ON THE NUMBER OF BOUND STATES OF TWO BODY
SCHRODINGER OPERATORS — A REVIEW

Barry Simon™*

Given a measurable function V on R", consider the operator —A+V
on L2(R"). Under wide circumstances, this operator is known to be essen-
tially self-adjoint on CE"(R“) (see [1] for a review) and under more general
circumstances, it can be defined as a sum of quadratic forms [2, 3, 4l.
Physically, it reptesents the Hamiltonian (energy) operator of the particles
in nonrelativistic quantum mechanics after the center of mass motion has
been removed. For this reason, —A+V is called a two-body Schrddinger
operator. We will denote by N(V) the dimension of the spectral projection
for —A+V associated with (—o,0); physically the number of bound
states. If V is spherically symmetric, we abuse notation and use V also
as the symbol for the obvious function on [0, =), i.e. the one with V{(x)=
v{lxl). ng(V) for £ > 0 will denote the number of bound states of the
operator —d2/dx® + W+ D12 + V() on L2(0, =) (with the boundary con-
dition u(0)= 0 if £=0). Of course, for n= 3, one has the well-known

partial wave expansion which yields

NV) = 3 @ Dng(V)

{=0

For n> 3, similar expansions exist but are associated with some non-

negative nonintegral £. (For n=2, f - —1/2 enters.) It is an interesting
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question to relate qualitative properties of V to N(V) and (V). Re-
sults of this kind go back to Jost-Pais [5] who proved that N(WV)=0 if
fom t|V(n)jdr < = and Bargmann [6] who proved the celebrated bound:

oc

ny(V) < (22+1)'1f £ V(r)|dr .
0

Stimulated by Bargmann’s paper, something of an industry has developed
and we will review some of the results and methods that have emerged.
Throughout we will be cavalier about self-adjointness quéstions, but we
emphasize that these kind of details can easily be filled in by foliowing
e.g. [7].

§1. The Methods and Bounds of Bargmann and Calegero
As a common thread running through all work on the properties of N(V)
is the min-max principle of Weyl, Fisher and Courant which takes the

following general form:

THEOREM 1.1. Let A be self-adjoint operator which is bounded below,
and let Q(A) be its quadratic form domain. Let

Ha(A) = max min (&, Ad)
U tay |peldy iy Hilel <1
P eQ(A)

Then either:

(a) ,un(A) is the nth eigenvalue from bottom of the spectrum of A
counting multiplicity and A has purely discrete spectrum in (-, 1,(A))
or

(b) Hg is the bottom of the essential spectrum of A. If (b) holds,

then A has at most n-1 eigenvalue in (—e,p,) and -“n(A)="n+1(A)="

For a proof and further discussion, see {7]. A major corollary of the

min-max principle is the following:

- max(-V,0). Then
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COROLLARY 1.2 (Comparison Theorem). Let A and B be self-adjoint
operators with A< B in the sense that Q(A) D Q(B) and @, AY)<
G, By) for all ¢ ¢ Q(A). Then pa(A) < Fn(B) for all n and, in particular,

dim P(—w,a)(A) < dim l:’(—cm,a)(B)
for all a.

The proof is immediate. Since one has the following (see e.g. [71:

o0 (&) (€)
THEOREM 1.3. Let V¢ L™2@R™M + L; (R™) [for any e, V=V +V,
with V® e L2 and [V, <€l Then 0geq(-A+V)=10,) (a2 3).

One can apply Corollary 1.2 to Schrddinger operators:

THEOREM 1.4. -
(@) Let VeLY2 4 Ly and let V_ be its negative part, i.e. V_ =

N(V) < N-V_)
np(V) < ng(~V_) if V is central .
(b) Let V,We L2, Ly with V< W pointwise. Then
N(W) < N(V)
np(W) < ng(V) if V and W are central.
In addition to this result, the main input used by Bargmann is the
following:

THEOREM 1.5. Let V¢ CE"(R") be centrally symmetric. Fix > 0. Let

u be a solution of

"+ 0D 2u+ Vu=0; u(®=0.

Then ng(V) is the number of zeroes of 1 on (0,).
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REMARKS.

1. This result is true under much greater generality than V¢ C';".
However, for our purposes, this is enough. For a bound of the form
ny(V) < (2+1)~ ! f:rW(r)ldr, once proven for Ve Cg’ extends to all V
by a simple limiting argument.

2. Theorem 1.5 follows by a simple min-max principle which exploits
the Sturm comparison theorem; see [7]. Alternatively Theorem 1.5 can be
proven by combining Levinson’s theorem [8] with the method of variable
phases {9]; see [7, 9].

Martin [10] has remarked on an interesting ‘‘local’’ compatison theorem:

THEOREM 1.6 (Martin's local comparison theotem). Let u be any solu-
tion of —u” + {({+1)r 2 u+ Vu=0. Suppose that V>W on (a,b) and
that u has n zeroes in (a,b). Then np(W)> n-1.

REMARKS.

1. The proof is simple. By a Sturm comparison theorem, any other
solution of ~u” + E{+Dr2u+ Vu=0 has at least n—1 zeroes in {(a,b)
and therefore by another Sturm argument, any solution of —u” + [+ Dr2
+ Wu=0 has at least n~1 zeroes in (a,b).

2. As a typical application of this result, we note that so long as W
is strictly negative in some interval (a,b), [fim A—1/2 nE(J\W) >0, for
compare with a square wall. Moo

3, One can use Martin’s principle to prove [32]: If V(r) is a continu-

ous function on (0,) and f___(A) is the largest angular momentum for

max
which —A +AV has bound states on R3, then

nax®@ VA2 = [—min(2V)/2

lim ¢
- 00
Calegero [11] invented a very elegant method for exploiting Theorem
1.5. Incase £=10, it goes as follows: Let u solve —u” + Vu=0. De-

fine a(r) by
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(a(r)+ Hu’(x) = u() . (1)
Then, a(r} obeys the Riccatti equation
&) = ~VEr+a®? . 2

Now, by (1), a(r)>0 as - 0, in fact, a(r)= or). Moreover, if V<O,
(2) says that a is monotone increasing. A simple geometiric argument
(Figure 1) shows that the number of zeroes of u is identical to the number
of “poles” of a. The idea is to introduce an auxiliary function which is

a function of a{r), use (2) to get a differential inequality which can be

integrated.

y y=alr)

r
points where
/ u(r}=0
y=-T
Fig.{
ExaMPLE 1. Let b(r)= r—la(r). Then
b) = — VI {1+b@I2 — b . (3)

if no(V) = n, then b{r) has poles at p;,** Py and zeroes at z; = 0,

i .0
Zy, 70 2y {and perhaps at a zn+1) with z,<p;<Zy<p,y< <pp On
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(z;,p;), b is positive, so by (3)

b(r) < f| V()| (ble)+ 1)2

Pi P
= 1
1 ‘£ —%(m)df Sf v@)|dr .
i =y

Summing over i, we get the £ = 0 Bargmann bound [6]:

so that

oo

ng(V) < f fV(Didr .
0

EXAMPLE 2. Suppose that V< 0 is smooth and V'(r) > 0. Define v(r)
by )
tan 1(r) = (~V(O)/2 @al)+1) .

Then v obeys:

v'(e) = [VOIT/2 = L (v(/1V))) (cos? v tan 1) -

N i .
ow, if ny(V)=n, (a(t)+r) has zeroes z; = 0, z,,~-,2z; and poles,

Py, Py With 2z, <p <zy<--<p,. In (z;,p), tanv >0, so v (1)<

|V(D|1/2. Thus
7 & !
5 =f v(r)dr < [V()|} 2 dr .

z,
i Z;

Summing over i, we get Calegero’s bound [11]:

ny(V) < ,%f VOB
0
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REMARKS.
1. For [ #0, one defines g by:

w'{() [1"Z+1 +8g(r) r"e] = u(n[{+1) £ —Lap(r) r_e"l] .

Then a; obeys the Riccatti equation:
8 = — (2 1)IVE) (2B 4 g

Bargmann’s bound is proven by using by = r—zg—laz; see (9], pp. 182-184.
2. There is a connection between a(r) and the scattering length; in

patticular, [im a(r) is the scattering length [11, 12].

T

We cloge this section by stating formally some of the bounds on nE(V):

THEOREM 1.7 (Bargmann [6])

(20+1) np(V) 5f f|V_(r)|dr .
0

Calegero [9, 11, 13] has proven a variety of bounds on ng(V) among

which we mention:

THEOREM 1.8 {Calegero [11], Cohn {14]). Suppose that V is negative

and monotone increasing. Then:

n(V) < & f V@I 2 dr
0

THEOREM 1.9 (Calegero [11]). Let IP - fow dr P|V(D)|. Then:

ng(V) < 1+ 2 Q1)

1/2
agV) < 1+ 2 QgL ~19'7 .
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Glaser et al., have proven;

THEOREM 1.10 ([15]). For 1< p< =:

- —1yP-1 -
@17 ) € @ f?ij—;)z 2P=1|y()|P dr .
0

Notice that as p 1, this bound goes over to Bargmann’s bound.

§2. The Method of Birman and Schwinger

In 1961, the Russian mathematician, M. Birman, and the American
physicist, J. Schwinger, independently published almost identical proofs
of the following theorem:

THEOREM 2.1 (Birman [16] - Schwinger [17)). On R3:

Ny < L f dx dy |x-y| ™2 [Vl V@) - @

4y
The first step in the proof is to note that:

LEMMA 2.2, E is an eigenvalue of -A+AV with V<0, A >0, E<O0
if and only if A~ is an eigenvalue of Kg = |V|*/3(-A—E)~}|V|}/2 and

the multiplicities are equal.

REMARK. Formally (-A+AV)y = B if and only if Kgép =A"'¢p where
& = |[VI~1/2Wy. For a careful proof, see [3].

The second step is the simple but elegant:

LEMMA 2.3. The number of eigenvalues of -A+V less than E<D, is
the number of A ¢ (0,1] for which E is an eigenvalue of —A+AV.

PROOF. Let p (A) be given by the min-max principle for —A+AV. Then

#a() <0 forall A and decreases as A increases. Moreover, ) 1 0
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as A ¢ 0. Thus the number of y (1) less than E is identical to the
aumber of p, for which @) =E for some A ¢ (0, 1]

The two lemmas immediately imply the following basic ‘‘Birman-

Schwinger’’ principle.

THEOREM 2.4. Let V<0, E<O0. The number of eigenvalues of -A+V
in (—o,E] is the same as the number of eigenvalues of Kg =

|V[1/2(_A_E)“11V|1/2 in [1,%) (counting multiplicity).

PrROOF OF THEOREM 2.1. The numbet of eigenvalues of K larger than
1 is clearly dominated by the sum of the squares of the eigenvalues which

equals Tr(K%:). Since (~A—E)~! has an integral Kemel (4n)"1[x—yl"1
exp (—/—E|x-y|), we see that:

Np(V) < A f dx dy lx—yl—zmvcx)iW(yne"“‘l"*ﬂ (5)
(4n )

where E = —k? and NE(V) is the number of eigenvalues in (-2, El;
(5) is also a bound of Birman-Schwinger. Taking E 1 0, (4) results.

REMARKS.
1. By a classical inequality of Sobolev (see e.g. [1]),

[ dx dy|x-y| 2|V} VI < CIVIGp where IVlp = (V[P dn)!/2. Thus
NY) < CIVIS ®)

We return to this in Section 3C below.
2 See Ghirardi-Rimini [18], Fonda-Ghirardi [19] and Konno-Kuroda [20]

for modification of the Birman-Schwinger bound.
§3. Further Applications of the Birman-Schwinger Principle
A. Recovery of Bargmann’s Bound [16,17]. Let h, be the operator

e ]

d

& | -2 P(f+1) on L%(0, «) {with boundary condition u(0) =0 if £=0).
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Then, as in the proof of Theorem 21,

1A

(V) < fim Tr([V_|1/2(h,—E)~!|V_}1/2)
Et0

Tr(V_|1/2n5tv_|1/2) 7

Now ha 1 is an (unbounded) integral operator with kernel
(2ll+1)‘1[min(x,y)]E“{max(x,y)]_g, so the trace in (7) is fom(2f3+1)"1x|V_(x)

which gives Bargmann's bound.

B. Low-Dimensions. Students in a first quantum mechanics course,
learn that if V is a negative spherical square wall in R®, then -AV
has bound states for all positive A if n=1 and has no bound states for
small A if n=23. Whatabout n=2? There is some confusion about
this question in the published and preprint literature — we first learned the
correct answer from M. Kac. The Birman-Schwinger principle is ideal for

studying this question:

THEOREM 3.1. Consider —A+AV on L2R"Y for n=1 or 2. Suppose
V<0 and Ve LP+LY with 1< q< = and p>1 if n=2, p=1 if
n=1 [in this case ~A+AV can be defined as a sum of forms, I{E is &

bounded, compact operator and Oegs(—A+AV) = [0,)]. Then NOV)> 0
for all A-> Q.

PROOF. By the Birman-Schwinger principle, we must show that for any
A>0, thereis E< 0, so that KE has an eigenvalue larger than A%,
Since K: is positive and compact, it clearly suffices to prove that

lim |Kg| = =. This follows if we prove that fim ,Kon) = e for some
EH]II | p Efo(q M

fixed n¢ L%, Let 17 be the characteristic function of some bounded set
on which V obeys a < V(x)<a~! forsome a>0. Let f= |V|1/2n €
LtnL?, >0 so fis nonvanishing near 0. Thus
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B

fim f |fp)|? (p2-E)~! d%
ET0Q

f 1fp)2 p=2 d"p

ET0

diverges if n=1 or 2.

REMARKS.
1. As we shall see in Section 5, if V¢ L*2(R™ and n> 3, then

NAV)=0 if A is small.

2. If VeCyR™, n=1,2 with V<0, then NAV)=1 for A small
by the following argument: Place Neumann boundary conditions on a
sphere, S, containing suppV. This can only increase dim P(_m,o) (see,
e.g. [7). But S breaks R™ into a ball B and an exterior E. —-Ay is
positive on L%E) and since —AN on L2(B) has an isolated simple
eigenvalue at 0, —Ay +AV can have at most one negative eigenvalue for
A small.

3. Let ||| be atranslation invariant norm on C"o"(Rn) (n=1,2).
Then, given any m, ¢, we can find V¢ Cy with |V]|<e and N(V)> m.
For pick any fe Cg' with £<0 and [f[] <e/m. Since —A+f has at
least one eigenvalue, —A+V will have at least m if V is the sum of
m translates of f all sufficiently far from one another. Thus, there is no
bound if n= 1,2 of the form N(V) < function of a translation invariant
norm. The situation is very different if n> 3 (see Section 3C).

4. If n=1, we have the bound

N(V) < 2+f b [V _(x)ldx (8)

for, let —AD be the operator with Dirichlet boundary conditions at x = 0.
Then, by Bargmann’s bounds in each half-space, ~Ap +V has at most
f:aixl |V_(x)|dx eigenvalues in (—e,0). Thus, since _éD*'V ‘afld
—A+V are self-adjoint extensions of a common operator with deficiency

indices (2,2), (8) follows.
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5. Theorem 3.1 illustrates that Calegero’s bound, Theorem 1.8 does
not hold for all V.

6. It is false that if V is negative somewhere on R, then -d2/dx2+V

has negative bound states. For example, if V(x)= -1 for |x| < n/4,
V(x) = 4 for n/4< |x| < 7n/4+2; then —d?/dx?+V has no bound states.
One can show [21}if n=1,2 and [ix|?|V(x)|dx< = if n=1 (Jad+
[x|2)3|V(x)|d2x < oo and f|V(x)t1+6dx <w if n=12), then —A+AV has
a bound state for all small A if and only if [V(x)d"x< 0.

C. Quasi-Classical and Almost Quasi-Classical Bounds. The basic
principle of the quasi-classical limit to quantum mechanics is that each
bound state requires a volume h® in phase space. Thus, in units with
h=1=2m, on R"

Neg(V) = (2m) "7y f(v_(x»"/ 2 dx ©

where 7, is the volume of the unit ball in R™. 7 [(V_(x))*?dx is the ~

volume of phase space <p,x> whete p2+V(x)< 0. As we discuss in
Section 4, there is a sense in which N(V) and Ng(V) become equal when
V is large. There is a general conjecture which has been made by Glaser
et al., [15], Simon [22] and E. Lieb [23]:

CONJECTURE. Let n> 3, There is a constant C, so that
N(V) < C, N (V) (10}

for all VeLM2,

REMARKS.
1. In fact, Glaser et al., [15] suggest that 03 = 8/J§ and prove (10)
for n=3 whenever N(V)< 2.
2. For n=1,2, (10) fails by our remarks in 3B.
3. As we shall see, (10) holds as N{V) - w, in the sense that
fim NOV)/NpAV) = 1.
Ao o
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4, In general, for suitable C,, (10) holds with N(V) = 1 (see Section
5) and then, by an argument of Glaser et al., [15], for N(V) < 2.

S. Simon [22) has proven (10) is equivalent to a natural conjecture in-

volving “‘weak trace ideals.”
6. By a limiting argument, (10) need only be proven for Ve Cy.

(10) says N(V) < CoIV_[|/% where l\v_ll§= f1V_{Pdx. Using the

Birman-Schwinger principle and interpolation theory for weak trace ideals
(developed in [22]), one can prove:

THEOREM 3.2 ((22]). Let n> 3, e¢> 0. Then, there exists a constant
Dn' so that

NOV) < Dy (Vg IViga ™2 - (11)

REMARK. As we discuss in Section 4, this estimate, unlike those of
Bargmann and Birman-Schwinger, has the proper large coupling constant

behavior,

D. The Lieb-Thircing Bound. In their beautiful paper on the stability

of matter, Lieb and Thirring use the Birman-Schwinger bound (5), to prove:

THEOREM 3.3 (24]). Let n=3. Let VeLS/2(R?). Let e (V)<
e, (V)< - be the negative eigenvalues of —A+V. Then

S el < & | VP (12)

SKETCH OF PROOF. By (5) and the comparison theorem:

N (V) < Ng ,,(V-E/2)])

< (4my~? f (V-E/2)_(x)(V-E/2)_(y) |x-y| 2 e~ VIE x|

< (4myZEY! f (V- $E)_(x)|2 dx
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by Young’s inequality. Now:

W)
3 le)l = f |EJ dNy,

0
= f N dE

< (4w\/§)_1fdxf e~ 12 |(V+1/2a)_(x)|2 da
0
which yields (12).

REMARKS.

1. Similar results hold for sums Zlei(V)P’ for other v and for n
different from 3, see [25].

2. This theorem is especially interesting since the quasi-classical
value for ztei(V)| is (1572)~1 FIV_@)%/2 a3x.

84. Large Coupling Constant: The Quasi-Classical Limit
The number of bound states of —A +AV- is the same as that for
~A"1A+V, so that large A is the same as small h. Thus one expects

the quasi-classical approximation to be good. Martin [26] has proven:

THEOREM 4.1 ([26]). f V is a Hblder continuous function of compact

support, then,
)thim N(AV)/Nd()\V) =1. (13)

Martin uses the method of Dirichlet-Neumann bracketing {27, 7], Inde-
pendently of Martin, Tamura [28] proved (13) for a wider class of V.
Since NgAV) = A"ZN g(V), (13) gives the large A behavior of
N(AV). It shows that for A large, the Birman-Schwinger bound which
~ cA? is not good. The advantage of the bound (11) is that it gives the
proper large A behavior. Using (11), one can prove:
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THEOREM 4.2 ([22]). Let n> 3. Let V¢ L™E M L%, Then (13) holds.

§5. Small Coupling Constant; When is N = 0?

The question of when N = 0 was first asked by Jost and Pais [5];
more recently, it has beea deeply studied by Glaser, Martin, Grosse and
Thirring [15]. In the one-dimensional case, special interest is connected

with this problem because of the following remark of Glaser et al., [15]:

THEOREM 5.1. Let a(V)= fo”f(x)IV(x)lp for £>0. If a(V)< 1 implies
that 0= N(V), then, forany V,

N(V) <€ a(V) .

PROOF. Let n= N(V). Let u be the zero energy solution of the
Schrodinger equation. Let x, = 0, %y, Xp be its zeroes. Let V;=
Vxi where y; is the characteristic function of (x;_; S XD Then u,; =
uxj € Q=d?/dx?+Vy), (uj,(~d?/dx®+Vpup = 0, so N(V)> 1. Thus
a(v,)> 1, so a(V)> 2 a(vy) > n.

Thus the Jost-Paislresult [5] implies Bargmann's bound [6]. The
bounds of Glaser et al., [15] quoted as Theorem 1.10 are proven by using

Theorem 5.1 and the resuits below.
THEOREM 5.2. If [||V|1/2(-A)~1 (y|1/2|| < 1, then N(V)= 0.

PrROOF. This follows from the Birman-Schwinger principle, but also by
an alternate proof [15]: If || \Vll/z(—A)"IIVP/ZH <1, then V| < -A
so —A+V > 0 which implies N(V}=0.

THEOREM 5.3. Let n>3 and p > n/2. Then, there is a constant Cn,p

so that if
Ch,p f x| 2P~ V_@|Pdx< 1, (14

then N(V)=10.
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p .
ROOF. It is well known that r—2 <C p2 if n>3. Thus r~1lp~2,-!

P
is bounded from L2 t 2
, o a o L-, By Sobolev’s inequality p~2 is bounded
rom L™ to L where 45

=1/2+1/n and p’ = (1-p~ 1), Thus
by the Stein mterpolatlon theorem, r~%p~2r~2 s bounded from an t
o
L =1/2+n0 Y(1-q). Asa result, if —2yl/2 LY/ {-a)
v (—\A)'"IV”2 is bounded and if |jr@v1/2||

N(V) = 0. This is just (14).

p%a where q_

n/1—g S Dn,aJ then

REMARKS,

1. For n=3, this result is independently due to Glaser et al., [15]
2. That r—%p—2;—a ’ . '

Strichartz [29].

is bounded from an to an is a result of

3. One can use the same argument if n=1, p> 1 if we deal with
: 2
the operator —d?/dx? on L2(0, ) with boundary condition u(0) - 0:

one int “1p-2—
erpolates between r~!p=2r~! bounded from L? to L2 and that

-1/2 -2 -1/2 .
r p4r is bounded from L! to L*™: The later follows from the

L ~1/2 _. -
explicit kernel x min(x, y)y~1/2 of the integral operator 1.——1/2p—21.—r} =

The above theorem leaves open the question of the best value of the

constant C

np Glaser et al., {15] proves:

THEOREM 5.4, Cs3,p = @-DP~'02p)/4npPIN@)2. For n=1 with

Dirichlet boundary conditions:

= (p—1)P- 11 @2p)/pPIT(p))? .

In the above, we have considered the question of when N(V) is zero.
If N(V) is zero, there is some possibility that —A and —A+V are
unitarily equivalent. This problem is discussed by Kato [30] (small coup-
ling) and Lavine {31] (repulsive interactions).

§6. Other Results

We want to briefly describe some further results about N(V) giving

references to additional literature. The really interesting open questions
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involve n-body problems. There are no known general hounds on the
number of eigenvalues below the continuum limit: As we shall see (C and

D below), there are various pathologies which make obtaining such bounds

difficult.

A. How does Ng(V) approach infinity if N(V)==? We have already
seen that if Ve L82 (n > 3), then N(V)< . Asa complimentary result,

one has the following:

THEOREM 6.1. If V()< —Cr 2*¢ for |1 >R, for some C,e> 0, then

wa(-A+V) <0 for all n. In particular, N(V} = =.

REMARKS.
1. Of course, if V> ~Cr2-% then N(V)< = by the L"2_bound.

2. One can actually show V< —-(cn+ 3] 2 implies N(V) = e and
V> —(cg—)12 implies N(V)< e for suitable c;. ¢, = 1/4 if n=1,3.

3. For more details of the proof, see [27,7].

SKETCH. Let ¢ be a fixed function with support in tx| 1< (x| < 2h. Let
-2 a—2teEc

(%) = (27 "x). Then, for n large, @  (~A+VIP ) < enT T =cpn
so one can find an infinite orthonormal set with (b, Hop ) =0 if ndm

and (¢, Hep )< 0. It follows that g (H) <0 forall n.

Suppose now that o,  (—A+V) is [0,0). Then Ng(V)t = as E* 0.

One can ask how. As one might expect, this limit is one where quasi-
classical (i.e. phase space) consideration predominate; see Brownell-Clark

[32], McLeod [33], Tamura [34] or Reed-Simon [71.
B. N-Body; Small Coupling. For small coupling N-Body systems, one

can show that N(V) is zero by the general principle:

THEOREM 6.2, Let Vij (1< i< j< n) be potentials on R3 with
NG (a-1)V;) = 0 for all i,j. Then
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n
H= - 2 Ai+ 2 Vij(ri-rj)

i=1 i<j

has spectrum contained in [0, w).

p .
ROOF. Since ——Ai-—Aj= —l/m[ij]—M(ij) where {ijl is associated

with 1/2(r; + rj) and (ij) with SRLE Thus
— . .. 2
203 vi2 3 gy s vy

i<j

_ 2 {_ n=1

DTt B+ Bt Vig) 2 0
i<j

by hypothesis.

For results on when — 2 A; and - 2 A+ z vij are unitarily
i

equivalent, see Orio-0O’Carroll [35] (small coupling) and Lavine [31]

{repulsive potentials).

C. The Effimov Effect. Effimov [36] has suggested the following:

Let V be a fixed short range spherically symmetric potential. Let
HQ) = -A, -A2 —A3 + A[V(rz )+ Virg )+ V(rza)}

and let H(A) be H() with the center of mass motion removed. Fix A to

be the coupling constant at which —2A+AV has its first s-wave resonance.

At this value of A, it is claimed that H(A) has infinitely many bound
states.

The point of this prediction is that the occurrence of an s-wave
resonance sets up an effective long range force. The occurrence of such
an effect shows the difficulty of establishing bounds on the number of
bound states in the N-body case.

For further discussion of this effect, see Amado-Noble [37] and
Yafeev [38].
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D. Two-Body Continuum Limit. 1t is a basic theorem of the spectral
theory of multiparticle Schrddinger operators that for a large class of
potentials, the continuous spectrum of the Schrddinger operator is [Z, )
where 3 is determined as follows: let C,,--, Cy be a breakup of the
n-particles into clusters. Let E .-, E} be eigenvalues of the Hamilton-
ian associated to clusters Cl,---,Ck with their center of mass motion
removed (if #(C;)~ 1, E; must be 0). Then 3 =min(E;+-+ Ep)
where the minimum is over all breakups into clusters and all choices of
eigenvalues. This is a result of Hunziker [39], Van Winter [40] and
Zhislin [41]; see also Jorgons-Weidmann [42] or Reed-Simon {71

There is considerable information available about N(V) in case X
is determined by a breakup into two clusters. An example of this is the

case of atoms where one has the result of Zhislin [41].
THEOREM 6.3. Atoms have an infinite number of bound states.

REMARK. For Helium with an infinitely heavy nucleus, this is a result

of Kato [43].

In case S is determined by a two cluster breakup, one has the follow-
ing intuition [44]: If the sum of the potentials between the cluster is a
long range two-body potential (i.e. r—2%E at infinity), then the number of
bound states is infinite. If this sum is a short range (i.e. r™2¢ at in-
finity), then there are only finitely many eigenvalues in (o0, X). Under
suitable technical hypothesis, the former was proven by Simon [44] and

the latter by Combes [45). One result of this is the following [44]:

THEOREM 6.4. There exist three two body potentials V,,V,,V,, so

that
HA)Y = -3, -3, AV (1) + AV,{(r) + AV, -1,)

has the following property. There are B <Ay <Ay < - so that if
Ael0,AUQR AU U Ayprran) HQ\) has linitely many eigen-
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values in (~o, Z(A)) and if A ¢ [Al,)\z]u ---U[AZH_I,)LG]U -« then

H(Q\) has infinitely many eigenvalues in (—eo, ZQA)).

For additional information on bound states of N-body systems, see
[46-51].

ADDED NOTE.
During the production of this book, three interesting new papers on

N(V) appeared. A. Martin (CERN preprint) has proven that
N(V) < @m (VI Vi)

in three dimensions. E. Lieb (Princeton Preprint) and M. Cwikel (IAS Pre-
print) have proven the general conjecture discussed in the text, that for

n>3

n/2
N(V) < Cn|1V||n,2 .

Both bounds have the correct latge coupling constant behavior.
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