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§1. INTRODUCTION 

We will give an introduction to the study of Schrodinger 

operators! - 6+V . Even though I can skip general features of 

N-body systems and of scattering which will be discussed in 

detail by the other speakers, I will still only be able to 

scratch the surface of an extensive subject with a large 

literature. For references until 1966, the reader can con­

sult the excellent review article of Kato [19] -- we will 

mainly give more recent references. Among the monograph 

references, we recommend Faris [14] I Kate [20-] , Reed-Simon 

[29,30,31] and Thirring [44]. 

The two aspects of the study of Schrodinger operators 

we discuss are "se lf-adjointness " and "spectral analys is". 

These rather forbidding mathematical terms are really code 
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words for two important eleme n ts of the physics o f quan­

tum systems. "Self- adjolntness" is equivalent to the 

unique solvabi lity of the time- dependent Schrodinge r 

equati on i~t = H~t fo r all times. "Spectral analysis ll 

is the abstract study of the eigenfunctions of H - both 

dis crete and continuous . I need hardly remind you that 

Schrodinger's original series of papers [33] was entitled 

"Quantiza t ion as an Ei genvalue Problem" . 

It is a great honor to speak at this symposium on 

the 50th anniversary of Schrodinger 's equation and I am 

glad to dedicate this review first to the memory of E. 

Schrodinger, f i rst founder o f the sub ject . I should like 

to point out that this is a double ann i versary . This year 

is also the 25th anniversary o f the publication of Kato ' s 

basic page r [18] on the self- adj ointness of atomi c Hamilt­

onians - his paper , by shifting emphasis from abstract to 

concre te problems gave birth to the theory of Schrodinger 

operato r s , a theory , to which he has continued t o make i m­

portant contributions . It is a pleasure to ded icate this 

review also t o Tosio Kato, our subject ' s s econd founde r . 

I have tried to write th i s review in a way that it 

might be readable to a physic i st with relat ively little 

mathe matical sophisti f i cati on . Un for t unate l y I have found 

it impossi b le not to occasionally fall into the jargon of 

spaces , Hilbert spaces and even s i mple ope r ator theory 

(see § I ,II, VI of [ 291). 

§2. SELF - ADJOINTNESS - WHAT ' S IT ALL AB0UT 

In this section , I wa nt to expla i n the basic results 

about self- ad j ointness from a point of view d i fferent from 
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t he more usual presentation (see e.g . §VI II of [29]). 

The more usua l presentat i on depends on the notion of 

adjoint - i t seems to me that its use in virtually a ll 

pedagogic treatments is a legacy of the orig i nal deve l op­

ment of the theory by Stone [41] and von Neuma nn [45] . 

Our treatment wil l emphasi ze the connect i on with solvability 

of the Schrodi nger equati on . The sophisticated reader wi ll 

note how s i milar the theory then looks t o the theo~y of 

contraction semigroups on a Banach space (§x.S of [ 30]) . 

Definition . A unitary o ne-parameter group is a fami ly U(t) 

(one for each rea l t ) of linear operator s on a Hilbert 

space, H, so that 

(1) 

(ii) 

( iii ) 

t + U( t) w is continuous for each ~ in H I 

U(t+s) = U(t) U(s); U(O) = 1 . 

Ilu(t) ,, 11 =11 1) 11. a ll t. all 1) in H . 

The intuitive model for such f amilies is the following . For 

each "nice " IjJ ~ H, we solve the equati on i~t = H1J!t wi th 

i nitial condition Wt=O = " and then set U(t) ~ to be " t . 

(iii) which expresses "conservation of probability " can 

then be used to extend U(t ) f r om I1nice " 1.\1 to all ~ . Ac cord­

ing to Schrodinger , the Hamiltonian, H, of a s ystem in units 

with n = 2m =_ 1 is H = - fi +V. It is not a priori clear for 

which vectors 1J!, HW make s sense, but the presence of the 

differential operator suggests that not al l vectors are 

allowed. We must there f ore be prepared to deal onlv with 

den s ely def i ned operators , i.e. operators , H, \.'rith a domain 

D(H) dense in H. 

Definition . An operator , H, is called symmetr ic (also called 

Hermitian) if and only if (~ . H") = (H~ . " ) for all ~ . " ~ D(H ) 
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Def i nition . An operator, H, is called self - adjoint if and 

only if t here is a unitary one- parameter group, U(t) , so 

that D(H) ~ (~It ~ U(t)~ is differentiable} with 

d(U(t)~)/dt ~ -iHU(t)~ . 

Remarks. 1 . The equivalence of this definition to the usual 

one is the content of Stone ' s theorem (§VIII.4 of [29]) . 

2. It is not hard to see that any self-adjoint operator is 

symmetric. But the converse is not true , which is the reason 

why syrrunetry is not enough despite its emphasis in most 

physics texts . 

Theorem 2 . 1. A necessary and sufficient condition that an 

operator, H, be self- adjoint is that it is symmetric and 

~an(H+i) = Ran{H- i) = H , the entire Hilbert space. 

Rather than give a detailed p r oof of this result 

(which the reader can find in §VIII .2 of [29J) let us give 

an intuiti on which explains why the condition Ran( H+i ) = 

Ran(H-i) = H should ente r naturally in the construction of 

solutions of ~t = - iHW
t

· The solution is formally nothing 
- iHt - iHt 

but e $ as we all know, but how can we construct e 

from H? The "compound interest" formula: 

- iHt 
e lim (1 + iHt) - n 

n 

is an attractive pos sibility. One f i rst notes that for any 

real a :> 0: 
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for any symmetric H. This means one can define an operator, 

A= (aH±l) - l from Ran(aH±i) toD(H) "'ithIlMII ::. II¢I I. If 

Ran (aH+i) is not all of H then, in general, (aH±i)-n will 

be defined o n smaller and smaller spaces as n 4 m . Thus, 

the condition Ran( aH± i) = H f o r all a > 0 is very natural. 

The final fact needed to finish the explanation of the 

Theorem is that Ran(aH+i) = H for one a > 0 if and only 

if i t equals H for all a > 0 (see e.g. Theorem X.l of [301). 

The reader should cortsult Kata [2m for a proof of Theorem 

2.1 (in the context o f cqntraction semigroup theory) along 

the intuitive lines discussed above. 

Suppose that Ran(H±i) are only dense and not all of H. 

Then (H+i) - l is def i ned and bounded from a dense subset of H 

to D(H ) and so it can be extended to all H with a range D. 
The operator H with domain 0 given by H$ [« H+i) l ) -l_il $ 

can then be shown to be symroettic with Ran(H±i) all of H. 

In this situation , we call H essentially self-adioint : while 

it does not quite meet our definition of self - adjoint , i t 

does determine in a unique way a natural set of solutions 

of the .Schrodinqer equation. 

Most quantum Hamiltonian , H, ar e bounded be l ow in the 

sense that ($ , H$) ~ - a{$ , $) for some number a and a l l 

~ ~ D(H). Under such ci rcumstances Theorem 2.1 has a use­

ful extension: 

Theorem 2.2 . Let H obey ($ -, H4» :. - a (4) , $) . Then a necessary 

and sufficient condition for H to be self - adjoint (resp. 

essentially self- adjoint) is that Ran(H+a+l) be all of H 

(resp . dense) .. 

Much of the development of bounded operator theory 

by Hilbert and his students was in terms of explicit 

matrices and their quadratic forms. Von Neumann and Stone 
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found that the development of unbounded operators was 

severely hampered by matr ix language and 50 develoged 

abstract operat~r theory . It is an i r ony of history that 

somehow in this revolution of concept, the quadratic form 

ideas got los t. So far as I knmv, the abstract theory of 

quadratic forms of self- adjoint operators was developed 

in the 50 ' s and only systematically applied to quantum 

mechanics in the 60 ' s in work of Faris, Kata , Kuroda , 

Ne lson and Simon , among others . It is now clear that in 

most cases, aspects of the theory of Schrodi~ger operators 

can be developed in two parallel tracks - one emphasiz i ng 

operators I the other forms. Since, depending on the situa ­

tion/ either o n e can be technically simpler than the other , 

the thory is made rich er a nd more elegant by the dual 

presentation. 

Definition. A (symmetric) quadratic form a is a function of 

two vector s ~, ~ defined when ~ , ~ lie in some dense set 

Q(a) so that a( ~ ,· ) is linear for each fixed $ , a( ·,$) is 

anti linear for each fixed ~ and a(~ , $) = a($ , ~). a is 
2 

called semibounded, if and on l y if a (~.$) .':. - all ~ II for some 

real a. a is then called closed if Q{a) is a Hilbert space 

in the norm II~IH = la(~ , ~) + (a+l) ($ , ~) 

Definition. Let H be a self- adjoint operator which is bounded 

below. Its quadratic form domain , Q(H) is those ~ with (~,U(t)~) 

-iHt 
differentiable f or all t where U(t) = e . For ~ , $ ~ Q(H) 

we define 

Remarks. 1. Implic i t in this last def i nition is the fact 

that if (~,U(t)~) and ($ , U(t)$) are differentiable, so is 



- 25 -

(~ , U(t)~). 

2. The canonical example of a quadratic form without any 

c l osed extension is that with q(a) = C~(R) and a (~ , ~ ) = 
~ (O) 'i! (0) . 

3 . One often abuses notation and writes ($,Hw) for h($,W). 

Si nce there are W ~ Q(H) , not in D(H) this is technically 

"illegal not ation " and it can lead to dangerous errors if 

one forgets that it is shorthand. I have even been known 

to go further and define ( ~ ,H~ ) to be h( ~ , ~ ) if ~ £ Q(H) 

and to be ~ if ~ i Q(H). 

4. It can be shown that a self- adjoint operator is uniquely 

determi ned by its quadratic form, i . e. there is at most one 

se l f - adjoint operator wi th a given quadratic form. 

Theorem 2.3 . A sernibound quadratic form is the quadratic 

form of a self- adjoint operator if and only if it is closed. 

Th i s remarkable result has a rather simple 9roof (see 

§VIII . 6 o f [29]) reducing it to Theorem 2.2 . I must confess , 

nevertheless , to not really understanding it ! I regard self­

adjo i ntness as equivalent to solvability of a Schrodinger 

equation and I do not see on any heuristic level why closure 

of quadratic form should imply solvability of the associated 

Schrodi nger equati on. 

§3 . SELF- ADJO I NTNESS OF SCHR~DINGER OPERATORS - FOUR METHODS 

Mike Reed and I devoted a chapter in [30) with 217 

pages to the question of self- adjointness (actually other 

materia l is included , but even a conservative count of pages 

yields almost 90) so I am certainly not going to give a 

complete account of the subject here. But I should like to 

describe four methods that define self- adjoint Hami l tonians 

for most Schrodinger oper ators ·, · - A+V with V -+ 0 or +0> a t 
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infinity. The most interesting cases I will not discuss 

are the Hamiltonians -i n the pr esence of uniform electric 

or magnetic f i elds - after important early work of Stilmmel 

[43] , general results for these situations were found by 

Kate and Ikebe [23 ] - my preferred methods for obtaining 

these results use Kato's inequality for magnetic fields 

(see [21,36] or §X.4 of [30]) and the method of Faris and 

Lavine [ 15] for electric fields (see §X.5 of [30]). With 

some reluctance, I will be cavalier about ques t10ns like 

giving the domain of -~ etc. See [30] for further details. 

Method 1: Operator Perturbation Theory 

Definition: Let A be a self- adjoint operator and B a symmetric 

operator. We say that B is relative ly A- bounded i f and only 

if D(B) ) D(A) and these are n and a so that 

( 1) 

for all t ~ D(A) . The infimum of those n for which (1) holds 

is called the relative bound of B. 

Theorem 3.1 . If A is self- adjoi nt and B is symmetric and 

relatively A- bounded with relative bound n < 1 , then A+B , 

defined with domain D(A) , is self-adjoint. 

Let us 

II (AHA) tll 2 
sketch the proof . As we have already shown, 

IIAtl12 + 1.
2

11tl1
2 

so that letting t ~ (A+H) -l,,: 

~ 1, II (A+il.) - 1 11 ~< -1 
I A I . Thus by (1) 
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Taking IAI large, IIB(A+iA)-lll < 1 , so by using a geometric 
- 1 

series, 1 + B(A+iA) is invertible and, in particular 

Ran(l + B(A+iA) - l) = H. Writing 

we see that Ran(A+B+iA) = H. This proves the theorem. 

Example 1 . In non- relativistic quantum mechanics, A = Ho' 

the free Hamiltonian , - 6 1 and B is the operator "V of multi ­

plication by a real - valued (measurable) function , V(x) . (1) 

is then what has become known mathematically as nan i nhomo­

geneous Sobolev estimate " - physically it is somehow a kind 

of sharp form of the uncertainty principle . Kato's original 

application [18] is so simple, we can give it in detail . 

Suppose that V is the sum of a bounded function and a square 
3 - 1 

integrable function on R ; for example let V = Irl . Then 

we can write V = Vl + V2 with II vl l12 = (f IVlI2dX) 1 /2 ::. E and 

IIV21L = supIV2 (x) I = D < 00. By the Fourier inversion formula 

·~(x) = (2n) - 3/2 f e - ikx $(k)d 3k and, by the Plancherel 

theorem II ~ 112 = II $Ib· Thus: 

where we have used the Schwartz inequality and fd3k(1+k2} - 2<w 

in the second ·step and Ho$ = k2~ in the la.st. By the trivial 

estimate II fgl1 2 .!:. IIfl12 II gll~ , we have: 
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Thus V is relatively H-bounded with relative bound zero, 

and so Ho+V is self-adjoint on D(Ho )' 

Example 2. It is not hard to shovl that if an estimate like 

(1) holds for a given V with He = - ~ on L 2 (R 3), it continues 

to hold (u~ to factors of 2 and such) if V is the some po­

tential viewed as an interpartic l e potential and Ho = -~ on 

L 2 (R 3N). Thus the considerations of Example 1 and Theorem 

3.1 lead to self-adjointness results for atomic Hamiltonians. 

This is really very striking. It is not known if the corres­

ponding classical (Newtonian) equations of motion have global 

solutions for a l l time! Quantum mechanics is nicer than 

classical mechanics in this way. This is true essentially 

for the same reason tha t atoms are stable - the "uncertainty 

principle" prevents collapse. 

Example 3. The problem of exten ding the result of Example 1 

from R3 to Rn is not only of obvious mathematical interest. 

It is also of considerable use in understanding what is going 

onl The first general study of the n-dimensional case was by 

StUrnrnel [43] who introduced spaces that now bear his name. 

I have no fondness for these spaces much preferring the LP -

space language. The sharpest LP results are due to Faris [13] 

who used the best Sobolev estimates: for V to be -~ bound 

with relative bound zero it suffices that V ~ LP(R n ) + 

L 00 (!R
n ) ~vhere P :::: 2 if n .::. 3 I P :> 2 if n :::: 4 and p :::: n/2 

if n ~ Si moreover, this is no longer true if any smaller 

value of P is chosen. (Note that if q :> P, Lq+LooC LP+L
oo

) . 

We should also mention Strichartz' improvements [42] of the 

Sobolev estimates: First he allows potentials to be "uni­

formly locally LP " with p as above thereby including various 

unbounded periodic potentials (see §XIII.16 of [31]) and 

secondly various II weak LPn spaces. 
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Method 2: Form Perturbation Theorv 

Definition. Let a be the quadratic form of a semibounded 

self - adjoint operator and b a symmetric quadratic form. 

We say that b is relatively a-form bounded if and o nly if 

Q Ib) :J Q la) and there are y and 0 so tha t 

The infimum of those y for which (2) holds is called the 

relative form bound of b. 

Theorem 3 . 2. If a is the quadratic form of a sernibounded 

self-adjoint operator and b is symmetric and relatively a­

form bounded with relative bound y < I, then a+b , defined 

with form domain Q(a) is t he quadratic form of a self- ad­

jOi nt operator. 

Let us sketch the oraof. Without loss one can suppose 

that a ~ O . Then letting Iltll+ 1 = lalt •• ) + 11. 112) 1/ 2 and 

1\.lIh = lalt •• ) + bit • • ) + 10+1 )11.11
2
)1/ 2. we know by (2) 

that 

and 

2 ~1 2 I II so thatl!tli+1 .::. [l + 11- y) llll tll~l)' It follows that I ' +1 

and 11'11~1 are equivalent norms on Qla) . Since Cia) is 

complete in the first norm, it is com.olete in the second 

so the Theorem follows from Theorem 2 . 3 . 
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Remarks. 1. It is striking that while the statements of 

Theorem 3 . 1 and 3.2 are parallel, the proofs are completely 

different. 

2. b in Th.eorem 3 . 2 need not be associated with any operator. 

The canonical example is a = _d 2/dx 2 and b = a (x) so that one 

can 

cal 

give a real mathematical meaning to the common gedagogi -
2 2 example - d /dx + 0 Ix) . 

Example 4 . The astute reader may have noticed that while 

physicists know that in three dimensions _ r - a shouldn ' t be 

singular until a = 

which require V in 

2 , it stops meeting 
2 L locally when a = 

the operator criteria 

3/2. For 3/2 "- a < 2, 

one can define the Hamiltonian by using Theorem 3 . 2. The 

quantum mechanics of potentials of a class including these 

is developed in [35] . 

Method 3; Kato ' s Ineguality 

A beautiful proof of the self- adjointness of various 

pot entia l s which a r e positive and more singular than what 

is allowed by operator perturbation theory is based on: 

Lemma 3.3. (Kato [21]). Suppose that u £ Lll OR n ) and the 
1 n - oc 

distributional Laplacian ~ u ~ L1oc(R }. Then 

;,Iul > Re [sgnlu) ;,u] (3) 

where sgn u = u*/ Iul . 

Let us sketch the proof . By an approximation argument, 

one need on l y prove (3) for u E D(Ho } ' This can be done by 

sui t ably clever differentiation [21 ] but we prefer an argu­

ment f r om [39] which emphasizes the genera l reason why (3) 
-tH ho l ds . The operator E 0 i s convolution with the positive 

function (4 . t) - n/2 expl - lxI 2/4t) so that for any u : 
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-tH - tH 
(e °u) (x) I ::. (e °lul)(x) 

and thus for f ~ 0 in C~(Rn): 

* - tHo - tH 
Re [«sgn u) f,e u)] < (f,e °lul). (4 ) 

Equality holds in (4) when t = 0, so subtracting the t 0 

result , dividing by t and taking t ~ 0 we have: 

Re «sgn u)*f, (- H )u)) < - (H f,lul) 
0 - 0 

since u, f £ D(Ho )' This is just (3) . 

Theorem 3 . 4 . (Kato [21]) . If V £ L~oc(Rn) is positive , 
w n 

then - 11 +V i s essentially self - adjoint on Co (R ). 

We sketch the proof. By Theorem 2.2, i "t suffices to 

pr ove that ( -A +V+l)[C~] is dense. If it is not, then there 
2 0 

is a non- zero U E L orthogonal to it so that 

(- A+V+ 1)u 0 

in distribution sense. In particular , 6u 

so by (3) 

(- A+1) lui .: Re «sgn u) (- Vu)) -vlu! < o. 

-1 
Now (- 6+1) is a map on the tempered distributions which 

takes pos i tive distributions into themselves, so that 

lui ~ 0 and thus u = O. This condition shows that 

(- A+V+1) [C
w

] is indeed dense. 
o 
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One can allow V to have a negative relatively bound­

ed part with relative bound a < Ii see Kata [21] or §X.4 

of [30]. See Kato [22], Simon [ 37] and Kalf -Wa1ter [17] 

for further applications. 

Method 4. The Form Sum 

Theorem 3 . 5. Let a and b be positive quadratic forms which 

are t he forms of self-adjoint operators . Suppose that 

Q (a) (\ Q (b) is dense. Then the sum c = a+b defined on 

Q (c) ~ Q (a) n Q (b) is the quadratic form o f a self-adjoint 

operator. 

Suppose that ~n ~ Q(a) n Q(b) and c($n -$m ' ~n-$m) + 0 

as n, rn + co. Then since a and b are positive, 114> - $ II ~ 0 , n m 
at. - $ , $ - ¢ ) + 0 and b(~ - $ , $ - ~ ) + O. Since a and b 

'fn m n rn n m n In 

are closed, it follows that ¢n -+ 4> in H with $ ~ Q(a) and 

¢ £ Q(b) , a(¢n- $,$n-¢) + 0 and b(4
n
-4 , $n- $) + 0 s o that 

c($ -$,¢, -$) -+ D •. 1.ve have thus shown that c is closed. n n 
The theorem now follows from Theorem 2.3 . 

Example 5. If V £ Lioc(R
n

) i s positi ve, then -~+v 9an be 

defined as a form sum . Q( - td f\ Q(V) is dense since it 

contains Co (IR
n

) . 

One can allow a negative part of V as long as it is 

- ~ form bounded with relative bound y < 1. 

§4 . TYPES OF SPECTRA 

Definition . The spectrum, o(H) , of a self- adjoint operator 

is the set of complex ~ so that (H_ \) -l is not invertible. 

By the calculation II (H- A)411 ~ lIm AI 11411 and 

Theorem 2.1 , o(H) c ~ . The spectrum of H has the inter-
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pretation of possible values of the energy . To get more 

information about H, it is o fte n useful to refi ne the 

spectrum further. There are two useful breaku~s of o(H} 

one into cr ess and 0 dise ; 

cr , - see !VII of (29] 
s~ng 

the other into cr I pp 
for more detal1s-, ·· 

0ae and 

Definition. A ~ cr{H) is said to be discrete if and only 

if A is an isolated point of o(H) and an eigenvalue of 

f inite mu l tiplicity. The set of discrete points 1s denoted 

0d' ( H). The essential spectrum , 0 (H), is cr (H)'\0di (H) 
1SC ess SC 

The point of singling out a is that it has some 
. ess 

simple stability properties under sufficiently nice pert-

urbations . This will be f urther d iscussed in §5 be lowj 

see also §XIII. 4 of (31]. 

Given a self- adjoint operator H and any $ £ H , there 

is a measure d~~ dete rmined by: 

-itH 
(~ , e ¢) 

- itx fe d"~( x ) 

Corresponding to the fact that any measure d~ is a sum of 

a pure point part (a piece d p = Ic . o( x - x.», a oart ab -- pp 1 1 

solutely continuous with respect to Lebesgue measure (a 

p i ece d~ac = F(x) dx) and a singular continuous par t (a 

p i ece dv with dv«x}) = 0 for a l l x but with A obeying 

v [R\ A] = 0; fA dx = 0) one has (see §VII of [29]) : 

Theorem 4. 1. Given any self - adjoint operator H on H , there 

is a . unique decomposition H = H + H + H i so that H . ac pp 5 ng 
leaves each subspace invariant and ~ £ Hac (resp. Hpp or 

Hi) if and only if d" is ab s olutely continuous (re sp. 
s ng • 

pure paint o r s i ngular continuous) . 

Acta Physic Aunriaca, SuppJ. XVII 
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0pp {A I A is an eigenvalue of H} • 

Note that cr ac ' a sing and 0pp need not be disjoi nt 

and that a may not equal G ac U cr sing U 0pp (a l though 

a ~ cr ac v a sing v ;;pp) . 

For quantum Hamiltonians , 0pp (or at least Gaise !) 

has the interpretation of bound states . As I am sure you 

wi l l hear , crac is the study of scattering state? - thus 

one of t he hard problems i n the s tudy of Schrodinger 

oper ators i s that of sho .... ling cr i (H) = 0. For example I 
5 ng -

it i s still not proven that a system with 4 or more part-

icles and squa re wel l potentials (or even potential s in C~) 

has 0sing = ~ ! 

We complete our "review " of Schrodinger operators 

with finding a (H) i n the two body case and by dis -ess 
cussing qualitative information o n a"disC (H) in the two 

body case . 

§5 . THE ESSENTIAL SPECT~UM IN THE TWQ BODY CASE 

Weyl [ 46 ] first proved v ar i ous stability statements 

for the essential spectrum of ordinary differential operat­

o rs under change of boundary condition. I t has been realized 

that the general invari ance principle behind Weyl ' s results 

is the following: If A and B are self- adjoint and (A+i) - l -

(B+i) - l is compact (to be def i ned shortly ) , then 0 e ss (A ) = 
a (B) . In th i s section , we want to describe how to prove 
ess 

the special case where A = - 6 a nd B = - 6+V which has some 

simplify i ng features; the genera l case can be found in 

§XI II.4 of -[31] . I hope the d e scription I give wil l set 
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the stage for beau tiful results which Hunziker will des­

cribe in the next lecture. 

Definition. A bounded operator, A, is called -finite rank 

i f and only if 

N 

A$ L ~ n($n,$) 
n=l 

for some $l /"/ ~ Nr ~l""' ~ N' A is called compact if and 

only i f it is a l imit in operator norm of finite rank 

operators. 

In many ways, compact operators behave like finite 

dimensional matrices. For example, if £(z) is a finite 

dimensional matrix-valued analytic function on an open 

connected set, 0, then 1 - £(z) is either never invertible 

or it is invertible except for a discrete subset D of n 

(i.e. D has no limit poi nts in n) for either det(l - £(2)) 

is identically zero or it has a discrete set of zeros. 

This result extends to compact valued functions (see §VI.5 

of [29] for a proof): 

Theorem 5 . 1. (liThe Analytic Fredholm Theorem"). Let f(z) 

be an anal ytic function from a connected set, n of the 

complex numbers to the compact operators on some Hilbert 

space. Then either 1 - f(z) is invertible for no z in n 

or else it is invertible except for a discrete subset, 
-1 

D, of n. In the latter case, (1 - f(z)) is analytic on 

n'D and about each point z ~ D there is a Laurent expans­
o -

ion 

-1 
(l-f(z)) \' ( z) n L an Z - 0 

n=-N 
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with N finite and a _N. , .. "a_ 1 all finite rank. 

To apply this theorem, o ne needs criteria for an 

operator to be compact. 

Definition . An o perator, A , on L2 (R n) is called Hilbert­

Schmidt if and only if there is a function K in L2(R2n) 

(note 2n, not n) so that 

(Af) (x) !K(X,y) f(y) dy. 

K is called the kernel of A·. 

Theorem 5.2. (a) Ever y Hilbert- Schmidt operator is compact. 

(b) Any norm- limit of compact operators is cnmpact~ 

Let us sketch the p roof . If $h{ x) is a basis for 
2 n --- . 2 2n 

L (R ) , then ~ (x)$ (y) 15 a basis for L (R ), so that 
n m___ 2 

K(x,y) ~ L nnm¢n( x)¢m(y) with L Innml < = ' oLet AN be the 

operator with kernel 

The ~ are clearly finite rank and one can show that 

< L 
n>N or 

goes to zero . This proves (a) . To prove (b) , let A + A 
n 1 1 

with A compact. Given m, find A n(m) so thatliA - A II< - m-
n 1 _ I n(m) 2 

and let Bm finite rank so that II B - An (m)II<Im . Then B +A 
m m 

in norm. 

Example 1. Let L2 + L:denote the set of those potentials, 

V , which for any £ , can be decompos ed as V = Vl ' + V 
c. 2, e: 

with V 1, < !:. L 
2 

and V 2 , < < L = wi th II V 2 , < 11= .::. <. ~ny 
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2 
locally L function going to zero at infinity such a s 

- 1 3 2 00 
V (r) = r on R is clearly in L + (L ) . We claim that 

£ 

for V £ L 2 
(R 3) + L

oo 
(R 3) and any complex z 

- - 1 E 
[0,00), V( -~ - z) is compact. 

2 Choose ~ so that ~ = - z and 

not in 0( - 8) 
2 Suppose first that VEL . 

--1 
Re ~ > O. Then V( - .A -z) has 

the explicit kernel 

which is Hl1bert- Scpmi dt . I f now V is in L2 + L~ and VI + 
£ _ 1 , e: 

V2 is the decomposition 
,E - 1 

above , then V1 (- a -z ) goes to 
, £ 

V{ - 8 - Z) in norm and so the latter is compact. 

We now have the tools for: 

Theorem 5 . 3 . Let V £ L
2

(R3) + L
oo 

OR 3) Then - 6 +V has essent-
£ 

ial spectrum [0,00), i.e . a( -~+V) is [0 , 00) together with a 

(possibly empty) set of negative numbers whose only possible 

limit point is zero and each negative eigenvalue has finite 

multiplicity. 

Proof . Let f(z) 
- 1 = - V(H - z) for z complex not in [0, 00). 

o 
Then f{z) has compact values and is analytic. ~oreover, as 

in Example 1 of Section 3, II f (z) II < 1 for z = i" with I" I 
large. It follows that 1 - f(z) is sometimes invertible, 

and thus by Theorem 5.1 , it is invertible for all z not i n 

a discrete set, D. It follows that (H-z ) = (1 - f(z)) (H - z) 
o 

is invertible for all z in C\.D v [0,00) so a (H) C D U [0,00). 
-1 

Since (H-z) has finite rank residues at pOints in D, one 

can show that points in 0 are eigenvalues of finite multi-

plicity. Thus cr (H) C [0 , 00 ). 
ess 

If cr (H) is not 
ess 

interval (a,b) C [0,00) 

turn the above argument 

so that 

equal to [0 , 00) , there is some 

",ith (a,b) " cr (H) = 91 . We now 
- 1 

around . Letting g(z) = V(H-z ) 
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(H - z) ~ (1 - g(z)) (H - z) 
o 

by mimicking the above, we prove that cress (H) t' (a b) ¢. 
Since this is false I 0 (H) must be all of [O,w). 

ess 

§6. BOUNDS ON THE NUMBER OF BOUND STATES 

Since I have recently written a review article [40] 

on this subject with fairly complete references, I will 

settle for describing without proof some of the main re ­

sults and for giving the reader some references to the 

Russian literature [1,4 - 10,24,32] which through ignorance 

I d id not list in [40] - I should like to thank Prof.M . S. 

Birman for bringing these to my attention. 

Bounds on n 1 (V) 

the 

Let V be a central potential on 

number of negative eigenvalues of 

3 R and let n,(V) be 

- lI. +V with angular 

momentum t, not counting the multip licity (2 t +1). The 

first general bound on nt(V) is that of Bargmann [2]: 
- 1 ~ 

Theorem 6 . 1. n1 (v) 2 (21+1) fo rIV(r) I dr while the 

best bound I know is that of G2MT [16]: 

f~ 2a-l la Theorem 6 . 2. n 1 (v ) 2 B( 1 , a ) 0 r Iv( r) dr for 1 < a < ~ 

and 

aa r 2(a) (2t+l)2a 1 

-Remarks. 1. As a + I, G2~T yields Bargmann ' s bound . 

2. Both bounds are best possible in that given any E, t 

and N there is a V v-lith n
l 

(V) = N and with the right 

side of the bounds less than N+E. 
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Bounds on N(V) - 1 and 2 dimensions 

Let N(V) be the number of negative eigenvalues count­

ing multiplicity of -11+V on IR v. For \) = 1 ,2 the basic re­

sult is negative [ 4m : 
Theorem 6.3. For v ~ 1,2: (a) Let 11 · 11 be a translation in­

variant norm . Then for any N, and £ > 0, there is a V with 

IIVII ~ £ and N(V} ~ N. (b) For no norm is N(V} ~ IIVllawith 

0: > o. 

The basic reason that Theorem 6.3 holds is that for 

any negative V /-~+V has bound states in v = 1,2 dimensions 

for any A > O. See [38 r l 1] for additional information on 

this state. 

Theorem 6.4. For v ~ 1, N(V} ~ 1 + f:w1xl Iv( x} 1 dx. 

Remark. Theorem 6.4 is proven in [40] with 1 replaced by 2. 

That 1 can be used follows by noting that if G (x,y) is the 
2 2 2 -1 a 

kernel for (-d /d x + a) and K (x,y) is the kernel with 
a 

a Dirichlet boundary condition then G - K is the rank one 
a a 

operator 

-1 
(2a) exp -a'lXI + Iyl} 

Bounds on N(V) - 3 or more dimensions 

The f irst general bound is that obtained independently 

by Birman (3] and Schwinger (34]: 

Theorem 6.5. For v = 3: 

Recently, C.,ickel (12], Lieb (25] and Rosenbljum (32] have 

independently proven the bound: 

Theorem 6.6. For any v ~ 3 
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N(V) < c J IV(x) 1"/2 d"x. 
- " 

Remark. The constant in Theorem 6.5 is bes t possib le in 

the sense of Remark 2 a f ter Theorem 6.2 . The constant c 
" in Theorem 6.6 is different in tbe papers of t h e three 

authors (and not e ven exp l icit in [32]) . Lieb l s constant 

seems to be t h e best of the t hree. It is p robably not best 

poss i ble but i t cannot be i mpr oved by mor e than abou t 33 % 

without v i olat ing s ome explicit example s of [16 ]. 

Among the interesting subjects I will not discuss 

are the large A behavior of N(XV) , the pathologies in the 

multiparticle case and the connection o f Theorem 6.6 to 

the proble m of "stability of ma tter !!. See [40] for the 

first two topics and Lieb- Thirring [27 , 28] f or t he second . 
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