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1. Introduction 

The basic questions of single channel scattering systems depend on the 
existence of the generalized wave operators 

where Pa,(.) is the projection onto the absolutely continuous space for a 
selfadjoint operator, (see [19], Chap. VII for the necessary spectral theory 
background) and their completeness 

Ran !J*(A, B) = PaC(A)X. 

In this context, the following elementary proposition is well-known and 
fundamental: 

PROPOSITION. Suppose that n*(A, B )  exist. Then O*(A, B )  are complete i f  
and only i f  R*(B, A)  exist. 

The importance of this proposition is that it reduces the completeness 
question to the proof of the existence of a limit. This timedependent 
approach to scattering has been raised to a high art by Kato, Kuroda, and 
Birman (see Kato [14] or Reed-Simon [20] for textbook presentations, or 
Pearson [18] for a recent and significant simplification). Our goal in this note 
is to prove an analogue of this basic proposition for rnultiparticle quantum 
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systems. As a "kinematical" result, it is certainly not deep, but it could be 
very useful. It remains to be seen whether one can prove directly the 
existence of the limit which we show would imply completeness. But it is our 
hope that we shall focus interest on an approach which we find quite 
appealing and natural. We remark that our work here is motivated in part by 
ideas of Pearson [16], [17], [18], Combescure-Ginibre [3], and our own work 
in [4]. 

The time-dependent formalism is to be distinguished from the time- 
independent approach pioneered by Povzner and Ikebe for two-body systems 
and by Fadeev for three-body systems (see Reed-Simon [20] for a textbook 
presentation and Agmon [l] or Kuroda [15] for recent elegant presentations 
in the two-body case and Ginibre-Moulin [7] for the three-body case). Even 
in the two-body case where both time-dependent and time-independent 
methods are available, it is fashionable to denigrate the time-dependent 
approach since it generally requires estimates on V to be O(lxlP"-') in order 
for n*(-A+ V, -A) to exist on L2(R") while the time-independent theory 
only requires V to be O(lxl-'-"). And thus far, only time-independent 
methods have succeeded in the proof of completeness at all energies in 
systems with more than one channel and more than two particles. In our 
opinion, this attitude does not do justice to the time-dependent approach. We 
shall emphasize some of the disadvantages of the time-independent approach 
below. Moreover, there is a significant, although apparently little known 
paper of Kuroda [15], which applies the trace class theory to potentials V 
which are only O(lxl-lPE) at infinity so long as they are centrally symmetric. 
Finally, with the exception of a paper of Combes [2], no systematic attempt at 
using time-dependent methods has been made in the N-body case. It is 
precisely such systematic attempts that we hope to encourage. Using, in part, 
ideas from the present paper, Simon [21] has simplified the proof of Combes 

Despite several recent papers on technical improvements for the time- 
independent approach to multiparticle scattering, [ 101, [7], [24], [ 113, [22], 
[9], the method seems to have a variety of undesirable features which seem to 
be intrinsic difficulties of the time-independent approach but not intrinsic to 
the basic phenomena of scattering; among these are: 

(i) The method cannot accommodate the situation where there is a reso- 
nance at threshold so that restrictions to generic coupling constants seem to 
be necessary. While there are significant phenomena when such resonances 
occur (cf. [6], [25], [23]), it would seem unlikely that they destroy complete- 
ness. 

(ii) Thus far, the time-dependent method has not been shown to work 
when there are infinitely many bound states. It is clear that there would be 
tremendous technical complications to solve before such a possibility could be 
accommodated. 

[21. 
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(iii) In this method, scattering and spectral theory are intertwined. While it 
seems to us that spectral properties of sub-systems must enter in the 
completeness question (see below), it is undesirable to have the problems 
intertwined. 

(iv) The disentangling of channels is a rather subtle process depending on 
fairly complicated resolvent equations whose complexities increase enorm- 
ously with N. 

A comparison with the method we propose is obviously dficult before 
our program has been completed, but in what we discuss here neither 
problem (i) nor (ii) enters. Also, as we shall see, the spectral theory is 
separated out. Finally, the separation of channels is effected by an appealingly 
geometric procedure. 

To describe our main result for the three-body problem in v-dimensions 
let us introduce some notation. Let pI , p2 ,  p3 be the masses of the three 
particles. Let a = 1 stand for the pair (23), etc. In general, p, y 
denote the other two indices. Thus V, is a function of r, - rr. We use the 
coordinates 

and denote reduced mass by 

Moreover, 

a = l  

Then, we denote 

H = Ho+ V, Ho = -(2m,)-'AG - (2K)- 'A, ,=  on LZ(R2") 

(Ho is independent of a), 

Ha = Ho+ v, on L ~ ( R ' " ) ,  

ha = -(2ma)p1Ah + V,(x,) on L ~ ( R " ) ,  

hO,, = ha - V, , k, = - (2K) - 'AYm on L 2 ( R " ) .  
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Let p ,  be the projection onto the span of the eigenvectors for h, and P, the 
projection onto the span of functions of the form q(yu)4(xa), qEL2(RY) ,  
C#J E Ran p , .  A result of Hack [8] (see also [20]) shows that, under suitable 
hypotheses on the V,, the limits (for a = 0, 1, 2 ,  3) 

exist. The operators 

(for a = 1, 2, 3, P, is as above; for a = 0, set fi: =at) are maps onto those 
states which as t + Tm look like a bound cluster of particles ( P y )  and particle 
a moving freely. A result of Jauch [13] (see also [20]) assures one that 
Ran 6: I Ran for a # p. Completeness of rhe three-body system is the pair 
of statements 

1 

G3 Ran = Ran P,,(H),  
u = o  

separately for + and - .  

2 ,  3) 
We can now describe our results for the three-body system. Let (for a = 1, 

Pick R so large that Q,(2, R )  n Qs(2,  R )  = 0. Let xu be the characteristic 
function of Q,(l ,  R) and let J, be a function picked once and for all so that 

0 5 J,(X)S 1 (all x) , supp J. = Q,(2, R )  , J , = l  on Q , ( l , R ) .  

Let Jo = 1 - x, J,. [Remark: In what occurs below, one could take J, = xu ; no 
smoothness of J. is used. However, in applying our method it may be useful 
to allow the possibility of smooth J's so we take the choice given above. No 
particular significance should be attached to I Y , ~ ' ' ~  in the definition of 0,. 
Any f(y,) with ~ y u ~ - l f ( y u ) ~ O ,  f ( y , ) - + m a s  Iy,)+mcould be used;Iy,IY with 
y<: may be convenient since diffusion ideas might be important. Also, the 
disjointness of the regions is not really necessary; the proofs are slightly less 
wordy this way.] We shall be concerned here with the existence of the 
following limits for (Y = 0, 1, 2 ,  3 :  
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Consider the following statements (under the supposition that the limits 
fl*(h,, ho,,), a,’ exist). 

(a) The three-body system is complete, i.e., (1) holds. 
(b) The limits (2) exist. 
(c) Each h, has no singular continuous system. 
(d) Each a*(&, ho.,) is complete. 
In Section 2, we shall prove that (a)+ (b) and (b), (c), (d) 3 (a) and, in 

Section 3, we consider the generalizations to N 2 3 .  We believe that it is also 
true that (a) 3 (c), (d) but we have not tried very hard to find a proof since 
our main interest is to give a method for proving (a). (As a side light we want 
to justify the “naturalness” of (b), so we prove ( a ) j (b ) . )  We shall, however, 
make some remarks about our conjecture that ( a ) j ( c ) ,  (d): 

(i) Heuristics for (a)J(c) can be found also in Combes [2]. 
(ii) If P?’ is the projection onto functions of the form q(y,)+(xp) with + 

in the singular continuous subspace for ha, then one should be able to show 
that fl,’P:’ is orthogonal to each Ran f ig  and this would imply that (a)+ (c). 
To prove this orthogonality, it suffices to prove a general result that if A is 
purely absolutely continuous and B is purely singular continuous, then 

0 since Jauch’s proof of orthogonality of channels would then 
extend. Actually, it suffices that the limit be zero in a Cesaro or Abelian 
sense. 

(iii) Under suitable hypotheses on the V,, (a) certainly implies that 
Ran fl’(h,, ho,,) = Ran f12-(h,, ho.,) for (a) implies that the three-body S- 
matrix is unitary whence the cluster properties for S (Hunziker [12]; see also 
[20]) imply the unitarity of the two-body S-matrices. 

We also note that by using Dollard’s modified dynamics [5 ] ,  our results 
(which are essentially kinematical) can be extended to Coulombic systems. 

Finally, we remark that Uchiyama [26] uses geometric methods similar to 
ours to show that certain three-body systems have a finite number of 
eigenvalues below the continuum. 

w-h eiAre-iB1= 

2. The Three-Body Case 

THEOREM 1. If the three-body system is complete, then the limits % exist, 
W:fi; = Pa a,, and W: = (h:)*. 

LEMMA 1. For each a = 1, 2, 3, 

as t + fw. In particular, 

as t + fm for p # a with p = 0 allowed. 
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Proof: It suffices to prove that, for any q E Y(R")  and + an eigenfunc- 
tion of ha, 

Since + E L2(R"),  given E ,  pick Re 2 0 so that 

Write the integral in (3) as a sum over the region. with ( y a 1 4  RE and over the 
region with l y a l h  Re.  By the choice of Re,  the second integral is less than & 
for all t. The first integral is dominated by 

114112 j I(e-i'k-q)(ya>12 dya 
IY-ISR 

which goes to zero as ?-+a by explicit calculation. 

LEMMA 2. Let f be a function in Lm(R2") so that 

Q ( R )  =ess sup o (x E S2'-' 1 r i  E supp f )  + 0 
,ZR 

as R -, w, where w is the usual normalized measure on the sphere, S2"- ' .  Then 

s-lim fe+i'A = 0 .  
I+*- 

In particular, 

for a = 1, 2 ,  3 and 

s-lim (1 - J,,)e-i'Hn = O . 
I-*- 

Proof: It suffices to prove that IlfeifA+ll+ 0 for a total set of 4's. Take 
4(x) = g(lxl)Yl,(x/lxI), where Y,,,, is a spherical harmonic. Then, since ei*'4 = 
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(e-i'h'g)Ylm for suitable hl,  we see that 

so by choosing R large, we can be sure it is less than $e for all t. As above, 

goes to zero as t-03. LR 
Proof of Theorem 1: By the hypothesis of completeness, any 4 E Pac(H) 

can be written uniquely as C$ = +a with +a = C $ a .  Consequently, 
ePiMGa - e-irH-Pa4a + O  as t + --co. It follows that 

JaeWirH4 = 1 Jae-irH@PB& + o( t )  
B 

= Jae-i'H-Pa4a + o(r) = e-irH-Pa4m + o( t )  , 

by Lemmas 1 and 2. Thus 

This establishes the existence of the limit defining Wa and the formula 
W,'@ = SaBPa. From this formula, the orthogonality of the Ran and 
partial isometric nature of the is a partial isometry 
which "undoes" A,' and thus K=(O, ')*.  

we conclude that 

THEOREM 2. Suppose that the limits defining and C exist, that each 
ha has no singular continuous spectrum, and that R*(ha, hoVa) exist and are 
complete for a = 1, 2, 3 .  Then the three-body system is complete. Moreover, 

(4) 
a =O 

Proof: Let 4 E RanPa,(H). Let +a = K 4. Then 

so that 
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since J, = 1. Therefore, 

Completeness follows if we  prove that for a = 1, 2, 3 

( 5 )  Ran R,‘ = Ran & CB Ran 6: , 

and once we have completeness, Theorem 1 is applicable so that (&)* = % 
and (4) follows. Thus, we need only prove (5 ) .  

By the assumptions on h,, 

Let L2(R2”) = L2(R”)@L2(R”)  according to the coordinates (y,, x,). Then 
Ho=k,@l+l€3ho, , ,  H , = k a @ l + l @ h , ,  P , = l @ p ,  so that (6) is equival- 
ent to 

Ran a*(&, Ho) = 1 - P, 

or 

It follows that 

which implies (5 ) .  

3. The N-Body Problem 

The main difficulty in extending the results of Section 2 to N > 3  bodies is 
notational. We shall therefore introduce the notation and state the analogues 
of Theorems 1 and 2. The proofs of these analogues are substantially 
identical to the proofs in Section 2. Where possible, we follow the notation of 
[20]. A (non-trivial) cluster decomposition, D, is a partition of { l , .  . , n }  into 
two or more disjoint subsets, C1, . . . , C,. We write iDj if i and j are in the 
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same cluster c k ,  and -iDj if they are in different clusters. Ho is the kinetic 
energy of the N-particles with center of mass removed and 

h(Ck) is the Hamiltonian of the cluster c k  with center of mass removed 
written in terms of coordinates x ( ~ )  and H(Ck) is the “same” operator acting 
on the N-particle system. We use the symbol X, for the totality of 
coordinates d’),. . . , x(’) and yD for the coordinates of the relative center of 
mass motion. TD is the relative kinetic energy of the clusters, i.e., the kinetic 
energy of all the centers of mass of C 1 , .  a , C, minus the kinetic energy of 
the total center of mass. We obtain 

and PD is the projection onto the span of all vectors of the form 
q(yD)&(x(l)) - * * 4[(d1)), where 4 k  is an eigenfunction of h(Ck). If the 
operators 

exist (and this is true (cf. [20]) under fairly general hypotheses on Vij) we set 

fig=fi’;PD 

and the 6; have orthogonal ranges. Completeness says that 

(7) @ Ran fig = Ran P.,(H) 
D 

We define 

and given mD, R~ we pick 5, SO that j D  is 1 on QD(mD,RD) and zero off 
Q D ( ~ ~ D ,  R D ) ~  

If D is a refinement of D’, i.e., if D’ is obtained by “lumping together” 
clusters in D, we write DDD‘. If neither DDD’ nor D’DD, we say that D and 
D’ are incompatible. We now restrict the mD and RD so that 5, is 1 on 
the support of 5,. if DDD’ and so that supp j, r l  supp j,, = 4 if D and D’ are 
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incompatible. We define Jn inductively in the number of clusters in D by 

JD = jn if D has two clusters, 

Then we have 

THEOREM 1'. If (7) holds, then the limits 

THEOREM 2'. Suppose that the strong limirs WD in (8) exist, and that the 
strong limits exist. Moreover, suppose that, for every proper subset C c  
{l , .  . . , N) with 2 5 # ( C ) S  N -  1, h(C) has no singular continuous spectrum, 
that exists for every cluster decomposition D of C, and @,Ran&= 
Ran P,(h(C)).  Then (7) holds. 

Theorem 2' inductively reduces completeness of an N-body system to the 
existence of a large number of strong limits together with purely spectral 
information on the h(C)'s. 
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