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Abstract. Let E(R)  denote the ground-state energy of a single electron and two fixed 
nuclei of charges zA and zB a distance R apart. Let e(R) = E(R) - z,z,R-' be the elec- 
tronic contribution. We prove that ' e (R)  increases as R does' in two different ways: 
using correlation inequalities and using the theory of log concave functions. Various 
extensions are described. 

The Hamiltonian, H ,  of N infinitely heavy nucleii of charges z l ,  ..., z N  > 0, at pos- 
itions R 1 ,  ..., R N  and k electrons is given by 

as an operator on XPhys, the space of L2 functions $(vi,  ..., ui> ..., ak) 
(vi E R ;  oi = k l), antisymmetric under the interchanges (v i ,  ai) ++ ( r j ,  oj).  We want 
to consider here the Born-Oppenheimer energy 

E ( R i )  infspec(H) = e ( R i )  + z i z j l R i  - Rj1-' 

e (&)  = inf spec ( H e ) .  

i < j  

We will not concern ourselves with the validity of the Born-Oppenheimer approxima- 
tion, i.e. the extent to which the Hamiltonian C( --2Mj)-'Aj + E ( R j )  approximates 
the full Hamiltonian of nuclei of mass M i  and k electrons--see the preliminary report 
of Combes (1976) for a description of work of Aventini, Combes, Duclos, Grossman 
and Seiler on the subject. Rather, we will discuss the properties of E ( R i )  that can 
be established rigorously. In this paper, we will concern ourselves with a rather 
special problem; a second paper (Morgan and Simon 1978) will deal with 

lim E ( R 1  + R , .  . ., R j  + R,  R j + l , .  . . , R N ) .  
R * m  

This latter problem has been studied also by Coulson (1941), Ahlrichs (1976), Aventini 
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and Seiler (1975) and Combes and Seiler (1977). We should also mention the work 
of Narnhofer and Thirring (1975) who establish some convexity properties of E.  

Our first result is the following. 

Theorem 1. Let N = 2, k = 1 and write e(R) = e(R1,  R , )  with R = 1 R I  - R21.  Then 
deidR 3 0 for R > 0. 

More colloquially, the electronic contribution to E is attractive, at least in the 
case N = 2, k = 1. Thus the binding of molecules, at least in one electron molecules, 
involves a competition between the nuclear Coulomb repulsion and the effective 
attraction of H e .  This result is quite reasonable from an intuitive point of view. 
However, we have not been able to find a proof using 'conventional methods'; indeed, 
the Feynman-Hellman formula for de/dR is not positive by inspection. Below, we 
give two proofs of theorem 1. 

The first proof uses correlation inequalities. These methods were developed in 
statistical mechanics, originally by Griffiths (1967). Their applicability to quantum 
systems in a Wiener path integral form was noted by Guerra et a1 (1975) who applied 
them to quantum field theory and certain systems with finite degrees of freedom 
like anharmonic oscillators. Their use in certain atomic problems not unrelated to 
ours has been emphasised recently by Avron et al (1978). 

Our second proof will use ideas from the theory of log concave and symmetric 
decreasing functions. In particular, it will exploit the fact that a marginal integral 
of log concave functions is log concave. This is a theorem of Prekopa (1971): further 
discussion, including many applications and proofs can be found in Rinott (1973) 
and Brascamp and Lieb (1975, 1976). Our second proof will yield the stronger result. 

Theorem 2 .  Let k = 1. Fix R , ,  ..., R N .  Then e(;") 
decreasing as i. increases. 

e(2RI, ..., i R N )  is monotonic non- 

Unfortunately, we have very little to say about the case k 3 2 where we believe 
the result is true, at least in the neutral case k = z1 + ... + z ,  ( z i  integral). In going 
beyond the case k = 1 two problems arise. The first comes from the Pauli principle. 
Our methods do not extend in general since they rely heavily on the existence of 
a positive path integral (there is one special case where we are able to extend our 
methods; namely to spinless fermions in one dimension which are well known to 
be equivalent to particles restricted to the region r ,  < r z  < ... < r N  with Dirichlet 
boundary conditions on the boundary, hence to a theory with a positive path integral). 
The second problem involves the electron repulsion. Again, it appears unlikely that 
our methods extend to k 3 2 since they seem to exploit properties of the system 
that hold for arbitrary coupling constants. However, monotonicity does not hold 
for large values of the electron repulsion coupling constant (note that if this constant 
is very large, then the energy of isolated atoms is easily seen to be smaller than 
the energy of widely separated atoms, see Combes and Seiler 1977, Morgan and 
Simon 1978). 

All we can report in the general k case is the following result which is elementary but 
often not properly appreciated (this result appeared in Narnhofer and Thirring 1975). 

Tlzeorenz 3. Fix k ,  N, z , ,  ..., zN positive. Then e(RI, ..., R,) always takes its minimum 
value when all Ri are equal. 
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Proof. Fix R I , .  . ., RN and make the zi dependence explicit, denoting the energy simply 
by e ( z )  with z = (zl, ..., zN) .  Then e(z) is jointly concave since H,(z)  is linear in the 
r,. This follows from the variational principle: if z = a z ( l )  + (1 - CI)Z(') ,  0 < CI < 1, 
and if is a wavefunction for the z problem, $ can be used as a trial function 
for both the z ( l )  and z(*)  problems. Thus 

Now let C : z i =  z .  By concavity e ( z )  3 z-'C:zie (zi = z , z j  = 0 for j # i). But this last 
value of e is independent of i and is just the value of e when all the Ri are equal. 

The reader should note that theorem 3 used no property of the Coulomb potential. 
The same theorem (and proof) would hold if the electron repulsion were replaced 
by any N-body potential V(v,,  . . ., rN) ,  and if the nuclear attraction were replaced 
by any single-particle potential 

It is not even necessary for V and W to be translation invariant. 
Theorems 1 and 2, on the contrary, exploit the fact that the attractive nuclear 

Coulomb potential is (a) symmetric and (b) monotonic non-decreasing. The proofs 
we give of these theorems would hold for any one-body potential with these two 
properties. 

Proof by correlation inequalities. This proof of theorem 1 depends on the 'easy' first 
Griffiths' inequality which comes from expanding an exponential in a path integral. 
Rather than introduce a formal path integral and then make a lattice approximation, 
we will merely use the Trotter product formula (which is equivalent). Since e(R) 
is known to be real analytic (Aventini and Seiler 1975, Narnhofer and Thirring 1975) 
away from R = 0. we need only show that e(R) is monotonic non-decreasing in R. 
Let 1x1, = 1x1 (resp x )  if 1x1 > CI (resp 6 CI). Let VR,g = -zlIrla-' - z 2 / r  - (R,O,0)lg-'. 
Let $ be a fixed positive vector and let H o  = - A .  Then 

where 

Clearly, it suffices, for each R, to find $ so that 

af -< 0 
aR 

for all n, t ,  a (actually, here we use the fact that one can show directly that the 
derivatives with respect to R of both sides are equal). We will take $(v = ( x , y , z ) )  
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to be a function even in x about x = R for each fixed y and z .  By evaluating Zfl2R 
and changing x to  R - x, we see that (2) is implied by 

dxo . . . dx, dyo . . . dy, dzo. . . dz, A j ( x i ,  yi, zi) 3 0 (3) I 
n 

x n K,(.xi - .xi- yi - yi -  zi - z i -  l)exp[y(xi, .vi, z i ) ]  (4) 
i =  1 

where Cp(x,y,z) = $(x + R,y , z )  is even in x and positive, K is an explicit Gaussian 
kernel, h(x , y , z )  = x(x2 + y 2  + if Irj > a and 0 if 1 1 ' 1  < CI and -ng = 
tVRJx + R, y, z). Clearly it suffices to prove the integral in (3) is non-negative for 
yi, zi fixed. The correlation inequality we need is the following. 

Lemma I .  Let 9 be the family of functions f on ( -  3c, x) of the form f = f ( o ,  + f ( € ,  

with f(o,, he, positive for x >, 0 and h,,(resp h0,) even (resp odd) in x. Then, for 
f l ,  . . .A  E 9 

J f l (x l ) .  . . fn(xn)exp ai jxixj  dxl  . . . dx, 3 0 0 (5) 

if aij 3 0. 

Proof. First note that if J;  y E 9, then f g  €9. Next note that X E  F. Finally, note 
that if fs F, then 

Expanding the exponential in ( 5 )  and using these facts, the positivity is obvious. 

Return now to (4), since g(x, J ,  z )  3 g( - x, y ,  z) for x > 0, we see that 

is in F. Clearly, q5, h E F and if we expand 

exp[ - a(xi - xi- 1)2]  = exp( - ax:) exp( - ax:- 1) exp(2xixi- 1) 

we see that for each y ,  z (4) is of the form nJ(xi)exp(X aijxixj )  with L E  9 and 
aij  3 0. This proves (3) and therefore theorem 1. 

In the above, we have actually proved the following result. 

T h e o ~ e m  4 .  Let V be a potential obeying 

V(.x, J'. 2 )  < V (  - x, y, z )  for x 3 0 
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and let Q be the ground state for - A  + V .  Let h(x, y ,  z) be a function satisfying 

h(x, y ,  z) = - h( - x, y ,  z )  3 0 

(Q, ha)  3 0. 

for all x 3 0. Then 

(In particular, 

J d y d z  IabdxlC12 3 S d y d z  / ~ ~ d x ~ Q ~ '  

for all 0 < a < b.) 

Theorem 5 .  Let V ,  W obey (6):Suppose moreover, that dV/2x 6 0 for x 6 0 and 

From this, one concludes as in the proof of theorem 1. 

(7) 

Then e(R), the ground-state energy of - A  + W(x + R, y, z) + V(x, y ,  z) is monotonic 
non-decreasing in R > 0. 

Remarks. (i) One wants (awlax)  6 0 for the potential W(x) + V(x - R). To 
carry through the proof, we need two things: (a) equation (7), (b) 
W (  - x) + V (  - x - R)  6 W(x) + V(x - R), x B 0. The first is assumed. The second 
is implied by V (  -x  - R) d V(x - R), x 3 0 and (6) for W. This in turn is implied 
by awlax  6 0, x d 0 and (6)  for V .  

(ii) By comparison, the method by log concavity seems to require that V and 
W be even functions of x. 

Proof by  log concavity. We prove theorem 2 which implies theorem 1. As before, 
we need only show that f,,t,,(lt> is monotonic decreasing in 3, where 

with I) = exp( - r 2 )  and 

Now exp(zlx1;') is a symmetric decreasing function and therefore is an integral 
with positive weight of characteristic functions of balls. Thus f,,,,,(i.) is an integral 
of functions of the form: 

where !Tu%^, is the characteristic function of the ball of radius a. The integrand in 
(8) is log concave jointly in ro,  ..., Y,, i so, by the Prtkopa theorem, y( i )  is log concave 
in 3,. Since it is also obviously even, g(i) is monotonic decreasing. Hence, so is J: 
Notef,,,,,(A) is not log concave since it is merely an integral of log concave functions. 
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It is a pleasure to thank John Morgan for stimulating our interest in this question 
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