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Abstract. We discuss the existence and completeness of scattering for one-
dimensional systems with different spatial asymptotics at ± oo, for example

2 4- V(x) where V(x) = 0 (resp. sin x) if x < 0 (resp. x > 0). We then

extend our results to higher dimensional systems periodic, except for a
localised impurity, in all but one space dimension. A new method, "the
twisting trick", is presented for proving the absence of singular continuous
spectrum, and some independent applications of this trick are given in an
appendix.

§1. Introduction

This paper began with a question posed to us by G. Papanicolaou: Consider a
potential W on IR which is periodic and let V be the potential which is zero on

( — oo, 0) and equal to W on (0, oo), so that ——^ + V is a quantum Hamiltonian
dx2

for a "half-line of solid". It is well-known [19,30,31,37] that the spectrum

of 2 4- W is a series of bands [α i,jδ1]u[α2 5j82] u... where in general β < α +1.

Suppose that one sends an electron into the half-solid system from the left
with energies strictly in some gap (j8 f,α ί + 1). How can one prove total reflection
from the half-solid?

This is one of several scattering problems on the line involving different spatial
asymptotics as x-> + oo. Here are two others: (i) (Hard wall). Suppose that
V(x) -> 0 faster than x| ~ -1 ~ε as x -> — oo but that V(x) -> oo as x -> + oo. One
expects total reflection at all energies, (ii) (Klein paradox). Suppose that

(V(x) — a±) -» 0 as x -> ±00 but with a+ ^ a_ . If α_ < a+ one expects total1 +ε.
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reflection for energies in (α_,α + ) but a "normal" scattering theory for energies
above α+ . Among our results are proofs of existence and completeness of scattering
states for all the above problems.

We have called (ii) above the Klein paradox because if—^is replaced by

— iα — + β } where α is the two by two matrix I I and β = ( Λ . ) then
ax J \l u/ \υ — IJ

one has the famous problem analysed by Klein [26] : if α+ — α_ > 2m then "more
is reflected than went in". In their analysis of this problem Ruijenaars and Bongaarts
[40] supposed that V(x) = a± if ± x > R for some R. While we shall not give any
details, it is easy to see that our methods can be adapted to the Dirac case; thus
our results subsume those of [40] in both the Dirac and Schrodinger case. We
also note that Alsholm and Kato have existence results for problem (ii), [3].

Our solution of these problems is motivated in part by work of several authors
[10, 14,32,41] on the effect that severe local singularities can have in scattering
theory. In particular we rely heavily on technical devices from Combescure and
Ginibre [10].

In one dimension it would be easier to use the Deift and Simon method [14],
which we mention since it "explains" why these problems are quite easy. Deift
and Simon decoupled finite singularities from the questions of existence and
completeness by surrounding the singularity with a Dirichlet surface. In one
dimension we need only note that adding a Dirichlet boundary at the origin
decouples the left and right to conclude that the method of [10, 14] should allow
control of existence and completeness for the problems mentioned above.

In the above problems there are natural comparison dynamics for forming
wave operators, albeit different comparison dynamics on the left and right. It is
nevertheless illuminating to make the analysis in two steps, the first of which
makes no mention of any comparison dynamics. In Section 3 we consider operators

τ2

H = — ~—2 + V on L2(R) for an extremely large class of F, including all V which

are bounded below irrespective of how wild their behaviour is at infinity. We will
show that the projection Pac onto the absolutely continuous subspace of H has
two natural decompositions

where Ran P* (resp. Ran P*) consist of states which move towards — oo (resp. + GO)
as t -> + °o . In cases where there are natural comparison Hamiltonians
Hl (resp. #r), which can be different on the left and right, we shall show that for
φeRan P* there is an η± such that

lim \\e-itHφ-e~itHlη±\\ -0
ί-> + oo

with a similar result on the right. This will provide a complete analysis of the
basic scattering questions for the problems mentioned at the start of the section.
Even in cases where there are no comparison Hamiltonians, one can still obtain
some scattering results. We shall show in Section 4 that there is a function R(E)
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defined in terms of P* alone, and which equals | r(^/E) 2 whenever there is a
natural comparison dynamics. We discuss the relationship of this result with
other geometric approaches to scattering theory and also study the class of
"homogeneous" potentials, defined as those for which Pf = P~.

The analogue of P*r in higher dimensions would be two projection-valued
measures P±(E) on the Sphere Sv~1 such that if φeRan P±(E) then as t -> + oo,
e~ltHφ lies asymptotically in the cone (xe(R v: χ/\χ e£}. When the ordinary wave
operators (or most types of modified wave operators) exist and are complete,
one can prove the existence of such projection-valued measures, with P±(SV~1) —
Pac. Even in multiparticle systems, when one has asymptotic completeness such
a decomposition exists. The distinction between multichannel systems and the
one-channel system is that in the latter case P±(E) is absolutely continuous with
respect to the usual measure on Sv~^ and in the former case it is not. However,
we do not see an a priori method of proving the existence of P±(E) in general
multichannel systems or even in one-channel systems in dimension v > 1. This
is unfortunate since one can use the ideas in Sections 3 and 4 to replace the usual
modified wave operators of long range scattering in one dimension.

There is a special but physically interesting class of systems in higher dimension
which can be analysed by the methods herein, namely those systems which are
periodic in all but one dimension. This includes in particular the multi-dimensional
analogue of the half-solid. The key to the analysis is borrowed from Davies [11],
whose results are subsumed by those in Sections 5 and 6. One uses the symmetry
to realise the Hamiltonian as a direct integral of operators each of which can be
viewed as a Schrodinger operator on L2(C), where C is a one-dimensional cylinder
whose (v — 1) dimensional base is a basic cell for the lattice of periods. As the
parameter in the direct integral changes, so do the boundary conditions on dC.
Since we have a direct integral of "essentially one-dimensional" systems, we are
able to extend the ideas of Sections 2, 3 and 4, using some technicalities from [10].

Θ

If we denote the direct integral decomposition above by H = J H(0)dθ then
the scattering states constructed in Section 5 correspond to direct integrals of
states in Ran Pac(ίf(θ)). It can happen (indeed for systems periodic in all directions

Θ

it does happen) that J Ran PΆC(H(θ))dθ is a strictly proper subspace of Ran PΛC(H).
In Section 6 we show that a direct integral of eigenstates of H(θ) can lie in
Ran Pac(H), and that such states have an interpretation as "surface states". The
natural spectral theory requirement that σsing(H(θ)) = 0 for all Θ then has the
important physical consequence that any state in Ran Pac(H] is a sum of a surface
state and a scattering state. Even in the half-solid case this spectral requirement
does not seem to be susceptible to any of the usual methods of eliminating singular
continuous spectrum. We therefore develop a new method, which we call the
"twisting trick", and which allows us to embed H(θ) in a problem which can be
treated by a limiting absorption principle. With these results we are able to
analyse scattering from a "surface impurity" in Section 6.

The twisting trick is certainly the most significant new technical method in
the paper. It has wider applicability than to the systems so far discussed. We
examine some of these in Appendix 1. Included there is a proof that the Dirichlet
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Laplacian exterior to an arbitrary closed bounded set in [Rv has empty singular
continuous spectrum.

§2. Asymptotic Projections: Some Abstract Nonsense

Definition. Let A be a self-adjoint operator on a Hubert space ffl and let J be
a bounded operator. J is called an asymptotic projection for A if and only if

exists and is an orthogonal projection.

Proposition 2.1. If J0 is a bounded operator such that
(i) [A, J0] is trace class

(ii) (JQ — JQ) and (J* — J0) are compact then J = J0Pac(A) is an asymptotic
projection for A.

Proof. The existence of P(J',A) under hypothesis (1) is a standard part of the
Kato-Birman theory (see [33, 36]). Moreover, since e~lsA commutes with P(J A)
it follows that

P(J\A) = lim elAtPac(A)JPac(A)e-ίAt

so that

P*(J',A) - P(J\A) = lim ̂ P^(A)(J* - J}P ΆC(A}e~ ίAt .

The right hand side vanishes since the compactness of (J* — J) implies that

ί-»± oo

Similarly

P( J'Λ}2 = lim elAtJQe-iAtP(J;A)

eiAt(J2

0-J0)e-iAtPac(A)

eiAtJ0e~iAt(P(J;A) - eM'V~M'

Remark. Condition (ii) can be replaced by the hypothesis that ( JQ — J0)Ej(A)
and ( J* — J0)Ej(A) are compact for each bounded interval /, where Ej(A) is the
relevant spectral projection of A. Similarly (i) can be replaced by a variety of
conditions, for example J0Q(A) ^ Q(A) and EI(A)[_JQ,A\EI(A) trace class, or the
single condition that \_(A + c)~", J0] is trace class for some n (see [36]). Below
we shall use Proposition 2.1 even under these alternative hypotheses.

Proposition 2.2. Let J be an asymptotic projection for A. Then
(i) φ _L Ran P±(J;A) if and only if \\ Je'ίAtφ \\ ->0 as t -* T oo,

(ii) φeRanP±(J;A) if and only if\\(l -J)e'iAtφ\\ ^0 as f-> +00.
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Proof, (ii) follows from (i) if we note that

P±(l- J ;y4)=l-P ± (J ;A).

(i) holds since

lim \\Je-iAtφ\\ = \\P±(J 9A)φ\\.
ί-» + GO

Proposition 2.3. Suppose that J0 is α bounded operator such that J0Pac(A) is an
asymptotic projection for A and J*Pac(jB) is an asymptotic projection for B. Suppose
moreover that

s-lim eίtB JQe ~ ίMPac(4) Ξ Ω ± (β, A J0)

s-lim

βxΐsί. T/i£ft Ω1 is a partial isometry with initial space Ran P±(J0Pac(A);A) and final
space RanP±(J*Pac(J3);J3). Moreover if φeRan P±(J0Pac(A);A) then

lim \\e-itAφ-e-itBη±\ -0
r-> + oo

where η± — Ω±(B,A;J0)φ.

Proof. It follows from Proposition 2.2 that Ω ± (B, /I J0)φ - 0 if φ _L Ran P ± ( J0Pac x
(A)\A\ On the other hand if φeRan P±( J0Pac(A);A) then

We conclude that Ω^^ are partial isometrics with initial space Ran P±( J0Pac(,4);,4).
Similarly (Ω*)* has initial space P±( J%Pac(B};B).

§3. One Dimension

Although our results in this section are mainly specialisations of those in Section 5,
they are presented here because of their technical and conceptual simplicity.

Throughout this section H0 will denote the operator —-7-7 on L2(M). We let

Definition. We say that the potential V lies in SP if and only if its positive part
V+ lies in L}oc and its negative part V_ obeys β(F_) c β(Jϊ0) and

(φ9V_φ)£*(φ,H0φ) + β(φ,φ) (3.1)

for some α < 1 and all φeβ(H0). Given Fe^ one can define the quadratic form
sum H = H0 + V with form domain β(H0)nβ(F+). We denote the set of such
Hamiltonians H by G.

Since Q(H0) => Q(H) we have
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Lemma 3.1. Let He(9 and let E < inf spec(H). Then p(H - E)'1''2 is bounded
with a bound on the norm which only depends on the α, β of Equation (3.1).

We shall need to use the space

k(L2} = {f Σ
n- - oo \ n

introduced by Birman and Solomjak [7]. Roughly speaking ^(L2) requires r~ 1~ ε

fall-off at infinity. We note that if/,g are non-zero then/(x)0(p) is trace class if and
only if both /and g lie in 1{(L2) (see e.g. [42]).

Theorem 3.2. ///e/^L2) and He(9 then f(x) (H - E) ' l is trace class for all

Proof. We write || || v for the trace norm and assume, without loss, that E < inf
spec (H). Suppose that we can show that

l l / U X H - f r ' l i ^ l / I U (3.2)
for all/eL2 (0, 1), with c depending only on the α, β of (3.1). Then by translation
covariance (3.2) holds for /eL2( — n, n) so that if/e/^L2) and χn denotes the
characteristic function of ( — n, n)

-EΓ1!!^ Σ
n = —

oo

* Σ

Pick Y\^CQ equal to one on [0,1]. Then

f(H - £)- 1 =/(H - £)- ̂  +/[f/, (H - £)- :]

-/(H - EΓ'η +f(H - EΓ^H - E,η](H - E)'1

=f(H - EΓlη +f(H - EΓlp( - iη')(H - E)'1

given /eL2 (0,1). By Lemma 3.1 it suffices to show that f(H-E)'112 and
(H-EΓί/2 η' are Hubert-Schmidt. But (H0 - E)ίl2(H - E)~i/2 is bounded by
Lemma 3.1 and/(//0 — E ) ~ 1 / 2 and (H0 — E}'1''2 ηf are easily seen to be Hubert-
Schmidt. It is straightforward to check that the norm estimate of (3.2) is satisfied.

Theorem 3.3. Let HeΦ. Then there are four projections Pf and P^ such that

(i) Pac = P/

+ + PΓ

+ = PΓ+Λ"
(ii) φeRan Pf if and only if

lim ]\(e-itHφ)(x)\2dx = Q (3.3)
ί-» T oo a

oo α

for all ae( — oo, GO), and similarly for P^ with J replaced by j .
a - oo

Proof. Let ja be a C00 function which equals 1 for x < (a — 1) and 0 for x > a.
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since ja =j* and (jl —ja),j'a lie in C™, we see by Lemma 3.1 and Theorem 3.2 that
(Ja ~Ja)(H - £)"* is compact and (H - EYl[H,ja~\(H - E)"1 is trace class. By
Proposition 2.1, P±(jaPa~(H);H) exists and since (ja-jb)(H-E)~ί is compact
it is independent of α; we call it Pf or P^(H) whenever we need to make explicit
its dependence on H. We similarly write Pf for P±((l — yfl)Pac(H);Jff) and deduce
(i) from

P±(jaPac(H);H) + P±((l - jfl)Pac(#);H) - P±(PΆC(H);H) = Pβc(/f).

The equivalence of φeRanP* with (3.3) follows by Proposition 2.2, as does the
corresponding result for P*.

Theorem 3.3 has a direct scattering interpretation. It says that any φeRan Pac

is the sum of a wave which comes in from the left and one which comes in from
the right as ί grows from — GO . We explore this further in Section 4. For a conven-
tional scattering theory we need a comparison dynamics.

Theorem 3.4. Let H = HQ -f V and Hl = HQ + Vl lie in (9 and suppose that
(V — V^χ(_^^a} lies in l^L^for some α, where I(-^,a] is the characteristic function
of (-co, a). Then

s-lim eitHle~ίtHPf(H) = Ω*(H19H)
ί-> + oo

exists and defines a partial isometry from Ran P*(H) to Ran Pf(Ht). In particular,
for any φeRan P^(H) there exist η± such that

lim \\e-ίtHlη±-e-itHφ\\=Q.
t-> + oo

Proof By Lemma 3.1 and Theorem 3.2, (Hl - EΓ1(HJa -jaH)(H - E)"1 is trace
class so s-l\mJtHljae-itHPac(H) and s-lim e^j^'^Ψ^H^ exist by the Kato-

ί-> + oo ί-* + oo

Birman theory [33, 36]. Proposition 2.3 completes the proof.

Example 1. Let V be continuous on (— oo, oo) with

lim x | 1 + ε |F(x)-α ± | -0
x-> ± oo

with a+ ^ a_ allowed. If we put Hl = HQ + a_ and Hr = H0 + α+ we have a
complete scattering theory with two "channels". This is somewhat special in
that P^(//;)= 1 — P*(Hr), something which is definitely not required.

Example 2. Let V be continuous on (— oo, oo) with

lim x| 1 + ε |F(x) | = 0
χ-> — oo

and

lim V(x) = GO .
x—> + oo

Take Hl = H0 and Hr = H0 + F(x) + F( - x). Then Hr has purely discrete spectrum
so that P£(Hr) = 0. Hence P^H) - 0 so P+(H) = P~(H) - Pac(JFί) and "everything
bounces of the wall".
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Example 3. Let W(x) be a periodic L}oc-function. Let V be a function in L{oc

such that χ(_^^a}V and χ^^^V — W) lie in ^(L2) for some a and b. Then one can
take Hl = H0 and Hr = H0 + W. In particular H | Ran P*(H) is unitarily equivalent
to Hr I Ran ?*(#,). Clearly σ(Jfr| Ran ?*(#,)) c= σ(#r); in fact we shall show in
Section 4 that the spectra are equal in this case (but the multiplicity is 1 for Hr \ Ran
P* and 2 for Hr itself). Thus for any interval / disjoint from σ(Hr) — a gap —
Ej(H)Pf = Ej(H)P^ and we have answered Papanicolaou's problem.

We shall show in Section 6 that the Hamiltonians of these three examples
have no singular continuous spectrum if the potentials approach their asymptotic
values exponentially. This condition is surely unnecessarily strong. We next
note that

Proposition 3.5. H RanP^ is antίunitarίly equivalent to HJRanPf under
complex conjugation. Hence their spectral multiplicities are equal

Proof. If Cψ = $ then CHC = H so

and thus CPZ

+ = Pf . It follows that

Finally we consider extensions of the theory to potentials which may diverge
π

to — oo as x-> ± oo. For simplicity we suppose that FeL2

oc with J V(x)\2dx
— n

polynomially bounded as n increases. We let H denote some self-adjoint extension
of (Ho + V) defined on 2)Q = {ηeU0 nDom H0 : lim (1 + x)m sup \η(y)\ = 0 for

all m}. The point is that if φeL2 has compact support then

1 - 0" V (3.4)

for any bounded function j of compact support (applied to all functions in L2)
and for any L2 function j of compact support (applied to all functions in C™).
The following is motivated by ideas from [6] and [10].

Theorem 3.6. Let V, H be as above. 7/jeL2 has compact support then (H + 1 — i)~ 1j
is trace class. IfηeC^ then (H + 1 — i)~ίηp is bounded.

Proof. Let φeC$ equal 1 on the support of 7. Then

(H + 1 - i)" *V(H0 + 1 - i)"1/ = (H + 1 - ΐ)~lVφ(HQ + 1 - z)~V + C

where

C = (H + 1 - IΓ1V(HQ + 1 - iΓ^Φ.H^H, + 1 - i)~V

= {(HO + 1 - o"1 - (H + 1 - ϊΓ1}^,^]^ + 1 - rv
by (3.4). Using (3.4) once more leads to

(H + 1 - i)- V - A, + A2 + A3 + A4 (3.5)
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where

^(Ho + l - i Γ V

A2 = - (H + 1 - ίΓlVφ(H0 + 1 - 0" V

A3 = {(HQ + 1 - O-1 - (H + 1 - iΓl}Φ"(HQ + 1 - iΓV

Λ4 = {(H0 + 1 - j)-1 - (H + 1 - iΓl}2iφp(H, + 1 - 0" V -

By a Sobolev estimate (H0 + 1 - i)~ίl2W is bounded if WeL2. This together
with (3.5) implies the boundedness of (H + 1 — 0~V Replacing j by ^p in (3.5)
where ηeC^ and φeC^ equals 1 on the support of η we similarly find that
(H + \ — ϊ)~lηp is bounded. Since (H0 + 1 - i)~ V is trace class and (H + 1 - ί)~ 1 Fφ
is bounded and (H + 1 — i)~lφ'p is bounded we finally deduce using (3.5) that
(H -f 1 — z)~ V is trace class.

We immediately conclude from Theorem 3.6 that

Theorem 3.7. Theorem 3.3 extends to self-adjoint extensions H of (HQ + V)
n

provided that j | V(x)\2dx is polynomially bounded as n increases.

Example 4. Suppose that VeL2

oc with V(x)^. — ax2 — β. Then H is essentially
self-adjoint on CQ and one has the ordinary kind oϊP*r.

Example 5. Suppose that H is limit circle (see [35]) at both + GO and — oo . Then
one can choose boundary conditions so that waves reaching H- oo are sent back
in at — oo . Because of this coupling it seems surprising at first that P^r exist. The
point is that Pa c-0!

Example 6. Suppose that V -> 0 at — oo like \x but that H is limit circle
at + oo. Then Pf ^ 0 but P* = 0. The boundary conditions at + oo must involve
total reflection.

§4. Geometric Scattering and Homogeneous One-dimensional Systems

We use Theorem 3.3 to see how much scattering theory can be developed without
reference to a comparison dynamics. Thus, rather than thinking of scattering as
a perturbative phenomenon we consider correlations between the dynamics,
e~ltH, and the configuration space geometry, x -> + oo. The description of scatter-
ing in terms of correlations between spatial and temporal asymptotics is not new;
among previous examples of that philosophy we mention:
(1) The Lax-Phillips theory of acoustical scattering [29], which is the example
par excellence of geometric scattering theory. It has been extensively developed
but does not seem to be applicable to Schrodinger operators with potentials of
infinite range. However, Enss [21] has recently developed an approach to scattering
which overlaps the Lax-Phillips approach in some methodological aspects and
our approach on some points of philosophy.
(2) Certain C*-algebraic approaches to long range scattering [5,9,22,28] are
partly geometric in nature. Those that deal with asymptotic momenta can be
thought of as looking at the asymptotic form of eitHXe~itH.



286 E. B. Davies and B. Simon

(3) Various authors (see [4,45]) beginning with Ruelle [38] have attempted
to describe the orthogonal complement of the span of the eigenvalues of H in
purely geometric terms.
(4) There have been attempts at describing the usual time-dependent theory
in more geometric terms [18, 47].

We should distinguish our attempt to describe scattering theory in geometric
terms using primarily time-dependent methods (mainly the Kato-Birman theory)
from recent papers [15, 20, 43, 44] using geometric methods to study the more usual
spectral and scattering problems.

We suppose throughout this section that //JRanP^ has simple spectrum.
By using Dirichlet decoupling [14] and the fact that second order operators
on (0, oo ) with a regular boundary condition at 0 always have simple spectrum
[8], it should not be hard to prove this hypothesis for all VeέP. The operator
P^PfP* is a non-negative self-adjoint contraction on RanP,+ which commutes
with H, so by the simplicity hypothesis there is a function R on σ(/f|RanP z

+)
such that 0 ̂  R(E] ^ 1 and

P +p- P +-#(#) I Ran P+.

Moreover R is uniquely determined almost everywhere with respect to Lebesgue
measure by this equation. We call it the reflection modulus. It is easy to show that

Proposition 4.1. In the short range case R(E}= r(^fE)\2 where r is the usual
reflection coefficient.

There is an asymmetry in the definition of R, since we could just as well have
considered R, defined by

p-p+p- =jR(j/) |RanPf.

Proposition. 4.2. R(E) = R(E)for almost every E in

σ(H I Ran P + } = σ(H\ Ran P~ ) .

Proof. By Proposition 3.5, CP^C = Pf where C is complex conjugation. Since
R is real and

C= CPΐP-pfC = PΪP^PΪ = R(H)P~

we see that R = R.
There is a second proof of Proposition 4.2 which is important because it

implies a left-right symmetry.

Theorem 4.3. Let A be a self-adjoint operator and P, Q two orthogonal projections
commuting with A. Then there is a partial isometry U from Ker(PQ)1- which commutes
with A and satisfies

PQP= U(QPQ)U*.

Proof. (Motivated by [13]). If U is defined by the polar decomposition PQ =
U\PQ\ then since PQ commutes with A so does U. Moreover QP = \PQ\ U* so

PQP = (PQ) (QP) - U I PQ 1 2 (7* = U(QPQ) U* .
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Theorem 4.3 provides a second proof of Proposition 4.2 and also leads to the
following result.

Proposition 4.4. Define the function Rr on σ(H \ Ran P~ ) by

Pr

+p-pr

+ - Rr(H) Ran Pr+

and extend R and Rr to all of ( — GO , oc ) by setting them equal to 1 outside
σ(H I Ran P+), resp. σ(H \ Ran Pr

+). Then R = Rr almost everywhere.

Proof. The functions 1 - R(E) and 1 - Rr(E} on ( - GO , oo) are the spectral functions
of

and

respectively. By Theorem 4.3 these are equal.
Examples 1 to 3 of the last section show that σ(H |Ran Pz

+) and σ(H|Ran Pr

+)
need not be equal, so that the extension procedure used in Proposition 4.4 is
important.

Returning now to the study of comparison dynamics, we feel that if one wants
them to have a reasonable physical interpretation the following restriction is
necessary.

Definition. A Hamiltonian H in Θ is called homogeneous if and only if
(i) P + = P~ (no reflection)

(ii) H has purely absolutely continuous spectrum.
These criteria are useful for understanding why the free field is a suitable

comparison dynamics in the Haag-Ruelle theory [25, 36, 39] and for understanding
the choice of comparison dynamics in magnon scattering [23, 36, 46].

Example. H0= — — -^ is homogeneous since Pf

+ and P~ both have range

{f:f(k) = 0 for k ̂  0}

where denotes the Fourier transform.

Theorem 4.5. // V is periodic and in Ljoc , then H is homogeneous.

Proof. Without loss suppose that V(x -f 1) = V(x). The analysis of// as an explicit
direct integral [19, 31, 37] shows that (ii) is obeyed. Moreover there is an eigen-
function expansion

00

fn(k)= J φn(x, k)f(x}dx ke[-π,π]
— GO

oo π

/(*)= Σ ί Φa(x,k)fn(Wk
n— 1 — π

= εn(k)fn(k)
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where
(a) εn(k) is real analytic and non-constant on ( — π, π).
(b) MΛ(X, fc) = e~ikxφn(x, k) is a periodic function of x with period 1 and if

x is restricted to (0,1) is an analytic function of k on (— π, π) with values in
L2(0,l).

Homogeneity is proven if we show that Ran Pf and Ran Pr are both equal to

f:fn(k) = 0 for those k, n with 0

This follows by a density argument if we show that if [α, b] is an interval on which
dp (kϊ
-j-ϊ > 0 (resp. < 0) and ge C£(α, 6) then

o τ\

f(χ) = lφa(χ,k)g(k)dk

~N

obeys

J|(e-£ίH/)(x + ̂ )|2^^CN(l + |
o

provided x/t rg 0 (resp. x/ί ̂  0). (4.1) is proven by a stationary phase argument
[24, 36]. Starting from

(4.1)

o

= fwn(x,

ϊ - i dΎ
_J e ,(«.Λ(k) x»)^

we integrate by parts JV times and use the fact that, since u is periodic,

ί dy

is uniformly bounded in x, to deduce that the left-hand side of (4.1) is dominated by

Cw sup
α < k < b

This yields (4.1) since -~ has a positive lower bound on [α, fe].
(y rC

We note the following restatement of a theorem of Levinson — see Deift and
Trubowitz [16] for extensive discussion and proofs.

Theorem 4.6. Let V be short range in a suitable sense, for example

suffices, and let H = H0 + V be homogeneous. Then V is zero almost everywhere.



Scattering Theory for Systems 289

Consideration of this example demonstrates the importance of condition
(ii) in the definition of homogeneity. There are reflectionless short range potentials
("KdV solitons" see e.g. [13,16]) that have non-empty point spectrum. We feel
that the theory of homogeneous Hamiltonians is worthy of further study, and
pose the following unsolved problems.

Question 1. If V is almost periodic is H0 + V homogeneous? It may be possible
to answer this for a large class of almost periodic V using the results of Dinaburg
and Sinai [17].

Question 2. Can one find a proof that H0 is homogeneous without using the
Fourier transform? This might yield a simplification in the proof of Theorem 4.5
and even a solution of Question 1.

Question 3. Let W be periodic and V short range. If H0 + W + Vis homogeneous,
does it follow that V is zero almost everywhere?

Question 4. Are there any homogeneous Hamiltonians He& for which V is not
almost periodic?

§5. Systems Periodic in All but One Dimension

In this section we consider potentials Fe^ on [Rv for which there exist v — 1
periods, that is linearly independent vectors α1 , . . . , αv _ 1 such that V(x + Oy) = V(x).
Without loss of generality we can suppose that the span of α 1 ? ... ,av_ί is {(0,
x 2,...,x v)}.

Example 1 (Infinite Sheet). Let W be a potential on (Rv such that

\W(x)\^C(l + \x Γv-c.

Let L be the lattice of integral combinations of aί , . . . , av _ 1 and define

beL

Then — A + V describes scattering from an "infinite sheet" or "thin film" of
scatterers, each of which is described by a potential W centred at a point of the
lattice. Notice that

For this example we recover the result of [11] that Ω±( — A + V, — A) exist and
are complete in the sense that their ranges are equal. It may happen that this
common range is not all of Ran Pac( — A •+- V) as we shall see.

Example 2 (Half-solid). Let W be a function on [Rv which has v periods and
suppose that the plane x1 = 0 has rational indices, that is there is a set of v — 1
independent integral combinations of the periods which lie in the plane. Let
V(x) = 0 if x1 < 0 and V(x) = W(x) if x1 ^ 0. Then - Δ + V is a direct analogue
of the Papanicolaou example. Our analysis below implies the existence of plane
scattering waves from the left and Bloch scattering waves from the right. We
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have completeness in the sense that the span of the two types of wave from the
past equals their span from the future, and in particular there is complete reflection
from the interface at energies in "gaps" for the solid.

Example 3 (Lattice Dislocations). Let W1 and W2 be two potentials each periodic
with v periods, which may be distinct for the two potentials, and suppose that
the plane xί = 0 contains a set of v — 1 independent vectors which are integral
combinations of each of the two sets of periods. Let V(x) = W^x) if x1 < 0 and
V(χ) = W2(x) if X j ^ 0. Our results below yield existence and completeness in
the same sense as in Example 1. The case of particular physical interest is where
W2(x) = W^Tx) with T a Euclidean transformation. The plane xί = 0 is then
a "lattice dislocation", called a shear if T is purely translational.

The restriction to rational indices in Examples 2 and 3 is an annoying one
from a mathematical point of view, and arises from the fact that for a direct
integral decomposition of the type we shall use, strict periodicity is essential.
This emphasises the mathematical need for methods of analysis applicable to
almost periodic Schrόdinger operators. However, from a physical point of view
the restriction to rational indices is not so serious, for as J. Hopfield has emphasised
to us, a microscopic view of sliding together with the notion that an atom cannot
be sliced in half indicates that almost periodicity is impossible for the kind of
physical systems we are considering.

Motivated by [11] we now proceed to make the direct integral decomposition
v- 1

of L2([RV) induced by the group of symmetries x -> x -t- ]j] niai . Let C be the cylinder
i= 1

over a basic cell for the periods, so that x e C if and only if
v- 1

(0,x 2,. . .,x v) = Σ yfli
i = l

where 0 ̂  yt < 1. Let θeT = [O^π)*"1 and let H0(θ) be - A on L2(C,dvx) with
the domain given by requiring that the set of/eL2(C) which have C°° extensions
to 1RV such that

is a core for H(θ). Finally let H(θ) = HG(Θ] + V. Then by [19, 37]

Θ

H= -A + V~ ίH(θ)dθ
T

and for any function/on 1R multiplication by/(x x) in L2((RV) is just § fθdθ, where
T

fθ is multiplication by/(xj in the fibre L2(C) corresponding to θ; that is the
decomposition respects geometry in the x1 -direction.

We begin by analysing H(θ) by a method analogous to that in Section 3.
Before starting we note that if 0>,& are defined as in Section 3 and Ve& then
(3.1) holds for all 0, with H0 replaced by HQ(Θ). We shall need to use the space

< 00
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Theorem 5.1. Let Vε0> and f ^1^(0}} for some q^2,q>v. Then if E^σ(H(θ))
(a) d^Htf) - £)~1/2 is bounded
(b) f(H(θ) — E)~k is trace class for sufficiently large k.

Proof, (a) This is identical to the proof of Lemma 3.1.
(b) This is similar to but somewhat more complicated than Theorem 3.2.

Namely as in that case we can suppose that/(x) is zero unless x^fO, 1], so that
/el?. Let ηeC™(R) equal one for x1e[Q, 1] and regard η as a function on C. If
p = — idί then

f(H - EH'"1 =/(H - EΓlη(H - E}~n + 2f(H - E)~lp( - iη')(H - EΓn'1

+f(H-EΓίη"(H-EΓn~ί (5.1)

where we do not make explicit the dependence of H(θ) on θ. We claim that
f(H - E)~k lies in the trace ideal Ja(k} where a(k) = max(l,g/fc). This is proven
inductively, the result holding for k = 1 by the following lemma. But part (a), the
lemma below, and (5.1) together show by Holder's inequality that/(/f — E}~keJ;

a(k]

implies f(H-E)-k-leSa(k+1Γ

Lemma 5.2. // q ̂  2, q > v and feLq(C]

then f(H(θ)-EΓ1/2eJq

Proof. As (H0(θ)-E)1/2(H(θ)-EΓί/2 is bounded we need only prove that
X =f(H0(θ) — E)~1/2e</q. This is done by Fourier analysis, considering C as a
locally compact abelian group with dual group C. Regarded as an operator on
L2(C) one sees that (H0(θ) — E)~lf2 is multiplication by a function g which lies
in Lq(C) for all q > v. Hence X =f(Q)g(P) lies in J^q by complex interpolation
between q = 2 and g = GO (see [42] ).

Theorem 5.3. IfHeΰ then

Pac(θ) = p+(θ) + pr

+(θ) = Pf(θ) + p~(θ)
for all θ. MoreoverηeRan P*(θ) if and only z/^eRan Pac(θ) and

lim f e-itH(θ)η(x)\2dvx = 0
t-+±π Xl^a

for all a.

Proof. By Proposition 2.1 it suffices to show thztjaQ(H(θ)) cβ(H(θ)) and that

for all /, θ, where ja is a C°° function of x1 which equals 0 (resp. 1) if x < a — 1
(resp. x > a + 1) and Ef is the spectral projection of the bounded interval /. The
first condition is implied by the trivial inclusions jaQ(H0(θ)) c: Q(H0(Θ)) and
jaQ(V+) c= <2(K+). The second condition is a consequence of the identity

and the results of Theorem 5.1.
In Appendix 2 we shall prove that Ppp(θ] is measurable in θ. Since Psing(#) = 0
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for all θ by Appendix 1 it follows that Pac(θ) and hence

are measurable. There is therefore no difficulty in defining projections such as

T

Proposition 5.4.

>

/

± then

lim j \(e-ίtHη±)(x)\2dvx = Q (5.2)

for all b.
It is important to note that Pac and Pac need not be equal. Each H(θ) might

have an eigenvalue λ(θ) which is an analytic and non-constant function of θ.
Then by [37] any direct integral of the corresponding eigenvectors lies in

RanPacn(RanPac)
1.

It seems physically plausible that all η in this subspace should be "surface states",
that is should be "concentrated" near the surface for all time:

lim sup J \(e-itHη)(x)\2dvx = Q. (5.3)
«->«> ' | x ι | > α

This would lead to a converse of Proposition 5.4.
It turns out that the truth of this conjecture is related to the question of whether

the singular continuous spectrum σsing(H(θ)) is empty. This is the problem we
examine in the next section.

§6. Surface States and Surface Impurities

We continue with the notation of the last section. Since the projection Ppp(θ)
onto the span of the eigenvectors of H(θ) is measurable by Appendix 2, we can
define the projection Ps onto the "surface states" by

Ps=$Ppp(θ)dθ.
T

Proposition 6.1. Ifη<=RanPs then η is "concentrated" near the surface xl=Q
for all time in the sense that

lim sup J \(e~itHη)(x)\2dvx = 0. (6.1)

Proof. Since the direct integral decomposition respects respects the x1-geometry

sup f \(e-itHη)(x}\2dvx^
t \xι\>a T
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where

-itH(θ}η(θ)\2dvx.

Since G(θ9a)^\\η(θ)\\2eL1(dθ\ (6.1) follows by the dominated convergence
theorem if we show that

limG(θ,α) = 0 (6.2)
fl— > oo

for each θ. By hypothesis η(θ) = £ Caψa

a

where \I/Λ are normalised eigenvectors of H(θ) and Σ | Cα |
 2 = || η(θ) || 2 . By a limiting

α

argument we can suppose the sum is finite. In that case

G(θ,a)ZΣ\C,Cβ J |W*)Wk*
Λ,β \ X ί \ > a

which goes to zero since i/^i/^eL^C).

Corollary 6.2, Suppose that He (9 and that σsing(H(θ)) = 0 /or eαcft θ. Then
ηeRanPf if and only if (52) holds for all b.

Proof. If ηeRan(P+ + Ps) then by Propositions 5.4 and 6.1

lim lim J \(e-itHη)(x)\ 2dvx = 0.

The hypothesis on σsing and Theorem 5.3 imply

so by Proposition 5.4 we deduce that

lim lim J \(e-ίtHη)(x)\2dvx = \\P + η \\2

+ 00 ί->-co „ < _ ,

for all η. Thus (5.2) implies that || η \\ 2 = \\ Pfη \\ 2 so that ηe Ran P + .
Therefore when σsϊng(H(θ)) = 0 we have three scattering channels PaC)S =

PacFs,P/

±,Pr

± with geometric interpretations for all three channels. There is
however no scattering between the surface channel and the /, r channels unless
one introduces a localised "surface" impurity.

Theorem 6.3. Let H = H0 + V where Ve& has v — 1 periods and σs ng(H(θ)) = 0
for all θ. Let Hf = H0+V+W where Wel^L*^)) for some q^2,q>v. Then

Pac(H') = P±(H') + P±(H') + P?(H')

where ηeRanPy(H') if and only if

lim lim J \(e-ίtπη)(x)\2dvx = 0 (6.3)
α-»co ί-^ + co XleRy(a)

and

a} ify = ac,s
a} i f y = l

} ify = r.
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Proof. Combining the estimates given in the proofs of Theorems 5.1 and 5.3
with the Kato-Birman theory [33,36] one sees that Ω±(H',H] exist and are
complete. If Pf(H') is the projection with range

then completeness and £P*(£0 = Pac(H) imply £?*(//') = Pac(H'). Now (6.3)y
y

holds for the Hamiltonian H by Proposition 6.1 and Corollary 6.2, so it also
holds for H' since 77 e Ran Pf(H') if and only if there exist φ e P f ( H ) with

lim \\e-ίtH'η-ettHφ\\=Q.
ί-» + 00

Thus scattering for the Hamiltonian H' may still be described in geometric
terms, but there is now no reason why P^rPs>ac should vanish. Physically the
impurity allows coupling between the surface and the /, r channels.

This leaves the technical question of showing that σs[ng(H(θ)) = 0. We shall
prove this for the examples of Section 5, and most of those of Section 3. In all
cases there are two potentials Wl and Wr such that

(i) If W= H^-^o) + Wrχ(0 ;00) then G - F - W converges to zero at ± °°.
(ii) The spectral properties of — A -f Wlr are capable of detailed analysis.

In the rest of the section we shall suppose that G lies in the space L% of bounded
functions of compact support. One can easily accommodate local singularities
of G and exponential fall-off at infinity. With more work one could presumably
develop the Agmon-Kuroda theory [2, 27, 37] to allow G which decay like r~ 1 ~ ε

at infinity. Since the cases of greatest interest have GeίJj we exploit the simplifi-
cation then possible.

We shall reduce the analysis to a perturbative version of the limiting absorption
method. We begin with an abstraction of this method motivated in part by the
treatment in [36].

n

Definition. Let ̂  = 0 L2(UV). Let (α, b) c U and let β ̂  Uv an open set. We
i = l

say that a self-adjoint operator A on lies in j/(α, έ>, β) if
(i) There is a complex neighbourhood N of (α, b) such that f(A — z)~lg has an

n

analytic continuation from N n {Im z > 0} to N for all /, gε φ L^([RV).
i = l

(ii) If p = —id andsupp/<=<2 then the continuation requirement is valid for

(in) If Im z > 0 and/e φ L^ then f(A — z)~ 1 is compact. If also supp / <= Q then
i = l

f'p(A — z)"1 is compact.

Note. The case β ̂  tRv is only needed for some applications in the appendix.
A fundamental criterion for the absence of singular continuous spectrum

in [37] immediately implies

Proposition 6.4. If A ε j t f ( α , b 9 Q ) then σsing(,4) n (α, b) = 0 and σpp(A) has no
points of accumulation in (a,b).
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The definition was chosen in order to make possible the following perturbation
result.

Proposition 6.5. Let f be an n x n matrix-valued function in C^ with support in
Q and let g be an n x n matrix-valued function in L™ such that ( f ' p + g) is symmetric.

n

If Aej/(a9b9Q) on 0L2([RV) then there exists a countable set S c(α,fe) with no
ι = l

limit points in (a, b) such that if(c, d) c (α, b)\S then (A+f p + g)εjtf(c, d, Q).

Proof. Let B=f-p + g and choose ηεC£ equal to 1 on supp/usuppg. We
first claim that

(A + B- zΓ'η = (A- z)~*η(l + B(A - zΓ^Γ1 (6.4)

if Im z > 0 and the first inverse exists. This follows for large Im z by expanding
the last inverse as a geometric series and using ηB = B. Iίfl9g1eL% and η also
equals 1 on suppg 1 ? it follows that

By hypothesis and the analytic Fredholm theorem this can be continued from
N n {Im z > 0} to all of N except for a set P of poles with no limit points in N.
Putting S — P n (α, b) we obtain (i) for A + B, except that S as constructed may
depend on g± since we required η = 1 on suppg^. But S is independent of/Ί so
by symmetry it is also independent of g1 . The proofs of (ii) and (iii) are similar.

Theorem 6.6. (a) If A19...,An lie in tf(a,b,Q) for L2(UV) then Al®...®An
n

lies in «*/(α, b, Q)for 0 L2((RV).

(b) A=-Δ lies in jtf(a, b, (Rv)/or any a,b>0.
(c) Let FeL}oc be periodic on IR. Then there is a countable set £— {x l 9 x 2 , . . . }
such that xn -> oo and — A + Ve^(a, b, U)for all (a, b) disjoint from E.
(d) Let W be periodic on [Rv with (v — 1) periods in {x1 =0}. Define <stf(a,b,Q)
on L2(C,dvx) in the natural way, using only id± for p. Then H(Θ) = H0(Θ)+ W
lies in s$(a, b, C) for all (a,b) disjoint from a set E(θ) = {x1(θ),x2(θ), ...} where
xn(θ) -> oo as n -+ co .

Proof, (a) is trivial.
(b) l^f,geL% then for any φeL2 the Payley- Wiener theorem implies that fφ
and g(β are entire functions with

sup \β(k)\^Cf^\φ\\2 (6.5)
i l m k l ^ α

and a similar result with / replaced by g. If Im z > 0 then by straightforward
Fourier analysis

c — z

where C = !RV. As z -> (α, b)^0 we can deform the contour to avoid singularities
of (k2 — z)"1 and use (6.5) to show that the analytic continuation is a bounded
operator analytic in z.
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(c) This is similar to (b) once we note the existence of a Paley- Wiener type of
theorem for the eigenfunction transform. In the notation of Theorem 4.5, if
fφeL% x L2 then fφn can be analytically continued into a neighbourhood of
[ — π, πJ.Thus

can be continued past (α, b) as long as z avoids the discrete set

(at the former points the contour may be pinched by two singularities).
(d) This is identical to (c); now εn(fc, θ) depends on θ but since εn(k,θ)-> oo as
n -> oo for θ fixed, the proof goes through.

We can now prove

Theorem 6.7. Let α 1 , . . . , α v _ 1 be v — 1 periods in {x1 —0} and let av,bv be two
vectors each independent of a1,...,av_ί. Let W1 be bounded and periodic with
periods α1 , . . . , av and W2 bounded and periodic with periods a1 , . . . , av_ 1 , bv .
Suppose that H = H0 -f V where

Then σύat(H(β)) = 0 for all θ.

Proof. It is clearly sufficient to show that if

then

has empty singular spectrum. Let U(xί) be a unitary, 2 x 2 , C00 matrix-valued
"1 0"

_ 1
if x1 < — 1 and let U act on L2(C)φL2(C) in the natural manner. It is easy to
show that if A(θ) = UA(Θ}U'1 then

function on R such that [7(x1) = | ^ \ \ if xl > 1 and ί/(x1)= if
[_- 1 OJ

with/6C^ and ^eL^. By the last three results σsi (Ά(θ)) = 0.

Appendix 1. The Twisting Trick

The method of Theorem 6.7, adding extra degrees of freedom and then twisting,
is quite powerful. In this appendix we indicate its scope of application. We use
the notation from Section 6 freely.



Scattering Theory for Systems 297

Proposition A.I.I. Let V be a potential on [Rv such that the form sum H = — A + V
is closed and bounded from below on Q( — Δ)r\Q(V}. If(H — i)"1 is compact then

b,Rv}for any (α,fe) disjoint from σ(H).

Proof. Condition (i) in the definition of j/(α, b, 1RV) is true because (H — z) 1

itself can be continued. Condition (ii) is a consequence of p(H — i)~1 / 2 being
bounded and (H — i)ll2(H — z)"1 having a continuation. The compactness re-
quirements of (iii) are immediate.

Theorem A.1.2. Let V be a continuous function on [R such that V(x) = 0/or x < — a

and V(x) -> oo as x -> + oo. Then — -—^ + V has empty singular continuous

spectrum.

Proof. This follows the proof of Theorem 6.7 with Proposition A. 1.1 replacing
Theorem 6.6(c).

Theorem A.I.3. Let V be a function on 1RV with compact support such that V + eL1

and V_ ^ α( — A) + bfor some a < 1. IfH = — A + V as a form sum then σess(H) =
[0, oo), σsing(/f) = 0 and the only possible accumulation point of the eigenvalues
isO.

[ H 0 Ί
2 on L2(ίRv)®L2([Rv). Suppose

0 — Δ + ocx J
that F has support in the ball of radius R and let (/(x) be a unitary, 2 x 2, C°°

matrix-valued function on IRV which equals if | x g R and if

x ^R + 1. Then

where /eC^ and gεL%. Since — A + ax2 and — zl + F + αx2 have no essential
spectrum, and/ p - h g is a relatively compact perturbation

By Theorem 6.7 and Proposition A. 1.1, σsing(^4α) = 0 and the point spectrum of
AΆ can only accumulate at points in {0} u σ( — ̂  -h F + αx2). But

inf σ( - J -f F + αx2) ̂  inf σ{ - (1 - a)Δ + αx2 ~ b}

and the right-hand side goes to infinity as α -> oo , so zero is the only possible
accumulation point of the point spectrum of H.

Remark. By the above one also sees that Q±(UAyϋ~ 1, A®) exist and are complete,
where

0 -A + V + ax2

Since F ( ° ) = and
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we see that Ω±(H, — A) exist and are complete. This recovers the result of [10, 14,
32,41].

We next consider exterior problems, that is H = —A with boundary conditions
on some bounded set. We begin with Dirichlet boundary conditions since these
are the easiest.

Theorem A.1.4. Let Kbea compact set and H the Dirichlet Laplacian on L2(UV\K)
that is the form closure of — A on C^(UV\K). Then H has empty singular continuous
spectrum.

Proof. We first note that H + x2 has compact resolvent and that p(H + x2 + 1)~ 1/2

is bounded since

Q(H + x2) = Q(H) n Q(x2) c Q(H) ^Q(-A).

We deduce by the method of Proposition A.I.I that (H + x2)ej/(α,b,ίRv) for
any (α, b) disjoint from σ(H + x2). From this point we follow the proof of Theorem
A.1.3.

Remarks. (1) As before one can prove existence and completeness of the scattering
using the twisting trick.
(2) So far as we can tell Theorem A. 1.4 is a new result for such general K, although
it was proved by Lax and Phillips [29, 36] if dK is smooth. It is worth observing
that if one knows a priori that tfsing(Ή) is empty, one can short-cut some of the
technicalities of the Lax-Phillips theory [36].

When one allows more general boundary conditions there is the difficulty
that p(H — z)~l may not be bounded because functions in DomH may not
be continuous on dK. It was with this difficulty in mind that we allowed general
Q in our definition of <stf(a, b, Q).

Theorem A.1.5. Let K be a compact set in Uv and H some self-adjoint extension
of -A on C£(UV\K}. Suppose that H + x2 has compact resolvent. Then σess(#) =
[0, oo ), σsing(H) = 0, and the only possible accumulation point of the point spectrum
isO.

Proof. If K d {x : x \ < R] we take Q = {x:R<\x <R+l} and follow the
method of Theorem A.1.3. In order to prove that

f p(H + x2 - zΓ1 = (V f)(H + x2 - zΓ1 + p f(H + x2 - zΓ1

is well-defined and bounded we need to note that since /eQ? has support in
Q it follows that/(Dom H) c Dom( - A).

Remarks. (1) As an example if K obeys the segment condition [1, 12] we can
take Neumann boundary conditions.
(2) The twisting trick is also useful for other localisation problems. For example
suppose that K = Kl uK 2 where K1 and K2 are disjoint compact sets and that
H,H1,H2 are self-adjoint extensions of - A on UV\K,UV\K1 and RV\K2 respec-
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tively with the "same boundary conditions", in the sense that if η^C^ with η — 1
on X1 and η = 0 on K2 then

where φεΌomH if and only if ηφeΌomH^ and (1 — η)φeΌomH2. By twisting
with a U chosen so that

H + x2 0 I _ 1 I H x + x 2 0

one may easily show that if H1 -h x2 and H2 -h x2 both have purely discrete
spectrum, then so does H + x2.

Appendix 2. Measurability of Spectral Projections

In this appendix we discuss some technical measurability questions mentioned
in Sections 4 and 5. We deal throughout with a fixed measure space M and a
separable Hubert space 34f. A function/: M - » f f l is called measurable if (φ,f(m))
is measurable for all φe^f or equivalently [34] i f/ is measurable for the norm
Borel structure of Jf. A function/ : M -> 3?(3tf) is called measurable if and only
if (φ,f(m)ψ) is measurable for all φ.φe^f, or equivalently if/(m)^ is measurable
for all ψ this is not the same as norm measurability since JS?(Jf) is not separable.
By writing

where ηn is an orthonormal basis of Jf, we see that products of measurable
operator-valued functions are measurable. A map / from M to the unbounded
self-adjoint operators is called measurable if any of the conditions of the following
lemma are satisfied.

Lemma A.2.1. /// is a map from M to the unbounded self-adjoint operators on
Jf, the following conditions are equivalent:

(i) (/(m) + z)"1 is measurable for all z^ίR
(ii) eltf(m} is measurable for all ίeR

(iii) the spectral projection £j(/(m)) off(m) is measurable for all intervals L

Proof. These are all based on explicit limits. For example to prove (i) implies
(iii) we use

l & + ( l / r ) Γ / ΐ V 1 / A"1!

Proposition A.2.2. // A(m) is a measurable family of self-adjoint operators on Jtf,
then the spectral projections Ppp(A(m}) are measurable.

Proof. Let jfr be the Hubert space of Hubert-Schmidt operators on 3f and let
A(m) = Ad A(m) so that

-L4(m)ί
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and by Proposition A.2.1, A(m) is measurable, as is its spectral projection E
Since B = £*eRan E^(Ά(m)) if and only if its spectral projections commute
with those of A(m\ we see that

Ran Ppp(A(m)) = u{Ran B : £eRan E{0](A(m))}.

Thus if Br is a countable dense set in $ and ψn is a countable dense set in Jtf* then

where

is a countable set of measurable functions. Applying the Gram-Schmidt perocess
to reconstruct the projection we see that Ppp(A(m)) is measurable.
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