
JOURNAL OF FUNCTIONAL ANALYSIS 32, 97-101 (1979) 

Kato’s Inequality and the Comparison of Semigroups* 

BARRY SIMON+ 

Department of Theoretical Physics, University of Geneva, 
1211 Geneva 4, Switzerland 

Communicated by Tosio Kato 

Received June 27, 1977 

Let A be the generator of a positivity preserving semigroup and let B be 
another semibounded self-adjoint operator. We give necessary and sufficient 
conditions in terms of the generators for the inequality 1 e-% 1 < e-*A 1 u 1 to 
hold pointwise. 

Throughout this note we fix a separable Hilbert space, &’ which is of the form 
L2(M, &). A self-adjoint semi-group, e-tA, is called positivity preserving if and 
only if e-tAu 3 0 for u > 0 or equivalently if 1 e-tAu 1 < e--tA 1 u 1 for any u. 

There are simple elegant criteria in terms of A for e--tA to be positivity preserving 
-these go back to Beurling and Deny [2]; (see also Reed and Simon [7]). 
Recently, Simon [I I] f ound that the positivity preserving property were equiv- 
alent to the pair of conditions: 

(Pi) u E D(A) implies 1 u 1 E Q(A), and 

(Pii) For any u E D(A) and 4 > 0, 4 EQ(A) 

(4, A I u I) < Re((sgn u>* 9, Au) (1) 

where sgn u = u* ( u 1-l (at points with u # 0 and sgn u = 0 if u = 0) and 
Q(.) denotes quadratic form domain. The special case of (1) in case A = --d 
was discovered and applied to self-adjointness problems by Kate [6]. Kate 
also found inequalities like (1) where the A on the right side is replaced by 
another operator B with A = --d and B = (iv + a)“. Our goal here is translate 
this form of Kate’s inequality into a “positivity” condition on semigroups. 
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We will consider the pair of conditions: 

(I&) u E D(B) implies / u / EQ(A), and 

(&) For ?I E D(B) and 4 > 0, 4 E Q(A) 

(4, A I u I) d Re((sgn u)* $, 3. (2) 

Our main result here is the following result which we conjectured in [ 1 l] : 

THEOREM 1. Let A and B be semibounded self-adjoint operators. Suppose 
that A is the generator of a positivity preserving semigroup. Then conditions (Ki), 
(KJ hold if and only ;f 

/ e-% 1 ,< ectA ( u ( (3) 

for all u. 

Proof. (3) * (Ki), (Kii). Given (3), we find that 

so 

(u, e-%) < (1 u 1, e-tA j u 1) 

(u, tel( 1 - erg”) u) 3 (j u 1, t-1( 1 - e-t*) \ u I) 

letting t JO, we find 

(I u I, A I u I) < (u, Bu) (4) 

where (u, Cu) = co if u 6 Q(C) and =( 1 C ]1/2 Y, (sgn C) I C ]1/2 u) for u E Q(C). 
(4) implies that I Q(B)\ CQ(A) and a fortiori (Ki). 

(3) also implies that for 9 > 0 

Re((sgn u)* 4, e-%) < (4, e&* I u I). 

Since both sides of this last expression are equal at t = 0, there is an inequality 
on the derivatives at t = 0. The derivative of the left side is -(sgn u* 9, Bu) 
since u E D(B) and, of the right -($, A 1 u I) since 4, / u 1 EQ(A). This verifies 
(Kit)* 

(Ki , KJ 3 (3). Adding (4, h I u I) to both sides of (2), we find that 

(4, (A + A) I u I) < WA (sgn UP -I- 4 4 G (4, IP + 4 u I) (5) 

for any u in D(B) and any 4 E Q(A), 4 > 0. Now, let v E .X’ be arbitrary and 
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# 3 0. Set 4 = (A + h)-1 IJ which is positive since (A + h)-1 = se-Ate-At dt 
is positivity preserving, and let I( = (B + X)-l 21. Then (5) becomes 

($4 I@ + VW I) < ($9 (A + w I fJ I) 
or equivalently, that 

I@ + h)-l ?J I < (A + 4-l I v I (6) 

From (6) and induction we find that 

I@ + A)-” 7J I < (A + A)-” I 57 I 

(for I(B + h)+-lr~ I < (A + h)-lI(B + A)-” v I (by (6)) <(A + A)-“-l I TJ 1 
(by induction and (A + A)-l positivity preserving). Using 

(3) results. 1 

e@* = s - hi (+)“(A + ++ 

Remarks. (1) By looking at the proof, one sees that it suffices that (3) 
hold for u in any core for B. 

(2) By an argument of Davies [4], (3) implies the following: If v is a 
multiplication operator with D(V) r) D(A) and I/ vu II < OL jl(A + b) u /I for 
all u E D(A), then D(V) 1 D(B) and II L’u II < 01 ll(B + b) II jj. 

One especially interesting case of (3) is to the original application of Kato: 
vizA =- -A,B = (iV+a)2.1faEL~,,c, then B can be defined by the method 
of quadratic forms and we conjecture that (3) holds for any such a with 
V . a == 0. At this point, (3) is only known for a so that B is essentially self- 
adjoint on C,~(UP); this includes a in Cl [5] and also a EL& (for p suitable, 
e.g. p == 4 if v = 3) with V . a = 0 [S, 91. We remark that (3) has recently 
been applied to the study of Schrodinger operators in magnetic fields [ 1, 31. 

One proof of (3) for the case just mentioned is that in [ 1 l] (see also [ 121) which 
was suggested to the author by Nelson: one writes an explicit formula for e-tB 
using Wiener path integrals and rto stochastic integrals, whence (3) follows by 
inspection. The only bar to extending this proof to arbitrary a E Li,, is verifying 
the Feynman-Kac-Ito formula for such a (this problem is discussed in [12]). 

A second proof of (3) in this situation is available using the methods of this 
note. (IQ holds for arbitrary a EL;,,, . 

PROPOSITION 2. Let a E Li,,, and let B = (iv + a)2 as a sum of forms. 
Then for any u E D(B), we have that I u I E Q( -A) and 

(u, Bu) 3 (I u I> A I u I). 
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Proof. For u E Cam and a E Cl, one has that 

l(V - 4 u I 3 I V I u II 

see e.g. [6, lo]. Thus 

II V I 24 Ill2 < IIP - 4 24 II2 (7) 

(2) holds for a in Cl and u E Cam and so by a limiting argument for arbitrary 
a in Ly,, and u E Caa. Since Q(B) is the closure of Corn in the norm 
Il(V - iu) u /Ia + II u /Ia and Q(A) is the closure of Cam in the norm II Vu 11s + 

]I u II2 , the proof is complete. 1 

THEOREM 3. Let a EL~,,~ with V . a = 0 so that B = (iv + a)” is essentially 
self-adjoint on Corn. Then (Kii) holds with A = -A and in particular (3) holds. 

Proof. By the remark following theorem 1, we need only cheek(2) for u E Cam. 
By an approximation argument, this holds if we know (2) when a E Corn. For 
such a, (2) is a result of Kato [6]. 1 

Notes Added in Proof. 1. Theorem 1 has been proven independently and simul- 
taneously by Hess et al., Duke Math. J. 44 (1977), 893-904.2. The problem of proving (3) 
for Schriidinger operators with arbitrary a E Lb, is solved in B. Simon, J. Optimization 
Theory Appl. 1 (1979), to appear. 
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