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§1. INTRODUCTION

We will give an introduction to the study cf Schrddinger
operators, —-A+V. Even though I can skip general features of
N-body systems and of scattering which will be discussed in
detail by the other speakers, I will still only be able to
scratch the surface of an extensive subject with a large
literature. For references until 1966, the reader can con-
sult the excellent review article of Kato [19] — we will
mainly give more recent references. Among the monograph
references, we recommend Faris [14], Kato [20], Reed-Simon

[29,30,31] and Thirring [44].

The two aspects of the study of Schrddinger operators
we discuss are "self-adjointness" and "spectral analysis".
These rather forbidding mathematical terms are really code



- 20 -

words for two important elements of the physics of guan-
tum systems. "Self-adjointness" is eguivalent to the
unigue solvability of the time-dependent Schrddinger
equation iﬁt = Hb, for all times. "Spectral analysis"

is the abstract study of the eigenfunctions of H - both
discrete and continuous. I need hardly remind you that
Schrddinger's original series of papers [33] was entitled

"Quantization as an Eigenvalue Problem".

It is a great honor to speak at this symposium on
the 50th anniversary of Schrddinger's eguation and I am
glad to dedicate this review first to the memory of E.
Schrédinger, first founder of the subject. I should like
to poilnt out that this is a double anniversary. This vear
is also the 25th anniversary of the publication of Kato's
basic paver [18] on the self-adjointness of atomic Hamilt-
onians - his paper, by shifting emphasis from abstract to
concrete problems gave birth to the theory of Schrédinger
operators, a theory, to which he has continued to make im-
portant contributions. It is a pleasure to dedicate this

review also to Tosio Kato, our subject's second founder.

I have tried to write this review in a way that it
might be readable to a physicist with relatively little
mathematical sophistification. Unfortunately I have found
it impossible not to occasionally fall into the jargon of
spaces, Hilbert spaces and even simple operator theory
(see §I,II,VI of [29]).

§2., SELF-ADJOINTNESS - WHAT'S IT ALL ABNUT

In this section, I want to explain the basic results

about self-adjointness from a point of view different from



the more usual presentation (see e.g. §VIII of [29]).

The more usual presentation depends on the notion of

adjoint - it seems to me that its use in virtually all
pedagogic treatments is a legacy of the original develop-
ment of the theory by Stone [41] and von Neumann [ 45].

Our treatment will emphasize the connection with solvability
of the Schrédinger equation. The sophisticated reader will
note how similar the theory then looks to the theory of
contraction semigroups on a Banach space (§X.8 of [30]).

Definition. A unitary one-parameter group is a family U(t)

(one for each real t) of linear operators on a Hilbert

space, H, so that

(1) t + U(t)y is continuous for each ¥ in H,
{113 U(t+s) = U(t) U(s); U(O) =1,
(111) ol =|l¢ll, all £, all ¥ in H.

The intuitive model for such families is the following. For
each "nice" ¥ £ H, we solve the eguation iﬂt = H¢t with

initial condition ¥ = ¥ and then set U(t)¥ to be wt.

(iii) which expresszgo“conservation of probability" can

then be used to extend U(t) from "nice" ¢ to all ¥. Accord-
ing to Schrédinger, the Hamiltonian, H, of a system in units
with A = 2m = 1 is H = -A+V. It is not a priori clear for
which vectors ¥, Hy makes sense, but the presence of the
differential operator suggests that not all vectors are
allowed. We must therefore be prepared to deal onlv with
densely defined operators, i.e. operators, H, with a domain

D(H) dense in H.

Definition. An operator, H, is called symmetric (also called
Hermitian) i1f and only if (¢,HY) = (H$,¥) for all ¢, ¥ £ D(H)



Definition. An operator, H, is called self-adjoint if and
only if there is a unitary one-parameter group, U(t), so
that D(H) = {¢|t + U(t)¢ is differentiable} with
d(u(t)¢)/dt = —-iHU(t)¢.

Remarks. 1. The equivalence of this definition to the usual
one is the content of Stone's theorem (§VIII.4 of [29]).

2. Tt is not hard to see that any self-adjoint operator is
symmetric. But the converse is not true, which is the reason
why symmetry is not enough despite its emphasis in most

physics texts.

Theorem 2.1. A necessary and sufficient condition that an
operator, H, be self-adjoint is that it is symmetric and
Ran(H+1i) = Ran(H-i) = H, the entire Hilbert space.

Rather than give a detailed proof of this result
(which the reader can find in §VIII.2 of [29]) let us give
an intuition which explains why the condition Ran(H+i) =

Ran(H-1i) = H should enter naturally in the construction of
solutions of @t = —iH¢t. The solution is formally nothing
but e“th¢ as we all know, but how can we construct e—lHt

from H? The "compound interest" formula:

o +HE )y P = lim{(il)-n(lﬁlﬂ F™

= lim (1 +

1Ht. ~n
n+e 2

is an attractive possibility. One first notes that for any

real a > O:

| («H£1) 8112 = <o, (aB2+1) 6> & <aH$,id> + <id,aHe> =

1]

<6, (a28%41) 6> 2 ||alf
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for any symmetric H. This means one can define an operator,
A = (@H:1) "' from Ran(eHzi) to D(H) with ||as] < |l¢|l. 1f

Ran (aH+i) is not all of H then, in general, (uHii)_n will
be defined on smaller and smaller spaces as n =+ «,Thus,

the condition Ran(aH+i) = H for all &« > O is very natural.
The final fact needed to finish the explanation of the
Theorem is that Ran(aH+i) = H for one ¢ > O if and only

if it equals H for all « > O (see e.g. Theorem X.1l of [30]1).
The reader should consult Kato [20] for a proof of Theorem
2.1 (in the context of contraction semigroup theory) along

the intuitive lines discussed above.

Suppose that Ran(Hti) are only dense and not all of H.
Then (H+i)-l is defined and bounded from a dense subset of H
to D(H) and so it can be extended to all H with a range D.
r.o=1 .,
) T-il¢
can then be shown to be symmetric with Ran(Hti) all of H,

The operator H with domain D given by H¢ = [ ((H+1)

In this situation, we call H essentially self-adjoint: while

it does not quite meet our definition of self-adjoint, it
does determine in a unique way a natural set of solutionms

of the Schrddinger equation.

Most quantum Hamiltonian, H, are bounded below in the
sense that (¢,H$) > -a(¢,¢) for some number @« and all
¢ € D(H). Under such circumstances Theorem 2.1 has a use-

ful extension:

Theorem 2.2. Let H obey (¢,H$) > -u{¢,¢). Then a necessary
and sufficient condition for H to be self-adjoint (resp.
essentially self-adjoint) is that Ran(H+2+1l) be all of H

(resp. dense).,.

Much of the development of bounded operator theory
by Hilbert and his students was in terms of explicit
matrices and their guadratic forms. Von Neumann and Stone



found that the development of unbounded operators was
severely hampered by matrix language and so develovned
abstract operator theory. It is an irony of history that
somehow in this revolution of concept, the guadratic form
ideas got lost. So far as I know, the abstract theory of
guadratic forms of self-adjoint operators was developed

in the 502's and only systematically applied to guantum
mechanics in the 60's in work of Faris, Kato, Kuroda,
Nelson and Simon, among others. It is now clear that in
most cases, aspects of the theory of Schrddinger operators
can be developed in two parallel tracks - one emphasizing
operators, the other forms. Since, depending on the situa-
tion, either one can be technically simpler than the other,
the thory is made richer and more elegant by the dual
presentation.

Definition. A (symmetric) guadratic form a is a function of

two vectors ¢, | defined when ¢, ¥ lie in some dense set
Q(a) so that a(¢,-) is linear for each fixed ¢, a(-,¥) is
antilinear for each fixed U and a(¢,y) = a(y,6). a is
called semibounded, if and only if a(¢,4) > -o;]|4>|[2 for some
real g. a is then called closed if Q(a) is a Hilbert space
in the norm 1[¢||H = Ya(é¢,9) + (a+l) (¢,0).

Definition. Let H be a self-adjoint operator which is bounded
below. Its quadratic form domain, Q(H) is those ¢ with (¢,U0(t)¢)
differentiable for all t where U(t) = e “7C, For ¢, U £ Q(H)

we define

-y &
hi$,9) =i gL, uN] 4 -

Remarks. 1., Implicit in this last definition is the fact
that 1f (¢4,0(t)¢) and (¥,U(t)V) are differentiable, so is
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(¢ ,U(E)Y) .

2. The canonical example of a guadratic form without any
closed extension is that with g(a) = CZ(R) and a(é,¢) =

¢ (O)y (O) .

3. One often abuses notation and writes (¢ ,Hy) for hi(é ,v) .
Since there are y ¢ Q(H), not in D(H) this is technically
"illegal notation" and it can lead to dangerous errors if
one forgets that it is shorthand. I have even been known

to go further and define (4 ,Hp) to be h(s,¢) if ¢ g Q(H)
and to be = if ¢ ¢ Q(H).

4. It can be shown that a self-adjoint operator is uniquely
determined by its quadratic form, i.e. there is at most one
self-adjoint operator with a given quadratic form.

Theorem 2.3. A semibound quadratic form is the gquadratic

form of a self-adjoint operator if and only if it is closed.

This remarkable result has a rather simple proof (see
§VIITI.6 of [29]) reducing it to Theorem 2.2. I must confess,
nevertheless, to not really understanding it! I regard self-
adjointness as equivalent to solvability of a Schrddinger
equation and I do not see on any heuristic level why closure
6f guadratic form should imply solvability of the associated

Schrddinger equation.

§3. SELF-ADJOINTNESS OF SCHROUDINGER OPERATORS - FOUR METHODS

Mike Reed and T devoted a chapter in [30] with 217
pages to the guestion of self-adjointness (actually other
material is included, but even a conservative count of pages
yields almost 90) so I am certainly not going to give a
complete account of the subject here. But I should like to
describe four methods that define self-adjoint Hamiltonians
for most Schrédinger operators, -A+V with V -+ O or += at
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infinity. The most interesting cases I will not discuss
are the Hamiltonians in the presence of uniform electric
or magnetic fields - after important early work of Stiimmel
[ 43] , general results for these situations were found by
Kato and Ikebe [23] - my preferred methods for obtaining
these results use Kato's inequality for magnetic fields
(see [21,36] or §X.4 of [30]) and the method of Faris and
Lavine [15] for electric fields (see §X.5 of [30]). With
some reluctance, I will be cavalier about questions like
giving the domain of -p etc. See [30] for further details.

Method 1l: Operator Perturbation Theory

Definition: Let A be a self-adjoint operator and B a symmetric
operator. We say that B is relatively A-bounded if and only
if D(B) D D(A) and these are g and g so that

I Bell <al|2g]l + slle]l (1)

for all ¢ ¢ D(A). The infimum of those o for which (1) holds
is called the relative bound of B.

Theorem 3.1l. If A is self-adjoint and B is symmetric and
relatively A-bounded with relative bound o < 1, then A+B,
defined with domain D(a), is self-adjoint.

Let us sketch the proof. As we have already shown,

H(A+ix)¢”2 = HA¢”2 + Lz\hnz so that letting ¢ = (A+il)-lw=

“A(A+ih)-l¢"2 - AZH(A+iA)-1¢H2 = eI

1 1

so that [[A(A+in) Y| < L, || (a+in) || < |a|™t. Thus by (1)

IB@a+i0 7Y < o + 8|27t .



e

Taking || large,|[B(A+iA)_l|]< 1, so by using a geometric
series, 1 + B(A+ir) — is invertible and, in particular
Ran(l & BA#) ™) =H. Writing
A+ B+ 1y =[1+ B@A+in) 1@ + 1)

we see that Ran(A+B+ii) = H. This proves the theorem.

Example 1. In non-relativistic gquantum mechanics, A = HO,
the free Hamiltonian, -A, and B is the operator V of multi-
plication by a real-valued (measurable) function, V(x). (1)
is then what has become known mathematically as "an inhomo-
geneous Sobolev estimate" - physically it is somehow a kind
of sharp form of the uncertainty principle. Kato's original
application [18] is so simple, we can give it in detail.

Suppose that V is the sum of a bounded function and a square

integrable function on R3; for examplée let V = Iri_l. Then

i : 2 i i 51
we can write V =V, + V, with [|[V,]], = (f[V;]"ax) ‘ < e and
HVZHM = sup|V,(x)| = D < =. By the Fourier inversion formula

b (x) = (2ﬁ)‘332 [ e 3(k)a’k and, by the Plancherel

theorem H¢”2 = ”3”2. Thus:

loll, < 2m ™32 1 1300 &

1A

crfls 0 2+ %t/?

A

Ia

ClEqelly + [lell )

g . 3 L 1=
where we have used the Schwartz ineguality and jd k(1l+k") “<=
in the second ‘step and H¢ = k2$ in the last. By the trivial
estimate "fg”2 < ”f”2 llg]] » we have:

IVellz < HVyllallell, + NV N6l <
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< ecllugell + (ec + pylloll, -

Thus V is relatively H-bounded with relatiwve bound zero,

and so H +V is self-adjoint on D(HO).

Example 2. It is not hard to show that if an estimate like
(1) holds for a given V with Ho = =A on L2(R3), it continues
to hold (up to factors of 2 and such) if V is the some po-
tential viewed as an interparticle potential and HO = -A on
LZ(RBN). Thus the considerations of Example 1 and Theorem

3.1 lead to self-adjointness results for atomic Hamiltonians.
This is really very striking, It is not known if the corres-
ponding classical (Newtonian) equations of motion have global
solutions for all time! Quantum mechanics is nicer than
classical mechanics in this way. This is true essentially

for the same reason that atoms are stable = the "uncertainty
principle" prevents collapse.

Example 3. The problem of extending the result of Example 1
from R3 gls] Rn is not only of obvious mathematical interest.
It is also of considerable use in understanding what is going
on! The first general study of the n-dimensional case was by
Stimmel [43] who introduced spaces that now bear his name.

I have no fondness for these spaces much preferring the P-
space language. The sharpest 1P results are due to Faris [13]
who used the best Sobolev estimates: for V to be -A bound

P @®™

R *

with relative bound zero it suffices that V g L
L w"

if n » 5; moreover, this is no longer true if any smaller

) where p =2 difn< 3, p>» 2if n= 4 and p = n/2

value of p is chosen. (Note that if g > p, L94+1.”¢ Lp+Lm).
We should also mention Strichartz' improvements [42] of the
Sobolev estimates: First he allows potentials to be "uni-
formly locally LP" with p as above thereby including various
unbounded periodic potentials (see §XIII.16 of [31]) and

secondly various "weak K spaces.
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Method 2: Form Perturbation Theory

Definition. Let a be the quadratic form of a semibounded
self-adjoint operator and b a symmetric quadratic form.
We say that b is relatively a-form bounded if and only if
Q(b) > Q(a) and there are v and § so that

2
|olore) | < v alere) + sliell” (2)
The infimum of those y for which (2) holds is called the

relative form bound of b.

Theorem 3.2. If a is the quadratic form of a semibounded
self-adjoint operator and b is symmetric and relatively a-
form bounded with relative bound y < 1, then a+b, defined
with form domain Q(a) is the quadratic form of a self-ad-

joint operator.

Let us sketch the proof. Without loss one can suppose
that a » O. Then letting H¢H+1 = (a(é,¢) + H¢H2)1/2
llells, = (aler9) + bs,0) + (6+1)|| ][ /2, we know by (2)
that

and

(H¢H11)2 > (+palts,e)+2s+Do]1? < ry+20)]10]12,
and
2 2
(Ielli) " = (A-y)a(s,¢) +|lsl|
2 <1 y a2
so thatl¢[iy; < [1 + (1-y) "1(Je¢]} ;)" It follows that -]l 41
and 'lll are equivalent norms on Q(a). Since Q(a) is

complete in the first norm, it is complete in the second

so the Theorem follows from Theorem 2.3.
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Remarks. 1. It is striking that while the statements of
Theorem 3.1 and 3.2 are parallel, the proofs are completely
different.

2. b in Theorem 3.2 need not be associated with any operator.
The canonical example is a = -dz/dx2 and b = § (x) so that one
can give a real mathematical meaning to the common pedagogi-
cal example -dz/dx2 + §(x).

Example 4. The astute reader may have noticed that while
physicists know that in three dimensions -r © shouldn't be
singular until o« = 2, it stops meeting the operator criteria
which regquire V in L2 locally when o = 3/2. For 3/2 <u<2,
one can define the Hamiltonian by using Theorem 3.2. The
guantum mechanics of potentials of a class including these
is developed in [ 35].

Method 3. Kato's Inegquality

A beautiful proof of the self-adjointness of various
potentials which are positive and more singular than what
is allowed by operator perturbation theory is based on:

Lemma 3.3. (Kato [21]). Suppose that u g LiocﬂRn) and the

distributional Laplacian Au € Lioc(Rn). Then
Alu] > Re [sgn(u) Au] (3)

where sgn u = u /|ul.

Let us sketch the proof. By an approximation argument,
one need only prove (3) for u g D(HO). This can be done by
suitably clever differentiation [21] but we prefer an argu-
ment from [39] which emphasizes the general reason why (3)
holds. The operator g_tHO is convolution with the positive

function (4-rrt)_n/2 exp(—|x|2/4t) so that for any u:



-tH =tH
|te Cw)(x)] < (e °u|)x

and thus for £ > O in Cl(R"):

" -tHO -tHO
Re [((sgn u) £,e u)l = (f,e [ul). (4)

Equality holds in (4) when t = O, so subtracting the t = 0O
result, dividing by t and taking t + O we have:

Re ((sgn W™, (-H)uw)) < - (HE,|u|)

since u, £ ¢ D(H ). This is just (3).

Theorem 3.4. (Kato [21]). If V g Liocaa“) is positive,
then -A+V is essentiallv self-adjoint on C;(Rn).

We sketch the proof. By Theorem 2.2, it suffices to
prove that (-A+V+1)[C_] is dense. Tf it is not, then there

is a non-zero u g L2 orthogonal to it so that

(-A+V+1)u = 0

X

in distribution sense. In particular, Au = (V+1l)u £ Lloc

so by (3)

(—A+l)|u] < Re ((sgn u) (-Vu)) = -V]u! 2 0.

Now (-4+1)" L is a map on the tempered distributions which
takes positive distributions into themselves, so that

|ul < 0 and thus u = 0. This condition shows that
(-A+V+l)[CZ] is indeed dense.
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One can allow V to have a negative relatively bound-
ed part with relative bound & < 1; see Kato [21] or §X.4
of [30]. See Rato [22], Simon [37] and Kalf-Walter [17]

for further applications.

Method 4. The Form Sum

Theorem 3.5. Let a and b be positive quadratic forms which
are the forms of self-adjoint cperators. Suppose that
0(a) n QO(b) is dense. Then the sum ¢ = a+b defined on
Q(c) = Q(a) ™ Q(b) is the guadratic form of a self-adjoint

operator.

Suppose that By B N(a) ~ Q(b) and c(¢n*¢mf¢n_¢m) + 0
as n, m -~ =». Then since a and b are positive, H¢n—¢mu S er
ald,~dnrdn "y > O and blo ~¢, b -
are closed, it follows that by > @ in H with ¢ ¢ Q(a) and
o £ Q(b), a(¢n—¢,¢“—¢) + 0 and b(¢p—¢,¢n-¢) + 0 so that
c(¢n—¢,¢n—¢) + 0. We have thus shown that c is closed.

¢n) + 0. Since a and b

The theorem now follows from Theorem 2.3.
Example 5, If V ¢ L%OC(Rn) is positive, then -A+V can be
defined as a form sum. Q(-A) N Q(V) 1is dense since it

contains CO(Rn).

One can allow a negative part of V as long as it is

-4 form bounded with relative bound vy < 1.

§4. TYPES OF SPECTRA

Definition., The spectrum, ¢g(H), of a self-adjolint operatocr

is the set of complex A so that (H-A) 1 is not invertible.

By the calculation [[(H-2)¢|| > [Im A| || ¢|| and
Theorem 2,1, g(H) ¢ R. The spectrum of H has the inter-



pretation of possible values of the energy. To get more
information about H, it is often useful to refine the
spectrum further. There are two useful breakups of ¢ (H),

one into - and 044 es? the other into o__, ¢ and

pp ac

o - see /VII of [29] for more details.

sing
Definition. » g o(H) is said to be discrete if and only
if » is an isolated point of ¢ (H) and an eigenvalue of
finite multiplicity. The set of discrete points is denoted

(H) . The essential spectrum, gess(H), is c(HP\cdisc(H).

Ydisc

The point of singling out - - is that it has some
simple stability proéerties under sufficiently nice pert-
urbations. This will be further discussed in §5 below;

see also §XIII.4 of [31].

Given a self-adjoint operator H and any ¢ g H, there
is a measure dp¢ determined by:

e—itH e-itx

dy, (x) .

$) = | "

(6.,

Corresponding to the fact that any measure du is a sum of
a pure point part (a piece d“pp = Eci a(x—xi)), a part ab-
solutely continuous with respect to Lebesgue measure (a
plece d“ac = F(x) dx) and a singular continuous part (a
piece dy with dv({x}) = O for all x but with A obevying
v[R\A] = 0; IA dx = 0) one has (see §VII of [29]):

Theorem 4.1. Given any self-adjoint operator H on H, there

; o8 H =H + H + H so that H
is a unigque decomposition - pp sing

leaves each subspace invariant and ¢ g Hac (resp. or

H
pp

Hsing) if and only if du¢ is absolutely continuous (resp.
pure point or singular continuous).

initi = H =
Definition. o (H) o (HM_ ), Gsing(H) c(HrHsing),

Acta Physica Austriaca, Suppl. XVII
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Spp = {r|r is an eigenvalue of H}.

Note that Gt Usinq

and that ¢ may not equal Tac " %ging ¥ "pp (although
¥

and 9pp need not be disjoint

— 2 J .
o Tac v %sing Top

For guantum Hamiltonians, (or at least o

1
“pp dise‘)
has the interpretation of bound states. As I am sure you
will hear, & s is the study of scattering states - thus
one of the hard problems in the study of Schrddinger

operators is that of showing o (H) = @. For example,

sing
it is still not proven that a system with 4 or more part-
icles and square well potentials (or even potentials in C:)

=¢!

has ®sing

We complete our "review" of Schrddinger operators
with finding qess(H) in the two body case and by dis-
cussing gualitative information on GaiSC(H) in the two
body case.

§5. THE ESSENTIAL SPECTRUM IN THE TWO BODY CASE

Weyl [46] first proved various stability statements
for the essential spectrum of ordinary differential operat-
ors under change of boundary condition. It has been realized
that the general invariance principle behind Weyl's results
is the following: If A and B are self-adjoint and (A+i)—l -

(B+i)_l is compact (to be defined shortly), then ¢ (a) =

ess
gess(B). In this section, we want to describe how to prove
the special case where A = -A and B = -A+V which has some

simplifying features; the general case can be found in
§XIII.4 of ‘[31l]. I hope the description I give will set



the stage for beautiful results which Hunziker will des-

cribe in the next lecture.

Definition. A bounded operator, A, is called finite rank

if and only if

Ap =

Il o112
foned

TINCIES

e B is called compact if and

only if it is a limit in operator norm of finite rank

for some ¢l""’¢N’ Ypre--

operators.

In many ways, compact operators behave like finite
dimensional matrices. For example, if f(z) is a finite
dimensional matrix-valued analvtic function on an open
connected set, Q, then 1 - £(z) is elther never invertible
or it is invertible except for a discrete subset D of
(i.e. D has no limit points in @) for either det(l - £(z))
is identically zero or it has a discrete set of zeros.
This result extends to compact valued functions (see §VI.5

of 129] for a proof):

Theorem 5.1. ("The Analvtic Fredholm Theorem"). Let £(z)
be an analytic function from a connected set, & of the
complex numbers to the compact operators on some Hilbert
space. Then either 1 - f(z) is invertible for no z in @

cr else it is ipvertible except for a discrete subset,

D, of 9. In the latter case, (1 - f(z))-l is analytic on
9\D and about each point z, & D there is a Laurent expans-

ion
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with N finite and a_ ««ya_, all finite rank.

N 1

To apply this theorem, one needs criteria for an
operator tc be compact.
Definition. An operator, A, on L2(R®) is called Hilbert-
Schmidt if and only if there is a function K in L2(R2n)

(note 2n, not n) so that
(Af) (x) = [K(x,y) f(y) dv.

K is called the kernel of A.
Theorem 5.2. (a) Every Hilbert-Schmidt operator i1s compact.

(b) Anv norm-limit of compact operators is compact.

Let us sketch the proof. If ¢n(x) is a basis for
Lz{mn), then ¢n(x)¢m(y) is a basis for L2{R2n), so that
K(x,y) =} o 6 ()6 Ty) with R < @, Let A, be the

operator with kernel

1 2

I apn e ()3 1) .

The AN are clearly finite rank and one can show that

lag -all < ¢ I T e

n>N or m>N

goes to zero. This proves (a). To prove (b), let An + A

with A_ compact. Given m, find A so that | A —AH<lm_l
n n(m) _ln(m) 2
and let Bm finite rank so that HBm = An(mﬂkim . Then BmfA

in norm.

Example 1. Let L2

+ L:denote the set of those potentials,
V, which for any €, can be decomposed as V = Vl & ¥ V2 "
r r

with Vv E L2 and V2 = E B with ”V £, Any
r

1l,e 2,2”m -



locally L2 function going to zero at infinity such as

Vi) = r_l on R3 is clearly in L2 + (Lm)s. We claim that
2. 3 L

for Ve LR™) + L GR3)E and any complex z not in o(-4) =

[O,=), V(-ﬁ-z)-l is compact. Suppose first that V g L2.
Choose u so that UZ = -z and Re u > 0. Then V(-A-z}-l has

the explicit kernel

V(x) exp(-ul|x-y|)/4n|x-y|

whiech 1is Hilbert-Schmidt. If now V is in L2 + L: and Vl E+
. r

V. o is the decomposition above, then V, E(—A—z) goes to
= -7

r
V(-4-2) L in norm and so the latter is compact.

We now have the tools for:
Theorem 5.3. Let V g L20R3) + LmGRBJE. Then -A+V has essent-
ial spectrum [O,»), i1.e. o(=4+V) is [0,=) together with a
(possibly empty) set of negative numbers whose only possible
limit point is zero and each negative eigenvalue has finite
multiplicity.
Proof. Let f£(z) = —V(HO - z)_l for z complex not in [0O,=).
Then f(z) has compact values and is analytic. Moreover, as
in Example 1 of Section 3, |[£(z)]] < 1 for z = ip with \ul
large. It follows that 1 - f£(z) is sometimes invertible,
and thus by Theorem 5.1, it is invertible for all z not in
a discrete set, D. It follows that (H-z) = (1 - f(z))(HO—z)
is invertible for all z in C\D v [0,®) s0 g(H) ¢ DV [0O,=).
Since EH—Z)_l has finite rank residues at points in D, one

can- show that points in D are eigenvalues of finite multi-

plicity. Thus UESSEH) C [D,=).

TE ceSS(H) is not equal to [0O,»), there is some
interval (a,b) ¢ [0,*) with (a,b) » ¢(H) = . We now
turn the above argument around. Letting g(z) = V(H-z)-l

so that



b, - z) = (1L - g(z))(H - z)

by mimicking the above, we prove that ceSS(H)fﬂ (a b) = @.
Since this is false, cess(H) must be all of [0,«=).

§6. BOUNDS ON THE NUMBER OF BOUND STATES

Since I have recently written a review article [40]
on this subject with fairly complete references, I will
settle for describing without proof some of the main re-
sults and for giving the reader some references to the
Russian literature [1,4-10,24,32] which through ignorance
I did not list in [40] - I should like to thank Prof.M.S.
Birman for bringing these to my attention.

Bounds on ng(V)

Let V be a central potential on R3 and let n, (V) be
the number of negative eigenvalues of -A+V with angular
momentum 2, not counting the multiplicity (22+1). The
first general bound on nk(V) is that of Bargmann [2]:
Theorem 6.1. n, (V) < (20+41) °[7 r|v(r)| dr while the
best bound I know is that of G2MT [16]:

Theorem 6.2. ng(v) 5 B(i,a)f; rza-l |v(r)[“dr for 1 < g < =
and

a=-1
Blia) = (e=1) T (2a) .

e¥ 1% (o) (2a#1) 202

Remarks. 1. As o ~ 1, GZMT yields Bargmann's bound.

2. Both bounds are best possible in that given any e, 2
and N there is a V with nL(V) = N and with the right
side of the bounds less than N+e.



Bounds on N(V) - 1 and 2 dimensiocns

Let N(V) be the number of negative eigenvalues count-
ing multiplicity of -A+V onRY. For v = 1,2 the basic re-
sult is negative [ 40] :

Theorem 6.3. For vy = 1,2: (a) Let ||:|| be a translation in-
variant norm. Then for anv N, and ¢ > 0O, there is a V with
V]| < ¢ and N(V) > N. (b) For no norm is N(V) < || V||* with

a > O.

The basic reason that Theorem 6.3 holds is that for
any negative V,-A+V has bound states in v = 1,2 dimensions
for any A > 0. See [38,11] for additional information on
this state.

Theorem 6.4. For v = 1, N(V) < 1 + fiwlxllv(x){ dx.

Remark. Theorem 6.4 is proven in [40] with 1 replaced by 2.
That 1 can be used follows by noting that if G (x,vy) 1s the
kernel for (-dz/dzx + G2)—l and K (x,y) is theukernel with
a Dirichlet boundary condition th:n Ga = Ku 1s the rank one

operator

(2&)—1 exp -ol|x] + |¥]) .

Bounds on N(V) - 3 or more dimensions

The first general bound is that obtained independently
by Birman [3] and Schwinger [34]:
Theorem 6.5. For v = 3:

_2 -
N <« (4m 72 [x-y|7? v | v | @x ady.
Recently, Cwickel [12], Lieb [25] and Rosenbljum [32] have’

independently proven the bound:

Theorem 6.6. For any v > 3



N(V) < c, f |V[x)\v/2 avx.

Remark. The constant in Theorem 6.5 is best possible in
the sense of Remark 2 after Theorem 6.2. The constant c,
in Theorem 6.6 is different in the papers of the three
authors (and not even explicit in [32]). Lieb's constant
seems to be the best of the three. It is probably not best
possible but it cannot be improved by more than about 33 %
without violating some explicit examples of [16].

Among the interesting subjects I will not discuss
are the large i behavior of N(AV), the pathologics in the
multiparticle case and the connection of Theorem 6.6 to
the problem of "stability of matter". See [40] for the
first two topics and Lieb-Thirring [27,28] for the second.
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