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SyNopPsis

‘We develop various facets of the theory of quadratic forms on a Hilbert space suggested by a
criterion of Kato which characterizes closed forms in terms of lower semicontinuity.

1. INTRODUCTION

In this note, we consider a variety of aspects of the theory of positive quadratic
forms, t, on a complex Hilbert space, ¥, that is sesquilinear forms, t(.,.) on
D(1) X D(t) with D(t) = ¥, a subspace with t(¢, ¢) =0 for all ¢ € O(1). We recently
proved the following result [8]: see added note therein for earlier proof of D.
Robinson.

TueoreM 1. If y=t,= ... is a sequence of increasing closed quadratic forms,
then the form t with D(t)={p € Y D(1,) | sup t,(¢, ¢) <} and t(e, ¥)=lim f,(p, b)

is closed and the corresponding self-adjoint operators T, converge to T in strong
resolvent sense.

To understand this result, we recall [3,6] that ¢t is called closed if Q(f) is
complete in the norm |l@f, = (t(e, @)+|), that t,=1, means D(1,)> D(t,)
and 1,(¢, @) =t,(¢, ¢)(all ¢ € D(t,)) and that there is a one to one correspon-
dence between closed quadratic forms and operators T which are self-adjoint on
D(T). Theorem 1 is a strengthening of a result in [3].

This note had its genesis in an attempt to understand the relationship of our
proof of Theorem 1 and a very different (unpublished) proof of Kato of the same
result. (Our work was done without knowledge of each others interest and the two
proofs were obtained within a single week!) His proof depends on an important
preliminary result: Define f, a function from all of ¥ to [0, ©] by:

He)=te,¢) if ¢eD(1)

= if e D).
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Then Kato notes:

THEOREM 2. tis a closed quadratic form if and only if t is lower semicontinuous
(Is.c) i.e. if opo— @ in ¥, then

() =lim inf #(p,).

Theorem 1 follows from Theorem 2 and the fact that a supremum of ls.c.
functions is L.s.c. We provide a proof of Theorem 2 in §2.

Our proof of [8, Theorem 1] relies on a decomposition =1+t of any
quadratic form into two positive forms where ¢, is defined as the largest closable

form less than t. The connection between the proofs is given by the following
result proven in §3:

TueoREM 3. (1) ~ (@)= fim inf ()

In theorem 3, the —
we take the inf over all lim inf for all ,’s with ¢,— .

indicates closure and the symbol lig] inf indicates that
e

This circle of ideas also allows one to solve the following problem: Suppose that
T, converges to T in strong resolvent sense, with T,, T positive and self-adjoint.
Let t,, t be the corresponding quadratic forms. How is ¢ related to t,? The many
pathologies that can occur with unbounded forms suggest that there might not be
any kind of explicit formula for ¢ in terms of t,. There is such a formula but it is
not simple. In §4, we will prove:

THeoOREM 3. Under the above hypothesis:
1(@) =lim inf &, ().
— e ——
To see that this determines t, we note the polarization formula:

o, ¥) =il +¥)— Ho — ) —it(e + i) + (e — it)] §))

We also note that f defines a sesquilinear form via (1), if and only if f obeys the
parallelgram law

t(o+ )+ 1o — ) =2H(p) + {(¥) @

In §4, we will see also how theorem 1 follows from theorem 4 and provide a new
proof of the following result from [8]:

TheoreM 3. If t4=Z...Zt,2... and t is defined on UD(1,) by t(g, ¥)=
lim t,(@, §), then T, — T.. in strong resolvent sense where t.., the form of T.., obeys

t.=t,
Finally in §5, we use ideas from [7] to prove a result on the following problem:
Let t, 1t and s, | s. When does T,+S, converge to T+S in strong resolvent

senses. Our result is considerably stronger than that of Schechter.
It is a pleasure to thank M. Schechter for showing me [7] before publication
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and T. Kato for valuable correspondence and for permission to publish a proof of
his unpublished result, Theorem 2.

2. Kato's CONVERGENCE CRITERION

We want to give here a proof of Kato’s result, Theorem 2, which is motivated in
part by the role that Ls.c. conditions play in the theory of maximal monotone
operators [1]. We will actually prove a slightly stronger result. We will show

(a) If ¢ is closed and @,—> ¢ weakly then lim inf #(¢,)= f(g)

(b) If t is closable but not closed, there exist ¢,~—>¢ in norm with f(g,)
converging to a finite limit and f(¢) = (but if f(¢) <, then lim inf t(¢,.) = i(e)).

(c) If t is not closable, then these exist ¢,—> ¢ in norm with #(p)<w, and
lim #(@a) < t(g).

The weak Ls.c. condition (a), for certain explicit s is used heavily in [4, 5] on
the existence of solutions of the non-linear equations of atomic physics.

Proof of (a). Let T be the operator corresponding to t. Then, we claim that
i(¢)=supfl(e, T¥) [ € D(T), (¢, T¥)=1} 3

(3) follows by noting that |(¢, T)’= (@) t(y) by the Schwarz inequality and
choosing ¢, = ((¢, TP[O_,,,('I‘)<p))’5P[0_,,]( T)e with Py, ,.1(T) the spectral projection
for T. Now, let ¢,— ¢ weakly. Then for any ¢ € D(T) with (¢, T¢)=1:

(@, T)| = lim |(@n, Tp)| =lim inf £(¢,)
so that (3) implies the Ls.c. #(¢)=lim inf #(¢,).

Proof of (b). Let s=t. Since § is 1.s.c. and §=1, i(p) <lim inf H(@a) sO long as
1(¢) =5(¢), and, in particular if #(¢)<w. Since t is not closed, pick @€ D(1),
¢eD(s), ¢, €D()st. ¢,—>¢ in ¥,=D(s) with the norm |-|,. Then t(p,)
—§(p)<®=f(p) so { is not Ls.c.

Proof of (c). Let ¥, be the completion of Q(t) with the norm ||-||.. Let i,: %, — ¥
by extending the identity map from D(t) to ¥, Since ¥, is not closable, Ker
i,#{0} Pick ¢ € ¥, with |¢|l = 1, i(¢) =0. Choose ¢, € D(t) st. ¢,—> ¢ in ¥, Since
i, 1s continuous ¢, —> 0 in %, (notice that the ¢,’s obey #(0) = 0< lim (p,) = |l¢|?~
lel? =1 so that on the surface, the existence of this sequence seems only to imply
that { is not u.s.c.). Now, clearly (¢, ¢m),—> 1 as n,m — », so pick N with
Re (@, @) >3 if n,m=N. Let ¢, = ap, — @y With @20, to be picked below.
Then ¢, — @y in X. Moreover, for n,m=N,

1(¥n) = t(eN) +|a*t(¢n) — 2 Re [at(gn, ¢n)]
st(en) +ali(@n)—a
Since t.(q),‘)—-)l,s?'p 1(@n) <. Picking a small, we see that f(W,) =< f(en)—2a for

all n=N so ¢ (lim ,) >liminf #(y,), i.e.  is not L.s.c. W

3. THE REGULAR PART As A Lim INF

In this section, we prove Theorem 3. Before giving the proof, we make a

R—
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remark: Suppose that s is closable and s =t Then
q (¢)=lim inf #(¥) = GX@)-

It follows that if one knew that q were the diagonal part of some form, that form
would be 7, and we would have a proof that f, existed independent of the
construction in [8]. The point is that it is not a priori obvious that q obeys the
parallelogram law (2).

Proof of Theorem 3. Let s=1,. Then s=<¢, =t so by Theorem 2:
§(p) =<lim inf §(¢) =<lim inf 1(y)
L aadd e

To prove the converse, we need to recall the construction of # in [8]. As in 2, let
%, be the completion of D(t) in ||| and let i, : ¥,— ¥. To avoid confusion, let us
denote the identification map of D(t) into ¥, by L. Let P, be the ¥,-orthogonal
projection onto the ¥,-orthogonal complement of Ker i. Then for ¢, ¢ € D(1):

t{e, ¥)= (P, ¥). — (9, ¥) O]

Now, by construction [8), D(s) is the image of Ran P, under i, Given ¢ € D(s),
choose w € Pan P, so that ¢ = i,w. Choose ¥, € D(2) so that L(¢,)—>w in X, Then
¥, = il (,)— i, = ¢. Moreover, by (4)

lelf? +5(e) = et = lim |1y )7
= lim [#(d,) + ¥, $1)]

It follows that §(¢)= li_l’nw t(y,) so

§(¢) 2 lim inf 1) )

Since this inequality is obvious for @& D(s), (5) holds for all ¢. (3 and 5) complete
the proof. W

4. A CONVERGENCE CRITERION

Proof of Theorem 4. Suppose first that ¢ € D(T). For each x, pick a continu-
ous function f, with f.(y)—0 as y—o, 0=f,(y)=y for all y=0 and f,(y)=y for
y =x. Then f(T,)— f.(T) strongly (for densely defined operators, this is proven
in [6]; see [8] for the elementary extension) so that, for any ¢ and ¢, —¢:

(¢ f(T)@) = lim (¥, f(To)¥)

=lim inf (4, T, ¥,) = lim inf 7, ()
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Since ¢ € D(T), i(¢) = lim (o, £,(T)9) so

i(e) =lim inf £,(4,)

. Convérsely let ¢ € Q(T)=D(t). Let ¥ =(T.+ 1) T+ 1)ip Th ) J
L,(0) + 1l = (o) +lle|? so ® Then ¢,—>¢ an

t(p)Zlim inf 7, (¢,)
e

Since this is obvious for p& D(r), we have established the theorem for ¢ eD().

Now suppose ¢# D(T) and for each x pick a continuous function g, going to
zero as y— with g (y)=1 if y=x and 0=g =1. Then, since p&D(T),
lim (@, 8:(T) @) <[lolf". Since g,(T,)—> g.(T) strongly:

Iim"inf t,(W,) Zlim inf [x(,, [1- g.(T,)],]
z2x(e, (1-g.(M)e)

Since li_l: (¢, (1~ g.(T)e)>0, liminf f,(y,) must be «. W

One might hope that Theorem 4 would have some kind of converse. This seems
unlikely because even for bounded operators, any kind of convergence for ¢, to t
is no stronger than weak convergence of T, to T. This weak convergence does not
even imply weak convergence of the resolvents [since weak convergence of
resolvents implies strong convergence of resolvents 6).

Exampie 1. Let us see how Theorems 2 and 4 lead to another proof of
Theorem 1. Let t. be increasing agd closed. Let 1, be the form with D(t.)=
{pe ND(s,)|sup t,(p)<¢} and f.(@)=supi,(¢). Since the t, increase,

(T, +1)™" are decreasing and so they converge strongly to some (T +1)~". We want
to show that ¢ =t,. By theorem 4,
1(g) =1lim inf £,(¢,).
e
Taking ¥, = ¢, we see that (¢)=i.(p). But since i, Z 1, for n=m, and each 1,

is closed:

lim inf #,(y,) =lim inf #,,(,) 2 i,.(¢)
e e

by Theorem 2. Thus #(¢) = f.(¢). We conclude that i=r..
ExampLE 2. Let us see how Theorems 3 and 4 lead to a new proof of Theorem

5. Let & be decreasing and closed. Let t. be the form with D(t,)= U D(t,) and
t.(¢)=12f t.(¢). Since (T, +1)~" increase, they have a strong limit (T+1)"!. We
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want to show that t={(t.), =s. Now by Theorem 4 and 1, = 1.

H(e) =lim inf ,(4,) Z lim inf 7.(¢,) = §(¢)
Ll d L g
by Theorem 3.
1
Given N, on account of Theorem 2, we can find 7y so that “'iN“P||§)T, and

'-m('ln)gf(w)'f‘%. Now define m(N) inductively so that m(N)=N, m(N)=
m(N-1) and

tL(nn)= s(¢)+% it nzm(N)

Now let k(n)=sup {N|m(N)= n}, which is finite since m(n+1)>n. Moreover,
k(n) is monotone increasing and k(n).7c as n—o since k(m(N))=N. Let
¥n = M- Then ¢, —@l|S1/k(n) and t,(¢,)=s(p)+2/k(n). It follows that

lim inf ¢, (¢,) = s(¢) so ()= 35(p) completing the proof of Theorem 5.

§5. Sums oF MoNoTONE ForMs

In this section we want to consider positive self-adjoint operators A,, B, with
forms a,, b,. Suppose a,=<...=a,=...and b;=...=b,=.... Let a. and b_ be
the limit forms described in examples 1 and 2 of §4. Let A be the operator
associated to a = a., (which is closed) and B the operator associated to b = (b,), so
that A,— A and B,— B in strong resolvent sense. Here we want to know when
a,+b, (the form sum is always defined on D(a,)N D(b,)) has a corresponding
operator A,+ B, converging to A+ B, the operator associated to a +b. Unfortu-
nately this is not always true as the following show:

ExampLE 3. Let ¥ = L*(—%, ) and let a, =—d?/dx?, b,=n"'a,+5(x). Then
b,lb.=8(x) and b=0. a,ta.=a=—d/dx>. a,+b,}—d?dx>+8(x) which is a
closed form different from a+b = a.

ExamrLE 4. In example 3, b, is not closable. But even if it is, there can be
1
trouble. For example, let a, = a = exp(x*) independent of n. Let b, =;b where

b =exp ((—A)?). Then b..=0 on D(b) and b =0 on all of %, Clearly a+b = a. But
by a general theorem [2], D(a) N D(b)={0}, so a,+b, =0 on {0}.

Remarks 1. Example 4 is somewhat artificial in that D(a,)N D(b,)=1{0}. It
should be possible to modify it so that a, is n-dependent with, say a, bounded
but D(a_) N D(b)={0}. )

2. Asexamples 3 and 4 show, if a, | a, b, | b.., it can happen that A,+ B, does
not converge to A+ B. We do not consider this phenomena in detail since it is
clear what the limit is, namely lim (A,+ B,) has a form (a..+ b.), which may not
equal (a.),+(b.),-

Lower Semicontinuity of Positive Quadratic Forms 273

THEOREM 6. Under the above hypothesis and notation, suppose also that b.. is
closed. Then A,+ B converges in strong resolvent sense to A+ B if

REMARKs 1. More generally, A,+ B, converges to A + B if

sup [(a, + bo),]= a.+(bo),.

2. Our proof is closely patterned after an argument in [7] and the result is
generalized in Theorem 6.

Proof. Let c,,, =a,+b,. Let Crw=8,+b. and ., =a,+b,. Since, b, is
closed by hypothesis, all the forms in question are closed. Let A, B, Com etc.
denote the corresponding operators. Then ¢, .= ¢, , =c..,, so that

(Gt 1) 2(Con + 1) 2 (Cap+ 1)

But €, 1 € aNd Copm | €50 (C o+ 1) 7" and (C., , + 1) both converse strongly
as n— to (C..+1)"". It follows that (Con +1)7? converges strongly to (Cew+
n™
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