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Abstract

We review certain aspects of the theory of resonances and give a comprehensive review of the
rigorous aspects of complex scaling.

1. Introduction

As the proceedings of this workshop amply demonstrate, complex scaling has
become a powerful tool in the numerical study of resonances in few electron
systems. It is also a technique which has had a firm rigorous footing since the
work of Agiular, Balslev, and Combes. It seems worthwhile to state as carefully
as possible exactly what is or is not known rigorously from a viewpoint that
artempts to bridge the language gap between the rigorous types like me and the
atomic theorists. I will generally avoid encumbering this review with proofs and 1
will occasionally avoid giving the most general definition but concentrate rather
on giving examples that obey the definition and include all {or most) cases of
practical interest.

In Sec. 2, I will discuss some aspects of the definition of resonance, especially
those involving a fundamental principle that is often neglected in the literature: |
call the principle Howland’s Razor since it was emphasized emphatically by
Howland {1] and since its cutting significance is somewhat reminiscent of
Ockham'’s razor. The general literature on resonance is enormous and absolutely
no attempt is made to summarize it; see Fonda [2] for a recent review.

In Sec. 3, I attempt to review what is rigorously known about complex
scaling. In Sec. 4, I raise certain open questions; this is intended mainly as 2 plea
to my fellow mathematical physicists. Finally, in Sec. 5, I briefly discuss other
complex canonical transformations {a term coined by Combes); this section
should be viewed partly as an advertisement aimed at those who have already
been beguiled by complex scaling to consider the charms of some of the other
complex beasts, '

I should like to thank P-O. Lowdin for organizing a most stimulating con-
ference.

2. What Is a Resonance?

Let me begin with three possible “definitions™ of a resonance state that
represent the main trends used to study resonances. These definitions are delib-
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t Research partially supported by USNSF under Grant No. MPS-75-11864.

© 1978 John Wiley & Sons, Inc, 0020--7608/78/0014-0529501.00



530 SIMON

erately caricatured. Moreover, they are deliberately stated in a way that makes
them absolutely unsuitable because of Howland's Razor, which rips them to
shreds! Throughout, H denotes a (Hamiltonian) self-adjoint operator on a
Hilbert space, .

Time Decay. ¢ is a resonant state of H with width I, if

(e e )P = (1)
for all t > 0.

Gel'fand Triple. Suppose that # contains a nuclear space (whatever that is!)
X (the ket vectors) that is continuously embedded in ¥ (i.e., for ¢ € X, [llle =
(const) ||¢|lx. with | - x a continuous norm on X ) and which is left “*invariant™ by
H (i.e., Hx £ X if x € X). Then X* (the bra vectors) contains # in a natural way
(¢ € & acts as a funclional on X via x = (¢, x)s) and X < ¥ < X* will be called a
Gel'tand triple for H. By duality, H acts on X*. We say that E,—i[/2 is a
resonance energy of H if there is some Gel'fand triple for H and some p & X*
with He = (E, —iT'/2)e.

Resolvent Poles. We say that E=FE,—iT/2 is a resonant energy for H if
there is some dense set @ in %, so that for all €@, (¢, (H—z) '¢) has a
meromorphic continuation from Im z >0 to a region including E, and so that E
is a pole of this continuation.

We note that while the complex scaling type of resonance is usually stated in
terms of the third notion, it can be rephrased in terms of the first two notions
(see, e.g., Ref. 3).

There ars several conventional criticisms of these caricatures, among them.

{a) Short-time complaint. If ¢ has finite energy (i.e., (p. He)< ), then
F(t)=|(p, e ™) is differentiable and must have zero derivative at 7 = 0 {since
F(r)=F(0) for all real 1). Since F(t)=F(-t), F(t)=¢ Ml jg impossible unless ¢
is to have infinite energy.

(b) Long-time or Paley-Wiener complaint. This is an argument that has
been rediscovered often (with considerable fanfare) by a large number of
authors. Suppose that H is bounded from below and that F(t)=|(¢, e "¢)
merely obeys |F(1)| =< Ce " for some A, C>0. The spectra] theorem (see Ref.
4 for the necessary functional analysis) assures us that {g, € ") is the Fourier
transform of a measure, L.e.,

(e )= [ e dutx)

and dp lives on the spectrum of H. The The Paley—Wiener theorem (indeed it’s
easy half) tells us that since F'/? has exponential falloff, du = g(x) dx with g
analytic in a strip of width 3A about R (indeed, formally

du(x)_

o =@y IeixlFIIZ(r)
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by the Fourier inversion formula). Since g(x)=0 for x below the lower bound
for H, g=0. Thus (g, ¢)=0.

The usual way out of the first two complaints is to demand that Eq. (1) hold
approximately and only for times neither too short nor too long.

(¢) Kitchen Sink complaint, If the space X in the Gel'fand triple is too
smali, then X* will be so big that it will contain elephants, kitchen sinks, and
“resonance elgenvectors” for every complex number E! For example, if H =
—A, %¥=L% and X =Cj (the smooth functions of compact support), then X*
(the dlstrlbunons) will contain e™ * for any z in C" and ~A(e”™ *)=z(e" ).
(For the expert reader, I know that Cy is not nuclear by the usual Gel'fand
definition, but ore can modify the above if one insists on nuclearity.)

People fond of the Gel’fand triple method try to get rid of the kitchen sink by
demanding that X not be too small.

The above complaints are all legitimate ones and are important but they miss
a much more fundamental failure of the characters:

Howland’s Razor. No satisfactory definition of a resonaace can depend only
on the structure of a single operator on an abstract Hilbert space.

To illustrate this, let us consider the Stark effect in hydrogen. Let H(e)=
—A—1/r+ex. We all believe that this has resonance: indeed Reinhardt [5] has
told us where they are using dilation analytic methods (see Refs. 6-8 for
discussion of related rigorous work). But for any nonzero g, ' we can find, more
or less explicity, a unitary operator U (e, ") with

Ule, e ) H(e") U(e, 'V = H{z) *
(For, let Hy(e)=—A+&x.) Then [9]
V(E)HO(E) V(E)*¥x+p3 +P3

where V(e}= Wi(e)exp (ip2/3e) and (W(e)Xx, v, 2)= s_”zf(eflx, y, z) and
[10]

Ue) H(e) Qe )* = Hole)

where
Qe)= S,‘_l,ig‘ exp [iHo(e )] exp [—itH ()]

To get Eq. (2), let
Ule, eY=0(e)* V(e)* V(e Ue")

The dilation anaiytlc theory tells us that for suitable eo, E(g0), and
¢, (@, (H{eg)—2) ') has a pole at E{eo) when contmued Equation (2) then
implies that for any other &: (Ule, £0)* e, (H(e)— 2)! U(s, €0)*@) has a pole at
the same point E{eo). Thus in some sense, (H(g)— 2! has a pole at E(gg) no
matter what ¢ is. Of course, we are tempted to think that for £ # £, the pole in
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(Ue, g0, (H(e)—2) 'Ule, eol*¢)} is not in the resolvent but in the vector.
But for £ = gq, we think it is really in the resolvent, But why?

The point of the above is that lots of operators in physics are unitarily
equivalent to each other so that any notion of resonance that is unitarily
invariant (I was careful to state the caricatures in this way; e.g., in Eq. (2), there
exists some Xy, etc.), is bound to give nonsensical answers. Thus one must have
an extra structure arcund and one must be prepared to defend it!

Why make this big deal about Howland's Razor? It is not intended as a
criticism of any explicit way of computing resonances in any explicit problem.
The errors come when an attempt is made to abstract a procedure. Since we are
brought up to think of abstract quantum mechanics as Hilbert space theoretical,
too often the abstraction procedure does violate Howland’s Razor. In the end,
Howland’s Razor is useful in understanding exactly what is involved in any
resonance computing procedure.

What possible extra structures are there? One is the structure of configura-
tion space (geometry) and another is consideration of a second operator or a
family of operators. Explicit possibilities are the following.

(1} Scattering Tk'eory

To my way of thinking, the only “satisfactory” notion of resonance is one
that associates them o poles of the scattering amplitude analytically continued.
Here the extra structure can be thought of either as an extra operator (most
mathematical treatments of scattering [11] concentrate on the Mpller wave
operator comparison peint of view) or as the geometric structure of space.

(2) Perturbation Problems

One may be able to define a resonance uniguely in terms of a one parameter
family. For example, consider a resonance in the Stark problem discussed above
obtained by dilation analytic methods; suppose that this “‘resonance eigenvalue”
depends on £ in such a way that as £ >0, E(e) approaches an eigenvalue of
—A—1/r. Then the general theory [6, 8] shows that for |¢| small, E¢) has an
analytic continuation from [0, A) to {¢ | Arg e €0, 7], || < A} (for example)and
for arg £ = w/4 (say), E(e) will be an honest to goodness eigenvalue of ~A+ex —
1/r. Thus the “‘resonance eigenvalue” is a continuation of an honest eigenvalue.
This approach was emphasized by Howland [1].

(3) Geometric Structures

We use the geometry of spaces to pick out something distinguished. In the
dilation analytic theory, we use the resolvent pole idea but not for any arbitrary
dense set, &. Rather @ is the fixed set of dilation entire vectors (see Ref, 3). Of
course, we need some good reason for thinking that when (@, (H —z) ') has a
pole under continuation, its pole is “due to H” and not to 2. One can have some
confidence since for Hy = —A, there are no poles. In the end, one should relyon a
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connection with scattering; these are partial results along these lines, see Ref. 3.
Another example of the use of geometric structure is the classic work of Titch-
marsh [12] who studies the x-space Green's function, G(x, y; E), looking for
poles in E for fixed x, y.

3. Complex Scaling: What Is Rigorously Known?

In this section, | want to summarize exactly what is known about dilation
analytic potentials. There is extensive discussion (including proofs) of many of
these things in the recently published fourth volume of Reed and Simon [13].

A. Basic Definitions: Continuation of Matrix Elements ({14]; for Stark (6, 8)

The founding fathers of the subject in their basic papers [14], introduced a
basic class of operator perturbations. (We note that van Winter [38] introduced
independently a closely related formalism.) This class was extended by Simon
[15] with the idea of allowing “complex rotations™ 2 Im 4 with Im 8 > 7/2. What
arises are some basic classes %, and %,. Rather than give a precise definition, we
give examples which include all those of physical interest.

Example. A central potential V(r) will lie in %, if V has an analytic
continuation into the sector JArg r|< a so that:

(i) lim |V(r)|=0 forall §<a
\A:g <A
and

(i) lim V()| =0 for some e >0 and all B<a
r—+0

lArgi<g

If V is continuous up to |Arg r| = & and the limit conditions hold for |Arg r|=a,
then we say that V lies in #,. Thus r " liesin any F, if 0<y <2, e "frisin Fuz
and e is in F,/2 (it is not in F, a2 since e~ does not go Lo zero as y - o0).

Definition. A vecior 7 is said to be dilation analytic in the strip [Im 6] <e
{we write n € A,), if the spherical harmonic expansion 9 = ¥.m (r) Y (8, ¢) has
each mm(r) analytic in |Arg r| < a with

.
¥ L |im(re®)r® dr <o for all @ with |Im 8| <«
im

(This is given in three-dimensions; in multiparticle systems one needs the
obvious generalization to 3N — 3 dimensions.)

The point of the above is that if one defines (U (8)y)r)=e**y(e’r) for 8
real, then 5 dilation analytic means that U(8)n has a vector valued analytic
continuation into the strip [Im 8| < a. Moreover, Ve & means that if H=
—A+V, then H{#)= U(8) HU (6)=—¢ *’A+ V(#) has a continuation into the
strip also (for a suitable sense of unbounded operator continuation; actually
(1—AY V2 H(8)(1~A) “* has an operator norm convergent Taylor series).
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By general principles, for any fixed vector ¢ and fixed 8, (, (H(8)—z) '¢)=
R,(z), is an analytic function for z outside the spectrum of H(8), o(H (8)).
o(H(#)) breaks up into two parts a4 and o, (for discrete and essential) so that
R,(z) is meromorphic outside o.; i.e., has its worst poles at o,4(#). Now suppose
that V € %, and n € A, and consider

R,(8, 2y=(U(®)n, (H(8)—2)"'UB)y)

which is analytic (respectively meromorphic) in {8, z)|Im 8 < a; z¢ o (H ()}
(respectively, z € o.(H(8))). But for ¢ real

R,{(8,2)=R,(6+¢ 2)

since & — 8 + ¢ is unitarily implementable on both the vectors and the operaiors
and matrix elements are unitarily invariant.

The spectrum of H{#) moves “continuously,” so that we can obtain multi-
sheeted continuations of (5, (H-z) 'n)onto* U {z|z¢ o (H)} (where “U ™ is in
quotes since it is a multisheeted union) as follows: as z = A +i0, A =0, we begin
to change @ so that the spectrum of H{8) moves out of the way. One basic point
is that o4(#) is independent of 8 (so long as points don’t get “covered” by
essential spectrum) while o.(8) moves as Im 8 is changed. In a real sense, o.(d)
acts as “‘cuts” (which can move), while o,(8) as “poles”, which are invariant so
long as we don’t swing a branch cut over them. New eigenvalues “uncovered’ by
essential spectrum are defined to be resonances (see Fig. 1).

a {el) (c2) {c3)

NN

Figure 1. Typical o(H(8)). (a) Discrete eigenvalue of H(# =0). (b) Embedded

eigenvalue of H(0) becomes discrete. (c) Real thresholds. {d) *'Resonance™ eigen-

values. (e) “Resonance” thresholds. (f) “Resonance” uncovered by cut (c1) about
to be recovered by cut (¢2).

For Stark problems, the situation is much more complicated. H(8) is very
nonanalytic as Im # moves from 0, but there is still enough continuity to gét
some analyticity, “second sheet poles,” etc. Moreover, there is the striking
discovery of Herbst {6] that for Im & nonzero and small (actually 0<Im 8 < /3
will do), o(8) is purely discrete! T cannot describe the situation in this brief
space; see Refs. 6-8 for details. I note that the class of allowable potentials is
defined differently but includes those in the example above.

B. Thresholds as Branch Poinis [14]

Balslev and Combes [14] precisely described o (8) in terms of the spectrum
of subsystems. Consider a potential V, which is a sum of Vi{r;—r,) with Ve %,
For each subcluster C < {1,..., N}, let H-(#) denote the scaled Hamiltonian for
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C with its center of mass motion removed. Let D denote a decomposition of
{1,..., N}into disjoint clusters Cy, ..., (. Let

S@)= U{E+: -+ E|E; € o:(He, (0))%
D
For 8 =0, these are precisely the scattering thresholds and, for arbitrary 8, we
think of them as “complex thresholds.” Then {see Fig. 1):
Theorem (Balslev and Combes [14]).
chs(a)z U A+,u e

AeZ(#)ue(da0)

28

This says that U Z(#) acts as the branch points for (n, (H(#)— z) 'n) under
continuation and that the branch cuts come out at an angle —2 Im &,

A and B together lead to a technical result of interest to us rigorous types
called the absence of singular continuous spectrum.

C. Information on 7gi,c(6)

(2) Analytically of eigenvectors [14]. It follows from the general theory |14]
that if  is an cigenvector for f1(#) and remains one for H(8 + &) with [tm ¢| < B,
then 4 € Ap. Thus, (IJ{¢ ) )r)is a function of re*®, This remark [16] is the basis -
of some techniques of numerical analysis by Ho and Junker.

(b) Real points of o4(0) [14]. Theorem [i4]. Let 0<|Im 6]< ;7. Then
o1(8)YN (—0, ©y=0,,{H)/Z(0) where o, (H )= eigenvalue of H.

This result says that eigenvalues of H, even those embedded in the continu-
ous spectrum, remain under complex scaling. It implies an important distinction
between cigenvalues of H and those of H(#) (resonances). When a cut sweeps
over a resonance, the resonance may disappear; indeed, it must if we sweep over
the last cut before reaching 8 =0. Eigenvalues of H persist. The intuition is
simple: if 8y is a critical value at which a cut is just sweeping over a resonance,
the resolvent may only have a pole as the cut is approached from one side. But at
# = 0, self-adjointness implies that all poles must appear on both sides.

- .
S // // ,/ s
a _/unlnn not ollowad hy// /
R ’muu! prlnglpln_r tal E ;
oL g O Total Energy

Region Not Aflowed By
Special Considerations
For Coulomb Polentiols

{2

Figure 2. No resonance region for atoms.

(c} General limitation on ,(8) [14]. (See Fig. 2.) Theorem [14]. Let 0<
Im 8 <3 Let T =bottom of the spectrum of H. Then al! complex thresholds
and resonances occur in the region {E]-2 Im & < arg (E - Y,) <0}
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This result comes from taking Im # back to zero and noting that it must
happen that all complex resonances are hit by o.{#) since they have to be hidden
away before we reach a self-adjoint H.

(d) Absence of “positive” eigenvalues and resonance in atoms [3]. (See Fig.
2.) Theorem [3]. If each V¥ =er,—r|™', then for 0<Im @ <%, H{®) has no
eigenvalues or thresholds in {E|-2 Im 6 < arg E < 0}.

This result has been extended to certain other homogeneous potentials by
Balslev [17]; for the region 0 < Im @ < f=, a beautiful proof has been supplied by
Hunziker [18], which we now give. We break our no-proof rule for two reasons:
first, this is probably the one rigorous theoretical result that might be somewhat
unexpected. Second, modulo the connection with scattering (see Sec. 3 F), this
result has real experimental significance; indeed, it calls into doubt some
experiments [19],

Proof [18]. Let (-,-) denote the usual! L’ inner product (net the inner
product [ fg popular in calculations and in the variational principle for H(8), but
§ 7g). Then

E =g, HOW) (W, y)=e Pa+e"b
where E is an eigenvalue with eigenvector ¢. Here

a=j |V¢|2/J ¢*=0 and b:J VWZ/J'W'!Z

is real, so £ must have an argument between —Im # and —» —Im # (see
Fig. 3). QED

Forbidden Regiwon For
Resononces

Allowed Region

A .
For be—2i8 liowed Region

For ae-'@

Figure 3. Hunziker’s proof.

_ (&) Absence of positive eigenvalues [20]. Theorem [20]. If each V; lies in
Fns2, then H has no positive eigenvalues or real thresholds.

[ emphasize that no assertion is made about resonances in the sector
—2Im 8§ < arg E < 0; indeed, this theorem includes suitable Bargmann potentials
[21] and some examples of Doolen [22] where resonances are known to occur.
Moreover, note the overbar in %,,,. We are in the absurd situation of having
information on e¢”’/r but not ¢!

{f) Nonzero widths in the Stark problem. By using methods related to those
in Ref. 20, Herbst and Simon [8] have proven that Stark Hamiltonians cannot
have real eigenvalues in certain regions. In particular, for all small field, any
given discrete eigenvalue of an atom must turn into a resonance.
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D. Perturbation of 04(8)

We recall that by turning embedded eigenvalues into discrete cigenvalues of
H(#), one is able to study the process whereby a resonance is formed by
coupling an eigenvalue to continuum via a perturbation. This is studied in detail
in Ref. 3. There are two important results; there is a rigorous proof of the Fermi
Golden Rule in a model (and the correct higher-order “‘time-dependent”
theory) and a rigorous proof of convergence of the complete series.

For a beautiful application of dilation analytic methods to a coupling
constant questions in atoms, see Ref. 23.

E. Connection with Two-Body Scattering

In Ref. 3, it was proven that for potentials falling off exponentially,
“resonances” in the dilation analytic sense are the only suitable poles of the
scattering amplitude, Balslev [24] has recently extended this to a much larger
class of potentials. These results give one some reassurance that “resonances”
really are resonances.

F. N-Body Scattering

In the early days of the dilation analytic theory, one hoped the methods
would also lead 10 a solution of the basic asymptotic completeness problem of
scattering theory and also to a number of neat formulas for scattering ampli-
tudes. The naive hope was based on the fact that complex scaling separated the
different thresholds in two different ways (Im @ >0 or <), presumably cor-
responding to the past and future. One imagined proving completeness by a
two-step process. For each scattering channel, a, one has a threshold (we assume

Threshold For Channel o

The Contow C
Figure 4. Contour defining of P ().
no degeneracy in threshold). By drawing a contour C around the cut coming
from this threshold (see Fig. 4), one tries to define for Im 8 >0
PL(8)=(2m)" cf,‘ (z—H(#Y 'dz
c

The naive hope was that tim, , P2 (ie) would exist for each & and would be the
orthogonal projection onto the out states for channel a. The statement of
completeness, Y. P, =1—Pyoua would then follow from the much easier
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statement at nonzero ; i.e., one uses the complex situation to disentangle the
scattering channels whose entanglement complicates scattering theory.

Following this scheme turned out to be much harder than anyone had
imagined. Just showing the convergence of the contour integral defining P, (6)
turned out to be nontrivial! This is because there is no norm falloff of the
resolvent as infinity is approached parallel to the spectrum. Cwing to hard work
of van Winter [25] (for certain nonlocal dilation analytic potentials} and Balslev
[26], one can define P (8) for suitable potentials.

A second difficulty in this scheme involves the 0 limit and the following
remark of Hagedorn and Simon [27]: lim. P, (ig) cannot be self-adjoint in
multichannel systems. For P, (ie)* = P, (—ig), so self-adjointness of the limit
would imply that the in states for channel « are the same as the out states for
channel a, i.e., no scattering between channels. Put differently the separation of
channels by complex scaling is too efficient: it completely stops the channels
from communicating owing to conservation of energy. Staring at the physical
literature [28] convinces one [27] that formally P, (i0) wants to be the non-
orthogonal projection onto the out states along the orthogonal complement of
the in states. In general, I see no reason for these two subspaces to be comple-
mentary {i.e., for the P to be a bounded operator); for this reason I remain
skeptical of any claims of controlling these projections on the limit!

Balslev [29] and van Winter [29] have announced substantial progress on
following through with the above scheme; indeed for suitable nonlocal dilation
analytic potentials, van Winter [29] has claimed asymptotic completeness with
these methods.

Hagedorn [30] and Sigal [30] have announced completeness results for
suitable local multiparticle dilation analytic potentials (Hagedorn for N =4,
Sigal for any N) by methods which go beyond the above scheme. Hagedorn
uses dilation analytically at only one point and it is far from clear that his
methods are capable of establishing the link between scattering and
“resonances.” Sigal uses a clever refinement of the above projection scheme
constructed to avoid the difficulty described. It seems likely that his methods wilk
be able to establish the link between “‘resonances” and scattering.

Both Hagedorn and Sigal require generic couplings, i.e., they may need to
change cach coupling constant by a small amount and both require £~ fallofl.
Recent exciting developments of Enss [31] appear likely to lead to a proof of
completeness of scattering without these restrictions; indeed, he appears likely
to be able to control atomic scattering! It is still not clear that his methods will
yield the kind of detailed information made available by the resclvent tech-
niques of Hagedorn and Sigal and, in particular, whether they shed any light on
the resonance principle.

4. Complex Scalings: What We Would Like to Know

Here we mention three kinds of open mathematical problems connected with
complex scaling.
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A. Scattering and Resonances

In the complex scaling theory, a resonance was defined to be a complex
eigenvalue of H{#). Except for the two-body case, it remains to be shown that
the “resonances” are the only possible poles of the analytically continuf?d
resolvent. Sigal’s work [30] gives us hope that this problem may be solved in
the near future.

B. Rigorous Error Estimates on Eigenvalues of H(#)

An especially simple error estimate for eigenvalues of self-adjoint operators
is Temple's inequality [32] in the following form:

Theorem. If A is self-adjoint and [[{A - Eyel* < ellel’. then A has some
spectrum in the interval [E—¢, E+e].

The proof is trivial by the spectral theorem. This result is not especially u§eful
in actually trying to estimate the limit of some series of computer calculations,
which will converge much more quickly than the ¢ above, but since it is rigorous,
it will give some absolute bounds. It is especially important if some instabilities
in the data make one uneasy. This is the situation occasionally in the calculation
of resonance eigenvalues for H (). Alas, H(#)is not self-adjoint or normal. This
leads to:

Problem. Find some kind of analog of the above theorem for H(#); more
generally find any rigorous estimate on errors in computing resonance eigen-
values.

We note that oné must be prepared to use some special property of the H(8)
since an arbitrary A may have no spectrum!

C. Dilation Analyticity and Molecular Dynamics

We have heard at this conference [33] the suggestion that one try to find
“resonance excitation curves” for molecules by trying to complex scale a Born-
Oppenheimer Hamiltonian. The problem is that one wants to consider only
scaling the electrons but nof the protons. To see the problem, let

Vi 2)={(x —1P+y + 22 = flx, y,2)"

(of course, one would be foolish to dilate this about (0, 0, 0) rather than (1, 0, 0),
but if one has a sum of Coulomb potentials about several points, one will obtain
difficulties of the type described below). ] '

Now fix 8. The condition f(xe*, ye”, ze®)=0 is equivalent to x=
cos 8, yz +zt=sin? 8, i.e., acircle for 8 # 0 (and small). Moreover, itisa “branch
cut circle,” in that the argument of V only changes by = if one loops around the
circle. At first sight, it seems absurb to hope that H(#) can be defined in any
reasonable way. But the applicability of these methods to the Stark problem also
seemed unlikely at first sight.
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Question. Is there any notion of complex scaling for Born-Oppenheimer
Hamiltonians? See Note added in proof.

5. What Other Complex Canonical Transformations Have Been Used
Complex scaling is one example of a real canonical transformation analyti-
cally continued in a parameter, Several others have been used in the literature:

A. Simple Complex Boosts

The three-parameter family (Uyg)(x)=e* “¢(x)actsby x > x, p—»p—a; thus
they are called “boosts.”” Any local potential is automatically “*boost analytic,”
e, U(@)VU(a)"' is analytic in a (it's constant!). Moreover, Hola)=
Ua)p*Ufa) '= ) —a)is analytic in a. As Im a is turned on, the spectrum of
Hy(a)} blossoms out into a solid parabola; see Figure 5. The point of all this [34],

The Porabola, x + B2=(y/28)2

Figure 5. Spectrum of (p—a).

is that discrete eigenvalues of Hy+ V will be analytic vector for U(a), i.e.,
U7{a)¢ will be in L* for suitable a. But this is just an assertion about exponential
falloff of ¢!

B. “Complex™ Complex Boosts

Motivated by Combes and Thomas [34], a number of unitary families of the
form (U (a)¢)(x)= e*’*"y(x) have been studied, i.c., x > x, p-> p — a(Vf). Falloff
as ¢ " has been studied for potentials V diverging at infinity in 35. Rather
subtle falloff of atomic wave functions has been studied in Ref. 36 with f a
homogeneous function of degree 1. Finally, in the Stark probiem, it is important
to have falloff as exp (—5x3’") (the potential of the field goes to +00 as x goes 1o

+00} and this is obtained by a complex boost argument [8].

C. Translation Analyticity

Avron and Herbst {9] have proposed the use of transiation analyticity, i.e.,
(U(ayXx)= ¢(x —a) as a way of studying Stark Hamiltonians.
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D. Local Distortions

Babbitt and Balslev [37] and Thomas [40] have proposed an interesting
technique, which only locally distorts the continuous spectrum. It has not been
extensively studied although it may be quite promising; also sce Jensen [39].

Note added in proof. One solution of Problem C of Sec. 4 has been given by
Simon who calls his new method the method of *“Exterior Complex Scaling.” {See
papers by Simon to be submitted to Physical Review Letters and Annals of
Physics.)
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