Volume 62A, number 4

PHYSICS LETTERS

22 August 1977

THE ZEEMAN EFFECT REVISITED

J. AVRON! and I. HERBST?
Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey, 08540, USA

B. SIMON?
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033, USA

Received 7 June 1977

We announce three new rigorous results for the quantum mechanical hydrogen atom in constant magnetic field:
(i) Borel summability of the small field perturbation series, (ii) detailed large field asymptotics, and (iii) non-degeneracy
of the ground state ¢ and a proof that it has L;Q¢ = 0 for all values of the field.

The weak field Zeeman effect [1] in simple atoms
was one of the earliest problems studied [2} in quan-
tum mechanics. More recently, Ruderman {3] and
then others [4] discussed the analogous problem in
super-strong magnetic fields of the type encountered
in neutron stars. It is perhaps surprising that any prob-
lems remain open for such a well studied theory but
there are some unresolved theoretical questions of
interest: (i) The Rayleigh-Schrodinger perturbation
coefficients for the energy levels almost surely [S] di-
verge as n! Do they nevertheless determine the answer
in some way? (ii) Is there a systematic large B expan-
sion for the ground state energy beyond the ¢B and
d In2B terms of ref. [4]? (iii)) There are central poten-
tials [6] where the ground state fails to be m =0 for
B in a suitable interval away from zero and is there-
fore degenerate for at least one value of B by continu-
ity [7]. Is the attractive Coulomb potential one of
these or not?

We wish to describe here solutions of these three
questions; full details of our results and methods will
appear elsewhere [8]. Some of the results extend to
more general atoms and we have studied the correc-
tions due to finite nuclear mass [9] but we will state
our results for the simple model:
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Theorem 1. Let E, (0) be any negative eigenvalue of
the Hydrogen Hamiltonian H(0). Then there is an eigen-
value [10] E,,(B) of H(B) for B small which is the Borel
sum [11,12] of the Rayleigh-Schrodinger perturbation
coefficients for £, [10}].
Theorem 2. The ground state [13] energy E,,(B),
of H(B) restricted to the subspace with fixed azimuthal
angular momentum m is asymptotic for large B and
fixed m to

E, (B)=B(Im| —m + 1)
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Cis Euler’s constant and €, (x) is the exponential inte-
gral.

Theorem 3. The ground state of H(B) for any B is
non-degenerate and has L, = 0 [14].

The complete proofs of these results are too lengthy
to give here but we can say something about the methods.
To prove Theorem 1 [12] one needs to prove stability of
the eigenvalues [15] for complex values of B in some sec-
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tor. This turns out to be somewhat more subtle than
the corresponding stability for the anharmonic oscil-
lator [12]. By scaling (see eq. (3) below) and standard
perturbation theoretic arguments, one shows that the
domain of analyticity contains the cut plane intersected
with a disc. The last element of the proof is the »!
bound on the series expansion in a suitable region of
the complex B plane. Here we exploit a technique of
Combes and Thomas [16] developed originally to prove
the exponential falloff of bound state wave functions.
There is one very interesting aspect of our study of
Theorem 1 we should mention: If y is the ground
state for H(0), then r~ ! In(y, e~ HB ) = ,(B) is
a function with a formal perturbation series ,(B)
=% a,()B" obeying la, (DI < A(1) B(2)" (n/2)! des-
pite the fact that the perturbation series Z a,,(~)B"
for —E(B) = lim,_, .. a,(B) undoubtedly has g, (c0)!
~ n! This example [17] is relevant to the Lipatov
theory [18] of the asymptotics of the perturbation
series for anharmonic oscillators and ¢” field theories
where similar ¢ = oo and n > e limits are interchanged
with abandon; we believe this interchange is correct in
that case but it is clearly more subtle than previously
believed.
To prove Theorem 2, one introduces a coupling con-
stant A in front of the #~! term in (1) and notes that
E(B, N), the ground state of H(B, \) obeys:

E(B,1)=BE(1,B~1/2), 3)

since H(B, 1) and BH(1, g Y 2Y are unitarily equivalent
under the scaling x ~> BY2x. Eq. (3) reduces the large B

behavior to a small coupling problem for H(1, 0) — n L

Because the magnetic field in H(1, 0) discretizes the
spectrum in two dimensions, this is essentially a small
coupling problem in one dimension where systematic
expansions have been recently developed [19].
Theorem 3 depends on certain monotonicity results
obtained by developing a Wiener path integral for the
Hamiltonian reduced to a fixed m subspace, discretizing
the corresponding “time” and using correlation inequal-
ities [20] for the corresponding Ising-like system [21].
The Coulomb potential V{(r) = —1is distinguished
from the potentials of ref. [6] by the conditions
V' >0, V" <0. The critical input is a proof that under
certain circumstances the ground state wave function
of a quantum mechanical particle must collapse to-
wards the origin as the potential becomes more attrac-
tive.
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