAMPLE 1. Let us see how Theorems 2 and 4 lead to another proof of Theorem 1. Let t_n be increasing and closed. Let t_∞ be the form with $D(t_\infty) = \{\varphi \in \cap D(t_n) \mid \sup_n \tilde{t}_n(\varphi) < \infty\}$ and $\tilde{t}_\infty(\varphi) = \sup_n \tilde{t}_n(\varphi)$. Since the t_n increase, $(T_n+1)^{-1}$ are decreasing and so they converge strongly to some $(T+1)^{-1}$. We want to show that $\tilde{t} = \tilde{t}_\infty$. By theorem 4,

$$\tilde{t}(\varphi) = \liminf_{\psi_n \to \varphi} \tilde{t}_n(\psi_n).$$

Taking $\psi_n = \varphi$, we see that $\tilde{t}(\varphi) \leq \tilde{t}_{\infty}(\varphi)$. But since $\tilde{t}_n \geq \tilde{t}_m$ for $n \geq m$, and each t_m is closed:

$$\liminf_{\psi_n \to \varphi} \tilde{t}_n(\psi_n) \ge \liminf_{\psi_n \to \varphi} \tilde{t}_m(\psi_n) \ge \tilde{t}_m(\varphi)$$

by Theorem 2. Thus $\tilde{t}(\varphi) \ge \tilde{t}_{\infty}(\varphi)$. We conclude that $\tilde{t} = \tilde{t}_{\infty}$

EXAMPLE 2. Let us see how Theorems 3 and 4 lead to a new proof of Theorem 5. Let t_n be decreasing and closed. Let t_{∞} be the form with $D(t_{\infty}) = \bigcup D(t_n)$ and $\tilde{t}_{\infty}(\varphi) = \inf \tilde{t}_n(\varphi)$. Since $(T_n + 1)^{-1}$ increase, they have a strong limit $(T + 1)^{-1}$. We

Lower Semicontinuity of Positive Quadratic Forms

273

want to show that $t = \overline{(t_{\infty})_r} \equiv s$. Now by Theorem 4 and $t_n \ge t_m$

$$\tilde{t}(\varphi) = \lim_{\psi_n \to \varphi} \inf_{\tilde{t}_n} (\psi_n) \ge \lim_{\psi_n \to \varphi} \inf_{\tilde{t}_\infty} \tilde{t}_\infty(\psi_n) = \tilde{s}(\varphi)$$

by Theorem 3.

Given N, on account of Theorem 2, we can find η_N so that $\|\eta_N - \varphi\| \le \frac{1}{N}$ and $\tilde{t}_{\infty}(\eta_N) \le \tilde{s}(\varphi) + \frac{1}{N}$. Now define m(N) inductively so that $m(N) \ge N$, $m(N) \ge m(N-1)$ and

$$t_n(\eta_N) \leq s(\varphi) + \frac{2}{N}$$
 if $n \geq m(N)$

Now let $k(n) = \sup \{ N \mid m(N) \le n \}$, which is finite since m(n+1) > n. Moreover, k(n) is monotone increasing and $k(n) \nearrow \infty$ as $n \to \infty$ since $k(m(N)) \ge N$. Let $\psi_n = \eta_{k(n)}$. Then $\|\psi_n - \varphi\| \le 1/k(n)$ and $t_n(\psi_n) \le s(\varphi) + 2/k(n)$. It follows that $\lim_{n \to \infty} t_n(\psi_n) \le s(\varphi)$ so $\tilde{t}(\varphi) \le \tilde{s}(\varphi)$ completing the proof of Theorem 5.

§5. Sums of Monotone Forms

In this section we want to consider positive self-adjoint operators A_n , B_n with forms a_n , b_n . Suppose $a_1 \le \ldots \le a_n \le \ldots$ and $b_1 \ge \ldots \ge b_n \ge \ldots$. Let a_∞ and b_∞ be the limit forms described in examples 1 and 2 of §4. Let A be the operator associated to $a = a_\infty$ (which is closed) and B the operator associated to $b = (b_\infty)$, so that $A_n \to A$ and $B_n \to B$ in strong resolvent sense. Here we want to know when $a_n + b_n$ (the form sum is always defined on $D(a_n) \cap D(b_n)$) has a corresponding operator $A_n + B_n$ converging to A + B, the operator associated to a + b. Unfortunately this is not always true as the following show:

Example 3. Let $\mathcal{H}=L^2(-\infty,\infty)$ and let $a_n=-d^2/dx^2$, $b_n=n^{-1}a_n+\delta(x)$. Then $b_n\downarrow b_\infty=\delta(x)$ and b=0. $a_n\uparrow a_\infty=a=-d^2/dx^2$. $a_n+b_n\downarrow -d^2/dx^2+\delta(x)$ which is a closed form different from a+b=a.

EXAMPLE 4. In example 3, b_{∞} is not closable. But even if it is, there can be trouble. For example, let $a_n = a = \exp(x^4)$ independent of n. Let $b_n = \frac{1}{n}b$ where $b = \exp((-\Delta)^2)$. Then $b_{\infty} = 0$ on D(b) and $\overline{b}_{\infty} = 0$ on all of \mathcal{H} . Clearly a + b = a. But by a general theorem [2], $D(a) \cap D(b) = \{0\}$, so $a_n + b_n = 0$ on $\{0\}$.

Remarks 1. Example 4 is somewhat artificial in that $D(a_n) \cap D(b_n) = \{0\}$. It should be possible to modify it so that a_n is *n*-dependent with, say a_n bounded but $D(a_n) \cap D(b) = \{0\}$.

2. As examples 3 and 4 show, if $a_n \downarrow a_\infty$, $b_n \downarrow b_\infty$, it can happen that $A_n \dotplus B_n$ does not converge to $A \dotplus B$. We do not consider this phenomena in detail since it is clear what the limit is, namely $\lim (A_n \dotplus B_n)$ has a form $\overline{(a_\infty + b_\infty)}$, which may not equal $\overline{(a_\infty)_r + (b_\infty)_r}$.

THEOREM 6. Under the above hypothesis and notation, suppose also that b_{∞} is closed. Then $A_n + B$ converges in strong resolvent sense to A + B if

REMARKS 1. More generally, $A_n + B_n$ converges to A + B if

$$\sup_{n} \left[\overline{(a_n + b_{\infty})_r} \right] = a_{\infty} + \overline{(b_{\infty})_r}.$$

2. Our proof is closely patterned after an argument in [7] and the result is generalized in Theorem 6.

Proof. Let $c_{n,m} = a_n + b_m$. Let $c_{n,\infty} = a_n + b_\infty$ and $c_{\infty,m} = a_\infty + b_m$. Since, b_∞ is closed by hypothesis, all the forms in question are closed. Let A_n , B_m , $C_{n,m}$ etc. denote the corresponding operators. Then $c_{n,\infty} \le c_{n,n} \le c_{\infty,n}$, so that

$$(C_{n,\infty}+1)^{-1} \ge (C_{n,n}+1)^{-1} \ge (C_{\infty,n}+1)^{-1}$$

But $c_{n,\infty} \uparrow c_{\infty,\infty}$ and $c_{\infty,m} \downarrow c_{\infty,\infty}$ so $(C_{n,\infty}+1)^{-1}$ and $(C_{\infty,n}+1)^{-1}$ both converse strongly as $n\to\infty$ to $(C_{\infty,\infty}+1)^{-1}$. It follows that $(C_{n,n}+1)^{-1}$ converges strongly to $(C_{\infty,\infty}+1)^{-1}$.

REFERENCES

H. Brezis. Maximal Monotone Operators (Amsterdam: North Holland, 1973).

2 H. Dym and H. McKean. Fourier Series and Integrals (London: Academic Press, 1972).

3 T. Kato. Perturbation Theory for Linear Operators (Berlin: Springer, 1966).

 E. H. Lieb and B. Simon. The Thomas-Fermi theory of Atoms, Molecules and Solids. Advances in Math. 23 (1977), 22-116.

 E. H. Lieb and B. simon. The Hartree-Fock Theory for Coulomb Systems. Comm. Math. Phys., 53 (1977), 185-194.

6 M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Functional Analysis (London: Academic Press, 1972).

7 M. Schechter. Cutoff Potentials and Forms Extensions. Yeshiva Univ. Preprint (1976).

8 B. Simon. A Canonical Decomposition for Quadratic Forms with Applications Monotone Convergence Theorems. J. Functional Analysis, to appear.

(Issued 20 January 1978)