QUANTUM DYNAMICS:
FROM AUTOMORPHISM TO HAMILTONIAN

Barry Simon™

We describe the mathematical arguments involved in passing from a one-
parameter measurable group of automorphisms of the basic quantum structures to
the Schradinger equation.

§1. Introduction

Every student of quantum mechanics learns in a first course that
quantum dynamics is governed by the Schrédinger equation ih} = Hif.
Howe#ex, even professional quantum mechanics who have delved into the
axiomatic foundations of quantum theory are sometimes unaware of the
full chain of argument leading from the primitive version of dynamics as a
one-parameter continuous (or measurable) group of automorphisms of the
axiomatic structure to the Schrédinger equation. Our goal in this note is
to put down in one place this full chain of argument. We expect the ex-
perts will find nothing new here and we do not intend a review of the
literature. This note will have served its purpose if the student of the
foundations of quantum theary is able to find here, in one place, things
which would have formerly taken him into five or six research articles.
The traditional route from continuous automorphisms takes the following
steps:

(1) Wigner's Theorem. Every automorphism js induced by a unitary
or antiunitary, uniquely determined up to & phase.

(2) Bargmann-Wigner Theorem. Given a one-parameter continuous
group of automorphisms, the phases of step (1) can be chosen so that the

corresponding family of unitaries depends continuously on the parameter.
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(3) Multiplier Problem for R. Steps (1) and (2) lead to a family of
unitaries U with U(a)U(b) = w(a, b)U(a+b). There is a function A(a)
with w(a,b) = Aa+b)A(@) 1 A(b)~! so that U(a) = Ula)A(a) obeys
U(a) Ub) = Ula+b).

(4) Stone’s Theorem. Every one-parameter strongly continuous group
of unitaries is of the form U(a) = exp(~iaA) for some self-adjoint
operator A,

We intend to follow a slightly longer route to prove a result slightly
stronger in two ways. First we wish to consider several different meanings
of automorphism which a priori might be very different. Step (1) is then
several theorems including results of Wigner [1] and Kadison [2]. Secondly,
we wish to assume a priori only that the automorphisms are (Borel) measur-
able so that steps (2) and (3) take on a slightly different content. Before
step (4) we must insert

(3%) Von Neumann’s Theorem. Every weakly measurable unitary

representation of R is strongly continuous.

§2. What is a Quantum Automorphism?

Let K be a separable Hilbert space. Depending on which axiom
scheme one adopts, one is led to various a priori notions of automorphism:

(1) Wigner automorphism: Let P(H) be the complex projective space
for M, i.e. identify ¢,n e H with [yl =lsll =1 if ¢ = ap for some
a= eie ¢ C. PH) is the family of equivalence classes under this relation.
By definition, <[¢],[3]> = <, 9>|. A Wigner aufomorphism is a bijection
a:P3O > PG such that <aly),aln]> =<@llpl> - t > a, is called
measurable if t -+ <at[r,b], [7]> is measurable for all [l ] « PH). An
alternative way of describing P(H) is as the space of all projections P(/,
of rank one. Then <[¢],Igl>= Tt (1='¢1=,,)1 2

(2) Kadison automorphism. Let S(H) denote the set of density
matrices on H, i.e. trace class operators p with Tr(p)=1, p2>0. S30
is & convex set and a Kadison automorphism is a map B8 :SH) - S

which is a bijection and which is affine, i.e.
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Bltp; +(1-0p,) = tBG) + (1-0B(p,)

all p,,p, ¢ 8GO, 0<t< 1. A family t- B is called measurable if and
only if t- Tr(8,(p)A) is measurable for all p 8, A¢B(H), the bounded
operators on K.

(3) Segal automorphism. Let B (H) denote the bounded self-adjoint
operators on H endowed with the natural linear structure and the Jordan
product:

AsB = 1/2(AB+ BA) .
A Segal automorphism is a bijection y: 31,(]'() -+ $r(}() so that y is linear

and
y(A°B) = y(A) o ¥(B) .

If this condition is only assumed for commuting A and B, we call y a
weak Segal automorphism. t - Yt is called measurable, if and only if
t- (x,b,yt(A)l,b) is measurable for all A ¢ fBr(K) and ¢ ¢ H.

Wigner automorphisms arise in a framework of analyzing quantum
mechanics in terms generalized Stern-Gerlach experiments and overlap
probabilities (see Ax [3] for a recent treatment). Kadison automorphisms
arise in a framework describing general states and observables (see von
Neumann [4} or Mackey [5]). Segal automotphisms arise in a framework
that emphasizes the structure of observables (see e.g. Segal [6]).

A priori the four types of automorphisms appear very different although
each does seem to capture an important property of a symmetry. Wigner
automorphisms preserve the basic objects of the theory as viewed from an
overlap probability point of view, Kadison automorphisms are based on
the interpretation of convex combinations of states as statistical mixtures.
Weak Segal automorphisms are based on the notion of expectations of com-
muting observables. I see no simple physical reason why these families
of automorphisms are essentially the same; in fact, if ‘‘automorphism’’ is
replaced by “‘endomorphism’ {bijection no longer required), then the

families are no longer the same! Nevettheless, one has:
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THEOREM 2.1 (Wignet’s Theorem). Every Wigner a_utomorphism is of the

form

aly] = Uyl
where U is either unitary or antiunitary and is uniquely determined up to

one overall phase, i.e. if aly] ={U¢], then U’ =aU with a= 0,

THEOREM 2.2 (Kadison’s Theorem). Every Kadison automorphism is of

the form:

B(p) = UpU*

for a unitary or antiunitary map U unigquely determined up to a phase.

THEOREM 2.3. Every weak Segal automorphism is a strong Segal auto-

morphism and is of the form
y(A) = U*AU

for a unitary or antiunitary map U uniquely determined up to & phase.

¥

We remark that Wigner’s Theorem looks more like the others if we

write it in terms of projections:
_ *
Pa(¢) = UP:,[JU .

We write Theorems 2.2 and 2.3 as UpU* and U*AU so that
Tr(8(p)A) = Tr(py(A)), i.e. the B and y associated to a fixed U are
related by the distinction between the Schrédinger and Heisenbetg pictures.

These theorems have been compared (e.g. [5]) to the fundamental
theorem of projective geametry (7]; this theorem says that given any map
a: P(V) » P(V), the projective space of a finite dimensional vector space
V over a field F, which takes lines in P(V) into lines we can find
U:V -V sothat a((y]) = (Ug]l. U will be additive and obey U(afr) =
m(a)(Uy) for some automorphism m of F. Galois theory yields many
automorphisms of C other than the identity and complex conjugation, so
the theorems, while related, are certainly not equivalent; we discuss this

further in Section 4.
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The main ‘‘super theorem’’ of this note is the following:

THEOREM 2.4. Let t-a,(resp. B,,y;) be a map from R to the Wigner
(resp. Kadison, Segal, weak Segal) automorphisms which is measurable
and obeys aiag=a, o (resp. for B or y). Then, there exists a self-
adjoint operator H (not necessarily bounded) unique up to an overall

additive constant so that

a,(y] = [emiHby]

(tesp. Bylp) = e™Wpetit; y(a) = eltfaemitH) .

§3. The Two-Dimensional Case

The two-dimensijonal case of Theorems 2.1-3 is not only a preliminary
step in the general case, but provides a simple insight into the theorems:
the unitary vs. antiunitary choice is related to the fact that isometries of
Euclidean three space are either orientation preserving (‘‘pure rotations’’)
or orientation reversing (‘‘reflections’’). This remark and much of cur
discussion in this section follows Hunziker {8].

All three types of automorphisms involve self-adjoint operators, so we

()
% " \p -1

(L o)
27\ o

will exploit the fact that the matrices

-G
()

are a basis for B(C2), as a real vector space. If

- -3
A=ac+ac

then

UAU* = a + R{Ma o
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where R(U) is an orientation preserving (resp. reversing) isometry if U
is unitary (resp. antiunitary). The map R is onto all isometries and

R(U) = R(U") if and only if U= ei%U’. We will not prove all these facts
from scratch, but assume the reader is familiar with the two-to-one map of
SU(2) onto SO(3). Given this, the general unitary case follows from the
fact that any unitary U is of the form eiefl with U e SU(Z) and eld
determined up to +1. The antiunitary case follows by noting that if U 'is
the natural complex conjugation on C2, then R(U) is just reflection in
the plane, orthogonal to the 2 axis and that any antiunitary is the product
of a unitary and the complex conjugation.

(1) Wigner Automorphisms. The rank one projections are precisely of

the form

P(3) = 1/2(1+a-a); la| =1

so any Wigner automorphism is associated with a bijection of the unit

sphere in R3. Since

- o e

2Tr(P(a)P(B)) = 1+a-b,

this map is an isometry of the sphere and hence a “‘pure rotation’’ ot
“relection.”’

(2) Kadison Automorphisms. The $(C?) operators are precisely of

the form
lal <1

%(1+§-3);

so any Kadison automorphism is associated with an affine map of the unit
sphere onto itself. Such a map is isometry of R3.

(3) Segal Automorphisms. Let y be a weak-Segal automorphism. Then
y clearly takes the orthogonal projections onto themselves since it pre-
serves P2 = P. Since 1 is the unique projection of the form P, +P,
for non-zero projections P, Pp; y(1)= 1. Thus y also induce in a map

: . 3
of the rank one projections to themselves and so of the unit sphere in R

to itself, i.e.,

-

y(a+;-(_;) =a+Mao
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where M is a linear map taking the unit sphere to itself. M is thus an
isometry of R3. Since every weak-Segal automorphism is of the requisite

form, a fortiori every Segal automorphism is of the requisite form.

§4. Wigner’s Theorem

In this section we prove Theorem 2.1. We use the letters p,q,--- to
denote points in P(H), i.e. “‘rays’” in H. The linear structure of K in-
duces a geometric structure on P(H), as is well-known [7}; if MC K is
a subspace of }, we denote by P(M), those p«¢ P(H) which arise from

tays in M.

LEMMA 4.1. If g is a Wigner automorphism and M C H is a k-dimensional
subspace, then there is an M" (denoted by a(M)) also of dimension k so
that a(p) e M if and only if p e M.

PROOF. Let ¢, -, be an orthonormal basis for M (we write M=
[qSI,---,qSk]). Pick representatives -, ¢}, for a([¢1]),---,a([¢k]) and
let M” be their span. Sincekthe {s; are orthonormal, M’ has gimension k.
Now pe¢M if and only if i=21 <p,[#;] >2 = 1 if and only if ifl <a(p),

al$;]>% = 1 if and only if a(p) e M~ 1

REMARE. In the language of projective geometry [7], we have just proven
that « defines a collinealition. Below we reduce Wigner’s Theorem to the
three dimensional case. We could prove this three dimensional case by
appealing to the fundamental theorem of projective geometry. This would
leave open an arbitrary automorphism of C which we could prove was
either the identity or the conjugation by appealing to the two-dimensional

case (Section 3).

LEMMA 4.2. For any two dimensional M C K and any Wigner automorphism,
a, there exists a unitaty or antiunitary map U:M »a(M), unique up to

phase, so that alp] = (U]

for all ¢ ¢ M.
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PROOF. Let ¢,.¢, bean crthonotmal basis for M and choose t}.’fl,l,llz
so that a[d;] = [#;]. Define a unitaty V ra(M) > M by Vi;=¢;. Then
B:P(M) - P(M), givenby B =ayca with aylyl=[V¥] is a Wigner
automorphism. The lemma follows by appealing to the two dimensional

case (Section 3). il

LEMMA 4.3. If the map of Lemma 4.2 is unitary (resp. antiunitary) for one

M C K, it is unitary (resp. antiunitary) for all two dimensional W’ C l.

PROOF. There is a direct algebraic proof (see page 89 of [7]), but we
prefer to develop a suggestion of Bargmann, Let us topologize P(H) by
putting the metric
P(PsQ) =1 -<an>

on it (to check it is a metric, we note for any W ep, thereis an negq
so that %INJ—”" = p(p,q) and use the triangle inequality on X). Clearly,

any Wigner automorphism is an isometry on P{) and so continuous.

Given p,q,re P(H), following Bargmann {9], we define a number -

¥(p,q,t) by choosing ¢y ep, nedq, yer and letting
(. q, 0 = <, q><ny><y, >

and noting that ) is independent of choice. x is jointly continuous,
since given p, -+ p, we can find i, € py, Y ep sothat ¥ -l 0.
Let ¢ and ¢ be orthonormal vectors and let p, g, ¢ be given by

p=[yl; a=Inl, n- \—}iopﬂﬁ); e= [, y=% @ —i$) -
Then ¥{(p.q.1) = flT (1+i). Let M be the two dimensional space spanned
by i,¢. Then the map induced by a via Lemma 4.2 is unitary (resp.
antiunitary) if and only if y{a(p),a(®),a(r))= i— {1+1) (resp. ‘11— (1-1)
Given another M” we can continuously vary ¢ and ¢ to ¢, ¢’ gener-
ating M” and so p,q,r to p,g,r so by continuity X(a(p),a(q),a(r))
will be }T (1+i) if and only if x(@(®), a(@), a()) = }T (1+i).1
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LEMMA 4.4. Let X have dimension 3. Let a be a Wigner automorphism
and ¢, ¢y, ¢5 a basis for K. If a leaves the subsets P(¢,,¢,]) and
P(¢,.$,;]) pointwise fixed, then a is the identity.

PROOF. Let 5= ag, +bp,+cé, with a £ 0 and real. We will first
prove that a({yl) = [n]. Pick n” caly] with (¢;,7") = a which fixes 5"
Set b’ = (¢,,n"). Now since ([5],[¥])=({7')lyD) for ¥ = ¢,

L (¢ +by) and L @, +i,), we have

vZ V2

Ib| = |b’|; |a+b| = |a+b{; |a—ib| = Ia—-ib’{ .

For fixed b, the last three equations on b’ require b’ to lie on three
circles which intersect only in one point. Thus b’ = b. Similarly ¢’ =c¢

so ' =n. The a=10 case follows by continuity. |
LEMMA 4.5. Wigner’s theorem holds in case dim H=3.

PROOF. We only prove existence; uniqueness follows as in the general
proof below. Given U unitary or antiunitary, let ay be the induced
Wigner automorphism. Given e, a Wigner antomorphism, it clearly suifices

to find U,,-~, Uy so that aUkD eeo aul oa =id since then a = a; with

U= Ul“1 Ugl. Pick a basis ¢,,¢,,¢, for K and gri gy, g so that
a(($;) = ;). Define U, to be the unique unitary (resp. antiunitary) with
Uy = ¢; if a is unitary (resp. antiunitary) on two dimensional subspaces.
Let a; = ay, oa. Then a,(I$;]) = [¢;] and is unitary on two dimensional
subspaces. Now, by the two dimensional theorem, we can find a unitary
Vl :[¢lr¢2] i [¢11 952] S0 that al r[¢1:¢2] = avl- Let U2 = Vl_l on
[¢,.#,] and the identity on [¢;]. Then a, = ay ca, is the identity on
[¢,,¢,] and on [gba]. Applying the two dimensional case to [¢,,¢,],
we can find V,:[$,, 3] > [$.p,] sothat a, P[¢1,¢3] =ay, and we
can fix the phase so that V,¢, = ¢,. Let U; = v;! on [, ¢,] and
the identity on {¢,] (and so on all of [¢,.#,]). Then oy ca, is the

3
identity on {¢,,¢,], and i¢,. qb3] and so the identity by Lemma 4.4. 1
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LEMMA 4.6. For any three dimensional M C H and Wigner automorphism
a, there is a unitary or antiunitary U:M - a(M) so that alyr] = [Uy] for
all e M.

PrROOF. As in Lemma 4.2,

PROOF OF THECOREM 2.1. Without loss, suppose a is unitaty on two-
dimensional spaces. Fix ¢ ¢ K and ¢ ¢ alpl. Givenany ne K, let M
be the span of ¢ and 5. By Lemma 4.2, find Vy, :M »a(M) inducing a
on M with its phase determined by Vy¢ =4. Define Up to be Vyn.
We must prove U is linear, so given n,,7, € H, let N be the span of
b, My My BY Lemma 4.6 we can find a unitary W:N » a(N) (it can’t be
antiunitary since its restrictions to two dimensional spaces must be
unitary!) inducing 2 on N. By change of phase we can suppose W = .
Since the restriction of W to any two dimensional MCN is unitary,

WiM=V, andso UPN=W. Since W(an, +bn,)= aW(n,)+bW(n,), U

P

is linear. By construction U is norm preserving. In the above construc-

tion only the phase of ¢ is arbitrary. |

§5. Kadison’s Theorem

Following Roberts-Roepstorff [10], we prove Theorem 2.2 by reducing
it to Theorem 2.1. This reduction is essentially part of an argument of
Hunziker [8). For MC X, a subspace, 8(M) is the subset of SH) of
those p with RanpCM.

LEMMA 5.1. Let B be a Kadison automorphism. Then for any two
dimensional subspace MC H, there is a two-dimensional subspace

B C H so that BIS(M)] = S(BOD).

PROOF. S(M) is a face of the convex set S(H) with the property: there
exist two extreme points u,v e SO so that S(M) is the smallest face

containing u and v. Moreover any such face with more than one point is
S(M’) for some M (for if u= P¢>, v = P([/’ take M’ =[¢,¢]). Since 8
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is a convex automorphism, it preserves the structure of fuces and in
particular B[SM)] is SM’) for some M’ B

REMARKS.
1. This proof extends to all finite-dimensional subspaces.

2. For an alternate proof, see Hunziker [8].

LEMMA 5.2. Given any Kadison automorphism {8, there is a Wigner auto-

morphism a with ﬁ(P¢) = Pa(w) for every one dimensional projection

p'}[’ € 5(}().

PROOF. Given f, we note that since the P¢, are the extreme points of
S0, ﬁ(Ptﬁ) = Pa(!/f) for some map a on the rays. We must prove that a
preserves the inner product on P(K). Given . € H, let M be span of
¢ and ¢r. By composing 8 with the 8 induced by a unitary U which
maps fS(M} into M, we obtain B = B,°B leaving S(M) invariant. By
the two dimensional case, B is induced by a unitary, so there is a unitary
or antiunitary V:M - B(M) so that B(p) = VpV* for p ¢ (M) and thus

B preserves Tr(P¢P¢), ie. (alylalel) = (vl (o). 1

LEMMA 5.3. If 8 is a Kadison automorphism which leaves each extreme

point fixed, then 8 is the identity.

PROOF. We need only prove that 8 is continuous in trace-norm topology
o
since any p e S(H) has an expansion 21 tiP¢'_ converging in trace norm
i= 1
and so is a limit of finite convex combinations of the Pw.. Now 88 ex-
i

tends to the positive trace class operators by defining B,,,(A) =
Tr(AYB(A/Tr(A)). ﬁext obeys B, (A+B)= Bext(A) + Baxi(B) (since
B is affine), Boyi(AA) = AB o (A) for A >0 and

Tt (Boy(A)) = Tr(A) .

We define 8 on all self-adjoint trace class operators by B(A) = B (A +)

-—,Bext(A_) where A and A_ are the positive and negative parts of A.
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Thus letting [|All; = Tr((A]):

1B, < IBextA N} + IBexiAN;

= Tr(A+)+ Tr(AD) = Al .

Since B is linear, § is continuous in ||—j; and so B is continuous

on 8.1

PROOF OF THEOREM 2.2. By Wigner’s theorem and Lemma 5.2, we can
find U, unitaty or antiunitary so that B B is the identity on all P,J,.
Thus by Lemma 5.3, B;°B=id, ie. B= BU_I. |

§6. The Structure of Segal Automorphisms
We will prove Theorem 2.3 by reducing it to Wigner's theorem. We

first note:

LEMMA 6.1, Let y be a weak Segal automorphism. Then y is order .

preserving (i.e. A > B implies y(A)> y(B)), y takes projections into
projections, y(1)=1 and |y(A)l = [Al.

PROOF. Since y is linear, we need only prove C> 0 implies ¥(C)>0
to conclude that y is order preserving. But ¥{(C) = y(Cl/2 oCcl/2) =
y(CU 2)ny(C1/ 2y> 0. y clearly takes projections iato themselves since
P2 =P implies y(P)= y(POP):y(P)z. Since 1 is the unique maximal
projection, y(1)= 1. Finally 1JA[ = A>0 implies * y(A) + [|All1>0
implies |y(A)| < JAl. Since y is invertible and y~! is a Segal auto-

morphism [1A] = §y~ (ANl < lya)i. B

LEMMA 6.2. Any weak Segal automorphism y takes one dimensiopal
projections onto one dimensional projections. y thus induces & map

o PH) - PR so that y(Pw,])= Pa.[tb]' a is a Wigner automorphism.
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PROOF. One dimensional projections are minimal (non-zero) projections,
50, by Lemma 6.1, y must take one into another. By a similar argument,
y must take two dimensional projections into themselves, so, as in Sec-
tions 4, 5, the two dimensional analysis of weak Segal automorphisms
implies for any two dimensional M, there is a unitary or antiunitary map
U:M-H sothat y(Pw,]) = P[U(,(v] so that a will preserve inner
products. il

REMARK. Given this theorem, one might expect that {<¢,¢>| should
be expressible in terms of P¢, qu and the Jordan product. In fact:

Py o (PyoPy) = 3 (ByoPy) = 5 16.#)% Py .

LEMMA 6.3. If y is a weak Segal automorphism and y(Pi,b) = P¢ for all

one dimensional projections, then y = identity.

PROOF. Let P be any projection. Since i¥ ¢ Ran P if and only if
Plﬁ <P and y is order preserving, Rany(P)=RanP, ie. y leaves
all projections invariant. Since y is continuous in norm and any

A ¢ BH) is a norm limit of finite linear combinations of projections (by

the Spectial Theorem), y is the identity. |

Given these lemmas, Theorem 2.3 follows from Wigner’s theorem in
just the way that Theorem 2.2 followed. |

§7. Lifting Measurability

DEFINITION. A map t- U(t) from the reals to the unitaries is called
weakly measurable if t - (¢, U(H)y) is measurable for all b, e Ho A
map t - ¢(t) from the reals to H is called weakly measurable if

(i, (t)) is measurable for each ¥ ¢ K.

In this section we prove:
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THEOREM 7.1. If to a; is a measurable family of Wigner automorphisms
obeying ag . = ajag, then there is a family of unitaries U(t) so that
aiif] = (U] and so that U(t) is weakly measurable.

REMARKS.

1. We emphasize that we are dealing with everywhere defined functions,
not merely almost everywhere defined functions.

2. @y, = Ahg plays no critical role in the proof. We include it for
convenience.

3. That continuity lifts (i.e. the analog of Theorem 7.1 with continuity
replacing measurability) is a result of Wigner [11], generalized (with local
continuity only) by Bargmann [12] to more general groups. Given Section 8,
Section 9, we actually prove their result,

4. Since H is separable, weak measurability is equivalent to
apparently stronger notions, see [13].

5. A similar result holds for B, and y, given their relation to a’s.

”

i,
LEMMA 7.2, If U (t) and U,(t) are weakly measurable, so is U, (t}U,(t).
If J(t) is a weakly measurable vector valued function, so is U, Oyt
If yi(t) and #7(t) are measurable, so is (1), n(t)).

PrROOF. Let {¢, I} | be an orthonormal basis. Since

@ UOUO9 = Y @006 )b, U,09)

n=1

it is measurable as the limit of measurable functions. The second and

third statements follow similarly. il

LEMMA 7.3. There exists a unitary operator valued function U(W,n) de-
fined on pairs of unit vectors so that:

(1) If ¢ is orthogonal to Y and 1, then UQY,m)dp=¢
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() V&, ma=y
(3) If (t) and 75(t) are weakly measurable, then U), () is

weakly measurable.

PROOF. If = an for some complex a, then define U, n) = 1+(a—1)Pq.
If ¢ is orthogonal to 7, define UQs,7) by

U, e = ¢+ @ e)ag—yv)+ 0, -7) .

1§ @) A0, wiite @,n) =1, e, 0<8< 2 and UW,n) so that
(1) and (2) holds and UGy, my = e 2%, Measurability (property (3)) is
easy to check. B

LEMMA 7.4. If t+a, isa measurable family of Wigner automorphisms
obeying ay = aiag, then each a; is induced by a unitary. Moreover,

for any ¢, we can choose n(t) weakly measurable so that alpl) = [n(e)).
PROOF. Since a; = (auz)z, a, is induced by a unitary. Let f¢m§;=1

be an orthonormal basis. Let X = Ztl<[¢i],at [pl>=0, i=1,--, k-1
<[¢k].at [¢]> £ 0} Each X, is measyrable, so we need only choose

7(t) measurable on each X,. Choose n(t) on X so that <Yy, n(t)>> 0
and a(¢]) = [7(H)). Let fj(t) =<y i n(t)>. We must show that each f j(t)
is measurable. As in Lemma 4.4, fj is determined by [< n,[;j,q(t)>|,
|<‘/’k+‘rt'jv’?(t)>|/\/§ and |<¢k+i‘£’j’q(t)>|/‘/§' so f; is measurable. il

LEMMA 7.5. Let dimK =2 and ¢ ¢ H fixed. Let t- a; be measurable
and induced by a unitary with at([t;b]) = [¢] forall t. Choose U(t) in-
ducing a, so that U(t) = ¢. Then U(t) is measurable in t.

PROOF. Choose an isomorphism of H and C? sothat ¢ corresponds
to (1) In terms of Section 3, ay corresponds to a rotation by angle )
0

in the 1-2 plane. Thus
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1 0
Uity = ( )
0 exp(if(t)

PROOF OF THEOREM 7.1. Choose ¢ ¢ H. By Lemma 7.4, n(t) measur-
i‘;\bleT can be found so th~at (7)) = ay([s]). Le_t a; = Ty B, mt) Then

ag is measurable and a,[¢] = [¢). Choose U(t) inducing ‘;t so that
U(t)é = ¢. Since U(qS,n(t))‘lfJ(t) induces ag, we need only prove iJ(t)
measurable. It suffices to show I-J(t)¢r is measurable for each & orthopo-
nal to ¢. Choose x(f) measurable so that a([¢r]) = [«(t)] and let B¢ =
aU(l,l’I.K(t))at' Then B, is a measurable family leaving [, ] invariant.
Thus there is mefasurable V(t) on [¢,¥] sothat V(t)¢ = ¢. Then,
since U(Y,x(HU()$ = ¢, we conclude that U = UG, xO) "1V,
so U(t)Y is measurable. B

is measurable.

The measurable choice t - U(t) must obey U()U(s} = w(t, s)U(t+s)
for some w(t,s) ¢ C with modulus 1 on account of uniqueness up to (

phase and @, g = Qlg

§8. Multipliers for R

At this stage, we have a map a r U(a) from R to unitary operators

which is weakly measurable and obeys
U(a)U(b) = wl(a,b)Ul(a+b)

where w(a,b) is a measurable function from RxR to {ae¢C!|a|=1}. The

associative law easily implies that w is a multiplier, where

DEFINITION, A (Botel) multiplier on R is a measurable map o :RxR »
{a|lal=1} so that for all a,b,ce R

w(a, b)wla+b,¢) = w(a, b+c)wlb,c) .
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DEFINITION. Given a measurable function A:R - {alla|=1}, we define
oA by
9A(a,b) = Ala+ AT AL .
Each oA is easily seen to be a multiplier. The next step in the

proof of Theorem 2.4 is:

THEOREM 8.1. Every Borel multiplier on R is of the form w = o for

some A.

The point of Theorem 8.1 is that E-J(a) = A(a)U(a) is a& weakly measur-
able map from R to the unitarities cbeying fl(a+ b) = fl(a)ii(b). The
proof we give will basically follow Wigner [11] although we have been in-

fluenced by lectures of Mackey [14]. Before giving the proof, we note:

REMARKS.
1. The symbol 9\ is motivated by the connection with cohomology

of groups. Theorem B.1 is essentially a statement that the two-dimensional
(Borel) group cohomology of R with coefficients in the circle group is
trivial.

2. Theorem 8.1 represents a subtle interplay between the group and
measure structure of R. For R? is isomorphic to R as a group (both
are vector spaces over the rationals of the same dimengion) and as a
measure space (the Borel structures of any two complete separable metric
spaces are isomorphic) but not as a group with a Borel structure. While

R has no nontrivial multiplier, R? does have nontrivial multipliers, e.g.
w(<a,b> <, d>) = exp[% (ad—bc):l

the multiplier associated to the Heisenberg group fexpli(aP —a Q).
3. For the structure of multipliers of more general groups, see Barg-

mann [12] or Mackey [15].

LEMMA 8.2. Without loss of generality, we may suppose that o(a, =1
= w(0, a).
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PROOF. Taking b=c=10 in the definition of a multiplier, we see that
wfa,0) = @(0,0) for all a so w(a,0) is a constant d. Similarly w(0,a)
=-w(0, 0). Let & = (0)dA where A(a)=d. Then & isa multiplier with
&(a,0)= 1= a(0,a). If @ =0\, then »=ala’A"1].1

Henceforth we suppose w(a,0) = w(l,a)= 1.

LEMMA 8.3. Without loss of generality, we may suppose that w(a,—a)=1
for all a.

ProoFr. First note that taking b= —a, c=a in the definition of

multiplier
wla, —a)w(0, a}) = w(a, 0)w(-a, a)

so that w(a,—a) = w(—a,a). Define Afa) = [w(a, —a 1172 where we take

the square root with argument in [0, 7). Then
dA(a, —a) = A(O)A(a) "L A(~a)"! = w(a,-a)"!
so that (w)(OA) = @ obeys a(a,—a)=1. M

Henceforth we suppose that woa, —a)= 1.

LEMMA 8.4. For any multiplier, there is a map a~ U(a) to the unitaries

on some Hilbert space so that
U(a)U(M) = w(a,b)U(a+b) .
ProoF. Let K= L2, dp) where p is Lebesgue measure. Define U(a)

by
U@ f)(b) = w(b,a)f(a+b) .

An immediate computation shows that
U)U(b) = wla, b)Ua+b) . B

LEMMA 8.5, If w is a multiplier, then w(a,b) = w(b,a) forall a,beR.

o,
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PROOF. Let q(a,b) = w(a, b)/w(b,a) and let U be some w-representa-
tion. Then

Ua) U U@ = q(a, b)U) .
Moreover, w(a, b)w(~b,—a)=1 since by wla,—a) =1, Ua)~! = U(-a)
whence (U(a)yU(b))~! = U(=b) U(=a) = w(~h, —a)U(~a—Db) on the one
hand and = (o(a, b)U(a+b)~! = w(a, b) ' U(-a—b) on the other hand.
From the last two formulae, we conclude that g{a+b, c) = q(a, c)q(b, c)
so that the measurability of q implies that a(a, b) = exp(27i a f(b)) [to
see this, just follow the arguments of Sections 9, 10 with X = C!]. Since
qla,a) =1, f(a)= a~'n(a) where n(a) is an integer. Clearly gfa,b}q(b,a)
_1 so ab~la(b)+ ba—'n(a)=n(a,b) for integers n(a), n(b), n(a, b).
Let b=a%/2. Since 32, (3\/2)"1 and 1 are independent over Z, we

conclude n(a)- 0 forall a, i.e. q(a b)=1 forall a,b. B

LEMMA 8.6. For any multiplier, there is an irreducible family 1U(a)l of
unitaries on some Hilbert space so that U(a) U(b) = wla, b)U(a+b).

PROOF. If @ were continuous, we could form a locally compact group
so that representations of the group with an additional property were in
one-one correspondence to w-representations and then appeal to the theory

of such representations. Since this is not available to us, we borrow the

relevant argument!
Call a function ¢ on R, w-positive definite if and only if ¢ ¢ L™(R)

and

fﬁ;)f(b)tﬁ(b— a)w(—a,b)dadb > 0

for all fe L1(R). Given any w-rep, $(a) = (., Ula)y) is w-positive
definite, so by appealing to Lemma 8.4, there do exist w-positive definite

functions.
Given ¢ w-positive definite, we put an inner product
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(f,g) = f f(a) g(b)h(b—a)w(—a, b)da db

on L! and form a Hilbert space in the obvious way. The maps (U(a)f)(b)
=w(a,b—a)f(b—a) are easily seen to obey (U(a)U(b)f) = w(a,b)(U(a+b)f),
U(0) =1 (f,U(a)g) = (U(-a)f,g) sothat U is an w-representation.

The set of w-positive definite functions is a compact convex subset
of L™ in the weak * (L!) topology, so, by the Kerin Millman theorem,
there exist extreme points. Such extreme points are seen to lead to irre-

ducible w-representations. |

PROOF OF THEOREM 8.1. By Lemma 8.5, {U(a)} is a commuting family,
so the irreducible representation of Lemma 8.6 is one dimensional by

Schur’s lemma. Thus, if this representation is multiplication by A:
A(a)A(b) = w(a, b)A(a+b)

ie. w=0an. 1

§9. Von Neumann’s Theorem

In this section and the next, we complete the proof of Theorem 2.4 by
proving that any weakly measurable family of unitary operators with
U(a)U(b) = U(a+b) is of the form U(a) = e~ 180 for some self-adjoint H.
Our two step proof consists in demonstrating two classical theorems. Our
proofs follow those of Reed-Simon [13] to which the reader is referred for

more information concerning the spectral theorem, self-adjointness, etc.

Here we prove:

THEOREM 9.1 (von Neumann’s Theorem [16]). Let t - U(t) be a weakly
measurable map from R to the unitary operators on a separable Hilbert
space, H. Suppose U(t+s)=U(t)U(s). Then U(t) is strongly continuous

PROOF. Since the U(t)’s are uniformly bounded, it suffices to find a

total set (subset whose finite linear combinations are dense) of ’s so

e
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that t » U(t))s is continuous. Pick an orthonormal subset b 12 of

n'n=1
H and for a>0, define ¢n(a) as follows:

a

7 - f VO )dt = £, ()

0

defines a conjugate linear function with norm < a, so there is a vector

ba(a) with (), ¢ ,(a)) = En,a(’?)' For obvious reasons we denote (@) as

I Ut) e, dt .

0

A simple argument proves that

a

U(s)f Ut)s,dt = I U(t) ¢ , dt
1]

s

and thus that

[(U(s) - Us Nb (@) < | f Ut)dt + | f U, dtll < 2[s—s|.

It follows that t - U(t}n,‘:n(a) is continuous for all n and a, so we
need only prove the {d:n(a)i total by the remarks above. Suppose | is
orthogonal to all the l¢n(a)l. Then, for each n, @, U¢,) =0 ae. in
t, so there must be a ty with (i, U(ty)é,) = 0 forall n. It follows that
U(to)‘ll,b =0, so ¢y = 0. Thus the {dp(a)l are total.

§10. Stone’s Theorem

We complete the proof of Theorem 2.4 with:

R A S 9 e il s . i e 4

et 2o bt
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THEOREM 10.1 (Stone’s Theorem [17]). Let t - U(t) be a strongly con-
tinuous map from R to the unitaries operators so U(t+s) = U(t)U(s).

Then U(t) = e~ MY for a unigque self-adjoint operator H.

REMARKS.

1. Since e—iHt (which can be defined by the spectral theorem) is a
strongly continuous unitary group, this sets up a one-one correspondence
between such groups and unbounded self-adjoint operators.

2. If both U{t) and U’(t) generate the automorphisms «(t), then
U(t) U’(t)“1 is a numerical representation of R and so U(t) = U'(t) elat

for some real a, giving the uniqueness aspect of Theorem 2.4.
Proo¥r. Define an opetator H with domain:

D(H) = {6 | U(t)$ is differentiable at t=0}

and

Hp = i & (U], -

A simple argument shows that H is symmetric. Moreover, if U(t) = e—iAt
for some self-adjoint A, then H is closed and H= A (this yields
uniqueness).

Forany feCg, the C™ functions of compact support and ¢ ¢ K,
let ;= [H(t)U()pdt and let G, the Garding domain, be the finite span
of the ¢¢. By an elementary computation ¢ ¢ D(H) and Hgy= —idy
so GC D(H). Moreover, U(s)¢¢= qsf(s) where E5)(t) = f(t—s), so G is
left invariant by the U(t)’s. In addition, G is dense, since ¢y ¢ as
f approaches a §-function in a suitable way (this uses the strong
continunity?!).

Suppose ¢ is orthogonal to (H+i)[Gl. Then, for any 3¢ G,
@, U®n) = f(t) obeys:

450 = ¢, -MHUOD
G, U n)
~£(t) .

(G is invariant!)

i

s
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Thus £(t) = (0)e~t, since [f(t)} < [l linll; taking t o —co, wese€ that
£(0) = 0, i.e. ¢ is orthogonalto G and so zero. Similarly, (H-1){G]
is dense, so H is essentially self-adjoint on G.

Let A= . To complete the proof we need only show that U(t) =
1Al Let ¥,¢ ¢ G. Then since Jr ¢ D(A) which is left invariant by
e—iAt and U)p ¢ G: E‘li't (e—iAty U)) = 0, so UW=eALT

DEPARTMENTS OF MATHEMATICS AND PHYSICS
PRINCETON UNIVERSITY
REFERENCES

[1]1 E. Wigner, Group Theory and its Applications to the Quantum Theory
of Atomic Spectra, Academic Press, 1959; German original: 1931

[2] R. Kadison, Topology 3, Suppl. 2 (1965), 177-198.
{31 J. Ax, Stony Brook preprint, 1975.
[4] J]. von Neumann, Mathematische Grundlagen der Quantenmechanik,

Springer, 1932.

[5] G. Mackey, The Mathematical Foundations of Quantum Mechanics,
Benjamin, 1963.

[6] 1. Segal, Ann. Math. 48 (1947) 930-940.

[7] E. Attin, Geometric Algebra, Wiley, 1957.

{8] W. Hunziker, Helv. Phys. Acta. 45 (1972), 233-236.

[9]1 V. Bargmann, ]. Math. Phys. 5 (1964), 862-868.

[10] J. Roverts and G. Roepstorff, Comm. Math. Phys. 11 (1969), 321-338.
[11] E. Wigner, Ann. Math. 40 (1939), 149-204.

[12] V. Bargmann, Ann. Math. 59 (1954), 1-46.

[13) M. Reed and B. Simon, Methods of Modern Mathematical Physics,
Vol. | Functional Analysis, Academic Ptess, 1972.

G. Mackey, Unpublished lectures at Harvard University, 1965; see
also Induced Representations of Groups and Quantum Mechanics,
Benjamin, 1968 and Oxford University Lectures.

[15] G. Mackey, Acta Math. 99 (1958), 265-311.
[16] J. von Neumann, Ann. Math. 33 (1932), 567-573.
[17] M. Stone, Proc. Nat. Acad. Sci. 15 (1929), 198-200.

[14]



