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Abstract. We describe several new techniques for obtaining detailed infor-
mation on the exponential falloff of discrete eigenfunctions of N-body

Schrodinger operators. An example of a new result is the bound (conjectured
N

by Morgan) [p(x;...xy)|< Cexp(— Y, a,r,) for an eigenfunction y of
1

IV
Hy=— Z (Ai_
i=1

Z
+ > x— x|t
|xi|) igj !

with energy E. In this bound r, r,...ry are the radii |x;| in increasing order and
the o’s are restricted by o, <(E,_, — E,)"/?, where E,, for n=0, 1, ..., N — 1, is the
lowest energy of the system described by H,. Our methods include sub-
harmonic comparison theorems and “geometric spectral analysis”.

§ 1. Introduction

It is an elementary fact that a solution of (— 4+ V)yp= Ey with pe L?, V>0 at «©
(in some sense) and E <0 has exponential falloff: it is certainly bounded (in some
sense) by C(exp(—(l—e)]/ —Elx|]) for any &>0. Our interest here is in a
considerably more subtle situation. Let

N 1...N
H=—73 m) "4+ Y V(x'=x) (1.1)
i=1 i<j

on L*R*M) be the Schrodinger operator for N particles with coordinates x'e R”,
where A'=Laplacian with respect to x'. The operator H obtained by separating
the center of mass motion acts on L2(X) where X is the v(N — 1)-dimensional
subspace Zm,x'=0 of R"Y. (Kinematics is discussed in Appendix 1). We consider
solutions of

Hy=Ey. (1.2)
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While H= —A4+V in a suitable metric on X, it is no longer true that V—0 at
infinity, even if each V,(y)—0 as y—co in R’, since V is not small in directions
where x— co but some |x"— x| stays bounded. Thus the falloff of solutions of (1.2)
is in general much slower than in the elementary case ¥—0 at co and will depend
sensitively on the direction in which x— co.

There is extensive discussion of this problem in the chemical, physical and
mathematical literature. The first-result for general N-body systems (with N > 3)
was obtained by O’Connor [23] (Some of the earlier literature is quoted in [25];
we mention here the work of Slaggie and Wichmann [30] on the case N =3, and
Alrich’s [2] work on the N-electron atomic case.) O’Connors result is that

[ dxpp(x)?e* ™ < oo (1.3)
X

so long as
a<(Z—E)'?, (1.4)

where ¥ is the bottom of the continuous spectrum of H and |x| the norm in
configuration space defined by (A 1.1). Substantial simplifications of O’Connors
proof and an extension to bound states embedded in the continuum were obtained
by Combes and Thomas [9]. Starting from (1.3) Simon [26] derived the pointwise
bound

lp(x)| = C, exp(—alx]). (1.5)

for the same range of a. We will refer to (1.3)~(1.5) as COST estimates.

O’Connor [23] stated that his estimates were “best possible” by giving
examples where the range of o could not be increased. Indeed we expect that if one
restricts oneself to isotropic bounds (i.e. depending only on |x|), then (1.5) cannot be
improved except by allowing o= (X — E)!/? with perhaps a factor |x|%in front of the
exponential (<0 is possible). This kind of improvement is obtained for the
electron density in an atom by M. and T. Hoffmann-Ostenhof [15].

Our own attitude towards the problem was changed by a paper of Morgan
[22] who pointed out that in directions where all |x'—x/| go to infinity,
asymptotically satisfies —Ayp=Ep, so that one expects a falloff like
1 ~exp(— Za;x’) with ) «7/2m;=E, which may be considerably more rapid than
(L.5). Morgan also showed how to use the Slaggie-Wichmann methods to improve
(1.5) in the case N =3. (It should be mentioned that there is a paper by Mercuriev
[21] with stronger results on 3-particle systems, of which we were unaware, and
that when M. and T. Hoffmann-Ostenhof first raised the issue of improving (1.5), it
was one of us (B.S.) who assured them that (1.5) was “best possible”!)

Our goal in this paper is to develop general methods which can detect
anisotropic exponential falloff properties of . Two main themes are involved : the
more “elementary” (§ 2) takes off from Morgan’s remark and uses a subharmonic
comparison theorem of the type already applied in III of this series [27]. For N=3
it recovers Morgan’s result, but for N >3 it apparently has serious defects. The
more involved but more powerful (§ 3-§ 8) starts from the original COST papers to
which we return shortly. A major element is “geometric spectral analysis”, i.e. the
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use of heavily geometric (configuration space) ideas to find the essential spectrum
0..(H(f)) of certain transforms H(f) of H. Such ideas go back to Zhislin [32] and
were developed by Jorgens and Weidmann [17], but their simplicity and power
were realised only recently due to a paper of Enss [12]. The operators H(f) will
not be self-adjoint, so §3-§4 will be devoted to extend Enss’analysis to this case.

Simultaneously and independently of our work Alrichs and M. and T.
Hoffmann-Ostenhof [3,4] studied the atomic case (with fixed nucleus) and
obtained similar results. One advantage of their method is that constants like C, in
(1.5)) are explicitely given numbers, while our constants are only implicitely
determined depending, e.g., on norms of resolvents of non-normal operators which
are difficult to control. Other methods giving explicit constants appear in Davies
[10] (who only estimates [[y],, not [yexp(alx|)|,, and requires V;;=0) and
Lavine [20] (who considered the case N =2).

Let us briefly describe the Combes-Thomas proof [9] of (1.3) since its
extension will concern us here. (1.3) states that yexp(a|x|)e L2(X) if «* <X —E,
which is equivalent to pexp(a, x)e L?(X) for all aeX with (a,a)=a*<X—E. Let
U(a), aeX, be the group of unitary transformations y(x)—y(x)exp(—i(a, x)). Then
pexpla, x)e L*(X) for all a with a®> < ¥ — E if and only if the function a— U(a)y has
an analytic continuation from the real space X to the region (Ima)> <X —E of X
=complexification of X. This reduces the proof of (1.3) to showing that y is an
analytic vector for the group U(a). For real a we have

U(@HU Y(a)=(p+a)*+V=H(a).

If V' is Hy,-bounded (or H,-form-bounded), H(a) extends to an entire analytic
family of type (A) (or of type (B)) in the sense of Kato [18], defined for all acX.

An argument of Combes [1, 5] now implies that a discrete eigenvalue E of H
(i.e. an isolated eigenvalue of finite multiplicity) remains a discrete eigenvalue for
H(a) if there exists an open, connected set N CX containing O and a, such that
0. (H(b))$E for all be N. For suppose that E is a discrete eigenvalue of H(b,),
boeN. Then E may split into eigenvalues E/z) of H(b,+zb,) which depend
analytically [18] on z for small |z[, where b, €X is arbitrary. However, since H(b,)
and H(by+zb,) are unitarily equivalent for real z, E(z)=E for Imz=0 and
therefore for all z in a neighbourhood of 0. Since b, is arbitrary, we conclude that E
remains a discrete eigenvalue of H(b) for b in a neighbourhood of b, and, by a
continuation argument, for all be N. Similarly, the corresponding eigenprojection
P(b) 1s analytic in be N.

Analyticity of y now follows from a Lemma of O’Connor [23]: Let P(b) be an
analytic family of projections for b in an open, connected region N30 of X.
Suppose that P(a+b)=U(a)~ ' P(b)U(a) for acX, be N, b+ae N. If P(0) is of finite
rank and we Ran P(0), then the function b— U(b)y has an analytic continuation
from XNN to N.

This reduces the proof of (1.3) to showing that E¢o_ (H(a)) for (Ima)* <X —E.
Using “connected” resolvent equations for (z—H(a))™!, Combes and Thomas
prove that (in the notation of Appendix 1)

0.(H(a)= kD) {IIp(p+a))* + X plpeX}
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where D runs over all partitions of (1...N) into more than one cluster. In
particular, E¢o, (H(a)) so long as

(I, (Ima))* <X, —E (1.6)

for all nontrivial D. Choosing D independently to make the left-hand side of (1.6)
maximal (IT,=1) and the righthand side minimal (¥, =2) we obtain the single
sufficient condition (Ima)?* <X —E leading directly to (1.4). Therefore, by fully
exploiting the Combes-Thomas analysis, one can already improve the COST
estimates (1.3-5). To formulate the results we now collect the conditions on the
potentials to which we will refer in this paper:

(C1) Each V, viewed as an operator on L*R") is (— 4)-form compact.

(C2) Each ¥, viewed as a function on R” has a Fourier transform V,, e LP(R")
+LYR) with p<v(v—2)"tifv=2or p<o if v=1.

(C3) Each ¥V, viewed as a function on R® obeys V,eLP(R")+L*(R") and
V,(¥)—0 as |y|— o0, where p>v/2 if vz4 or p=21if v=1,2,3.

Most of the results in this paper will be proven for potentials satisfying (C 3).
(C1) follows from (C2) or (C 3) and is sufficient for the Combes-Thomas analysis
[9]. (C2) is the condition used by Simon [26] to go from (1.3) to (1.5) by showing,
essentially, that if an eigenfunction y of H satisfies yexp(a, x)e L* for some aeX
then ypexp(a, x)e L®. This together with (1.6) immediately gives Theorem 1.1
below.

Definition. Let y be a complex function on X. A positive function f on X is called
an L? exponential bound for vy if and only if pexp(xf)e LP(X) for all »x < 1.

Theorem 1.1 (Improved COST). Let H be an N body Hamiltonian obeying (C 1) and
let Hp=FEy. If acX satisfies the conditions (1.6) for all nontrivial D, then f(x)
=(a,x) is an L* exponential bound. If (C 2) holds, f is an L” exponential bound.

Example 1.1. Consider 3 particles 0, 1,2 with my=o00 (x°=0, x"'? independent
coordinates). Let 2, 2|, 2, be the lowest energies of the subsystems (12), (02), (01),
respectively. According to (1.3), f(x)=(a, x)=a,x' +a,x* is an exponential bound
if

a3(2m,) " +a(2my) ' < min (2, - E), (1.3)

which should be compared with the following 4 inequalities:

2Qm) ' <Z,—E  (i=1,2) (1.6)
(a,+ay)*2m, +2my) ' <X —E (1.6'b)
ai2m,)" ' +ai2m,) ' < —E (1.6'c)

obtained from (1.6) for the 4 decompositions D =(02)(1), (01)(2), (0)(12), (0)(1)(2)
in this order. (1.6') can be much weaker than (1.3'), e.g. if X;=2,=0 and if
(E/Z,)—1is small, then (1.3") forces both a, and a, to be small while (1.6") only
forces a, to be small.



Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV 5

Notice that, if X,=0, (1.6'c) implies (1.6'b) since
ai@m)" +ai(2my) "~ —(a, +ay)*(2m, +2m,) !
=m,m,(2m, +2m,)" (a,m; ' —a,m; *)*=0.

This is actually a special case of

Lemma 1.2. Let D<1D' and suppose that X, =X, (in general X, <%, ). Then (1.6)
Jor D' implies (1.6) for D.

Proof. Since D<a D" implies the operator inequality IT,, <IT,, (A1.5), it follows that
(Tpa) <(Tpa). O

The L* exponential bound one gets from (1.6) by optimizing over a for fixed x
is the Minkowski functional

f(x)=sup{(a, x)|a obeying (1.6)}

of the polar of the convex set of a’s defined by (1.6). This suggests that one should
search for exponential bounds f which are positive and homogeneous of degree 1.
The Combes-Thomas argument has an immediate extension to this case: instead
of H(a) consider

e UHe ™V =(p+Vf)?+V=H(f). 1.7

If Hy =Ey and E¢o, (H(ilf)) for 0<A<1 then f is an L? exponential bound for
y. The problem of expressing o, (H(f)) in terms of the function f and of the
thresholds and the masses will be solved in §3,4. In §5 we state the resulting
sufficient conditions for f to be an L? exponential bound. The corresponding L®
exponential bounds are derived in § 6. Inspection of the proof in [26] shows that it
extends in a straightforward way to convex exponents f(x). The functions f of
interest, however, will not be convex, but they are Lipschitz. This will be used in § 6
to prove:

Theorem 1.3. Let H be an N body Hamiltonian obeying (C3) and let Hyp= E.
Suppose that f is an L* exponential bound for y. If

1) =S =alx -yl
Sor all, x,yeX, then fis an L exponential bound for .

The resulting L* bounds will be dubbed “ultimate COST estimates” since they
are obtained by extending the COST ideas to their natural but ultimate extremum.
In § 7-8 we construct explicit exponential bounds f for atoms with infinite nuclear
mass and for general 3-particle systems. Due to the kinematical complexity, the
problem remains open to find the optimal bound f consistent with the conditions
of §5 for a general N-particle system with given masses and thresholds.

We close this introduction with a comment about the use of the word “best
possible” with regard to exponential bounds. We have learned to use the word
sparingly. The actual behaviour of bound state wave functions at infinity seems to
depend in an intricate way on relations among the thresholds and the masses, so
that a result which is “best possible” in a particular example (e.g. an “atom” with
noninteracting electrons) may not be optimal in other cases.
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§ 2. Comparison Theorem Methods

In this section we present a method which in particular yields Morgan’s result for
the Helium atom. The basic result we need is the following comparison theorem:

Theorem 2.1. Let ¢ =0 and y be continuous and A=B=0 on R"\S for some closed
set S. Suppose that on R"\S, in the distributional sense,

AlplzAlyl;  A9=Bo 2.1
and that |p| < ¢ on 0S and vy, 9—0 as x— 0. Then |p|=¢ on all of R"\S.

Remark. This theorem is used in [27] where references to earlier work can be
found. A variant of it also serves as the basic tool in the recent independent work
of Alrichs, M. and T. Hoffmann-Ostenhof [4]. Its proof is so short that we repeat it
here:

Proof. Let n=|yp|— ¢ and K = {x|n(x)>0}. Then on the open set K, 4y = Alp|— Be
=(4 - B)p + A(ly| — ) 20. So 1 is subharmonic and therefore takes its maximum
value on 0K U{oo} where it vanishes by hypothesis. Thus # <0 on K. Since #>0 on
K, K is empty. [

To combine this result with COST, we use geometric ideas which already
dominate some of our recent work on N-body systems [ 11, 287. We isolate tubes in
X around the sets x'=x’. Then we will pick a ¢ which dominates the COST
estimate for y on these tubes, so that there we have || < ¢. By making the tubes
sufficiently fat we will be sure that outside their union S, V= —J = E and by Kato’s
inequality [19, 24]

Ayl z2(V=E)ly|2(—=E—=9d)ly| (2.2)
on R"\S. Then, if ¢ obeys 4¢ <(— ¢ —E)p we will have |p|<¢ on all of X.
Theorem 2.2. Let H be an N-body Hamiltonian obeying (C 2) and with V,(x)—0 for
x— o0 in R'. For i=j let D;; be the partition of (1...N) into the N —1 clusters (ij) and
(k), k=+i,j.

Let

= [(1— HD,-J-)X| = ﬂ(mi_ ! +m; " l/zlxi—xj'

Vij= IHDU_XI =(x2 _Zizj)l/z )

Let Hp=Ey, E<Z, and for each ¢>0 let

P (x)=exp{—(1—¢) [y, (Z—E)*+z,(—2)"*]}.
Then

WEISCE) Y, o) (0=9). 23)

i<j
Proof. Let S;;={x|z;<y}/?} and S,={x|x* <R?} where the constant R will be
adjusted below. Let S=5,0(JS;. On S, [p(x)|=Cle)pf by (1.5) and clearly
[p| < @® on S, for suitable C(g). Thus (2.3) holds on S and, in particular, on 4S. To
obtain (2.1) for suitable 4 and B with A=B=0 we first claim that on R™S,
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z;;Z(R)— 00 as R— 0. This follows from noting that on R"\S, R* <x*=z%+y},
<z} 4z and therefore z7;2(R*+1/4)'/2 —1/2. Given §>0 we can therefore pick
R so that

V(x)= -6 (2.4)

on R"\S. It follows from (2.2) that Ajy|=(—E —9d)jyp| on R"\S.

Next, using that for a function f(r) of the radius r=|x| in R, (4f)(r)=d>?f/dr*
+(n—1)r~df/dr, we see that Ad(e”*Y=a%e " —a(n—1 " te " <a’e™ ™ for n>1,
and also for n=1 since Ade”")=a’e " —ad(r)e " <a’*e . On X, 4 =4, +4,,
and we see that

A9 = —E(1-¢)*0"®.

Since E <0, we can choose 6 >0 such that —E—§> — E(1 —¢)?, so that (2.1) holds
with A= —E—¢ and B= —E(1 —¢?). Noting that ¢(x)-0 and by (1.5) also
P(x)—0 as x— o0, we see that (2.3) follows from Theorem 2.1. [

Notice that if some V;;20, then (2.2) holds even if the corresponding z;; are not
large. Thus we have:

Corollary 2.3. Under the hypothesis of Theorem 2.2, the estimate (2.3) remains valid
if we defer from the sum all terms coming from pairs (ij) with V;;z0.

Example 2.1. (2 electron atom, finite nuclear mass). Take 3 particles 0, 1,2 with
Vo, =V,, and V,, 20. Then by (2.3) and Corollary 2.3:

lp()| S Ce)[e™ " 1 4e 1 792] with

fix)=Q2(Z = E)M)"?|x* —(my +m,) ™ H(mex® +myxh)|
+(=2Zp) 2 x? = x|

where u”'=mgt+m; ', M~ '=m['+(my,+m,)” ! and where f, is obtained by

interchanging 1 and 2. This is Morgans bound [22].

Example 2.2. (N electron atom, infinite nuclear mass). Take N+ 1 particles
0,1,...,N with my= o, my =...my=1/2, and suppose that V;(x) and 0=V, (x) are
independent of i,j=1...N. Let E=EEy<Ey_,<Ey_,... SE,=0 where E, =lowest
energy of the subsystem (0,1,...,n) for n=0,1,...N—1. For comparison with
Example 7.2 (§7) let us assume (7.6). Then Ey_, —Ey<Ey_,—E,_S—E\y_,
and Corollary 2.3 gives the L® exponential bound f(x), where f is symmetric in
x'...x" and reduces to

S=r(—Ey_ DY+ .. +rD)YHEy_ —EY)'?
on the sector r; <r,... <ry(r;=|xY]). For N =2 this agrees with the bound given in
Example 7.2, but for N>2 it is seen to be smaller:

Lemma 2.4. If 0<a,=...La,and b, 2b,=...2b,=20, n=2, then

1/2

n n—1 1/2 n
._Zlaibigal(._zl bf) +b"(.2‘2a"2> =g(a,b).
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Proof. Fix the b’s and a,. Then the inequality holds for a, =... =ay=a,, since

gla,b)=a,

n—1 1/2
(n— 1)1 + ( y b}) <

i=1

Therefore it suffices to prove dg/da, = b, for k=2...n:

lIA

n —1/2
5g/6ak=akbn(z af) <b,<b,. U
i=2

In cases where the 2 cluster thresholds are not all at X, one can hope to
improve Theorem 2.2 by using Theorem 1.1. Possibly one could obtain the full
Mercuriev-type result (§ 8) for N=3, but because of the global nature of the
conditions (1.6) the kinematics is fierce. We settle for:

Example 2.3 (same situation as in Example 1.1). Suppose that V,, =0 and that
m, =m,=1/2 for kinematic simplicity. By (1.6") and optimizing over a we have the
2 exponential bounds

f)=xlZ,~E)'?  (i=1,2).
Using the method of proving Theorem 2.2 and Corollary 2.3 we find the L®
exponential bound

J(x)= min [(Z— B2 + (= 2 )]

where j=2,1 for i=1,2.
We close by noting one way of further improving Theorem 2.2 by a device that
will also prove useful in §7:

Definition. For x,y,a, =0 we define the Mercuriev function M by
xo+yp if yazxp
(42122 + )i yu=xp

Noting that G(x,y)=(x?+y?)"?(e?+ %) —xa—yf=0 for all x,y we see that
VG(x,y)=0 for G(x,y)=0 (ie. for ya=xp). Thus M is a C* function of x,y. As a
result (in the notation of Theorem 2.2), the functions

Mz, 3,5 (= 2)'2, (2= E)) = M (x)

Mmym@={

obey, in the distributional sense,
Ae”G-9Mii< E(] —g)2e (1 0OMij

since the C'-nature of M, prevents d-function singularities on the “matching
surfaces”. Thus we obtain:

Theorem 2.5. Under the hypothesis of Theorem 2.2, (2.3) remains valid if

(€)

@7 is replaced by exp(—(1—e)M)).
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With this device we have improved individual terms of the sum (2.3) in certain
regions. Whether this improves the sum or not depends on relations among the
thresholds and the masses. In §7 we will see that for atoms, it does not.

The above examples still show two defects in the method of this section: (i) it
seems only effective under removing the first particle and the last and therefore not
ideal for N >3 (This difficulty was recently overcome by Alrichs, M. and T.
Hoffmann-Ostenhof [4]); (ii) because of the global nature of the improved COST
conditions (1.6), it is not easy to check with complicated kinematics. In distinction,
the second method which we now describe is efficient for arbitrary N and yields
local conditions for f.

§ 3. WeyP’s Criterion for the Essential Spectrum

In this section we prepare the tools for the determination of o (H(f)). Let 4 be a
closed operator on a Hilbert space # with resolvent set g(4) and spectrum o(A4).

Definition [25]. 04,,.(4)=set of all isolated eigenvalues of A with finite algebraic
multiplicities.

0o o(A) = 0(A)\0 4 (A) .

Definition. N _(A)={AeC|There exists a sequence u,eD(4) such that |ju,| =1,
u,—0 (weakly) and [(A—A4)u, | —0}.

We remark that N__(A) is closed.

ess(

Theorem 3.1. (Weyl’s criterion for o
nonempty resolvent set. Then
(i) Now ) Co )
(i) Boundary of o, (A)CN (A)
(iil) N_ (A)=0,(A) if and only if each connected component of the complement

of N, (A) contains a point of o(A).

(A)). Let A be a closed operator on # with

ess

ess

Remarks. 1. (iii) is an immediate corollary of (i) and (ii)

2. Examples where N (4)=0_(A4) are the case A =A%, or cases where the
complement of N (A4) is connected.

3. A proof of Theorem 3.1 is implicit in [18], Theorems IV 5.11, IV 5.28 and
problem IV 5.37. (Note that Kato’s definition of the essential spectrum X (A4)
differs from ours.) A proof of the Banach space version is also given in [26]. Ideas
like (ii), but for the full spectrum ¢(A), are a standard tool in operator theory, see
e.g [7]

In quantum mechanics, Weyl’s criterium was first used by Zhislin [32] to
determine o, (H). Recently, Enss [12] has given a very elegant variant of this
method which we describe below, extending it to the case of non-selfadjoint
operators which concerns us here:

Let X be a real, finite dimensional, normed vector space, equipped with
Lebesgue measure. In the following, 4 is a closed operator on L*(X) having CZ(X)
as a core.
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Definition. N (A)={AeC|There exists a sequence u,€CZ(X) such that u,|=1,
suppu,NK empty for each compact KCX and n sufficiently large, and
(A —Au,||—0as n—oo}. We will call a sequence u, of this type a Weyl sequence for
A and 1.

Clearly N (4)CN_(A). Following Enss [12] we obtain sufficient conditions
for the converse:

Theorem 3.2. Let A be a closed operator on L*(X) with nonempty resolvent set,
having C3(X) as a core. Let X ;e CF(X), X o(X)=1 for x in a neighbourhood of 0, and
let X4 be the operator of multiplication by X (x/d) for 0<d < co. Suppose that for
each d, X4(z— A)™* is compact for some (and hence all) zeg(A), and that for all
ueCyX)

LA XGTull s e(d)(| Aul| + [ul)) (3.1)
with &(d)—0 as d—oo. Then N _(A)=N_(A4).

Proof. Let e N (A). By definition, there exists a sequence u,e D(A) with fju,| =1,
u,—0 (weakly) and ||(A— A)u,|| 0. Since CJ(X) is a core of A, we may assume that
u,€ CF(X). Then, for zeg(4),

IXou, | =1X5(z—A)" (2= Au, | -0

CSS(

as n— o0, since by hypothesis X 4(z— A4) ™! is compact and (z — A)u,—0 (weakly). By
(3.1)

12 =AY =X, | S [(2— A, | +e(d)(| Au, | +1).

Taking d=1,2,... we can therefore pick a subsequence n(d) of {n} such that
(1 =X Gyl =1 and [[(A—A) (1 —=XG)u,, | =0 as d— co. For any compact K CX,
supp(l —X%)nK is empty for d sufficiently large, hence 1e N _(4). [

For the analysis of Schrodinger Hamiltonians in configuration space we need
more detailed control over suppu,:

Definition. A partition of unity on X is a finite set X ... X, of C* functions on X with
bounded derivatives obeying:

0<X,

IIA

;) X,=1
i=0

X,eCZ(X); X,=1 on some neighbourhood of 0. For 0<d <0, X¢ denotes the
function X,(x/d) and also the corresponding multiplier on L*(X).

Definition. Let X ... X, be a partition of unity on X. For i=1...s we define N’ (4)
={leC|There exists a Weyl sequence u, for 4 and A with suppu, CsuppX?}.
Clearly N (4)CN_(A) for i=1...s. Again we can state a converse which,
combined with Theorems 3.1 and 3.2, gives a possible characterisation of o (4):
Theorem 3.3. (i) Let A be a closed operator on L*(X) having C3(X) as a core. Let
Xo... X, be a partition of unity and suppose that for all ue C¥(X) and i=1...s

LA, X Tull S ed)(| Aul + ul) (3.2)
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with &(d)—0 as d— 0. Then

N_(4)= ,-Ql N (4).
(ii) If, in addition, A and X, satisfy the hypothesis of Theorem 3.2, then

Nod)= U NL),

(ii1) If, moreover, the complement of N (A) is connected, then

eSS(
5l )= [ NL(4).

Proof. Let Ae N (A) and let u, be a corresponding Weyl sequence. Without loss of
generality we may assume that Xju, =0, so that

u,= Y X'u,.
i=1
Therefore
[ X, || <s™'>0 (3.3)
for some index ie(1...s) and for an infinite subsequence {m} of {n}. By (3.2)

(A= A)X T u, || = 1(A— A, || +e(m)(]| Au,, | +1)-0

as m—»co. This together with (3.3) shows that Aie N'(4). The remaining statements
follow directly from Theorems 3.1 and 3.2. [

As an illustration of the simplicity and power of Theorem 3.3 we describe its
use for the determination of o (H) [12] where H is the N-particle Hamiltonian
with potentials obeying (C 3):

The three ingredients of Theorem 3.3 are:

(i) Compactness. For any X,e C¥(X), X,(i+ H,) ™' is compact and, since V(i + H) ™!
is bounded, X (i+H) ' =Xy(i+H,) ' —=Xy(i+ Hy) "' V(i+H)™ !isalso compact.
(i) Commutator Estimates. For local potentials the estimates (3.1) (3.2) involve only
H,, and ¢(d) is easily seen to be of order d ™. (Note that by (C 3), H, is H-bounded).
(iii) Partition of Unity. Let D=(C,,C,) run over all 2-cluster decompositions.
Construct a partition of unity X,u{Xp} on X such that dist(C,,C,)>1 for
xesupp X,,. Then dist(C,,C,)>d for xesupp X% and it follows from (C3) that
|(H—Hp)u,| —0 for any sequence u,e Cg(X) with |Ju,|=1 and suppu,CsuppX}.
Therefore N2 (H)CN®(H,) and by Theorem 3.3

ess(

oo H) = g NZ(H)C g)N?O(HD)C KDJG(HD)- (3.4)

Conversely, o(H,)Co, (H) by a simple application of Weyl’s criterion for the
full spectrum : if e o(H ) there exists a sequence u,e CP(X) such that |ju,|| =1 and
[(A—Hpu,[|—0. For any aeX with a= I a, U(a):yp(x)—>yp(x—a) represents a
relative translation of the clusters C,,C, and commutes with H, Hence
I(A—=Hp)v,| =0 for v,=U(a,)u, and for any sequence a,=I1,a,. Picking a, such
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that dist(C,,C,)>n for xesuppv, we have |[(H—Hp)v,|—0. It follows that
(A= H)w,|| =0, hence Ae o(H). Combined with (3.4) we obtain

o H)= | o(Hp). (3.5)

D=(Cy,C2)

§ 4. Geometric Spectral Analysis of H (f)

In this section we apply Theorem 3.3 to express o, (H(f)) in terms of the function f
and of the thresholds and the masses. The idea is, essentially, to analyze the local
operator H(f) along fixed directions in configuration space. To formulate the
result (Theorem 4.1) we introduce the following notions:

Definitions. (i) Let f be a complex C* function on X satisfying f(Ax)=Af(x) for
|x]=1 and A=1. If H is the N-particle Hamiltonian we define:

H(f)=e YHe/=(p+Vf)>*+V.

(i) For any xe X we define the cluster decomposition D(x) as follows: two particles
i and k belong to the same cluster if and only if x'=x*. If x40, D(x) is nontrivial
and depends only on the direction of x. Similarly, V'f(x) is homogeneous of degree
zero for |x|=1. To express this we introduce

Q={ecX|le|=1}
and the functions

De); ale)=(Vf)(e)

on the unit sphere Q.
(iii) For any aeX we set

H(a):e-—i(a,x)Hei(a,x)=(p+a)2 + V,
and for any cluster decomposition D:
HD(EI) — e—~i(a,x)HDei(a,x)
= H(a)— (all intercluster potentials).
Remarks. (i) If the potentials obey the condition (C 3) of §1, each of the operators
A=H(f), H(a), Hp(a) is defined on C7(X), where the norms ||Au|| + |lu|| are all
equivalent to ||Hyu|| + {uf. Therefore each 4 has a closure (again denoted by A4)

with domain D(A)=D(H,) and satisfies the hypothesis of Theorem 3.3 (i) and (ii).
(i) In the sense of (A 1.4) Hp(a) can be expressed as

Hp(a)= H;:))(ap) + z H(ae),
CeD
where ap=1IIa, a,=II.a. H.(a;) is the exact analogue of H(a) for the subsystem
C. HY(ap)=(II,(p+a))* is a multiplier in p-space whose spectrum for nontrivial D
is the parabolic region shown in Figure 1 (except for the case of particles in one
dimension (v=1), where for 2-cluster decompositions this region reduces to the
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boundary parabola. For simplicity we disregard this exception in the following).
By Ichinoses lemma [25]:

o(H p(a)=0(Hp(ap)+ 3, o(Hclac)). (4.1)

CeD

Theorem 4.1. If H is an N-particle Hamiltonian with potentials obeying (C 3) and if
v=2, then

aess(H(f)) = U G[HD(B)(a(e))] .

ee?

Discussion. Setting f=0 we recover

o (H)= ij o(Hp)

where D runs over all nontrivial partitions. Choosing f(x)=(a, x) for any aeX we
obtain

0 (H(a) = LD) a(H p(a)).
Using (4.1) it follows from this by induction that for nontrivial D
o(H p(a) = DUD [Z, +a(H)(ap)]. 4.2)

We conclude that Theorem 4.1, together with (4.2) and Fig. 1, completely describes
0. (H(f)) in terms of f'and of the thresholds and the masses. In particular

infReo, (H(f)= inf [Z,—(IT,Ima(e)?]. (4.3)
eef2; D>D(e)

This is the basic result from which the exponential bounds will be derived in § 5-8.
We mention without proof that (4.3) remains true in the exceptional case v=1.
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The proof of Theorem 4.1 is given in the remaining part of this section. In order
to apply Theorem 3.3 we introduce the family of cones

Ks(e) = {XEX!(e’ X) >(1 _S)IXI}
for eeQ, >0, and for each e Q the complex set

N (e)={AeCl|for any ¢>0 there exists a Weyl sequence u,
for H(a(e)) and 1 with suppu,CK (e)}.

Since H(f) resembles H(a(e)) on a narrow cone K (e) we expect as a limiting case of
Theorem 3.3 (i):

Lemma 4.2. Under the hypothesis of Theorem 4.1,

N (H(f)= | N(e).

ee?

Proof. Let ue C3(X) with suppuC K, (e)n{|x|>R} for R>1. Then
I(H(f) — H(a)u| S [(Af)ull + 1V f)? —a*)ul +2[(Vf—a), p)u]
<o[R™1+Be)] (1Hu] + ull), (4.4)

where o and f(e) depend only on f and f(e)—0 as ¢—0. (For Vf is uniformly
continuous, Af is homogeneous of degree —1 for |x|=1 and p is H,-bounded).
Using this we first prove:

(1) N (e)CN_(H)f)): Let Ae N (e). Then there exists a Weyl sequence u, for
H(a(e)) and A with suppu,CK,,(e)n{|x|>n}. Since [H,u,| is bounded for any
Weyl sequence it follows from (4.4) that ||(A—H(f)u,|—0; hence Ae N (H(f)).

(i) N (H()C (J N(e): Let AeN ,(H(f). Given ¢>0, R>0 we can choose

eef2

ecQ and wueCX), |ul=1, such that suppuCK,(e)n{|x|>R} and
lA—H(f)ul<e (To see this, take a partition of wunity X, with
supp X; C K (e)n{|x|>1} for i=1...s and suitable ¢;e 2 and apply Theorem 3.3 (i)).
Making such a choice for each (e, R)=(n"',n), n=1,2,... we obtain sequences
u,eCP(X) and e,eQ with |ju,| =1, suppu,CK, (e, )n{|x|>n} and

I(A=H()u,l <1/n. (4.5)

Since Q2 is compact we may, by passing to a subsequence, assume that e,—e. Then
K, (e,)CK (e) for any ¢>0 if n is sufficiently large. By (4.4) and (4.5) we conclude
that

(4 — H(a(e))u,[| -0
as n— oo, which proves that AeN (e). [

Lemma 4.3. Under the hypothesis of Theorem 4.1 we have for each ee
N ,(e)=0[Hp,(ale))].

Proof. Since e is fixed, we write D(e)=D, a(e)=a. We first prove:
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(i) N (e)Co(H p(a)): Choose & >0 sufficiently small so that |x'— x*| > J|x|(d >0)
for xeK,(e) and i,k in different clusters of D. Let Ae N (e) and let u, be a Weyl
sequence for H(a) and A with supp u, CK(e)n{|x|>n}. Then ||V, u,|—0 as n— oo if
i,k are in different clusters of D, and it follows that [[(A— H(a))u,|| —O0.

(ii) o(Hp(a)) CN (e): If Theorem 4.1 is true, it follows that there is a simple
Weyl criterion for the full spectrum of H(f):Aea(H(f)) if and only if
I(A—H(f))u,]|—0 for a sequence u,e Cy(X), |lu,l|=1. Using this we proceed by
induction, assuming that Theorem 4.1 is proved for all subsystems of less than N
particles. In (4.1), Weyl’s criterion then holds for o(H(a.)) by induction hypothesis
and for o(H)(ap)) since HY(ap) is a multiplier in p-space. Therefore it holds for
o(H p(a)) since we may pick Weyl sequences of product form with respect to the
factorization (A1.3). So let Ae o (H p(a)) and u,eCg, |u,| =1, and

(A —Hp(@)u,|| -0

as n—o0. By definition of D(e), translations of the form x— x + be (be R) leave the
configurations inside the clusters of D invariant, so that the corresponding unitary
translation operators U(be):u(x)— u(x —be) commute with H(a). Therefore

(2= Hp(a)U(b,e)u,| -0
for any choice of the sequence b,eR. Given ¢>0 and u, we can always pick b,e R
such that supp U(b,e)u, CK (e)n{|x|>n}. This proves that ie N _(e). [

Proof of Theorem 4.1. By induction hypothesis Theorem 4.1 holds for all
subsystems of less than N particles. Therefore o[ Hp, (a(e))] is given by (4.2).
According to Lemmas 4.2 and 4.3,

N (H(f))= % U[Hp(e) (ale))],

which shows that the complement of N _(H(f) is connected. It follows from
Theorem 3.3 that

T H() =N, (H(f). O

§5. I* Exponential Bounds

Combining the Combes-Thomas argument with the result (4.3) we see that fis an
L? exponential bound for an eigenfunction p of H with energy E if

(ITpa(e)* <X, E (5.1)

for all ee Q and for all De>D(e). In the derivation of (4.3) f was assumed to be a C®
function on X. In trying to find the largest possible f satisfying the gradient
condition (5.1) we must be prepared, however, to encounter limiting functions f
which are only piecewise smooth functions of x (such as the Mercuriev function
occurring in Theorem 2.5). To cover this case we prove:

Theorem 5.1. Let Hy=Ewy, where H is an N-particle Hamiltonian obeying (C3).
Then f is an L* exponential bound for v if f is positive, continuous and homogeneous
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of degree 1 on X and if it has an L* distributional gradient Vf=a satisfying the
Sollowing condition for all x+0:

(Mpa(y)*=2p—E (52)
Sor all D=D(x) and almost all y in a neighbourhood N, of x.

Proof. We begin by noting that if we fix D, then D(x)<aD if and only if IT,x =x. As
a result, if Q= {x||x|=1}, we see that {xeQ|D(x)<sD} is compact for each D and
therefore, by a compactness argument, we can find 06>0 such that
N2={y|ly—x|<d}CN, for all xeQ. Let N be a neighbourhood of the identity in
SO(n) (viewed as the group of orthogonal transformations on X), such that Rxe N?
for Re N and xe Q. Let j be a non-negative C*-function on SO(n) with support in
N and [j(R)dR=1 (dR =Haar measure). Then

f{x)=[ f(Rx)j(R)dR (5.3)

is C* and homogeneous of degree 1 on X\{0} since j smoothes in all nonradial
directions. For a;=Vf; we see that

(Mpa(x)*<Zp—E

for all D=>D(x), since j(R)+0 implies that Rxe N°CN_ and since the set
{a|(Il ja)* £X,— E} is convex. Thus /f; 1s an exponential bound for y by (5.1).

Given ¢ in 0<e<1 and #>0 we can choose j (near a o-function on SO(n)) so
that

(1 —2) f(x)=(1 —¢) fi(x) +enlx| (5.4)

for all x. By (5.1), x| is an L? exponential bound if we choose #?<X—E
(O’Connor’s bound). Since the L? exponential bounds for y form a convex set, we
conclude that (1—e¢)f is an exponential bound for any >0, hence f is an
exponential bound. O

§6. L Exponential Bounds

In this section we prove Theorem 1.3 which implies that the L? exponential
bounds f derived in § 5 are also L* exponential bounds. Having shown that
elipe L? is an eigenfunction with eigenvalue E of

e/ He ' = H(if) (6.1)

it suffices to prove that exp(—tH(if)) is bounded from L? to L” for some >0,
since then

e Eelyp=e HDe e L™ (6.2)

We will prove this property of exp(—tH(if)) for all t>0 (By keeping track of the
rate of divergence of the operator norm as t—0 one could show more generally
that for suitable n, e/ye D(H(if)") implies e/ye L™. For the case /=0 this is done in
§25 of [29]).

Most of the ideas in the proof go back to Herbst and Sloan [14]. The main new
ingredient is a Dyson-Phillips expansion which has already been applied by
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Davies [10] in related contexts. Its use in this setting is motivated by Berthier-
Gaveau [6], Carmona [8] and Simon [29]. The first authors proved some
interesting inequalities derived from Martingale inequalities on path integrals, and
then Carmona [8] and Simon [29] independently realized their significance in
simplifying the proofs of Herbst-Sloan [14]. Since H y(if) is the generator of a drift
process one could directly apply the proof of [6], but given the realization of
Simon [29] that their results come from a kind of disguised Dyson-Phillips
expansion, we will avoid path integrals and use purely L” analysis.

In the following f denotes a complex function on R" satisfying the Lipshitz
condition

Lf(x)=f) =alx—yl| (6.3)
for all x, yeR". Let Hy= —4 on R". Formally

Hy(if)=e/(—d)e™/
generates a semigroup exp(—tH,(if)) which for >0 is given by the kernel

(4nt) ™" exp(f(x) = f(y) —|x — yI*/4t). (6.4)

In fact we can define H(if) on L? for 1 £g =< o0 as the generator of the semigroup
(6.4):

Lemma 6.1. Let f obey (6.3) g and lét exp(—tH(if)) be defined by the kernel (6.4)
for 0<t<oo. Then (i) exp(+tH(if)) is a bounded operator from LP(R") to LYR")
for any pair p, g with 1 <p=q =< o0, with norm

e~ o], SC, 17

Jor 0<t<1, where r=(p~t—q Y)n/2.
(1) exp(—tH(if) is a strongly continuous semigroup on L? for 1 <qg< co.

Proof. (1) By (6.3) the kernel (6.4) is bounded by K/(x—y) where

K(x)=(4mt)”"? exp(alx| — x*/4t). (6.5)
It follows from Young’s inequality that
e o S IR

with s7'=1+¢"'—p~ ' (i) follows from noting that as t—0
1K) =0~ m2), (6.6)

(i1) exp(—tH,) is a strongly continuous semigroup on L4i<g< ). For f+0
the semigroup property is obvious from the definition. Strong continuity for
t—0 follows from

He—tHo(if)__ e—tH()“q’q:O(tl/Z) .

This estimate is obtained from Young’s inequality by noting that the kernal of
[exp(—tH (i )) —exp(—tH,)] is bounded by alx — y|K/(x—y). [

Lemma 6.2. Let W be a function on R" of the form W(x)=W(y), where y is the
orthogonal projection of x onto a v-dimensional subspace (denoted by R*) of R". If
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We LP(RY) for some p>v/2 and if f satisfies (6.3) then
[idt|We™HlD) < oo
forall gin 1=q=p.

Remarks. In the application to Schrodinger operators, W will be a pair- or
multiparticle-potential. It is also possible to treat potentials which are only
uniformly locally L? (see [29]).

Proof. Representing x=(x,, x,) by its components x, € R* and x, L R" we obtain
from (6.3)
)= fW=alx, =yl +alx; =y,
so that the kernel of Wexp(—tH o(if)) is bounded by the function
[Wx )IK (g =y )K= y)
defined by (6.5). Using Holder’s and Young’s inequalities one finds
[We M| < IW KOOl

9,9 =
for 1<s<oo and r~'=r—(sq)"!. Since g<p we may set s=p/q. Then 1—r""

=p~! and by (6.6), as t—0:
1K)l =0@"?); KO =0(1). O
Lemma 6.3. Let f obey (6.3) and let V be a finite sum of functions W satisfying the

hypothesis of Lemma 5.2. Then P'=exp[—t(Hy(if)+ V] is a bounded semigroup
on L for 1S g=< 0.

Remark. A constructive definition of P'is given in the proof. The notation implies
that the semigroups P' on L? and P' on L” coincide on LY L4,

Proof. V is a closed operator on L' (on its natural domain) and
ol Ve MoD| - di< oo

by Lemma 6.1. Therefore Hy(if)+V is the generator of a strongly continuous
semigroup P on L' which can be constructed by the Dyson-Phillips expansion for
sufficiently small t>0:

0

P'= fdll.- dt e~ toHo) o=t Holif) o~ tnHo(if)
E .at, 4 .
n=0

1,20
Lo+t +...+t,=t.

Next we note that — f also satisfies (6.3). Exhibiting the f-dependence of P' we can
therefore define

Pi(f)=P(—f)* (6.7)

as a semigroup on L*. Using the Dyson-Phillips expansion one sees that the two
definitions coincide on L'nL*. By the Riesz-Thorin interpolation theorem [24]
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P'(f) is defined as a semigroup on each LY1=<¢ = o0) with the bound
1Pl g SIPOIE IP(=DI15 O (6.8)

Remark. Another way of constructing P* is the following: first, assume that V is a
sum of functions W satisfying the hypothesis of Lemma 62 with
WeL?(R")NnL®(R"), p >v/2. Since Ve L*®, P(f) can be defined on all L? by the
Dyson-Phillips expansion and satisfies (6.7) and (6.8). Noting that |[P*| , involves
only the norms | W/|, we can then define P’ in the general case as a uniform limit
(on each L%, by approximating each We L?(R") from LP(R*)nL*(R").

Lemma 6.4. Let f be a real function satisfying (6.3). Then under the hypothesis of
Lemma 6.3, P' is bounded from L? to L™ for all t>0.

Proof. Let t >0 and P'(A)=exp[ —t(H,(if)+AV]. Assuming first that Ve L*, PY(4)
is an entire function of 4 as can be seen from the Dyson-Phillips expansion. It
satisfies the pointwise estimate

|P(A)h| = P'(Re )|l

for heL?, which follows from the Trotter product formula (see [13] or [14]).
Hadamard’s three line theorem [24] applied to the function ¢(z)= P'(2z)|h|* ™ **
gives

[ P(DR L, < [P I2IPO)AIZ 32
Using Lemmas 6.1 and 6.3 we find

[PD5, . SIPQIYZ, - CYZE™E.

By the approximation argument described above, this estimate extends to all ¥
obeying the hypothesis of Lemma 6.3. [

Proof of Theorem 1.3. First we remark that the operator sum H(if)+V is the
generator of the semigroup P' on L. This follows from Lemma 6.2 where we may
set ¢g=2 since p=2 by hypothesis, so that P’ is defined by the Dyson-Phillips
expansion on L2, It follows that P' =e/(e”")e~/. Therefore, Hp = Ey and e/ pe L2
imply P'e/yp=e ey for all t>0. By Lemma 6.4, P'e/ypeL” for t>0, hence
pel”. O

Theorem 6.1 (Ultimate COST estimate). Under the hypothesis of Theorem 5.1 f is an
L* exponential bound.

Proof. By Theorem 1.3 the regularizations f; of f defined by (5.3) are L*
exponential bounds. From the argument following (5.4) one sees that f is an L®
exponential bound. [

As a useful particular case we note:

Theorem 6.2. Let Hy = Ey where H is an N-particle Hamiltonian obeying (C3). Let
fi-..f,, be positive C'-functions on X \ {0} which are homogeneous of degree 1. Let a,
=Vf; and S;={x|f(x) =< fi(x) for k=1...m}. Then

f(x)= m_m Six)
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is an L exponential bound for vy if for each i
U1y (x) <2y~
Sor all xeS;\{0} and all D = D(x).

Proof. For any fixed x40 let J={i|xeS,}. Given ¢>0 there exists a neighbour-
hood N, of x where f;>f for i¢J and (1—e¢)*(ITpa)* < X,—E for ieJ and all
D =D(x). Therefore (1 —¢)f has the Lipschitz properties

A=elf (- f@=@p—E)y—z|

for all D=D(x)and all y,ze N with IT,(y —z) =y —z. It follows that (1 —¢)/ has an
L® gradient obeying the hypothesis of Theorem 5.1. [

§7. Atomic Systems

In this section we construct explicit exponential bounds for a class of systems
which includes “atoms” with infinite nuclear mass. In particular we will recover the
bounds of [3,4] except for the preexponential factors.

Definition. A pseudo-atomic Hamiltonian is an operator

Z(p,+V )+ Z W(x;—x,)

on L*(RM), with potentials ¥ and W obeying the condition (C3) of § 1, and such
that

1..N
N= Zp,Jr S Wix,—x,)20.
i<k
Remarks. Such a Hamiltonian describes a system of N+ 1 particles 0,1...N:a
“nucleus” 0 at x,=0 and N “electrons” 1 ... N. It has three important properties:
(1) The mass of the nucleus is infinite.

(i) The electrons are identical.

(ii1) The energy of any subsystem consisting only of electrons is nonnegative,
since o(K,)Co(Ky) for nSN by (3.5).

Each one of these properties drastically simplifies the task of constructing
exponential bounds from Theorem 5.1. The kinematical simplifications due to (1)
are described at the end of Appendix 1. By (ii) and (iil) the thresholds are the
“ijonization-thresholds”

Spy=E, =info(H,) (n=0,1,..,N—1)

which only depend on the number n of electrons in the same cluster with the
nucleus. They are ordered in the sense

Ey ,SEy_,<..<E,=0,

since o(H,)Co(H,,) for n<m by (3.5). As a consequence of Lemma 1.2, the gradient
conditions (5.1) or (5.2) need only hold for decompositions of the form D
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=(0iy...1,) (7,4 1) ({1 2). - .(iy)>=D(x), which by (i) implies x; =...=x; =0. Finally, (ii)
suggests that we try to construct exponential bounds f(x,...xy) which are totally
symmetric in x,...xy.

Theorem 7.1. Let Hy be a pseudo-atomic Hamiltonian with the tresholds E
<Ey_,...SEy=0 and with an eigenvalue Ey<Ey_,. Let f be a positive C'-
function on the interior of the sector S={r=(r,...r\)|0<r, <r,... Sry<oo} of RV,
which is homogeneous of degree 1 and for which f and its first derivatives are
continuous up to the boundary of S (except r=0). Let F be the symmetric function
onX equal to f(|x,]...|xyl) on the sector T={x|0=|x,|=<... £|xyl}. Then Fisan L™
exponential bound for any yp with Hp=Eyyp if for each n=0,1,...,N—1

> [af() <E,—Ey (7.1)
w1 LOr
Jor all r with O=r,=...=v,

Remark. It is easy to see that (7.1) is necessary for F to obey (5.2).
Proof. Given ¢>0 we define the function f, on S by

f.)=f(e), where o,=(e*r*+r})'2.

Since f'is positive and homogeneous of degree 1 and since g, =r,, we have f, = f on
S and F, 2 F for the corresponding symmetric functions on X. Therefore F is an
exponential bound if for any y with O<y <1, (1 —y)F, satisfies the hypothesis of
Theorem 6.3 for sufficiently small ¢ =¢(y) >0.

At any interior point x of T we can compute the gradient V'F (x) by

0
)= ()= ;j( )
Z Opte?), (72)

k
where 7, =|x,]. If 7t.(>c1 ‘~-XN)"*(Xk1~~~ka) is a permutation acting on X, we then
obtain V'F, at the permuted point nx by

VF (nx)=nVF(x). (7.3)

Thus we see that V'F, is continuous on the interior of T (and of each permuted
sector nT). Moreover, as we go from the interior to the boundary of T (or of nT),
V'F, has continuous boundary values for x40 which are still given by (7.2) (or (7.2)
and (7.3)). Therefore V'F, is a piecewise continuous function on X which in general
takes several limiting values at points x =0 on sector boundaries. In particular, for
xe T\ {0}, these values are {nV' F(x)} where V'F (x) is given by (7.2) and where =
runs over all permutations obeying nx=x.

Since (1 —y)F, is symmetric, it is sufficient to check (5.2) for xe T\ {0}. In view
of Theorem (1.2) and of the continuity properties of VF, we need only show that

(1 _y)z(HDnVFe(X))Z éEn - EN

for all D=(0,14,...,1,) (i, 1)...(1'N)1>D.(x) and all 7 with nx=x. Now D= D(x) and
xeT imply x; =...=x,=0 and, by (7.2), 0F,/0x, =...=0F,/0x,=0. (This is the



22 P. Deift et al.
motivation for introducing f,.) Since = is orthogonal and II,, is a projection, it
therefore suffices that

N

TS [ ‘()|

Ey 749
n+1
for each n=0,1,...,N—1 and all xe T\{0} with x, =...=x,=0. Using r;,<g, and
0;=¢|r| we obtain from (7.2):
oF af 8
Sew|zlfo . 1.5

Since all terms are homogeneous of order 0, we may restrict x to |x|=1. Then |g,
—r]|=e, and since 0f/0r; is uniformly continuous for reS, |r|=1, it follows that
(0f /orX@)—(0f/0r,)(r) uniformly as ¢e—0. Moreover, for n=0, (7.1) gives the bound
[0f/or]<Ey for all r and we see that the right-hand side of (7.5) converges to
|(0f/0r)(r)] uniformly in # %0 as ¢e—0. By (7.1) we can therefore choose & >0 so that
(7.4) holds. [

Example 7.1. f=(r}+ ... +r2)*(Ey_, —Ey)""* This is O’Connor’s bound: F(x)
=|x|(Ey_, —Ey)"? which is always the best isotropic bound.

Example 7.2. f=r(Ey—E)"?+r,(E,—E,)"?+ ...ry(Ey_, —Ey)"?. This coin-
cides with example 7.1 if ;= ... =ry_;=0. For all other r, f is larger than
O’Connors bound if the successive ionisation potentials are increasing, i.e. if

EN~1—EN§EN~2—EN—1§~~§E0“E1> (7-6)

which is an experimental fact for “real” atoms. Presumably, f is then the optimal
bound allowed by Theorem 6.3. Assuming (7.6), Alrichs and M. and T. Hoffmann-
Ostenhof [4] have recently derived the same exponential bound by subharmonic
comparison methods.

N -1
Example 7.3. sz(Ek—EN)”z< Yor 1) k=0,1,...,N —1. This is seen to obey
k+1

(7.1) except for a lack of continuity of Vf, as several r; go to zero. However, (7.1)
holds for any limiting value and the proof of Theorem 7.1 can be adapted to cover
this case. This is the basic estimate in [3].

In the following examples we show how to improve the bound of example 7.2
in the case where (7.6) does not hold. While this is of no interest for real atoms, it
prepares the ground for general 3-body systems (§8).

Example 7.4. (N =2) We start with the 2 functions
Joa=r1Eq—E)" 2 +ry(E, —E)'?
f(12)=("%+r§)1/2(Eo"‘E2)1/2>

which by the Schwarz inequality satisfy f;), = f,,, for all r{,r, and coincide for
r{(E,—E,)=r3(E,—E,). On this set not only the 2 functions but also their
gradients take the same values, since a non-negative C'-function has vanishing
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first derivatives at its zeros. Defining f piecewise by
f=lue i r3(E,—E)Zri(E, —E,)
f=/fu, otherwise,

we therefore obtain a C*-function of (r, r,), the “Mercuriev function” of Example
2.3. Both its pieces saturate the gradient condition o? + o3 <E,—E, for all r,,7,.
The subset r, =0 is in the domain of f;,,,, which also saturates «3 <E, — E,. The
situation is shown in Fig. 2:

1 f=0
fl12)
2
(EgmEp A — — 2 S
fm(z)1
s 1
0
12
(Eq-E,)
Fig.2

Only the restriction of f to the sector S is relevant as an exponential bound. We see
that f = f,,, on all of S if and only if E, —E,<E,—E, so that in this case we
have not improved the estimate given in example 7.2. In any case, the minimal
exponential fall-off is in the 2-direction and coincides with O’Connors bound.

Example 7.5. (N =3) We start with the 4 functions
T =r(Eq—E)'"? +r,(E; —E)"? +ry(E, — Ey)'?
Joen=r1Eq—E)'?+ (3 +r)VA(E, —E)'?
Sz =01 +13) 2 (Eg—Ey)' > +ry(E,—E)'?
Jiaany =0t +r3+13) 2 (Ey—Ey)'?

The partial order among these functions and the sets where two (ordered)
functions coincide can easily be read off by the Schwarz inequality:

f<1)(23)
r3(Ey,~Ey)=r3(E,—E,) / PHE, — E)=03+r)E,—E,)
Y
T - fazs (7.7)
1HE, ~E,) =1} E,—E,) PHEg—F =02 +r2(E,~E,)
f(l 2)(3)

Here the arrows go in the decreasing direction, and attached to them are the
manifolds where the 2 functions coincide. These 4 manifolds intersect on the ray R



24 P. Deift et al.

defined by
riirlir3=E,—E,:E,—E, E,—Ej;,

where fi;)5,3)= f(123) It is now easy to cut (R")* into 4 cones on each of which f
can be defined by one of the 4 pieces:

Fig.3

f3
On the unit sphere, the domain of f,,,)s, is bounded by great circles and the
domain of f, 5, by circles parallel to the 12- and 23-planes. The inequalities which
define the 4 sectors are easily written down from the diagram (7.7). For example we

have f= f1)0a) if
ri(E,—E,)=r}(E,—E;) and

(7.8)
ri(E,—E\)=ri(E,—E,).

From this one can show that the minimum of the piece f; ), (on the unit sphere)
is in the 3-direction. This is also the minimum of f, since the other pieces take all
their values on the boundary with f;),),,. Hence we have again

f)ZIXI(E, — E5)'2,

exhibiting O’Connors bound. By the same argument as for N=2, f is a
C'-function of r, ...r; and it is easily checked that all gradient conditions are
saturated.

Again it is only the restriction of f to the sector S: 0<r, <r, <r, which gives
the exponential bound. On the unit sphere, S is bounded by great circles just as the
domain of f),3), but (instead of R) with respect to the ray Rg:r,=r,=r;.
Therefore it depends on the ratios of the numbers E, —E, _; which of the 4 pieces
of f participate in the exponential bound. In particular, f = f,,z, on all of S if
and only if the ray Ry is in the domain (7.8), i.e. if and only if

E,—E,<E,—-E,<E,—E,.
In the general N-electron case, f must be pieced together from the functions

So=0it ) AE = E) P+ (e + ) (E, — BN
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where D=(1...n)...(m+1... N)is any order-preserving partition of (1... N). If the
ionisation potentials obey (7.6) f reduces to the bound given in example 7.2.

§8. General 3-Body Systems

We try to extend the procedure used in the atomic case as follows: let
S=(D,...Dy) be a given string (see Appendix 1) and let

E=X,<2,< .. £3,=0

be the corresponding sequence of thresholds including the energy of the bound

state. As candidates for exponential bounds we consider positive, homogeneous

C*-functions f(r, ... ry) of the variables r,,=|4, x| (Jacobi coordinates associated

with the string S). Setting o, =3af/0r,,, the gradient of f(x) as a function on X is
N

a(X) = Z o(mAmx/rm ’
2

m=

and since [1,=4,+ ... +4

n’
n
(Ma?= Y o?.
m=2

Therefore [ satisfies the gradient conditions for all DeS provided that
o3+ ...+l <X, -,

forr,,,=...=ry=0,and all n=2... N.

The problem of finding the largest possible f; compatible with these conditions
is the same as in the atomic case. Having solved it for all strings S, the question is
still open how to construct from the functions fg an exponential bound which
satisfies the gradient conditions for all D.

Example 5 (N =3). There are 3 strings S=(D,D,D;), given by the 3 possible
decompositions D,. Rewriting example 7.4 in the present notation, we have

fS:’Az(Zz _21)1/'2 _1_,,3(23 _22)1,/2
ifriz,—2,)zr3Z,-2),
fsz(;'§+r§)1/l(23~21)1/2

otherwise.

Clearly, this satisfies the gradient conditions for D, (all x) and D, (x; =0). Now
let S” be a second string. The relation between the 2 sets of Jacobi coordinates can
be visualised as follows:
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Here the #’s are proportional to the distances shown in the figure with factors
depending only on the masses. In general, , and r, cannot be expressed as
functions of r, and r, alone and f cannot easily be compared with f;.. However, if
13, =0, we have (with r=|x|):

ry=ri o ry=pyry ry=pyr;

with constants f3,, i, depending only on the masses. On the 3-dimensional plane
R, =range of II},, both fg and f, therefore reduce to isotropic functions:

fo=r(Z,—E)'?

and we see that fg satisfies the gradient condition for D/, if and only if f{(x) < f(x)
for one point xeR), x=#0. Stated more generally, f; satisfies the gradient
conditions imposed on f; on the set {x|fy(x)=fs(x)}. Using Theorem 6.2, we
conclude:

Theorem 8.1. Let H be a 3-particle Hamiltonian obeying (C.3) and let fg be the
function defined in Example 5. Then f(x)= mSin fs(x) is an L*-exponential bound or,

equivalently,

()] = Clx) ; oI5

with C(x)< oo for x<1.

From the construction it is difficult to judge whether this bound is optimal or
not. It is, however, in full agreement with Mercuriev’s results on the asymptotic
behaviour of bound state wave functions [21]. Using the Faddeev equations (for
short range potentials) he obtains

p(x)= ;ws(X)

and an exponential fall-off of yg(x) precisely given by fy(x).

Appendix 1. N-Particle Systems in the CA/-Frame

In this appendix we present a compact formalism for N-particle kinematics. The
configuration space of N mass points m, with cartesian coordinates x'e R* and
with fixed center of mass at the origin of R is

X= {xz(x1 XM

N .
Y mix‘zo}.
i=1

It has the dimension n=v(N — 1) and is equipped with the scalar product

N

(x.0)=2 ), mx'y', (A1.1)

i=1
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where x'y’ is the scalar product in R*. We will also use the notation x2=(x, x) and
|x| =(x, x)'/2. The length R(x) defined by x> =2mR? (m =total mass) is the radius of
gyration.
X denotes the complexification of the real space X (i.e. x'e C* for xeX) and we
denote with (x, y) the bilinear form on X which reduces to (A1.1) for real x, y.
Using the scalar product (Al.1) we identify X with its dual: keX is identified
with the linear form

N
x—=(k,x)= Y kx',
i=1
where the covariant coordinates k;e R* are uniquely defined by the condition
Y k;=0, and given by k,=2mk’. In particular the classical particle momenta p; are
the covariant coordinates of the vector p=1/2(dx/dt) and p? is the kinetic energy.
The volume element of X is defined by the metric (A1.1) and # = L*(X) is the
Hilbert space of the quantum mechanical N-particle system with fixed center of
mass. The transition to the momentum representation is the usual one:

p()=(2m) """ | dkip(kye’®
X

(k) =(2m) ™2 [ dxp(x)e
X
Expressed in terms of the covariant coordinates, P(k,, ... ky) is defined on the set

> k;=0 and the particle momenta are described by the operators

p; : (k)= kp(k)
obeying the operator identity  p,=0. They are the covariant components of the
vector operator p generating the unitary group of translations

Ul@)=e P9 p(x)->p(x—a) (aeX).
For smooth y, (ipy)(x)=(Fp)x)eX is the gradient of y at the point x.
The N-particle Hamiltonian in the CM-frame is
H=)p}Qm) '+V=p*+V=H,+V,
where V is assumed to be a sum of local 2-body potentials:
V(x)= ) Vylx'—x.

i<k
Let C be a subset (cluster) of particles and x.eR" its center of mass:
Xe=mc 'Y mxt; ome= )Y m.
ieC ieC
We define the linear operator II. on X by
o [xX'—x. if ieC

Il x) = ¢ - ’

(ex) {0 otherwise.
Since II2=1II. and (x, [1.y)=(II:x,y), II is an orthogonal projection. It acts on
the (covariant) particle momenta as follows:

(I :p);= {

pi—mpe/me if ieC,
0 otherwise,
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where p.= ) p; (ie C) is the total momentum of the cluster C. Note that (I1.p)* is
the kinetic energy of the cluster C in its own CM-frame.

Let D=(C, ... C,,) be a partition of (1... N) into clusters. Then the projections
Il for CeD are mutually orthogonal and

m,=1—- Y 11 (AL2)
D Cc
CeD

is again a projection and orthogonal to all I1. for CeD. It acts as

(px)=xc;  (Hpp),=mpe/me,
where C is the cluster containing particle i. In particular
(M pp)* = Z pe/2me
CeD
is the kinetic energy of the intercluster motion and the relation

p*=(I1,p)*+ ) (II.p)*

CeD

obtained from (A1.2) expresses the fact that the total kinetic energy is the sum of
the internal kinetic energies of the clusters and of the intercluster kinetic energy.
Correspondingly, the vectors I1.x describe the configurations inside the clusters
CeD and ITyx the configuration of the centers of mass of the clusters. Both
together determine the N-particle configuration

x=Ipx+ Y Hcx.
CeD

For D=(C, ... C,) let X, (CeD) and X, be the mutually orthogonal ranges of
the operators I1. and IT,,, respectively. Then

X:XD®XC1(_B @Xcm’
so that # = L*(X) factors accordingly into
H=HQH ® ...Q H, (AL3)

where the factors are the L? spaces over the corresponding subspaces of X (if C
contains only one particle, X = {0} and dim#,.=1). The operator

Hp=H — (all pair-potentials linking different clusters)

describes a system of non-interacting clusters. With respect to the factorisation
(A1.3) it has the structure

H,=H)R1®...®1
+1®H ® ... ®1
+ .
+1®1®...®H,, (AL4)
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for which we simply write

Hp=Hy)+ Y Hc.
CeD
Here H_ is the Hamiltonian of the cluster C in its own CM-frame and HY = (I1 ,p)>
the kinetic energy of the intercluster motion. If D is not the trivial decomposition
into one cluster, this operator has the purely continuous spectrum [0, o0) and the
spectrum of H, is

o(Hp)=[Zp=inf Y o(H,), oo).

CeD

X, is the threshold for the break-up process (1... N)=(C,)...(C,).
The cluster decompositions D are partially ordered by the relation

D<a D’

expressing that each cluster of D’ is contained in a single cluster of D. This is
equivalent to the relation

n,<1m, (AL5)
for the corresponding projections and has the consequence that
22, (A1.6)

A string S=(D,D, ... Dy) is defined as a sequence of decompositions D,, into m
clusters such that D,<aD, .. D, is the trivial decomposition and D, the
decomposition into N single particles. The corresponding projections IT, =1IT),
satisfy

O0=II, <, < ... <Illy=1
so that the differences
4,=0,-1,_, (m=2...N)

form a complete set of mutually orthogonal v-dimensional projections. To see the
significance of 4,, let C, and C, be the two clusters of D,, which are united to form
the cluster C=C,uC, of D,,_,. Then

Xe,—Xc U ieCy,
(4,%) =qxc,—xc if ieC,,
0 otherwise,
and
(4,,%)* =2mg 'me me (Xe, —X¢,)*

We see that there is a one-to-one correspondence between 4,x and the vector
Vm=X¢,—Xc,€R’. In this sense the splitting

N
x= Y A,x
m=2
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amounts to the introduction of the Jacobi coordinates y=(y,...yy)e R"™ D
associated with the string S.

To describe the “pseudo-atomic systems” in §7, we introduce an additional
particle i=0 and let m, = oo (“nucleus”). For the other particles (“electrons”) we set
m, = ... =my=+. Then the configuration space is

X={x=(x...x"x°=0}

and we can use x' ... x" as independent coordinates, in which the metric is simply
N .
(,x)= ) ().
i=1

Consequently, x;=x' (x,=0 by definition), and we may use lower indices
throughout. Note, however, that clusters are subsets of (0... N) and that

(IIcx);=x; if C contains the nucleus 0, and

(IT,x),=0 if i is in the same cluster with the nucleus 0.

Appendix 2. Identical Particles

In this appendix we briefly indicate the few modifications necessary in the presence
of identical particles, when the Hilbert-space # =L?*(X) is restricted to the
corresponding symmetry sector #5. In §4, f(x) is assumed to be invariant under
permutations of identical particles. Then, instead of a single unit vector eeQ one
always has to consider the equivalence class {e;} generated from e by per-
mutations, the union of the corresponding cones K,(e;) and Weyl sequences in
Cy S with support in this union. Let D(e)=(C, ... C,)). Then by definition of
D(e), e is invariant under permutations inside the clusters and the same is true for
a(e)=Vf(e). The operator

Hp(@)=Hap)+ Y Hclac)

CeD

for D=D(e) is therefore well defined on the bigger Hilbert-space
HyQHAE® ... @HE. (A2.1)

where 2 is the allowed symmetry sector for the subsystem C, i.e. the space for the
restriction of the representation of full permutation group to the subgroup of
permutations within C. Redefining X, as the infimum of ¢(H ) on the space (A2.1),
Theorem 4.1 and all its consequences remain formally unchanged. As a rule,
therefore, the conditions for exponential bounds are the same, with the understanding
that only the thresholds of the correct symmetry type appear.

Appendix 3. An Alternative Method of Geometric Spectral Analysis

In this appendix we discuss an alternative to the methods of §§3-4, which follows
Simon’s version [28] of Enss’ proof [12]. It falls short of proving the basic result
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on o, (H(f)) (Theorem 4.1) and thus has no application in the present context.
However, it has some advantages in discussing invariant subspaces of H (as in the
case of symmetries) and it can be used, for example, to delimit the essential
spectrum of H(®) in dilation analytic theory or of H(a) in the Combes-Thomas
theory [9].

In the notation of §3 the basic identity used in [28] is

SH)=f(H)XG+ ) Lf(H) = f(H,)]Xp + ;f(HD)X;)a (A3.1)

where D runs over all 2-cluster decompositions and where {Xy, X} is the partition of
unity introduced at the end of §3. Simon’s argument proceeds from (A3.1) as
follows: If f'e CZ(R) the first term on the right is compact and the second term goes
to zero in norm as n—oc. (This is proved for f(x)=(x—1i)"! by commutator
estimates as in §3 and then extended to all feC{(R) by an approximation
argument.) If supp f C(— o0, 2), where X is the lowest threshold of H, then the last
term in (A3.1) is zero and it follows that f(H) is compact. A general argument then
implies that ¢ (H)C[Z, + c0).

The above sketch depends heavily on the functional calculus for normal
operators. Here we want to extend the arguments to non-normal H.

Theorem A3.1. On a Banach space B let H, {H;}, i=1...s, be a family of closed
operators and {X{}i=1...s, 1 Sn< oo a family of uniformly bounded operators. Let

and suppose that

() Xo(H—1z)~"'is compact for z¢a(H).
(i) (X! =X)(H—x)"" and (X! — X")(H,—x)~ ' are compact for all n and all

xeo=o(H)N é} o(H}).

(iii) Lim [|X;[(H —x)" " —(H;—x)"']| =0. for xeq.

Then any connected component A of ﬂ o(H,) is either entirely contained in o(H) or

entively disjoint from o (H).

Remark. Using the X's introduced at the end of §3 one sees that o, (H) C | ) o(H,) for
an N particle Hamiltonian with complex potentials.

Proof. Let we A and suppose that Ango(H)=+®. Pick z,e0 and let K=(H —z,) !,
K,=(H,—z,)"'. Then for |z| sufficiently large, z is in the resolvent sets of K and K,
and

(K—z) l=—z ' —z7H—(zo+z )™ H! (A3.2)
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and similarly for K,. From the identity
(H—z) '=X,(H—z)" '+ ZX}(Hi—Z)_l
+ Y X = XDUH 2 —(H~2) 1]
+ ZX;’(H,.—Z)’1
we conclude by hypothesis that
(H=2)"'= ZX}(Hi——z)‘ '+ compact.
Therefore, using (A3.2),
(K—z)"t=—Xoz '+ ZX}(Kl.wz)“1 +compact

for z sufficiently large. It follows that for any entire function f

f(K)= ZX}f(Ki)+XOf(O)+compact.

P. Deift et al.

(A3.3)

Let z, =(w—z,)~ ' By the spectral mapping theorem z, is in the unbounded

connected component of
{zlz#0,ze0(K,) for i=1...s}.
By Runge’s theorem there exists an entire function g with

u=  sup  <g(z,)=u-+te.
ze0}u | all)

It follows fro‘m the spectral radius formula that
lim [[g"(K )" <u,
so we can find m such that

lg™(Kl é(u+%8)’"<HXoH + 211X I1>_1

for all i. Let f=¢™ and note that

“(Xof(o)‘*‘ ;X}f(Kz)) QDH
<max {|f(0)], ”f(Ki)”}<HXOH + Z X il) Il
<Jf@lel.

It follows that Y’ X} f(K;)+ X, f(0) has norm strictly less than f(z;) and so, by (A3.3)

1
and Weyl’s theorem on the invariance of the essential spectrum under compact
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perturbations (see e.g. [25], f(z,)¢ 0, (K). Thus, by the spectral mapping theorem,

weo, (H). [
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