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Abstract. We describe several new techniques for obtaining detailed infor-
mation on the exponential falloff of discrete eigenfunctions of N-boάy
Schrodinger operators. An example of a new result is the bound (conjectured

N

by Morgan) \ψ(x1...xN)\^Cεxp( — £α/n) for an eigenfunction ψ of

with energy EN. In this bound r1r2...rN are the radii |χ.| in increasing order and
the α's are restricted by απ <(En_ 1 — En)

112, where En, for n = 0,1,..., N — 1, is the
lowest energy of the system described by Hn. Our methods include sub-
harmonic comparison theorems and "geometric spectral analysis".

§ 1. Introduction

It is an elementary fact that a solution of( — A + V)ψ = Eιp with φeL2, F—»0 at oo
(in some sense) and £<0 has exponential falloff: it is certainly bounded (in some
sense) by C(exp( — (1 — ε) ]/ —E|x|) for any ε>0. Our interest here is in a
considerably more subtle situation. Let

H=- £ (2mίΓ
1Ai+ ϊ^-x' ) (1.1)

i = 1 ί < j

on L2(RvN) be the Schrodinger operator for N particles with coordinates xleR\
where zΓ = Laplacian with respect to x f. The operator H obtained by separating
the center of mass motion acts on L2(X) where X is the v(N— l)-dimensional
subspace Ira^x^O of RvN. (Kinematics is discussed in Appendix 1). We consider
solutions of

= E\p. (1.2)
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While H— — A + V in a suitable metric on X, it is no longer true that F-»0 at
infinity, even if each pyy)— >0 as y-+co in Rv, since V is not small in directions
where x-»oo but some \xl — xj\ stays bounded. Thus the falloff of solutions of (1.2)
is in general much slower than in the elementary case F->0 at oo and will depend
sensitively on the direction in which x-»oo.

There is extensive discussion of this problem in the chemical, physical and
mathematical literature. The first -result for general JV-body systems (with N>3)
was obtained by O'Connor [23] (Some of the earlier literature is quoted in [25]
we mention here the work of Slaggie and Wichmann [30] on the case ΛΓ = 3, and
Alrich's [2] work on the ^-electron atomic case.) O'Connors result is that

(1.3)
x

so long as

α<(Σ-£)1/2, (1.4)

where Σ is the bottom of the continuous spectrum of H and |x| the norm in
configuration space defined by (A 1.1). Substantial simplifications of O'Connors
proof and an extension to bound states embedded in the continuum were obtained
by Combes and Thomas [9]. Starting from (1.3) Simon [26] derived the pointwise
bound

|φ(x)|^Cαexp(-φ|). (1.5)

for the same range of α. We will refer to (1.3)-(1.5) as COST estimates.
O'Connor [23] stated that his estimates were "best possible" by giving

examples where the range of α could not be increased. Indeed we expect that if one
restricts oneself to isotropic bounds (i.e. depending only on |x|), then (1.5) cannot be
improved except by allowing α = (Σ — £)1/2 with perhaps a factor \x\βm front of the
exponential Q3<0 is possible). This kind of improvement is obtained for the
electron density in an atom by M. and T. Hoffmann-Ostenhof [15].

Our own attitude towards the problem was changed by a paper of Morgan
[22] who pointed out that in directions where all xl — xj\ go to infinity, ψ
asymptotically satisfies —Δψ = Eψ, so that one expects a falloff like
φ~exp( — Σatx

l) with ^α?/2mf = E, which may be considerably more rapid than
(1.5). Morgan also showed how to use the Slaggie-Wichmann methods to improve
(1.5) in the case N — 3. (It should be mentioned that there is a paper by Mercuric v
[21] with stronger results on 3-particle systems, of which we were unaware, and
that when M. and T. Hoffmann-Ostenhof first raised the issue of improving (1.5), it
was one of us (B.S.) who assured them that (1.5) was "best possible"!)

Our goal in this paper is to develop general methods which can detect
anisotropic exponential falloff properties of ψ. Two main themes are involved : the
more "elementary" (§ 2) takes off from Morgan's remark and uses a subharmonic
comparison theorem of the type already applied in III of this series [27]. For N — 3
it recovers Morgan's result, but for N > 3 it apparently has serious defects. The
more involved but more powerful (§ 3-§ 8) starts from the original COST papers to
which we return shortly. A major element is "geometric spectral analysis", i.e. the
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use of heavily geometric (configuration space) ideas to find the essential spectrum
σess(H(f)) of certain transforms H(f) of H. Such ideas go back to Zhislin [32] and
were developed by Jorgens and Weidmann [17], but their simplicity and power
were realised only recently due to a paper of Enss [12]. The operators H(f) will
not be self-adjoint, so §3-§4 will be devoted to extend Enss'analysis to this case.

Simultaneously and independently of our work Alrichs and M. and T.
Hoffmann-Ostenhof [3,4] studied the atomic case (with fixed nucleus) and
obtained similar results. One advantage of their method is that constants like Cα in
(1.5)) are explicitely given numbers, while our constants are only implicitely
determined depending, e.g., on norms of resolvents of non-normal operators which
are difficult to control. Other methods giving explicit constants appear in Davies
[10] (who only estimates \\ψ\\ ̂  not HφexpίαlxDH^ and requires V^O) and
Lavine [20] (who considered the case N = 2).

Let us briefly describe the Combes-Thomas proof [9] of (1.3) since its
extension will concern us here. (1.3) states that φexp(α|x|)eL2(X) if α 2 <Σ — E,
which is equivalent to φexp(α, x)eL2(X) for all aeX with (α, ά)~a2<Σ — E. Let
U(a\ aeX, be the group of unitary transformations ι/φc)-»ι/j(x)exp( — ϊ(0,x)). Then
ψexp(a,x)EL2(X) for alia with a2 <Σ — E if and only if the function a^U(d)\p has
an analytic continuation from the real spaced to the region (lma)2<Σ — E oϊX
= compiexification of X. This reduces the proof of (1.3) to showing that ψ is an
analytic vector for the group U(ά). For real a we have

U(a)H U~1(a) = (p + a)2 + V= H(a) .

If V is H0-bounded (or //0-form-bounded), H(d) extends to an entire analytic
family of type (A) (or of type (B)) in the sense of Kato [18], defined for all aeX.

An argument of Combes [1,5] now implies that a discrete eigenvalue E of H
(i.e. an isolated eigenvalue of finite multiplicity) remains a discrete eigenvalue for
H(a) if there exists an open, connected set N CX containing 0 and α, such that
σess (H(b)) φE for all beN. For suppose that £ is a discrete eigenvalue of H(b0\
b0εN. Then E may split into eigenvalues E (z) of HφQ + zb^ which depend
analytically [18] on z for small |z|, where b1eX is arbitrary. However, since H(b0)
and HφQ + zb^) are unitarily equivalent for real z, Ei(z} = E for Imz = 0 and
therefore for all z in a neighbourhood of 0. Since b1 is arbitrary, we conclude that E
remains a discrete eigenvalue of H(b) for b in a neighbourhood of b0 and, by a
continuation argument, for all beN. Similarly, the corresponding eigenprojection
P(b) is analytic in beN.

Analyticity of ψ now follows from a Lemma of O'Connor [23] : Let P(b) be an
analytic family of projections for b in an open, connected region NaO of X.
Suppose that P(a + b)=U(a)~lP(b)U(a) for aeX,beN,b + aeN. If P(0) is of finite
rank and φeRanP(O), then the function b-+U(b}ιp has an analytic continuation
fromXnN to N.

This reduces the proof of (1.3) to showing that Eφσess(H(a)) for (Imα)2<Σ — E.
Using "connected" resolvent equations for (z — H(a)}~1, Combes and Thomas
prove that (in the notation of Appendix 1)

<Γess(#(*))= U {
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where D runs over all partitions of (1...JV) into more than one cluster. In
particular, Eφσess(H(a)) so long as

(ΠDQma))2<ΣD-E (1.6)

for all nontrivial D. Choosing D independently to make the left-hand side of (1.6)
maximal (ΠD = 1) and the righthand side minimal (ΣD = Σ) we obtain the single
sufficient condition (lma)2<Σ — E leading directly to (1.4). Therefore, by fully
exploiting the Combes-Thomas analysis, one can already improve the COST
estimates (1.3-5). To formulate the results we now collect the conditions on the
potentials to which we will refer in this paper :

(C 1) Each Vik viewed as an operator on L2(RV) is ( — /d)-form compact.
(C2) Each Vik viewed as a function on jRv has a Fourier transform Vik<=Lp(Rv)

+ L1(Rv)withp<v(v-2Γ1 if v^2 or p^oo if v = l.
(C3) Each Vik viewed as a function on Rv obeys VikeLp(Rv) + LGO(Rv) and

Vik(y)-*Q as |y|->oo, where p>v/2 if v^4 or p = 2 if v=l,2, 3.
Most of the results in this paper will be proven for potentials satisfying (C 3).

(C 1) follows from (C 2) or (C 3) and is sufficient for the Combes-Thomas analysis
[9]. (C 2) is the condition used by Simon [26] to go from (1.3) to (1.5) by showing,
essentially, that if an eigenfunction φ of H satisfies ψexp(α,x)eL2 for some aeX
then φexp(α, x)eL°°. This together with (1.6) immediately gives Theorem 1.1
below.
Definition. Let ψ be a complex function on X. A positive function / on X is called
an Lp exponential bound for ψ if and only if ψexp(κf)eLp(X) for all κ< 1.

Theorem 1.1 (Improved COST). Let H be an N body Hamίltonian obeying (C 1) and
let Hip^Eψ. If aeX satisfies the conditions (1.6) for all nontrivial D, then f(x)
= (α,x) is an L2 exponential bound. If (C2) holds, f is an L°° exponential bound.

Example 1.1. Consider 3 particles 0,1,2 with m0 = oo (x° = 0, x1 '2 independent
coordinates). Let Σ0, Σv Σ2 be the lowest energies of the subsystems (12), (02), (01),
respectively. According to (1.3),/(x) = (α,x) = α1x

1 +a2x
2 is an exponential bound

if

α?(2m1)~ 1 + a2

2(2m2Γ
 1 ̂  min (Σ. - E) , (1.3')

i

which should be compared with the following 4 inequalities :

α2(2m1)~ x + α2(2m2Γ
 1 ̂ -E (1.6'c)

obtained from (1.6) for the 4 decompositions D = (02)(l), (01) (2), (0)(12), (0)(1)(2)
in this order. (1.6') can be much weaker than (1.3'), e.g. if ΣQ = Σ2 = Q and if
(E/ΣJ—lis small, then (1.3') forces both α1 and α2 to be small while (1.6') only
forces a1 to be small.
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Notice that, if Σ0 = 0, (1.6'c) implies (1.6'b) since

= m1m2(2m1 + 2m2)~ 1(α1m[" 1 — α2m2 *)2 Ξ> 0 .

This is actually a special case of

Lemma 1.2. Let DoD' and suppose that ΣD = ΣD, (in general ΣD^ΣDf). Then (1.6)
for D' implies (1.6) for D.

Proof. Since D<zD' implies the operator inequality ΠD^ΠD, (A 1.5), it follows that

The L°° exponential bound one gets from (1.6) by optimizing over a for fixed x
is the Minkowski functional

f(x) = sup {(α, x)|α obeying (1.6)}

of the polar of the convex set of α's defined by (1.6). This suggests that one should
search for exponential bounds /which are positive and homogeneous of degree 1.
The Combes-Thomas argument has an immediate extension to this case: instead
of H(a) consider

(1.7)

If Hip = Eip and Eφσess(H(iλf)) for 0 ̂  λ < 1 then / is an L2 exponential bound for
ιp. The problem of expressing σess(fί(/)) in terms of the function / and of the
thresholds and the masses will be solved in §3,4. In §5 we state the resulting
sufficient conditions for / to be an L2 exponential bound. The corresponding L°°
exponential bounds are derived in § 6. Inspection of the proof in [26] shows that it
extends in a straightforward way to convex exponents f(x). The functions / of
interest, however, will not be convex, but they are Lipschitz. This will be used in § 6
to prove:

Theorem 1.3. Let H be an N body Hamiltonian obeying (C3) and let Hψ = Eψ.
Suppose that f is an L2 exponential bound for ψ. If

\f(x}-f(y)\^a\x-y\

for all, x,yeX, then f is an L00 exponential bound for ψ.

The resulting L°° bounds will be dubbed "ultimate COST estimates" since they
are obtained by extending the COST ideas to their natural but ultimate extremum.
In § 7-8 we construct explicit exponential bounds / for atoms with infinite nuclear
mass and for general 3-particle systems. Due to the kinematical complexity, the
problem remains open to find the optimal bound / consistent with the conditions
of § 5 for a general TV-particle system with given masses and thresholds.

We close this introduction with a comment about the use of the word "best
possible" with regard to exponential bounds. We have learned to use the word
sparingly. The actual behaviour of bound state wave functions at infinity seems to
depend in an intricate way on relations among the thresholds and the masses, so
that a result which is "best possible" in a particular example (e.g. an "atom" with
noninteracting electrons) may not be optimal in other cases.
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§ 2. Comparison Theorem Methods

In this section we present a method which in particular yields Morgan's result for
the Helium atom. The basic result we need is the following comparison theorem:

Theorem 2.1. Let φ^O and ψ be continuous and A^B^ΰ on Rn\S for some closed
set S. Suppose that on Rn\S, in the distributional sense,

A\ψ\^A\ψ\; Aφ^Bφ (2.1)

and that \ψ\^φ on dS and φ, φ->0 as x->oo. Then \ιp\^φ on all of Rn\S.

Remark. This theorem is used in [27] where references to earlier work can be
found. A variant of it also serves as the basic tool in the recent independent work
of Alrichs, M. and T. Hoffmann-Ostenhof [4]. Its proof is so short that we repeat it
here:

Proof. Let η = \ψ\ — φ and K = (x\η(x) > 0}. Then on the open set K, Δη ̂  A\ψ\ — Bφ
= (A — B)φ + A(\ψ\ — φ)^0. So η is subharmonic and therefore takes its maximum
value on dKu{oo} where it vanishes by hypothesis. Thus η ̂ 0 on K. Since η >0 on
K, K is empty. D

To combine this result with COST, we use geometric ideas which already
dominate some of our recent work on JV-body systems [11, 28]. We isolate tubes in
X around the sets xl = xj. Then we will pick a φ which dominates the COST
estimate for ψ on these tubes, so that there we have \φ\^φ. By making the tubes
sufficiently fat we will be sure that outside their union S, V^. —δ^E and by Kato's
inequality [19, 24]

A\ψ\^(V-E)\ψ\^(-E-δ)\ψ\ (2.2)

on Rn\S. Then, if φ obeys Δφ^( — φ — E)φ we will have |φ|^φ on all oϊX.

Theorem 2.2. Let H be an N-body Hamiltonian obeying (C 2) and with Ffj(x)->0 for
x-»oo in Rv. For z'Φj let Dtj be the partition o f ( l . . . N ) into the N — 1 clusters (ij) and
(fc), fcφΐj.

Let

Let Hip = Eψ9 E<Σ, and for each ε > 0 let

Then

Proof. Let Sij={x\zij^ylj2} and ^-{xlx2^^2} where the constant R will be
adjusted below. Let S = S0v\JSir On Stj, \ψ(x)\^C(ε)φ\f by (1.5) and clearly
\ψ\ ^φ(ε} on 50 for suitable C(ε). Thus (2.3) holds on S and, in particular, on dS. To
obtain (2.1) for suitable A and B with A^B^Q we first claim that on Rn\S9
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z0.^α(jR)->oo as JR-»oo. This follows from noting that on Rn\S, R2^x2 = z2j + y2j
^zfj + zfj and therefore z?.^(R2 + 1/4)1/2- 1/2. Given δ>Q we can therefore pick

jR so that

(2.4)

on Rn\S. It follows from (2.2) that A\ψ\^(-E-δ)\ψ\ on Rn\S.
Next, using that for a function /(r) of the radius r = \x in Rn,(Δf)(r} = d2

+ (n-l}r-ldfldr, we see that Δ(e-ar) = a2e-ar-a(n-l)r-ίe-ar^a2e~ar for w
and also for n=l since zl(e~flr) = α2e~ f l r-αδ(r)e~αrgα2e~βr. On X, Λ = / 4 y ι j -
and we see that

Since £<0, we can choose (5>0 such that — E — δ> — E(l— ε)2, so that (2.1) holds
with A=-E-δ and JB = -£(l-ε2). Noting that φ(ε)(x)->0 and by (1.5) also
tp(x)-»0 as X->GO, we see that (2.3) follows from Theorem 2.1. Π

Notice that if some J^-^O, then (2.2) holds even if the corresponding z{ are not
large. Thus we have :

Corollary 2.3. Under the hypothesis of Theorem 2.2, the estimate (2.3) remains valid
if we defer from the sum all terms coming from pairs (ij) with V^O.

Example 2.1. (2 electron atom, finite nuclear mass). Take 3 particles 0,1,2 with
701 - F02 and V12 ^0. Then by (2.3) and Corollary 2.3 :

(1~ε)fl + e-(1~ε}f2~] with

where μ~l — m^ ΐ -f m^1, M"1 — m^1 +(m0-f m 2)~ 1 and where /2 is obtained by
interchanging 1 and 2. This is Morgans bound [22].

Example 2.2. (N electron atom, infinite nuclear mass). Take N+l particles
0, 1, . . ., N with m0 = oo, m1 = . . .mN = 1/2, and suppose that F0 .(x) and 0 ̂  V^x) are
independent of iJ=ί...N. Let E = EN<EN_i^EN_2...^E0=0 where En = lowest
energy of the subsystem (0, l,.. .,n) for n — Oίί,...N — ί . For comparison with
Example 7.2 (§7) let us assume (7.6). Then EN_1~EN^EN_2 — EN__1^—EN_ί

and Corollary 2.3 gives the L°° exponential bound /(x), where /is symmetric in
x1..^ and reduces to

on the sector r1 :gr2... ̂ rN(rf = |xί|). For JV = 2 this agrees with the bound given in
Example 7.2, but for N > 2 it is seen to be smaller :

Lemma 2.4. //O^α

n-l \ l / 2 / n \ l / 2

Σ
i = l



8 P. Deift et al.

Proof. Fix the b's and al. Then the inequality holds for α2 = ...=α j v = α1, since

/ π - l \ l / 2 «

h ]Γ fe? I ^βj Σ hi -
\ i = l / ί = l

Therefore it suffices to prove dg/dak^bk for k = 2...n:

i = 2

In cases where the 2 cluster thresholds are not all at Σ, one can hope to
improve Theorem 2.2 by using Theorem 1.1. Possibly one could obtain the full
Mercuriev-type result (§ 8) for N = 3, but because of the global nature of the
conditions (1.6) the kinematics is fierce. We settle for:

Example 2.3 (same situation as in Example 1.1). Suppose that F12^0 and that
m1=m2 = 1/2 for kinematic simplicity. By (1.6') and optimizing over a we have the
2 exponential bounds

Using the method of proving Theorem 2.2 and Corollary 2.3 we find the L0

exponential bound

/(x) = min [M(Σ.-E)1/2

i = l , 2

where j = 2, 1 for i = 1, 2.
We close by noting one way of further improving Theorem 2.2 by a device that

will also prove useful in §7:

Definition. For x,y, α,jS^O we define the Mercuriev function M by

xα -f j β if yα ̂  xβ

Noting that G(x5y)Ξ(χ2+3;2)1/2(α2 + j82)-xα-3;j8^0 for all x,y we see that
FG(x,y) = U for G(x,y) = 0 (i.e. for ya = xβ). Thus M is a C1 function of x,y. As a
result (in the notation of Theorem 2.2), the functions

M(z. -, y.. ι(-Σ)il2,(Σ- £)1/2) = M /x)

obey, in the distributional sense,

since the C1 -nature of Mtj prevents ^-function singularities on the "matching
surfaces". Thus we obtain :

Theorem 2.5. Under the hypothesis of Theorem 2.2, (2.3) remains valid if

φ($ is replaced by exp ( - ( 1 - ε)M0 ) .



Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV 9

With this device we have improved individual terms of the sum (2.3) in certain
regions. Whether this improves the sum or not depends on relations among the
thresholds and the masses. In § 7 we will see that for atoms, it does not.

The above examples still show two defects in the method of this section: (i) it
seems only effective under removing the first particle and the last and therefore not
ideal for N>3 (This difficulty was recently overcome by Alrichs, M. and T.
Hoffmann-Ostenhof [4]); (ii) because of the global nature of the improved COST
conditions (1.6), it is not easy to check with complicated kinematics. In distinction,
the second method which we now describe is efficient for arbitrary N and yields
local conditions for /

§ 3. WeyPs Criterion for the Essential Spectrum

In this section we prepare the tools for the determination of σess(H(/)). Let A be a
closed operator on a Hubert space ffl with resolvent set ρ(A) and spectrum σ(A).

Definition [25]. σdisc(A) = set of all isolated eigenvalues of A with finite algebraic
multiplicities.

Definition. Ness(A) = {λeC\ There exists a sequence uneD(A) such that ||uj = l,
wΛ->0 (weakly) and \\(λ-A)un\\->0}.

We remark that Ness(A) is closed.

Theorem 3.1. (WeyΓs criterion for σess(^)). Let A be a dosed operator on J^ with
nonempty resolvent set. Then

(i) Ness(A)Cσess(A]
(ii) Boundary of σ cas(A) C N ,M(A)

(iii) Ness(A) = σess(A) if and only if each connected component of the complement
of NQSS(A) contains a point of ρ(A).

Remarks, i. (iii) is an immediate corollary of (i) and (ii)
2. Examples where Ness(A) = σess(^4) are the case A = A*, or cases where the

complement of Ness(A) is connected.
3. A proof of Theorem 3.1 is implicit in [18], Theorems IV 5.11, IV 5.28 and

problem IV 5. 37. (Note that Kato's definition of the essential spectrum Σe(A)
differs from ours.) A proof of the Banach space version is also given in [26]. Ideas
like (ii), but for the full spectrum σ(A\ are a standard tool in operator theory, see
e.g. [7].

In quantum mechanics, WeyΓs criterium was first used by Zhislin [32] to
determine σess(H). Recently, Enss [12] has given a very elegant variant of this
method which we describe below, extending it to the case of non-selfadjoint
operators which concerns us here :

Let X be a real, finite dimensional, normed vector space, equipped with
Lebesgue measure. In the following, A is a closed operator on L2(X) having CQ(X)
as a core.
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Definition. N00(^) = {/leC|There exists a sequence t/neC^(X) such that ||wj = l,
suppunnK empty for each compact KcX and n sufficiently large, and
\\(λ — A)un I -»0 as n-»oo}. We will call a sequence un of this type a J/Fey/ sequence for
A and λ.

Clearly NOQ(A)cNess(A). Following Enss [12] we obtain sufficient conditions
for the converse :

Theorem 3.2. Let A be a dosed operator on L2(X) with nonempty resolvent set,
having CQ(X) as a core. Let X0eC^(X), X0(X) = lfor x in a neighbourhood 0/0, and
letXdQ be the operator of multiplication by X0(x/d) for 0<d< oo. Suppose that for
each d, XQ(Z — A)~l is compact for some (and hence all) zeρ(A), and that for all

\ + \\u\\) (3.1)

with ε(ίί)->0 as d-+oo. Then N ^(A) = N ess(v4).

Proof. Let λeNess(A). By definition, there exists a sequence uneD(A) with \\un\\ = 1,
Mw-»0 (weakly) and \\(λ — A)un\\ ->0. Since C$(X) is a core of A, we may assume that
uneC%(X). Then, for zeρ(A\

as π->oo, since by hypothesis Xd^(z — A)~l is compact and (z — ^4)wn-»0 (weakly). By
(3.1)

\\(λ-A}(l-Xά

0)un\\ ^\\(λ-A)un\\ +ε(d)(\\Aun\\ + 1).

Taking d=l, 2, ... we can therefore pick a subsequence n(d] of {n} such that
||(l-XdoK(d)||->l and ||(A-A)(l~X>n(d)||->0 as d->oo. For any compact KcX,
supp(l — Xdό)r\K is empty for d sufficiently large, hence λeN^A). D

For the analysis of Schrodinger Hamiltonians in configuration space we need
more detailed control over supply:

Definition. A partition of unity on X is a finite setX 0...X s of C°° functions onX with
bounded derivatives obeying :

X0eC^(X); XQ^I on some neighbourhood of 0. For 0<d<oo, Xd denotes the
function Xf(x/d) and also the corresponding multiplier on L2(X).

Definition. Let X0...XS be a partition of unity onX. For z = l...s we define ^(^4)
= {AeC|There exists a Weyl sequence un for 1̂ and A with suppwnCsuppX"}.

Clearly Nί

ao(A)cNao(A) for i=l...s. Again we can state a converse which,
combined with Theorems 3.1 and 3.2, gives a possible characterisation of σej/l):

Theorem 3.3. (i) Let A be a closed operator on L2(X] having CQ(X) as a core. Let
X0...XS be a partition of unity and suppose that for all ueC^(X) and i= l...s

\ + \\u\\) (3.2)
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with ε(d)-+Q as d-+co. Then

NX(A)=\JN^(A).
i= 1

(ii) //, in addition, A and X0 satisfy the hypothesis of Theorem 3.2, then

Wess(Λ)= U tfJA).
ί = l

(iii) //, moreover, the complement of Ness(A) is connected, then

ί= 1

Proof. Let λeN^A) and let un be a corresponding Weyl sequence. Without loss of
generality we may assume that X^un = Q, so that

Therefore

HXΓiU^X) (3.3)

for some index ie(l...s) and for an infinite subsequence {m} of {n}. By (3.2)

as m-»oo. This together with (3.3) shows that λeNl(A). The remaining statements
follow directly from Theorems 3.1 and 3.2. D

As an illustration of the simplicity and power of Theorem 3.3 we describe its
use for the determination of cress(H) [12] where H is the IV-particle Hamiltonian
with potentials obeying (C 3) :

The three ingredients of Theorem 3.3 are:
(i) Compactness. For any X0eC™(X), X^i + H^1 is compact and, since V(ι-\-H)~1

is bounded, X0(i + H) ~ ί = X0(i + H0) ~ 1 - X0(i + H0) ~ 1 V(i + H) ~ 1 is also compact.
(ii) Commutator Estimates. For local potentials the estimates (3.1) (3.2) involve only
H0, and ε(d) is easily seen to be of order d~ 1. (Note that by (C 3), H0 is H-bounded).
(iii) Partition of Unity. Let D = (Cί,C2) run over all 2-cluster decompositions.
Construct a partition of unity X0u{XD} on X such that dist(C1?C2)> 1 for
xesuppXD. Then dist(C1?C2)>d for xesuppX^ and it follows from (C3) that
\\(H — HD)un\\-+Q for any sequence un^C^(X) with ||MΛ | | = 1 and suppi^CsuppX^.
Therefore N^(H)CN^(HD) and by Theorem 3.3

*ess(ίO = LWW C U ̂ (^D) C U °(HD) . (3.4)
D D D

Conversely, σ(HD) C σess(H) by a simple application of WeyΓs criterion for the
full spectrum : if λeσ(HD) there exists a sequence unEC^(X] such that \\un\\ = 1 and
\\(λ — HD)un\\-+Q. For any aeX with α= ΠDa, U(a):ip(x)-^ip(x — a) represents a
relative translation of the clusters C1,C2 and commutes with HD. Hence
\\(λ — HD)υn\\-+Q for υn=U(an)un and for any sequence an = ΠDan. Picking an such
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that dist(C1,C2)>n for xesuppι;n we have \\(H — HD)vn\\-*Q. It follows that
\\(λ-H)vn\\-+Q, hence λeσ(H). Combined with (3.4) we obtain

*ess(#)= U <W (3.5)
D = (Cι,C2)

§ 4. Geometric Spectral Analysis of H (/)

In this section we apply Theorem 3.3 to express σess(//(/)) in terms of the function/
and of the thresholds and the masses. The idea is, essentially, to analyze the local
operator H(f) along fixed directions in configuration space. To formulate the
result (Theorem 4.1) we introduce the following notions:

Definitions, (i) Let / be a complex C00 function on X satisfying f(λx) = λf(x) for
|x| ̂  1 and λ^.1. If H is the JV-particle Hamiltonian we define :

H(f) = e~ifHeif = (p + Vf}2 + V.

(ii) For any xeX we define the cluster decomposition D(x) as follows : two particles
i and fc belong to the same cluster if and only if xl = xk. If x φ 0, D(x) is nontrivial
and depends only on the direction of x. Similarly, Vf(x) is homogeneous of degree
zero for |x|^l. To express this we introduce

and the functions

D(e} a(e) = (

on the unit sphere Ω.
(iii) For any aeX we set

H(a) = e~ ί(α' x} Hei(a> x] = (p + a)2 + 7,

and for any cluster decomposition D :

HD(a) = e~i(a'x)HDei(a>x)

= H(ά) — (all intercluster potentials) .

Remarks, (i) If the potentials obey the condition (C 3) of §1, each of the operators
A = H(fl H(a\ HD(a) is defined on C£(Xl where the norms \\Au\\ + \\u\\ are all
equivalent to \\H0u\\ + \\u\\. Therefore each A has a closure (again denoted by A)
with domain D(A) = D(HQ) and satisfies the hypothesis of Theorem 3.3 (i) and (ii).
(ii) In the sense of (A 1.4) HD(a) can be expressed as

CeD

Hc(αc),

where aD = ΠDa, ac = Πca. Hc(ac) is the exact analogue of H(a) for the subsystem
C. HQ

D(aD] = (ΠD(p + a})2 is a multiplier in p-space whose spectrum for nontrivial D
is the parabolic region shown in Figure 1 (except for the case of particles in one
dimension (v = l), where for 2-cluster decompositions this region reduces to the
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2i(TTDIm a)

Fig.1

boundary parabola. For simplicity we disregard this exception in the following).
By Ichinoses lemma [25]:

(4.1)
CeD

Theorem 4.1. If H is an N-particle Hamiltonian with potentials obeying (C 3) and if
v^2, then

Discussion. Setting/—0 we recover

σess(H)=[Jσ(HD)

where D runs over all nontrivial partitions. Choosing /(x) = (a, x) for any aeX we
obtain

σϊω(H(α))=(J<τ(HJ,(α)).
£>

Using (4.1) it follows from this by induction that for nontrivial D

σ(HD(a))= (J [ΣD, + σ(H(}),(aD,))']. (4.2)

We conclude that Theorem 4.1, together with (4.2) and Fig. 1, completely describes
σess(jhί(/)) in terms of/and of the thresholds and the masses. In particular

infReσess(H(/))= inf
eeΩ D^D(e)

(4.3)

This is the basic result from which the exponential bounds will be derived in § 5-8.
We mention without proof that (4.3) remains true in the exceptional case v= 1.
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The proof of Theorem 4.1 is given in the remaining part of this section. In order
to apply Theorem 3.3 we introduce the family of cones

Kε(e) = {xεX\(e,x)>(l-ε)\x\}

for eeΩ, ε>0, and for each eeΩ the complex set

Naΰ(e) = {λeC\for any ε>0 there exists a Weyl sequence un

for H(a(e}} and λ with suppunCKε(e)} .

Since H(f] resembles H(a(e)) on a narrow cone Kε(e) we expect as a limiting case of
Theorem 3.3 (i):

Lemma 4.2. Under the hypothesis of Theorem 4.1,

Proof. Let uεC$(X) with suppuCKε(e)π{\x\>R} for jR>l . Then

\\(H(f)-H(d)}u\\ ^ \\(Δf)u\\ + \\((Vf}2-a2}u\\ + 2\\((Vf-a\p}u\\

|| + ||tt||), (4.4)

where α and β(ε) depend only on / and j5(ε)-»0 as ε-»0. (For F/ is uniformly
continuous, Δf is homogeneous of degree — 1 for |x| ̂  1 and p is if Abounded).
Using this we first prove :

(i) Nao(e)CNao(H)f)): Let λeN^e). Then there exists a Weyl sequence un for
/ί(α(^)) and λ with supply CK1/n(e)n{|.x|>n}. Since \\H0un\\ is bounded for any
Weyl sequence it follows from (4.4) that \\(λ-H(f)un\\-*Qι hence

(ii) N^(H(f))C IJ N^ίe): Let λeN^Htf). Given ε>0, R>0 we can choose
eeΩ

eeΩ and ueC^(X\ | |M||=!, such that suppuCKε(e)n{\x\>R} and
\\(λ — H(f))u\\<s (To see this, take a partition of unity Xt with
suppXj CXgίβ^nίlx^l} for ι = l...s and suitable eteQ and apply Theorem 3.3 (i)).
Making such a choice for each (ε?R) = (n~1,n), n=l ,2 5 . . . we obtain sequences
w e C ( X ) and e e Ω with | | M | | = 1, s u p p w n C K ( O ^ { l ^ l > ^ } and

\\(λ-H(f))un\\<ί/n. (4.5)

Since ί2 is compact we may, by passing to a subsequence, assume that en-+e. Then
Kίln(en)CKε(e) for any ε>0 if n is sufficiently large. By (4.4) and (4.5) we conclude
that

as π-^oo, which proves that λeN^e). D

Lemma 4.3. t/nder the hypothesis of Theorem 4.1 we have for each eeΩ

Naΰ(e} = σ[_HD(e}(a(e)}-}.

Proof. Since e is fixed, we write D(e) = D, a(e) = a. We first prove :



Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV 15

(i) W Je)Cσ(H0(0)): Choose ε>0 sufficiently small so that \xl~xk\>δ\x\(δ>ty
for xEKε(e) and i, k in different clusters of D. Let λeN^e) and let un be a Weyl
sequence for H(a) and A with suppunCK(e)π{\x >n}. Then || J^wJ-^O as n->oo if
i,fe are in different clusters of D, and it follows that \\(λ — HD(a))un\\-*Q.

(ii) σ(H D(a)) C N ^(e) : If Theorem 4.1 is true, it follows that there is a simple
Weyl criterion for the full spectrum of H(f):λeσ(H(f)) if and only if
\\(λ — H(f))un\\-+Q for a sequence uneC™(X\ ||wj = l. Using this we proceed by
induction, assuming that Theorem 4.1 is proved for all subsystems of less than N
particles. In (4.1), WeyΓs criterion then holds for σ(Hc(ac)) by induction hypothesis
and for σ(H^(aD)) since H^(aD) is a multiplier in p-space. Therefore it holds for
σ(HD(a)) since we may pick Weyl sequences of product form with respect to the
factorization (A 1.3). So let λεσ(HD(a)) and i^eCJ, \\un\\ = 1, and

\\(λ-HD(a))un\\-*0

as ft->oo. By definition of D(e\ translations of the form x->x + be (beR) leave the
configurations inside the clusters of D invariant, so that the corresponding unitary
translation operators U(be)\u(x)-*u(x — be) commute with HD(a). Therefore

\\(λ-HD(a))U(bne)un\\-*0

for any choice of the sequence bneR. Given ε>0 and un we can always pick bneR
such that suppU(bne)unCKε(e)π{\x\>n}. This proves that λeN^e). D

Proof of Theorem 4.1. By induction hypothesis Theorem 4.1 holds for all
subsystems of less than N particles. Therefore σ\Ji D(e](a(e))~\ is given by (4.2).
According to Lemmas 4.2 and 4.3,

which shows that the complement of N00(H(f) is connected. It follows from
Theorem 3.3 that

§ 5. L2 Exponential Bounds

Combining the Combes-Thomas argument with the result (4.3) we see that /is an
L2 exponential bound for an eigenfunction ψ of H with energy E if

(ΠDa(e))2^ΣD-E (5.1)

for all eeΩ and for all Dε>D(e). In the derivation of (4.3) /was assumed to be a C00

function on X. In trying to find the largest possible / satisfying the gradient
condition (5.1) we must be prepared, however, to encounter limiting functions /
which are only piecewise smooth functions of x (such as the Mercuriev function
occurring in Theorem 2.5). To cover this case we prove :

Theorem 5.1. Let Hιp = Eψ, where H is an N-partίcle Hamiltonian obeying (C3).
Then f is an L2 exponential bound for ψ iff is positive, continuous and homogeneous
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of degree 1 on X and if it has an L°° distributional gradient Vf— a satisfying the
following condition for all x φ 0 :

(ΠDa(y))2^ΣD-E (5.2)

for all Dt>D(x) and almost all y in a neighbourhood Nx of x.

Proof. We begin by noting that if we fix D, then D(x)<3 D if and only if ΠDx = x. As
a result, if Ω = {x||x| = 1), we see that {xeΩ\D(x)^D} is compact for each D and
therefore, by a compactness argument, we can find δ>0 such that
N® = {y\\y — x\<δ}cNx for all xeΩ. Let AT be a neighbourhood of the identity in
S0(n) (viewed as the group of orthogonal transformations onX), such that RxεN®
for ReN and xeΩ. Let j be a non-negative C°°-function on S0(n) with support in
N and Jj(Λ)d£=l (d# = Haar measure). Then

fJ(x) = lf(Rx)j(R)dR (5.3)

is C00 and homogeneous of degree 1 on X\{Q} since j smoothes in all nonradial
directions. For a — Vf we see that

for all Dt>D(x), since j(jR)Φθ implies that RxeN°CNx and since the set
{α|(/7Dα)2^ΣD — E] is convex. Thus /7 is an exponential bound for ψ by (5.1).

Given ε in 0 < ε < 1 and 77 > 0 we can choose j (near a 5-function on S0(n)) so
that

(l-6)f(x)^(l-ε)fj(x) + εη\x\ (5.4)

for all x. By (5.1), η\x\ is an L2 exponential bound if we choose η2^Σ — E
(O'Connor's bound). Since the L2 exponential bounds for ψ form a convex set, we
conclude that (1 — ε)/ is an exponential bound for any ε>0, hence / is an
exponential bound. D

§ 6. L°° Exponential Bounds

In this section we prove Theorem 1.3 which implies that the L2 exponential
bounds / derived in § 5 are also L°° exponential bounds. Having shown that
efψeL2 is an eigenfunction with eigenvalue E of

efHe~f = H(if) (6.1)

it suffices to prove that exp( — tH(if)) is bounded from L2 to L°° for some ί>0,
since then

e-
tEefip^e~tH(if}efipeL^ . (6.2)

We will prove this property of exp( — tH(if)) for all ί >0 (By keeping track of the
rate of divergence of the operator norm as ί^O one could show more generally
that for suitable n, efψeD(H(if)n) implies efipeLco. For the case /=0 this is done in
§25 of [29]).

Most of the ideas in the proof go back to Herbst and Sloan [14]. The main new
ingredient is a Dyson-Phillips expansion which has already been applied by
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Davies [10] in related contexts. Its use in this setting is motivated by Berthier-
Gaveau [6], Carmona [8] and Simon [29]. The first authors proved some
interesting inequalities derived from Martingale inequalities on path integrals, and
then Carmona [8] and Simon [29] independently realized their significance in
simplifying the proofs of Herbst-Sloan [14]. Since H0(if) is the generator of a drift
process one could directly apply the proof of [6], but given the realization of
Simon [29] that their results come from a kind of disguised Dyson-Phillips
expansion, we will avoid path integrals and use purely Lp analysis.

In the following / denotes a complex function on Rn satisfying the Lipshitz
condition

\f(x)-f(y)\^a\x-y\ (6.3)

for all x,yeRn. Let H0= -A on Rn. Formally

HQ(if) = ef(-A)e-f

generates a semigroup exp( — tH0(if)) which for ί>0 is given by the kernel

(4πtΓn/2 exp(/W -/GO - |x - y\2/4t) . (6.4)

In fact we can define H0(if) on Lq for 1 rg q ̂  oo as the generator of the semigroup
(6.4):

Lemma 6.1. Let f obey (6.3) q and let exp( — tH0(if)) be defined by the kernel (6.4)
for 0<£<oo. Then (i) exp( + ίH0(i/)) is a bounded operator from Lp(Rn) to Lq(Rn)
for any pair p, q with i ̂ p^q ^co, with norm

for 0<ί< 1, where r = (p~l — q~l)n/2.
(ii) exp( — tH0(ίf) is a strongly continuous semigroup on Lq for 1 :gg< oo.

Proof, (i) By (6.3) the kernel (6.4) is bounded by Kftx-y) where

Kn

t(x) = (4π£)~ Λ / 2 exp(α|x| - x2/4t) . (6.5)

It follows from Young's inequality that

\\e-a<A'»\\p,q£\\KX-)\\,

with s"1 = 1 +q~1 — p~l. (i) follows from noting that as t—>0

(ii) Qxp( — tH0) is a strongly continuous semigroup on Lq(i^q<ao). For /φO
the semigroup property is obvious from the definition. Strong continuity for
?-»0 follows from

This estimate is obtained from Young's inequality by noting that the kernal of
[exp(-ίfί0(z/))-exp(-ίJff0)] is bounded by a\x-y\Kn

t(x-y\ Π

Lemma 6.2. Let W be a function on Rn of the form W(x) = W(y\ where y is the
orthogonal projection of x onto a v-dimensional subspace (denoted by Rv) of Rn. If
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WεLp(Rv) for some p>v/2 and if f satisfies (6.3) then

for all q in l^

Remarks. In the application to Schrδdinger operators, W will be a pair- or
multiparticle-potential. It is also possible to treat potentials which are only
uniformly locally U (see [29]).

Proof. Representing x = (x l 5x2) by its components xίeRv and x2-LRv we obtain
from (6.3)

so that the kernel of Wexp( — tH0(if)) is bounded by the function

\W(x1)\Kv

t(x1-y1)K';-v(x2-y2)

defined by (6.5). Using Holder's and Young's inequalities one finds

ιι^- t f lo(^ιιg,^ιι^ιιsjιχ?(oιιrιιχr"v(-)iiι
for Igs^oo and r~ί=r — (sq)~ί. Since q^p we may set s = p/q. Then l-r~l

= p~ί and by (6.6), as f-»0:

). D

Lemma 6.3. Let f obey (6.3) and let V be a finite sum of functions W satisfying the
hypothesis of Lemma 52. Then Pl — exp[ — ί(//0(z/)+ K] is a bounded semigroup
on Lq for l^q^oo.

Remark. A constructive definition of P'is given in the proof. The notation implies
that the semigroups Pt on Lq and P' on Lp coincide on LpnLq.

Proof. V is a closed operator on L1 (on its natural domain) and

by Lemma 6.1. Therefore Jfί0(z/)+F is the generator of a strongly continuous
semigroup F on L1 which can be constructed by the Dyson-Phillips expansion for
sufficiently small £>0:

ί_ V Γj£ fa e-toH0(if)γe- 1^0(1 f) ye-tnHQ(if)

Next we note that —/also satisfies (6.3). Exhibiting the /-dependence of P' we can
therefore define

P'(/) = P'(-/)* (6.7)

as a semigroup on L00. Using the Dyson-Phillips expansion one sees that the two
definitions coincide on Z/nL00. By the Riesz-Thorin interpolation theorem [24]
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P\f) is defined as a semigroup on each Lq(\ ^q^co) with the bound

Remark. Another way of constructing Pf is the following : first, assume that V is a
sum of functions W satisfying the hypothesis of Lemma 6.2 with
WeLp(Rv)nLco(Rvl p>v/2. Since FeL00, P\f] can be defined on all L* by the
Dyson-Phillips expansion and satisfies (6.7) and (6.8). Noting that HP'H 1 1 involves
only the norms || W\\p we can then define Pf in the general case as a uniform limit
(on each Lq\ by approximating each WeLp(Rv) from Lp(Rv)c}Lco(Rv).

Lemma 6.4. Let f be a real function satisfying (6.3). Then under the hypothesis of
Lemma 6.3, Pt is bounded from L2 to L°° for all ί>0.

Proof. Let £>0 and P\λ) = exp[-t(H0(if) + λV]. Assuming first that FeL00, P\λ)
is an entire function of λ as can be seen from the Dyson-Phillips expansion. It
satisfies the pointwise estimate

for /zeL2, which follows from the Trotter product formula (see [13] or [14]).
Hadamard's three line theorem [24] applied to the function φ(z) = Pt(2z)\h\2~2z

gives

Using Lemmas 6.1 and 6.3 we find

By the approximation argument described above, this estimate extends to all V
obeying the hypothesis of Lemma 6.3. Π

Proof of Theorem 13. First we remark that the operator sum H0(if)+V is the
generator of the semigroup Pf on L2. This follows from Lemma 6.2 where we may
set q = 2 since p^2 by hypothesis, so that P* is defined by the Dyson-Phillips
expansion on L2. It follows that P* — ef(e ~ tH)e ~ f. Therefore, Hιp = Eψ and efψeL2

imply Ptefιp = e~tEefψ for all ί>0. By Lemma 6.4, PtefψeLCG for ί>0, hence
Π

Theorem 6.1 (Ultimate COST estimate). Under the hypothesis of Theorem 5.1 f is an
L°° exponential bound.

Proof. By Theorem 1.3 the regularizations f of / defined by (5.3) are L°°
exponential bounds. From the argument following (5.4) one sees that / is an L°°
exponential bound. Π

As a useful particular case we note :

Theorem 6.2. Let Hip — Eψ where H is an N-particle Hamiltonian obeying (C3). Let
/! ...fm be positive C1-functions onX\{0} which are homogeneous of degree 1. Let at

= F/. and St = [x\ftx) ^ fk(x) fork = l...m}. Then
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is an L°° exponential bound for ψ if for each i

for all xeS.AW and all

Proof. For any fixed X Φ O let J = {i\xeSi}. Given ε>0 there exists a neighbour-
hood Nx of x where ft>f for ίφJ and (l — £)2(ΠDaί)

2^ΣD—E for ieJ and all
Dΐ>D(x). Therefore (1— ε)/has the Lipschitz properties

(l-ε)\f(y)-f(z)\^(ΣD-EY'2\y-z\

for all D ε> D(x) and all y,zeNx with ̂ (y -z) = y-z.lt follows that ( 1 - ε)/ has an
L00 gradient obeying the hypothesis of Theorem 5.1. D

§7. Atomic Systems

In this section we construct explicit exponential bounds for a class of systems
which includes "atoms" with infinite nuclear mass. In particular we will recover the
bounds of [3, 4] except for the preexponential factors.

Definition. A pseudo-atomic Hamiltonian is an operator

H N = Σ (PΪ + n*,)) + ' Σ w(χt - χk)i=l i<k

on L2(RvN\ with potentials V and W obeying the condition (C3) of § 1, and such
that

Remarks. Such a Hamiltonian describes a system of N + 1 particles 0, 1 . . . N : a
"nucleus" 0 at x0 = 0 and N "electrons" 1 ... N. It has three important properties :

(i) The mass of the nucleus is infinite.
(ii) The electrons are identical.

(iii) The energy of any subsystem consisting only of electrons is nonnegative,
since σ(Kn)Cσ(KN) for n^ N by (3.5).

Each one of these properties drastically simplifies the task of constructing
exponential bounds from Theorem 5.1. The kinematical simplifications due to (i)
are described at the end of Appendix 1. By (ii) and (iii) the thresholds are the
"ionization-thresholds"

which only depend on the number n of electrons in the same cluster with the
nucleus. They are ordered in the sense

since σ(Hn)Cσ(Hm) for n^m by (3.5). As a consequence of Lemma 1.2, the gradient
conditions (5.1) or (5.2) need only hold for decompositions of the form D
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= (Oi!... 0 (ϊπ +!) (zπ + 2)...(ΪN) t>D(x), which by (i) implies x. ι - ... - xin = 0. Finally, (ii)
suggests that we try to construct exponential bounds f(xl...xN) which are totally

symmetric in xlt..xN.

Theorem 7.1. Let HN be a pseudo-atomic Hamiltonian with the tresholds EN_±
rg£ N _ 2 . . . ^E0 = ΰ and with an eigenvalue EN<EN_1. Let f be a positive C1-

function on the interior of the sector 5 = {r = (r t . ..r]V)|0^r1 ^r2... ^rN< 00} of RN,
which is homogeneous of degree 1 and for which f and its first derivatives are
continuous up to the boundary of S (except r = 0). Let F be the symmetric function

onX equal tof(\xί ...\XN\) on the sector T={x\Q^\xί\^...^\xN\}. Tlien F is an L°°
exponential bound for any ip with Hψ = ENψ if for each w = 0 9 l,. . .,]V —1

π?ι sr,'
for all r with 0 = r1 = ... = rn.

Remark. It is easy to see that (7.1) is necessary for F to obey (5.2).

Proof. Given ε > 0 we define the function fε on S by

where ρ. = (ε2r2 + r?)1/2 .

(7.1)

Since / is positive and homogeneous of degree 1 and since ρi ̂  r f, we have /f ̂  / on
S and Fε^F for the corresponding symmetric functions on X. Therefore F is an
exponential bound if for any y with 0<y < 1, (1 — y)Fε satisfies the hypothesis of

Theorem 6.3 for sufficiently small ε = ε(ιy)>0.
At any interior point x of T we can compute the gradient PFε(x) by

1(<5ifc + ε2), (7.2)
k °rk

where r. = |x f |. If n:(x1 ...xN)-*(xkί...xkN) is a permutation acting on X, we then
obtain VFε at the permuted point πx by

VFε(πx) = πVFε(x). (7.3)

Thus we see that VF'c is continuous on the interior of T (and of each permuted

sector πT). Moreover, as we go from the interior to the boundary of T (or of πT),
FFε has continuous boundary values for x Φ O which are still given by (7.2) (or (7.2)

and (7.3)). Therefore VFε is a piecewise continuous function onX which in general
takes several limiting values at points xφO on sector boundaries. In particular, for
xeT\{0}, these values are {πFTε(x)} where VFε(x) is given by (7.2) and where π
runs over all permutations obeying πx —x.

Since (1 — y)Fε is symmetric, it is sufficient to check (5.2) for xe T\{0}. In view
of Theorem (1.2) and of the continuity properties of FTε we need only show that

(l-y)2(ΠDπFFε(x))2^En-EN

for all D = (0, i , . . . , in) (in+ί)...(iN)oD(x) and all π with πx = x. Now DoD(x) and

xeT imply χ 1 = = . . . = χ n = 0 and, by (7.2), dFε/dxί = ...=dFε/dxn = Q. (This is the
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motivation for introducing fε.) Since π is orthogonal and ΠD is a projection, it
therefore suffices that

d-y) 2 Σ
'dF.

dx:

(x) (7.4)

for each n = 0,1, . . .,N—1 and all xeT\{0} with x1 = ...=xn = 0. Using r ;5Ξρ ; and
ρ;^ε|r| we obtain from (7.2):

dF,
-(e) (7.5)

Since all terms are homogeneous of order 0, we may restrict x to |x| = 1. Then \ρt

— rjrgε, and since df/drt is uniformly continuous for reS, r| — 1, it follows that
(df/drί)(ρ)-^(df/dri)(r) uniformly as ε-»0. Moreover, for n = Q, (7.1) gives the bound
\Sf/dri ^EN for all r and we see that the right-hand side of (7.5) converges to
\(df/dr^(r)\ uniformly in r Φθ as ε->0. By (7.1) we can therefore choose ε >0 so that
(7.4) holds. D

Example 7.1. / = ( + r 2 ) ί / 2 ( E N _ _ ί ~EN)1!2. This is O'Connor's bound: F(x)
= \x\(EN_1 — EN)1/2 which is always the best isotropic bound.

Example 7.2. f = r1(E0-E1)
ί/2 + r2(Eί -E2)

ί/2 + ...rN(EN_1-EN)ί'2. This coin-
cides with example 7.1 if r^ ... = r j v _ 1 =0. For all other r, / is larger than
O'Connors bound if the successive ionisation potentials are increasing, i.e. if

^ = -^-
(7.6)

which is an experimental fact for "real" atoms. Presumably, / is then the optimal
bound allowed by Theorem 6.3. Assuming (7.6), Alrichs and M. and T. Hoffmann-
Ostenhof [4] have recently derived the same exponential bound by subharmonic
comparison methods.

Example 7.3. fk = (Ek —
N

Σ fc = 0,1,... ,JV —1. This is seen to obey

(7.1) except for a lack of continuity of Vfk as several rί go to zero. However, (7.1)
holds for any limiting value and the proof of Theorem 7.1 can be adapted to cover
this case. This is the basic estimate in [3].

In the following examples we show how to improve the bound of example 7.2
in the case where (7.6) does not hold. While this is of no interest for real atoms, it
prepares the ground for general 3-body systems (§8).

Example 7.4. (N = 2) We start with the 2 functions

which by the Schwarz inequality satisfy / (ι ) (2)^/(i2) f°r an" r ι>Γ2 anc* coincide for
rl(El—E2) = r2

2(E0 — E1). On this set not only the 2 functions but also their
gradients take the same values, since a non-negative C1 -function has vanishing
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first derivatives at its zeros. Defining / piecewise by

23

= /((12) otherwise,

we therefore obtain a C1 -function of (r1? r2), the "Mercuric v function" of Example
2.3. Both its pieces saturate the gradient condition α^ + α2 g £0 — E2 for all r l 5 r 2 .
The subset rί =0 is in the domain of /(1)(2)5 which also saturates α2 ̂ E1 — E2. The
situation is shown in Fig. 2:

(EΓE2),1/2

F i g . 2

Only the restriction of/ to the sector S is relevant as an exponential bound. We see
that / = /(i)(2) °

n all of S if and only if E1 — E2^E0 — £1? so that in this case we
have not improved the estimate given in example 7.2. In any case, the minimal
exponential fall-off is in the 2-direction and coincides with O'Connors bound.

Example 7.5. (JV = 3) We start with the 4 functions

\ l / 2 /

The partial order among these functions and the sets where two (ordered)
functions coincide can easily be read off by the Schwarz inequality :

7(1)(23)

(7.7)

Here the arrows go in the decreasing direction, and attached to them are the
manifolds where the 2 functions coincide. These 4 manifolds intersect on the ray R
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defined by

where /(1)(2)(3) = /(i23) ^ ̂ s now easY t°
can be defined by one of the 4 pieces :

mt° 4 cones on each of which /

Fig.3

On the unit sphere, the domain of /(1)(2)(3) is bounded by great circles and the
domain of /(123) by circles parallel to the 12- and 23-planes. The inequalities which
define the 4 sectors are easily written down from the diagram (7.7). For example we
have / = / ( iw™^ if

(7.8)

From this one can show that the minimum of the piece /(1)(2)(3) (on the unit sphere)
is in the 3-direction. This is also the minimum of /, since the other pieces take all
their values on the boundary with /(1){2)(3). Hence we have again

\v\fJ7 — π U/2

rl(Eί-E2)^rl(E2-E3) and

exhibiting O'Connors bound. By the same argument as for JV = 2, / is a
C1 -function of r1 ...r3 and it is easily checked that all gradient conditions are
saturated.

Again it is only the restriction o f / to the sector S\ 0^r1 ̂ r2^r3 which gives
the exponential bound. On the unit sphere, S is bounded by great circles just as the
domain of /(1)(2)(3)> but (instead of R) with respect to the ray Rs :r1 =^2~ r3
Therefore it depends on the ratios of the numbers En — En_ί which of the 4 pieces
of / participate in the exponential bound. In particular, / — /(1)(2)(3) on all of S if
and only if the ray Rs is in the domain (7.8), i.e. if and only if

In the general ^-electron case, / must be pieced together from the functions

/D = (r?+ ... +a i /2CEo-£n)1/2+ .- +(^+1+ - +r2

N)1'2(Em-EN)1'2,
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where D = (1 ...«)... (m + 1 ... AT) is anY order-preserving partition of (1 ... N). If the
ionisation potentials obey (7.6) / reduces to the bound given in example 7.2.

§8. General 3-Body Systems

We try to extend the procedure used in the atomic case as follows : let
S = (Dλ ... DN) be a given string (see Appendix 1) and let

be the corresponding sequence of thresholds including the energy of the bound
state. As candidates for exponential bounds we consider positive, homogeneous
C1 -functions f ( r 2 ... rN) of the variables rm = \Amx\ (Jacobi coordinates associated
with the string S). Setting am = df/drm, the gradient of f(x) as a function on X is

N

α W= Σ am^m*Am»
m = 2

and since Πn = A2+ ... +An,

Therefore / satisfies the gradient conditions for all DeS provided that

for rn + 1 = ... = rN = 0, and all n = 2 ... N.

The problem of finding the largest possible fs compatible with these conditions
is the same as in the atomic case. Having solved it for all strings S, the question is
still open how to construct from the functions fs an exponential bound which
satisfies the gradient conditions for all D.

Example 5 (JV = 3). There are 3 strings 5 = (D1D2D3), given by the 3 possible
decompositions D2. Rewriting example 7.4 in the present notation, we have

otherwise.
Clearly, this satisfies the gradient conditions for D3 (all x) and D2 (x3 =0). Now

let S' be a second string. The relation between the 2 sets of Jacobi coordinates can
be visualised as follows :
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Here the r's are proportional to the distances shown in the figure with factors
depending only on the masses. In general, r'2 and r'3 cannot be expressed as
functions of r2 and r3 alone and fs cannot easily be compared with fs,. However, if
7*3=0, we have (with r = |x|):

with constants j82, β3 depending only on the masses. On the 3-dimensional plane
JR2 = range of ΠDί both fs and fs, therefore reduce to isotropic functions :

and we see that fs satisfies the gradient condition for D2 if and only if /s(x) ̂  /S'(x)
for one point xejR 2 , xφO. Stated more generally, fs satisfies the gradient
conditions imposed on fs, on the set {x\fs(x)^fs,(x)}. Using Theorem 6.2, we
conclude :

Theorem 8.1. Let H be a 3-partίcle Hamiltonian obeying (C3) and let fs be the
function defined in Example 5. Then f(x) = min /s(x) is an L00- exponential bound or,

equivalently,

S

with C(κ) < oo for κ < 1.

From the construction it is difficult to judge whether this bound is optimal or
not. It is, however, in full agreement with Mercuriev's results on the asymptotic
behaviour of bound state wave functions [21]. Using the Faddeev equations (for
short range potentials) he obtains

and an exponential fall-off of ιps(x) precisely given by /s(x).

Appendix 1. JV-Particle Systems in the CM-Frame

In this appendix we present a compact formalism for JV-particle kinematics. The
configuration space of N mass points mi with cartesian coordinates xleRv and
with fixed center of mass at the origin of Rv is

N

Σ«v*=
i = 1

It has the dimension n = v ( N — l ) and is equipped with the scalar product

N

(x9y) = 2 V m xy, (Al.l)
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where xlyl is the scalar product in Rv. We will also use the notation x2 = (x, x) and
|x| = (x, x)1/2. The length jR(x) defined by x2 = 2mR2 (m = total mass) is the radius of
gyration.

X denotes the complexification of the real spaced (i.e. xleCv for xeX) and we
denote with (x, y) the bilinear form on X which reduces to (A 1.1) for real x, y.

Using the scalar product (Al.l) we identify X with its dual: keX is identified
with the linear form

where the covariant coordinates fc eK v are uniquely defined by the condition
Σ^j — 0, and given by ki = 2mik

l. In particular the classical particle momenta p{ are
the covariant coordinates of the vector p=l/2(dx/dt) and p2 is the kinetic energy.

The volume element oίX is defined by the metric (Al.l) and Jjf = L2(X) is the
Hubert space of the quantum mechanical JV-particle system with fixed center of
mass. The transition to the momentum representation is the usual one :

ψ(x) = (2πΓnl2 f dkψ(k}eί(k>x)

x

ψ(k) = (2π) ~ n/2 J dxιp(x)e ~ /(/c' x} .
x

Expressed in terms of the covariant coordinates, ψ(k^ ... kN) is defined on the set
Σ^;~0 and the particle momenta are described by the operators

obeying the operator identity Σp^O. They are the covariant components of the
vector operator p generating the unitary group of translations

U(a) = e-
ί(p<a} : ψ(x) -> ιp(x - a) (a eX) .

For smooth ψ, (ipψ)(x) = (F\p)(x)eX is the gradient of ψ at the point x.
The TV-particle Hamiltonian in the CM-frame is

where V is assumed to be a sum of local 2-body potentials :

v(χ)= Σ ^( '̂-^)
i<k

Let C be a subset (cluster) of particles and xceRv its center of mass:

*c = mcl Σmiχί> mc= Σmί
ieC ίeC

We define the linear operator Πc on X by

(πcXγ=\χί-Xc lf ίec'
[0 otherwise .

Since Π^ = ΠC and (x,Πcy) = (Πcx9y), Πc is an orthogonal projection, it acts on
the (covariant) particle momenta as follows :

c/mc if ί e C>
(ΠCP)t-\Q otherwise
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where pc=ΣPί O'eC) is the total momentum of the cluster C. Note that (Πcp)2 is
the kinetic energy of the cluster C in its own CM-frame.

Let D = (C1 . . . Cm) be a partition of (1 ... N) into clusters. Then the projections
Πc for CeD are mutually orthogonal and

ΠD=ί-Σ"c (A1 2)
CeD

is again a projection and orthogonal to all Πc for CeD. It acts as

(ΠDxf = xc (/7Dp); - mtpc/mc ,

where C is the cluster containing particle i. In particular

(ΠDP)2 = ΣPc/2mc
CeD

is the kinetic energy of the intercluster motion and the relation

P

2 = (/7Dp)2+ £ (/7cp)2

CeD

obtained from (A 1.2) expresses the fact that the total kinetic energy is the sum of
the internal kinetic energies of the clusters and of the intercluster kinetic energy.
Correspondingly, the vectors Πcx describe the configurations inside the clusters
CeD and ΠDx the configuration of the centers of mass of the clusters. Both
together determine the JV-particle configuration

x = ΠDx~{- Σ Πcx.
CeD

For D = (Cl ... Cm) \QtXc (CeD) andXD be the mutually orthogonal ranges of
the operators Πc and ΠD, respectively. Then

so that 3tf = L2(X) factors accordingly into

where the factors are the L2 spaces over the corresponding subspaces of X (if C
contains only one particle, Xc — {0} and dimJΓc = l). The operator

HD — H — (all pair-potentials linking different clusters)

describes a system of non-interacting clusters. With respect to the factorisation
(A1.3) it has the structure
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for which we simply write

HD = HD+ Σ Hc
CeD

Here H c is the Hamiltonian of the cluster C in its own CM-frame and Ή° = (ΠDp)2

the kinetic energy of the intercluster motion. If D is not the trivial decomposition
into one cluster, this operator has the purely continuous spectrum [0, oo) and the
spectrum of HD is

σ(HD)= σ(Hc), cc
CeD

ΣD is the threshold for the break-up process (1 ... N) -*(€}) ... (Cm).
The cluster decompositions D are partially ordered by the relation

expressing that each cluster of D' is contained in a single cluster of D. This is
equivalent to the relation

for the corresponding projections and has the consequence that

A siring S = (D±D2 ...DN) is defined as a sequence of decompositions Dm into m
clusters such that Dm<αl)m+1. Dί is the trivial decomposition and DN the
decomposition into N single particles. The corresponding projections Πm = ΠDm

satisfy

so that the differences

form a complete set of mutually orthogonal v-dimensional projections. To see the
significance of Δm, let C1 and C2 be the two clusters of Dm which are united to form
the cluster C-C1uC2 of Dm_ί. Then

and

(Amx)2 = 2m- 1mcmC2(xCι -xC2)
2 .

We see that there is a one-to-one correspondence between Δmx and the vector
s sense tne splitting

N

*= Σ ΔmX
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amounts to the introduction of the Jacobi coordinates y = (y2...yN)eRv(N~1}

associated with the string S.
To describe the "pseudo-atomic systems" in §7, we introduce an additional

particle i = 0 and let m0 = oo ("nucleus"). For the other particles ("electrons") we set
ml= ... = 7WN = |. Then the configuration space is

and we can use x1 ... XN as independent coordinates, in which the metric is simply

(*,*)= Σ(*02.

Consequently, χ. = xf (x0=0 by definition), and we may use lower indices
throughout. Note, however, that clusters are subsets of (0... N) and that

(Πcx}i = x if C contains the nucleus 0, and

(ΠDx)ί = 0 if i is in the same cluster with the nucleus 0.

Appendix 2. Identical Particles

In this appendix we briefly indicate the few modifications necessary in the presence
of identical particles, when the Hubert-space 3Ίf = L2(X) is restricted to the
corresponding symmetry sector Jjfs. In §4, /(x) is assumed to be invariant under
permutations of identical particles. Then, instead of a single unit vector eeΩ one
always has to consider the equivalence class {et} generated from e by per-
mutations, the union of the corresponding cones Kε(e^) and Weyl sequences in
C^nJf5 with support in this union. Let D(e) = (Cί ... Cm). Then by definition of
D(e), e is invariant under permutations inside the clusters and the same is true for
a(e) = Vf(e\ The operator

Hc(ac)

for D = D(e) is therefore well defined on the bigger Hubert-space

c c
CθD

where ̂ l is the allowed symmetry sector for the subsystem C, i.e. the space for the
restriction of the representation of full permutation group to the subgroup of
permutations within C. Redefining ΣD as the infimum oϊσ(HD) on the space (A2.1),
Theorem 4.1 and all its consequences remain formally unchanged. As a rule,
therefore, the conditions for exponential bounds are the same, with the understanding
that only the thresholds of the correct symmetry type appear.

Appendix 3. An Alternative Method of Geometric Spectral Analysis

In this appendix we discuss an alternative to the methods of §§3-4, which follows
Simon's version [28] of Enss' proof [12]. It falls short of proving the basic result
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on σess(H(f)) (Theorem 4.1) and thus has no application in the present context.
However, it has some advantages in discussing invariant subspaces of H (as in the
case of symmetries) and it can be used, for example, to delimit the essential
spectrum of H(Θ) in dilation analytic theory or of H(d) in the Combes-Thomas
theory [9].

In the notation of §3 the basic identity used in [28] is

where D runs over all 2-cluster decompositions and where {XQ,XD} is the partition of
unity introduced at the end of §3. Simon's argument proceeds from (A3.1) as
follows : If fe C^(R) the first term on the right is compact and the second term goes
to zero in norm as n->oc. (This is proved for /(χ) = (χ — i)"1 by commutator
estimates as in §3 and then extended to all feC™(R) by an approximation
argument.) If supp/C(— oo,!1), where Σ is the lowest threshold of H, then the last
term in (A3.1) is zero and it follows that f(H) is compact. A general argument then
implies that σess(H)C[Σ, + oo).

The above sketch depends heavily on the functional calculus for normal
operators. Here we want to extend the arguments to non-normal H.

Theorem A3.1. On a Banach space B let H, {#•}, i = l ...5, be a family of closed
operators and {X"}i = 1 . . . s, 1 :g n < oo α family of uniformly bounded operators. Let

i= 1

and suppose that

(i) X0(H — z)"1 is compact for zφσ(H).
(ii) (X}-X?)(H-xΓl and (Λ? - X?)(H. - x) ~ * are compact for all n and all

xeρΞρ(H)n f } ρ ( H t ) .
i=l

(iii) lim ||λ?[(H-x)-1-(H ί-xΓ1]||=0./orxeρ.
H— > oo

Then any connected component A of p) £>(//•) is either entirely contained in σ(H) or
i

entirely disjoint from σess(jFί).

Remark. Using the X" s introduced at the end of §3 one sees that cress(fί) C (J σ(Hc) for
c

an N particle Hamiltonian with complex potentials.

Proof. Let we A and suppose that Ar\ρ(H)^Φ. Pick z0eρ and let K = (H — z0)~Λ
K^ffli — zQ)~l. Then for |z| sufficiently large, z is in the resolvent sets of K and Kt

and

(K-zTl = -z-l-z-2(H-(zQ + z~lΓlΓl (A3.2)
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and similarly for K{. From the identity

we conclude by hypothesis that

i-zΓ1+ compact.

Therefore, using (A3. 2),

for z sufficiently large. It follows that for any entire function /

f(K) = Σ xlf(κι) + *o/(0) + compact . ( A3.3)
i

Let Z j =(w — Z0)"1. By the spectral mapping theorem z1 is in the unbounded
connected component of

for i = l . . . s } .

By Runge's theorem there exists an entire function g with

u= sup <g(zί) = u + ε.
ze{0}^[}σ(li)

It follows from the spectral radius formula that

Hm ) | | ίΓ(K I)ll 1 / m^«,

so we can find m such that

for all i. Let f = gm and note that

lt follows that ̂  X}f(K{) + X0f(Q) has norm strictly less than /(zt) and so, by (A3.3)
i

and WeyΓs theorem on the invariance of the essential spectrum under compact
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perturbations (see e.g. [25], f(z^aess(K). Thus, by the spectral mapping theorem,
wφσfl). D
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